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Abstract. We study finite-dimensional distributions of symmetric 
a-stable (abbreviated as SuS) random fields of Chentsov type, 
0 < a < 2. We discuss a structure of the spherical components of Uvy 
measures and their determinism which depends on the dimension of 
the parameter space Rd. Here we treat mainly the cases d = 1 and 
d = 2 where proof is direct and admits a geometrical understanding. 
The general case will be treated in [4]. 

1. Introduction. A family of real-valued random variables {X(t); t €Rd} is 
called an SuS random$eld if every finite linear combination X = zy=, aiX(ti) 
has a symmetric stable distribution of index u. That is, its characteristic 
function is described as 

(1.1) E(exp(izX)) = exp(-c1~1~), ZER, 

where c 2 0. Let (E9 g, p) be a measure space. We say that a andom 
variables {Y(B); BEB,  p(B) < a} is the SuS random measure associated with 
(E9 9, PI if 

(i) each Y(B) has an SuS distribution with c = p(B); 
(ii) Y(B,), Y(B,), . . . are independent if B,, B,, . . . are disjoint and p(Bj) 

< oo for i = 1 , 2 ,  ...; 
(iii) Y (U ,"= =, B,) = zE Y (BS a.s if B,  , B,, . . . are disjoint and p(U J:l Bj) 

< a. 
Recently, Takenaka 161 extended the idea oi~hentsov's representation of 

Gaussian random fields and constructed an SaS random field using an SaS - 
random measure associated with a certain measure space in the following way. 

Let E, be the set of all (d - 1)-dimensional spheres in Rd. Any element of E,  
is expressed by a coordinate system (r, x), where (r, x) corresponds to the 
sphere with radius r E R + = (0, oo) and center x E Rd. Using this, we identify 

(1 -2) E, = {(r, x); r€R+,  XEP} = R+ xRd. 

Let St be the set of all spheres in Rd which separate the point t ~ R d  and the 
origin 0 of Rd. By using the correspondence above, St is represented as 

(1.3) S ,=( ( r ,x )~R+xRd;  d(x,O)<r)A{(r, x ) ~ R + x R d ;  d(x, t )< r ) ,  
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where A A B denotes the symmetric difference of A and B and d(a, b) denotes 
the Euclidean distance between a and b. Let 

C, = {(r, x)ER+ xRd; d(x, t) < r). 

The set C, is a right cone in R+ x Rd with vertex (0, t), although the point (0, t) 
is not a point in R+ x Rd. We simply call C, the cone with vertex t. In this 
notation we have S; = C, A C,. Let B, be the a-algebra of Bore1 sets in E ,  and 
p be a measure on (E,, a d )  such that 

(1.4) p(S,) < m for all t E Rd. 

We define an SaiS random field by 

(1.5) x(~)=Y(s,), ~ E R ~ ,  

where Y ( B )  is the SaS random measure corresponding to (E,, B,, p). We call 
this random field { X ( t ) ;  t E Rd) a Chentsov type random field of Rd-parameter 
associated with p. 

One of Takenaka's aims of constructing Chentsov type random fields was to 
present a new example of a self-similar SaS process with stationary increments. 
Actually, he proves that if dpp(r, x) = rp-d-ldrdx, then the Chentsov type SaS 
field {Xa,B(t), t€Rd) associated with ,us is self-similar with exponent H = P/a. 

For d = 1, this {Xa,B(t)} is a new example of an SaS self-similar process 
with stationary increments for the area of a and H where there were no other 
examples known before. In this paper, however, we do not assume any special 
form of p. 

2, Results. It is known that the characteristic function of an n-dimensional 
SaS distribution, 0 < a < 2, has the following unique canonical representa- 
tion [2]: 

(2.1) q(z)=exp(-c J 15.zlaA(dt)), 
sn- 1 

where c > 0, Sn-l = (5 = ( t l ,  ..., 5,); c f +  ... +ti = 1),A is a symmetriG proba- 
bility measure on S"-l, and 5 - z  is the inner product of vectors 5 and z. The 
measure R can be considered as the spherical component of the Lbvy measure of 
the n-dimensional stable distribution. We call it a A-measure of stable distribution. 

We define the label set 8, as 

(2.2) b ,={e=(e, ,  ..., e3; e i = O  or 1 for i =  1, ..., n)\{(Q ,..., 0)). 

Each e E 8, is called a label of size n. For T = (t, , . . . , t,) E (Rd)" and e = (el, . . . 
. . . , en) E &',, we define 

(2.3) 
if e, = 1, 
if e, = 0, 

n 

(2.4) S(T, e) = r )  S,(T e) .  
k =  1 
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Let { X ( t ) ;  t E Rd} be an SuS random field of Chentsov type associated with 
a measure p and T =  (t,, . . ., t,), where t,, . . . , t, are different points in Rd. The 
characteristic function of X = (X(t ,) ,  . . . , X(t,)) is, for z = (z,, . . . , z,) E Rn, 

= exp(- C t~(e).zl"IlellQ~(S(T:e))), 
esB, 

where e = (e l ,  . . . , en), llell is the Euclidean norm of e, and ( (e )  = e/lle 1 1  . 
Noticing that ( (e)  E Sn-' and comparing the last expression of (2.5) to (2.1), we 
see that it gives the canonical form of qT(z )  and the A-measure is supported by 
{c(e); e E 8,) u { -  t ( e ) ;  e E 8,). So, we have 

THEOREM 2.1. Let { X ( t ) ;  t € R d }  be an SaS random field of Chentsou type. 
Then for any n and for any dzyerent t , ,  .. . , t,€Rd the I-measure of (X,(t,),  . . . 
. . . , ~ ( t , ) )  is discrete with support in the set An = { t (e ) ;  e E 8,) u { - [(e); e E 8,) 
and assigns the mass (112) llellQp(S(T, e)) to each of the points [(e) and - 5(e). 

Notice that A, depends neither on p nor on the choice of T =  (t,,  . . . , t,). 
Looking again at the formula (2.5) we see that q,(z) is determined by the values 
of p(S(T, e)), e ~ b , ,  and that, conversely, p(S(T, e)), e ~ b , ,  are determined by 
rpT(z). Further, we will see that for any n > d + l  and t,, ..., tn6Rd the 
distribution of (X(t ,) ,  . . . , X(t,J) is determined by its (d+ 1)-dimensional 
marginal distributions. So, we have 

THEOREM 2.2. We assume d = 1 or 2. Let p and fi  be measures on (E,,  go) 
satisfying (1.4). Let { X ( t ) ;  t € R d )  and { l f ( t ) ;  t € R d }  be the SuS randomfields of 
Chentsov type associated with p and fi ,  respectively. If the (d+ 1)-dimensional 
distributions of { X ( t ) }  and {X( t ) )  coincide, then ( X ( t ) }  and { l f ( t ) )  are equivalent, 
that is, the finite-dimensional distributions of { X ( t ) }  and {X"(t)} coincide. 

In the next section, we will prove Theorem 2.2. For d = 1 the proof is 
obtained directly by set calculation in R2. But it is more technical when d = 2. 
Extending the idea of the case d = 2, we can generalize Theorem 2.2 to a higher 
dimensional case. This will appear in [4]. 
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3. W.oof of Theorem 2.2. 

Proof of Theorem 2.2 f o r d  = 1. Let ( X ( t ) ;  t e R )  be an SaS-process of 
Chentsov type of R1-parameter. Let T = ( t , ,  . . . , tn) E Rn and suppose t ,  < t, 
< . . . < t ,  < 0 < t k + ,  < . . . < t,. By (2.5), the characteristic function of 
( X ( t l ) ,  ..., X(tn)) is obtained if we know all the values of ,u(S(T, e)) for e ~ d f ' ~ .  
Let U;=, St, = S. Consider the partition of S c R+ x R  generated by St, 
(i = 1, ..., n). A picture (see Fig. 1 )  will help us to describe an explicit 

\ 

Fig. 1 

n = 7, k = 3, (1): A1.3, (2):*A2.4r (3): Q(2, 61, (4): A4.7 

determinism. Let C  = Ctl A C,,. Then S  is decomposed into two disjoint parts 
C  and S\C. Therefore we have 

where ei = (el , . . . , ek) and we define 

. 1 for 1 = l 9  , . . , i  
ei = I as i < k, 

0 for 1 = i + l ,  ..., n 
(3.2) 

. 0 for I =  1, ..., i -1  
ef = I as i 2  k + l .  

1 for I = i ,  ..., n  

Next we investigate the part S\C. For the purpose of simplifying the 
description, we define to = 0. Let 

(3.3) U , = { ( r , x ) ~ R + x R ; x - t > r } ,  K = ( ( I , x ) E R + x R ;  X - t < - r )  
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be half planes in R+ x R. We define rectangles, for i, j, 1, m E (0, 1, . . . , n} such 
that t, < tj < t, < t,, by 

(3.4) Q(i, j; 1, m) = Uti n Uf, n C.;f n ym. 
Let us put 

i+  = i + l  for i#k ,O,  

k+ = 0, 0+  = k + l ,  

m- = m-1 for m # k + l ,  0, 

(k+ l ) -=0 ,  0 - = k .  

We write, for i, m~ (0, 1, . .., n} satisfying ti+ -c ti, 

(3.5) Q(i, m) = Q(i ,  i+ ;  m-, m). 

.$f Thus these Q(i, m) give a partition of S\C. 
Now we see that the family {S(T, e); S(T, e) # 63) consists of S(T, ei), 

i = 1, . . . , n, and all Q(i, m)'s defined above. On the other hand, the characteris- 

I 
tic function of the distribution of (X(ti), x(tj)), i, j~ (1, . . . , n) is 

+ (zI +z2Vp(Sa n St,))) for z = (zl, Z ~ ) E  W2. 

We define 

St, n St, for ti < 0 < tj9 

Sf3 n St, for ti < tj < 0, 

St, n Sf, for 0 < ti < tj. 

As we mentioned immediately before Theorem 2.2, ~ ( z )  determines P(A~,~) by 
(3.6). Then we can express all (p(Q(i, 13))) and (p(S(T, ei))) using {P(A,~)} and 
p(S,,) as follows: 

P ( A i , j - ) + ~ ( A i + , j ) - ~ ( A i + , j - ] - ~ ( A i , j )  

for ti < tj < 0 and 0 < ti < ti, 
(3.7) ~ ( Q ( i , j ) ) =  

~(Ai . j )+~ (A i+ , j - ) -~ (A i+ , j ) -P (A i , j - )  

for ti g 0 ,< tj, 

~ ( S t , ) - p ( s Q + ) + ~ ( A i , i + ) - p ( Q ( i ,  n; i+ 0)) 
for ti < 0, 

(3.8) P(S(T, 4) = 
~ ( s t ~ ) - ~ ( S t i - ~ + ~ ( A i - , i l - P ( Q ( 1 ,  i; 09 i-1) 

for ti > 0. 
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Noticing that any Q(i, j; 1, m) is the union of some {Q(i, j))'s, we see that the 
values of p(Q(i, j)) and p(S(T, ei)) are all obtained from the 2-dimensional 
marginal distributions of (X(t,), . .., X(t,)). For 0 < t, < . .. < t, or t, < . .. 
. . . < t, < 0 or t, < t, < . . . < tk = 0 < tk+ < . .. < tm the discussion is similar 
and simpler. Thus Theorem 2.2 is proved in the case d = 1. 

P r o  of of T h e o i  em 2.2 for  d = 2. We prove the foilowing proposition: 

PROPOSITION 3.1. Let {X(t); t E R 2 )  be an Sols randomfield of Chentsov type 
of R2-parameter. For any choice of 4 dgfferent points t,, t,, t,, t, in R2, the 
distribution of (X(t,), X(t2), X(t,), X(t4)) is detwmined by its 3-dimensional 
marginal distributions. 

This is an essential part of Theorem 2.2 for d = 2. The proof of the fact 
that, for n > 4, n-dimensional distributions are determined by their 3-dimen- 
sional marginal distributions is omitted. 

Let t,, t,, t,, t, be 4 different points in R2 and let T =  (t,, t,, t,, t,). We 
will determine the characteristic function q,(z) of the distribution of (X(t,), 
X(t,), X(t3), X(t,)), that is, the values of p(S(T, c)) for all e e 8, in (2.5) with 
n = 4. Let $(T, e) = St, if e, = 1 and S",(T, e) = R+ x R2 if ek = 0. We define 

A 

( e )  ( e )  for e= (e , , e , , e , , e J~d , .  
k = 1  

Since p is a measure, p satisfies the consistency condition 

(3.10) p ( f ( ~ ,  4) = C P(S (T, el)) for e g4, 
e'sbh(e) 

where 

(3.11) b ' 4 ( e ) = ( e ' = ( e ; , e ; , e ; , e ~ ) ~ 6 4 ; e : > e i f o r i = 1 ,  ..., 4). 
Since the number of labels of size 4 is 2" - 1 = 15, the condition (3.10) consists 
of 15 equations. But, among them, the one which corresponds to 
e = (1, 1, 1, 1) is trivial. So, we consider (3.10) for e E b,\((l, 1, 1, 1)). For 
these e's the values ,u(f'(T e))'$ are determined by the 3-dimensional marginal 
distributions. So we can regard p($(T, e))'s as data. The 14 (= 2,- 1 - 1) 
equations of (3.10) are considered to be a system of simultaneous linear 
equations in which unknowns are p(S(T, e))'s. The number of them is still 15. 
Fix an ordering of 8, and let 

(3.12) M X = b  

be a matrix expression of the system of simultaneous linear equations, where 
M is (14 x 15)-matrix of coefficients, X  is a 15-vector of p(S(T, e))'s, and b  is 
a 14-vector of p($(T, e))'s. Let M(k) be the (14 x 14)-matrix obtained from M by 
deleting the k-th column. If we write down the explicit form of M, it is easy to 
check that M(k)  is invertible for any k = 1, . . . , 15. Suppose that the following 
proposition is true: 
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PROPOSITION 3.2. For any T = (t,, t,, t,, t,) there exists a label e E 8, such 
that S(T, e) = 0. 

For the T that we are considering, let the element e indicated in 
Proposition 3.2 be the k-th in the order of 8,. For this e we have p(S(T, e)) = 0. 
So, the number of unknows is reduced to 14 (= 15 - 1). The reduced system of 
simultaneous linear equations has M(k)  as its coefficient matrix. Since M(k)  is 
invertible, the system of equations has a unique solution. Thus all p(S(T, e)), 
e ~ b , ,  are determined. So, in order to prove Proposition 3.1, it is enough to 
show Proposition 3.2. 

Let us prove Proposition 3.2. First we define complementary labels in 
general. For any e = (el, . . . , en) E &, we define the complementary label of e as 

(3.13) e*=(eT ,..., e:), e i+eT=l  for i = 1 ,  ..., n. 

Let T =  (t,, . . . , t,) E(R')". We define Ci(T, e) = C,, if ei = 1, Ci(T, e) = C;, if 
e, = 0 and denote n:=, Ci(T, e) by C(T, e). The set S(T, e) is decomposed into 
two disjoint sets as follows: 

, 1 (3.14) 
I 

S(T, e) = {S(T, e) n C,) u (S(T,  e) n C;). 

Moreover, we have 
4 4 

S(T,  e) n C, = ( 0 Si(T, e)) n C, = n (Si(T, e) n 6,). 
i = l  i = l  

I If ei = 1, then 

i Si(T, e) n C, = Sti n C, = (C,, A C,) n C, = CFi n C, = Ci(T, e*) n 6,. 

If ei = 0, then 
I 

Si(T, e) n C, = SF, n C, = (Cti A C,)" n C, = C,, n C, = Ci(T, e*). 

Hence we have 
4 4 4 

n (s,(T, n c,) = n (c,(T, e*) n c,) = ( n c,(T, e*)) n C, 
i=  1 i =  1 i =  1 

= C(T, e*) n C,. 
We have also 

S(T, e) n C: = C(T, e) n C:. 

Then (3.14) is written as 

(3.15) S(T, e) = {C(T, e*) n C,) u (C(T, e) n Ci). 

Hence e €8, satisfies S(T, e) = 0 if and only if 

(3.16) C(T, e* )nC,=O 
and 
(3.17) C(T, e) n C", a. 
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If we consider !f = (0, t, , t,, t,, t,) and 2 = (0, el, e2 , e,, e,) E 8,  instead of 
T= (tl, t2, t3, t4) and e = (el, e,, e,, e,) E b,, respectively, we realize that 

(3.18) C(T, e*)nC, = c($ T,) 

and 

Thus Proposition 3.2 is equivalent to the following 

PROPOSITION 3.3. Let T = (t,, . . . , t,), where t,, . . . , t, E R2 are not assumed 
to be diferent. Then there exists a label e ~ b ,  such that both C(T, e) = 0 and 
C(T, e*) = 0 hold true. 

The proof of Proposition 3.3 is reduced to geometry in the 2-dimensional 
Euclidean space. We prepare lemmas. 

LEMMA 3.4. Let t,, t,, t3 E R2 be vertices of a triangle and assume that t, lies 
in its interior or boundary. Then 

Proof. Let 1 > 0 and P, = { ( I ,  x); x€R2). Then P, n C,, is a closed disc 
with radius 1 and center (1, ti). The relation (3.20) is equivalent to 

3 

(3.21) n (C,, n P,) c (C,, n P,) for any 1 > 0. 
i = l  

From the assumption it is obvious that, for any x€R2, 

(3.22) max(d(tl, x), d(t2, 4 ,  d(t3, 4) 3 d(t4, 4 ,  

which implies that if (1, x) E n;=, (Cti n P,), then (1, x) E C,, n P,. 

LEMMA 3.5. Let t,, t,, t, €It2 be dgerent points on a circle B. Suppose that 
two line segments t,t, and tat, have a common point. 

(i) If t4 lies inside of B or on B, then 

(ii) If t, lies outside of B or on B, then 

Proof. (i) Let x€R2 and suppose that max(d(t,, x), d(t,, x)) = d(tl, x). 
Let be a circle with center x and radius d(t,, x). Then B" = B or B" intersects 
with B at most at one point except t,. Hence, by the assumption, we have 

(3.25) max(d(t1, x), d(t2 x)) > min(d(t3 4, d(t4, XI). 
So, if ( I ,  x) E (C,, n C,,) n P,, then ( I ,  x) E (C,, u C,,) n PI. 
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(ii) If ti, t,, t, are on a circle B', then t, is inside of B' or on B' and the 
proof is reduced to (i). If ti, t,, t, lie on a line, then ti, t,, t, lie on a circle and 
the argument is similar. 

P r o  of of Proposi t ion  3.3. We give the proof in the non-degenerated 
case, that means, in the case where no 3 points out of 5 lie on a line. 
Degenerated cases will be considered at the end of the proof. 

Consider the smallest convex set that contains t,, . .., t,. Changing the 
numbering if necessary, we have the following three cases: 

(i) t,, t, and t3 are the vertices of a triangle and t, and t, lie inside of the 
triangle; 

(ii) ti, t,, t,, t, are the vertices of a convex quadrangle and t, lies inside of it; 
(iii) ti, . . . , t, are the vertices of a convex pentagon. 
Let be the set of ti, ..., t, with ti deleted. 
In each of the cases (i), (ii) and (iii), we will apply either Lemma 3.4 or 3.5 

for any and find out a label e which satisfies the conditions of C(T, e) = O 
and C(T, e*) = 0. 

Let us introduce some simplified notation. Given ti, tj, tk, t l €R2 ,  we 
denote Cti n C,, c C,, u C,, and C,, n C,, n C,, c C,, by {i, j) < {k, I) and 
{i, j, k) < (1 )  , respectively. Let us write { i ,  j) - (k, 1) to indicate that at least 
one of {i, j) i {k, 1) and {i, j) > {k, 1) holds true. 

(i) Changing the numbering again if necessary, we can assume that the 
points are arranged as illustrated in Fig. 2. Then 

Fig. 2 Fig. 3 

C a s e I. Suppose that (1, 5) < {3,4) holds true for T, . Then C(T, e) = @ 
for e = (1, e,, 0 ,0,  1) whichever e, is 0 or 1. Next we see the relation for TI. 
The relation (2, 3,4) < ( 5 )  shows that C(T, e') = 0 for e' = (e', , 1, 1, 1,Q) 
whichever e; is. Take e, = 0 and e; = 0. Then e and e' are complementary with 
each other and they satisfy the condition of Proposition 3.3. 
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Case  II. Suppose that (1, 5) > (3, 4). Then C(T, e) = 0 for 
e = (0, e,, 1, 1, 0) whichever e2 is. This time from the relation (1, 2, 5) < (4) 
for T3 we have C(T, e') = 0 for e' = (1, 1, e;, 0, 1) whichever e; is. So, we take 

I e, = 0 and e; = 0 to get e' = e*. 
I 

I (ii) We can assume that the points are arranged as illustrated in Fig. 3. 
I This time, the relations are as follows: 

T,: (2, 3,43 < { 5 ) ,  7": {I ,  3 ) -  {4, 51, 

T3: {1 ,5}-~{2,4} ,  T4: {1,2,3}<{5}, T5: {1,3}-~{2,4} .  

The relations for T,, T,, T, are linked as 

(3.26) {4,5) - (1, 3) - {2,4} - {I,  5) 

If, in this chain of relations, 

holds true, then we get a label e which satisfies the required condition. Indeed, 
from (4, 5) < (1, 3) it follows that C(T, e) = 0 for e = (0, e,, 0, 1, 1) and 
from (1, 3) < {2,4) it follows that C(T, e') = 0 for e' = (1,0, 1,O, e;). If we 
take e, = 1 and e; = 0, e and e' are complementary labels which satisfy the 
condition. A similar argument applies if there are two consecutive relations 
< or two consecutive relations > in (3.26). So, we consider the remaining case 

If (3.28) holds true, then from (4, 5) < (1, 3) and the relation T,: (1, 2, 3) 
< (5) we can find out a label e which satisfies the condition. If (3.29) holds true, 
then from {2,4) >{I,  5) and the relation TI: (2, 3, 4) < (5) we get the 
required label e. 

(iii) We can assume the points are arranged as illustrated in Fig. 4. The 
relations are the following: 

TI: {2,4)-{3,5) ,  T :  { , - { , }  T3: { 1 , 4 ) ~ { 2 , 5 ) ,  

T4: { l ?  3)-(2,  51, T,: (1, 3) -{2,4)- 
I 
I 
I We can make a chain of relations 

This time we have a circle of relations, as the first term and the last term 
coincide. Recall that each - stands for < or >. Since the number of terms in 
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this circle is odd, there must be two consecutive relations < (or >) in this 
circle. Moreover, any three adjacent terms have the form (i, j )  - (k, 1 )  - (m, i), where i, j, k, 1, m are different. Hence we can find a label e which 
satisfies the condition (3.27). 

Thus Proposition 3.3 is proved in the non-degenerate case. 

Fig. 4 

If 3 points are on a line and no 4 points lie on a line, then we can apply 
Lemmas 3.4 and 3.5 again. A similar argument can be used. If t,, t , ,  t , ,  t ,  are 
on a line in this order, then it is easy to see that C,, n C,, c C,, and C,, n C,, 
c C,,. Then S(T,  e) = O for e = (1 ,  0 ,  1, e,, e,) and S(T, e') = 0 for 
e' = (e;,  1, 0 ,  1, e;), whatever e,, e, ,  e ; ,  e; are. In the case where some of 
t , ,  . . . , t ,  coincide the assertion is obvious. 

Remark. The proof of Theorem 2.2 shows us that if n > d + 1 ,  then 
there exists e ~ b ,  such that the points c(e) carry no I-measure. That is, if 
n > d + 1, then the support of the I-measure of (X( t , ) ,  . . . , X(t,)) is a proper 
subset of A,. 
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