STRUCTURE OF LÉVY MEASURES OF STABLE RANDOM FIELDS OF CHENTSOV TYPE

BY
YUMIKO SATO (TOYOTA)

Abstract

We study finite-dimensional distributions of symmetric α-stable (abbreviated as $S \alpha S$) random fields of Chentsov type, $0<\alpha<2$. We discuss a structure of the spherical components of Lévy measures and their determinism which depends on the dimension of the parameter space \boldsymbol{R}^{d}. Here we treat mainly the cases $d=1$ and $d=2$ where a proof is direct and admits a geometrical understanding. The general case will be treated in [4].

1. Introduction. A family of real-valued random variables $\left\{X(t) ; t \in \mathbb{R}^{d}\right\}$ is called an $S \alpha S$ random field if every finite linear combination $X=\sum_{i=1}^{n} a_{i} X\left(t_{i}\right)$ has a symmetric stable distribution of index α. That is, its characteristic function is described as

$$
\begin{equation*}
\mathrm{E}(\exp (i z X))=\exp \left(-c|z|^{\alpha}\right), \quad z \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

where $c \geqslant 0$. Let (E, \mathscr{B}, μ) be a measure space. We say that a family of random variables $\{Y(B) ; B \in \mathscr{B}, \mu(B)<\infty\}$ is the $S \alpha S$ random measure associated with (E, \mathscr{B}, μ) if
(i) each $Y(B)$ has an $S \alpha S$ distribution with $c=\mu(B)$;
(ii) $Y\left(B_{1}\right), Y\left(B_{2}\right), \ldots$ are independent if B_{1}, B_{2}, \ldots are disjoint and $\mu\left(B_{j}\right)$ $<\infty$ for $i=1,2, \ldots$;
(iii) $Y\left(\bigcup_{j=1}^{\infty} B_{j}\right)=\sum_{j=1}^{\infty} Y\left(B_{j}\right)$ a.s. if B_{1}, B_{2}, \ldots are disjoint and $\mu\left(\bigcup_{j=1}^{\infty} B_{j}\right)$ $<\infty$.

Recently, Takenaka [6] extended the idea of Chentsov's representation of Gaussian random fields and constructed an $S \alpha S$ random field using an $S \alpha S$ random measure associated with a certain measure space in the following way.

Let E_{0} be the set of all $(d-1)$-dimensional spheres in \mathbb{R}^{d}. Any element of E_{0} is expressed by a coordinate system (r, x), where (r, x) corresponds to the sphere with radius $r \in \mathbb{R}_{+}=(0, \infty)$ and center $x \in \mathbb{R}^{d}$. Using this, we identify

$$
\begin{equation*}
E_{0}=\left\{(r, x) ; r \in \mathbb{R}_{+}, x \in \mathbb{R}^{d}\right\}=\mathbb{R}_{+} \times \mathbb{R}^{d} \tag{1.2}
\end{equation*}
$$

Let S_{t} be the set of all spheres in \mathbb{R}^{d} which separate the point $t \in \mathbb{R}^{d}$ and the origin 0 of \mathbb{R}^{d}. By using the correspondence above, S_{t} is represented as

$$
\begin{equation*}
S_{t}=\left\{(r, x) \in \mathbb{R}_{+} \times \mathbb{R}^{d} ; d(x, 0) \leqslant r\right\} \Delta\left\{(r, x) \in \mathbb{R}_{+} \times \mathbb{R}^{d} ; d(x, t) \leqslant r\right\} \tag{1.3}
\end{equation*}
$$

where $A \Delta B$ denotes the symmetric difference of A and B and $d(a, b)$ denotes the Euclidean distance between a and b. Let

$$
C_{t}=\left\{(r, x) \in \boldsymbol{R}_{+} \times \mathbb{R}^{d} ; d(x, t) \leqslant r\right\} .
$$

The set C_{t} is a right cone in $\boldsymbol{R}_{+} \times \boldsymbol{R}^{d}$ with vertex $(0, t)$, although the point $(0, t)$. is not a point in $\boldsymbol{R}_{+} \times \boldsymbol{R}^{d}$. We simply call C_{t} the cone with vertex t. In this notation we have $S_{t}=C_{0} \Delta C_{t}:$ Let \mathscr{B}_{0} be the σ-algebra of Borel sets in E_{0} and μ be a measure on $\left(E_{0}, \mathscr{B}_{0}\right)$ such that

$$
\begin{equation*}
\mu\left(S_{t}\right)<\infty \quad \text { for all } t \in \mathbb{R}^{d} \tag{1.4}
\end{equation*}
$$

We define an $\mathrm{S} \dot{\mathrm{S}} \mathrm{S}$ random field by

$$
\begin{equation*}
X(t)=Y\left(S_{t}\right), \quad t \in R^{d} \tag{1.5}
\end{equation*}
$$

where $Y(B)$ is the $\mathrm{S} \alpha \mathrm{S}$ random measure corresponding to $\left(E_{0}, \mathscr{B}_{0}, \mu\right)$. We call this random field $\left\{X(t) ; t \in \mathbb{R}^{d}\right\}$ a Chentsov type random field of \boldsymbol{R}^{d}-parameter associated with μ.

One of Takenaka's aims of constructing Chentsov type random fields was to present a new example of a self-similar $S \alpha S$ process with stationary increments. Actually, he proves that if $d \mu_{\beta}(r, x)=r^{\beta-d-1} d r d x$, then the Chentsov type $\mathbf{S} \alpha \mathbf{S}$ field $\left\{X_{\alpha, \beta}(t), t \in R^{d}\right\}$ associated with μ_{β} is self-similar with exponent $H=\beta / \alpha$.

For $d=1$, this $\left\{X_{\alpha, \beta}(t)\right\}$ is a new example of an $S \alpha S$ self-similar process with stationary increments for the area of α and H where there were no other examples known before. In this paper, however, we do not assume any special form of μ.
2. Results. It is known that the characteristic function of an n-dimensional $\mathrm{S} \alpha \mathrm{S}$ distribution, $0<\alpha<2$, has the following unique canonical representation [2]:

$$
\begin{equation*}
\varphi(z)=\exp \left\{-c \int_{s^{n-1}}|\xi \cdot z|^{\alpha} \lambda(d \xi)\right\} \tag{2.1}
\end{equation*}
$$

where $c>0, S^{n-1}=\left\{\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) ; \xi_{1}^{2}+\ldots+\xi_{n}^{2}=1\right\}, \lambda$ is a symmetric probability measure on S^{n-1}, and $\xi \cdot z$ is the inner product of vectors ξ and z. The measure λ can be considered as the spherical component of the Lévy measure of the n-dimensional stable distribution. We call it a λ-measure of stable distribution.

We define the label set \mathscr{E}_{n} as

$$
\begin{equation*}
\mathscr{E}_{n}=\left\{e=\left(e_{1}, \ldots, e_{n}\right) ; e_{i}=0 \text { or } 1 \text { for } i=1, \ldots, n\right\} \backslash\{(0, \ldots, 0)\} \tag{2,2}
\end{equation*}
$$

Each $e \in \mathscr{E}_{n}$ is called a label of size n. For $T=\left(t_{1}, \ldots, t_{n}\right) \in\left(\mathbb{R}^{d}\right)^{n}$ and $e=\left(e_{1}, \ldots\right.$ $\left.\ldots, e_{n}\right) \in \mathscr{E}_{n}$, we define

$$
\begin{gather*}
S_{k}(T, e)= \begin{cases}S_{t_{k}} & \text { if } e_{k}=1, \\
S_{t_{k}}^{c} & \text { if } e_{k}=0\end{cases} \tag{2.3}\\
S(T, e)=\bigcap_{k=1}^{n} S_{k}(T, e) \tag{2.4}
\end{gather*}
$$

Let $\left\{X(t) ; t \in \mathbb{R}^{d}\right\}$ be an $\mathrm{S} \alpha \mathrm{S}$ random field of Chentsov type associated with a measure μ and $T=\left(t_{1}, \ldots, t_{n}\right)$, where t_{1}, \ldots, t_{n} are different points in \mathbb{R}^{d}. The characteristic function of $X=\left(X\left(t_{1}\right), \ldots, X\left(t_{n}\right)\right)$ is, for $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{R}^{n}$,

$$
\begin{align*}
\varphi_{T}(z) & =\operatorname{Eexp}\left\{i \sum_{k=1}^{n} z_{k} X\left(t_{k}\right)\right\}=\mathrm{E} \exp \left\{i \sum_{k=1}^{n} z_{k} Y\left(S_{t_{k}}\right)\right\} \tag{2.5}\\
& =\operatorname{Eexp}\left\{i \sum_{k=1}^{n} z_{k} \sum_{\substack{e \in \mathscr{\delta}_{n} \\
e_{k}=1}} Y(S(T, e))\right\} \\
& =\operatorname{Eexp}\left\{i \sum_{e \in \mathscr{\delta}_{n}}\left(\sum_{k=1}^{n} e_{k} z_{k}\right) Y(S(T, e))\right\} \\
& =\exp \left\{-\sum_{e \in \mathscr{\delta}_{n}}\left|\sum_{k=1}^{n} e_{k} z_{k}\right|^{\alpha} \mu(S(T, e))\right\} \\
& =\exp \left\{-\sum_{e \in \mathscr{C}_{n}}|\zeta(e) \cdot z|^{\alpha}\|e\|^{\alpha} \mu(S(T,-e))\right\},
\end{align*}
$$

where $e=\left(e_{1}, \ldots, e_{n}\right),\|e\|$ is the Euclidean norm of e, and $\xi(e)=e /\|e\|$. Noticing that $\xi(e) \in S^{n-1}$ and comparing the last expression of (2.5) to (2.1), we see that it gives the canonical form of $\varphi_{T}(z)$ and the λ-measure is supported by $\left\{\xi(e) ; e \in \mathscr{E}_{n}\right\} \cup\left\{-\xi(e) ; e \in \mathscr{E}_{n}\right\}$. So, we have

Theorem 2.1. Let $\left\{X(t) ; t \in \mathbb{R}^{d}\right\}$ be an $\mathrm{S} \alpha \mathrm{S}$ random field of Chentsov type. Then for any n and for any different $t_{1}, \ldots, t_{n} \in \mathbb{R}^{d}$ the λ-measure of $\left(X,\left(t_{1}\right), \ldots\right.$ $\left.\ldots, X\left(t_{n}\right)\right)$ is discrete with support in the set $\Lambda_{n}=\left\{\xi(e) ; e \in \mathscr{E}_{n}\right\} \cup\left\{-\xi(e) ; e \in \mathscr{E}_{n}\right\}$ and assigns the mass $(1 / 2)\|e\|^{\alpha} \mu(S(T, e))$ to each of the points $\xi(e)$ and $-\xi(e)$.

Notice that Λ_{n} depends neither on μ nor on the choice of $T=\left(t_{1}, \ldots, t_{n}\right)$. Looking again at the formula (2.5) we see that $\varphi_{T}(z)$ is determined by the values of $\mu(S(T, e)), e \in \mathscr{E}_{n}$, and that, conversely, $\mu(S(T, e)), e \in \mathscr{E}_{n}$, are determined by $\varphi_{T}(z)$. Further, we will see that for any $n>d+1$ and $t_{1}, \ldots, t_{n} \in \mathbb{R}^{d}$ the distribution of $\left(X\left(t_{1}\right), \ldots, X\left(t_{n}\right)\right)$ is determined by its $(d+1)$-dimensional marginal distributions. So, we have

Theorem 2.2. We assume $d=1$ or 2 . Let μ and $\tilde{\mu}$ be measures on $\left(E_{0}, \mathscr{B}_{0}\right)$ satisfying (1.4). Let $\left\{X(t) ; t \in \mathbb{R}^{d}\right\}$ and $\left\{\tilde{X}(t) ; t \in \mathbb{R}^{d}\right\}$ be the $\mathrm{S} \alpha \mathrm{S}$ random fields of Chentsov type associated with μ and $\tilde{\mu}$, respectively. If the $(d+1)$-dimensional distributions of $\{X(t)\}$ and $\{\tilde{X}(t)\}$ coincide, then $\{X(t)\}$ and $\{\tilde{X}(t)\}$ are equivalent, that is, the finite-dimensional distributions of $\{X(t)\}$ and $\{\tilde{X}(t)\}$ coincide.

In the next section we will prove Theorem 2.2. For $d=1$ the proof is obtained directly by set calculation in \mathbb{R}^{2}. But it is more technical when $d=2$. Extending the idea of the case $d=2$, we can generalize Theorem 2.2 to a higher dimensional case. This will appear in [4].

3. Proof of Theorem 2.2.

Proof of Theorem 2.2 for $d=1$. Let $\{X(t) ; t \in \mathbb{R}\}$ be an $S \alpha S$-process of Chentsov type of \mathbb{R}^{1}-parameter. Let $T=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}$ and suppose $t_{1}<t_{2}$ $<\ldots<t_{k}<0<t_{k+1}<\ldots<t_{n}$. By (2.5), the characteristic function of $\left(X\left(t_{1}\right), \ldots, X\left(t_{n}\right)\right)$ is obtained if we know all the values of $\mu(S(T, e))$ for $e \in \mathscr{E}_{n}$. Let $\bigcup_{i=1}^{n} S_{t_{i}}=S$. Consider the partition of $S \subset \mathbb{R}_{+} \times \mathbb{R}$ generated by $S_{t_{i}}$ ($i=1, \ldots, n$). A picture (see Fig. 1) will help us to describe an explicit

Fig. 1

$$
n=7, k=3,(1): A_{1,3},(2): A_{2,4},(3): Q(2,6),(4): A_{4,7}
$$

determinism. Let $C=C_{t_{1}} \Delta C_{t_{n}}$. Then S is decomposed into two disjoint parts C and $S \backslash C$. Therefore we have

$$
\begin{equation*}
C=\bigcup_{i=1}^{n} S\left(T, e^{i}\right) \tag{3.1}
\end{equation*}
$$

where $e^{i}=\left(e_{1}^{i}, \ldots, e_{n}^{i}\right)$ and we define

$$
e_{l}^{i}=\left\{\begin{array}{ll}
1 & \text { for } l=1, \ldots, i \\
0 & \text { for } l=i+1, \ldots, n
\end{array} \quad \text { as } i \leqslant k\right.
$$

$$
e_{l}^{i}=\left\{\begin{array}{ll}
0 & \text { for } l=1, \ldots, i-1 \tag{3.2}\\
1 & \text { for } l=i, \ldots, n
\end{array} \quad \text { as } i \geqslant k+1\right.
$$

Next we investigate the part $S \backslash C$. For the purpose of simplifying the description, we define $t_{0}=0$. Let
(3.3) $\quad U_{t}=\left\{(r, x) \in \mathbb{R}_{+} \times \mathbb{R} ; x-t>r\right\}, \quad V_{t}=\left\{(r, x) \in \mathbb{R}_{+} \times \mathbb{R} ; x-t<-r\right\}$
be half planes in $\mathbb{R}_{+} \times \mathbb{R}$. We define rectangles, for $i, j, l, m \in\{0,1, \ldots, n\}$ such that $t_{i}<t_{j} \leqslant t_{i}<t_{m}$, by

$$
\begin{equation*}
Q(i, j ; l, m)=U_{t_{i}} \cap U_{t_{j}}^{\mathrm{c}} \cap V_{t_{l}}^{\mathrm{c}} \cap V_{t_{m}} . \tag{3.4}
\end{equation*}
$$

Let us put

$$
\begin{gathered}
i+=i+1 \quad \text { for } i \neq k, 0 \\
k+=0, \quad 0+=k+1 \\
m-=m-1 \quad \text { for } m \neq k+1,0 \\
(k+1)-=0, \quad 0-=k
\end{gathered}
$$

We write, for $i, m \in\{0,1, \ldots, n\}$ satisfying $t_{i+}<t_{j}$,

$$
\begin{equation*}
Q(i, m)=Q(i, i+; m-m) . \tag{3.5}
\end{equation*}
$$

Thus these $Q(i, m)$ give a partition of $S \backslash C$.
Now we see that the family $\{S(T, e) ; S(T, e) \neq \varnothing\}$ consists of $S\left(T, e^{i}\right)$, $i=1, \ldots, n$, and all $Q(i, m)$'s defined above. On the other hand, the characteristic function of the distribution of $\left(X\left(t_{i}\right), X\left(t_{j}\right)\right), i, j \in\{1, \ldots, n\}$ is

$$
\begin{align*}
& \varphi(z)=\exp \left\{-\left\{\left|z_{1}\right|^{\alpha} \mu\left(S_{t_{i}} \cap S_{t_{j}}^{\mathrm{c}}\right)+\left|z_{2}\right|^{\alpha} \mu\left(S_{t_{i}}^{\mathrm{c}} \cap S_{t_{j}}\right)\right.\right. \tag{3.6}\\
&\left.\left.+\left|z_{1}+z_{2}\right|^{\alpha} \mu\left(S_{t_{i}} \cap S_{t_{j}}\right)\right\}\right\} \quad \text { for } z=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}
\end{align*}
$$

We define

$$
A_{i, j}= \begin{cases}S_{t_{i}} \cap S_{t_{j}} & \text { for } t_{i}<0<t_{j} \\ S_{t_{i}}^{c} \cap S_{t_{j}} & \text { for } t_{i}<t_{j}<0 \\ S_{t_{i}} \cap S_{t_{j}}^{c} & \text { for } 0<t_{i}<t_{j}\end{cases}
$$

As we mentioned immediately before Theorem $2.2, \varphi(z)$ determines $\mu\left(A_{i, j}\right)$ by (3.6). Then we can express all $\{\mu(Q(i, j))\}$ and $\left\{\mu\left(S\left(T, e^{i}\right)\right)\right\}$ using $\left\{\mu\left(A_{i, j}\right)\right\}$ and $\mu\left(S_{t}\right)$ as follows:

$$
\begin{align*}
& \mu(Q(i, j))=\left\{\begin{array}{cc}
\mu\left(A_{i, j-}\right)+\mu\left(A_{i+, j}\right)-\mu\left(A_{i+, j-}\right)-\mu\left(A_{i, j}\right) \\
& \text { for } t_{i}<t_{j} \leqslant 0 \text { and } 0 \leqslant t_{i}<t_{j}, \\
\mu\left(A_{i, j}\right)+\mu\left(A_{i+, j-}\right)-\mu\left(A_{i+, j}\right)-\mu\left(A_{i, j-}\right) & \text { for } t_{i} \leqslant 0 \leqslant t_{j},
\end{array}\right. \tag{3.7}\\
& \mu\left(S\left(T, e^{i}\right)\right)=\left\{\begin{array}{rr}
\mu\left(S_{t_{i}}\right)-\mu\left(S_{t_{i}}\right)+\mu\left(A_{i, i+}\right)-\mu(Q(i, n ; i+, 0)) \\
\mu\left(S_{t_{i}}\right)-\mu\left(S_{t_{i}}\right)+\mu\left(A_{i-, i}\right)-\mu(Q(1, i ; 0, i-)) & \text { for } t_{i}<0,
\end{array}\right. \tag{3.8}
\end{align*}
$$

Noticing that any $Q(i, j ; l, m)$ is the union of some $\{Q(i, j)\}$'s, we see that the values of $\mu(Q(i, j))$ and $\mu\left(S\left(T, e^{i}\right)\right)$ are all obtained from the 2-dimensional marginal distributions of $\left(X\left(t_{1}\right), \ldots, X\left(t_{n}\right)\right)$. For $0 \leqslant t_{1}<\ldots<t_{n}$ or $t_{1}<\ldots$ $\ldots<t_{n} \leqslant 0$ or $t_{1}<t_{2}<\ldots<t_{k}=0<t_{k+1}<\ldots<t_{m}$ the discussion is similar and simpler. Thus Theorem 2.2 is proved in the case $d=1$.

Proof of Theorem 2.2 for $d=2$. We prove the following proposition:
Proposition 3.1. Let $\left\{X(t) ; t \in \mathbb{R}^{2}\right\}$ be an $\mathrm{S} \alpha \mathrm{S}$ random field of Chentsov type of \boldsymbol{R}^{2}-parameter. For any choice of 4 different points $t_{1}, t_{2}, t_{3}, t_{4}$ in \boldsymbol{R}^{2}, the distribution of $\left(X\left(t_{1}\right), X\left(t_{2}\right), X\left(t_{3}\right), X\left(t_{4}\right)\right)$ is determined by its 3-dimensional marginal distributions.

This is an essential part of Theorem 2.2 for $d=2$. The proof of the fact that, for $n>4, n$-dimensional distributions are determined by their 3-dimensional marginal distributions is omitted.

Let $t_{1}, t_{2}, t_{3}, t_{4}$ be 4 different points in \boldsymbol{R}^{2} and let $T=\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$. We will determine the characteristic function $\varphi_{T}(z)$ of the distribution of $\left(X\left(t_{1}\right)\right.$, $\left.X\left(t_{2}\right), X\left(t_{3}\right), X\left(t_{4}\right)\right)$, that is, the values of $\mu(S(T, e))$ for all $e \in \mathscr{E}_{4}$ in (2.5) with $n=4$. Let $\tilde{S_{k}}(T, e)=S_{t_{k}}$ if $e_{k}=1$ and $\tilde{S_{k}}(T, e)=\boldsymbol{R}_{+} \times \boldsymbol{R}^{2}$ if $e_{k}=0$. We define

$$
\begin{equation*}
\tilde{S}(T, e)=\bigcap_{k=1}^{4} \tilde{S_{k}}(T, e) \quad \text { for } e=\left(e_{1}, e_{2}, e_{3}, e_{4}\right) \in \mathscr{E}_{4} \tag{3.9}
\end{equation*}
$$

Since μ is a measure, μ satisfies the consistency condition

$$
\begin{equation*}
\mu(\tilde{S}(T, e))=\sum_{e^{\prime} \in \delta_{4}^{\prime}(e)} \mu\left(S\left(T, e^{\prime}\right)\right) \quad \text { for } e \in \mathscr{E}_{4} \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{E}_{4}^{\prime \prime}(e)=\left\{e^{\prime}=\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, e_{4}^{\prime}\right) \in \mathscr{E}_{4} ; e_{i}^{\prime} \geqslant e_{i} \text { for } i=1, \ldots, 4\right\} . \tag{3.11}
\end{equation*}
$$

Since the number of labels of size 4 is $2^{4}-1=15$, the condition (3.10) consists of 15 equations. But, among them, the one which corresponds to $e=(1,1,1,1)$ is trivial. So, we consider (3.10) for $e \in \mathscr{E}_{4} \backslash\{(1,1,1,1)\}$. For these e 's the values $\mu(\tilde{S}(T, e)$'s are determined by the 3 -dimensional marginal distributions. So we can regard $\mu\left(\tilde{S}(T, e)\right.$)'s as data. The $14\left(=2^{4}-1-1\right)$ equations of (3.10) are considered to be a system of simultaneous linear equations in which unknowns are $\mu(S(T, e)$)'s. The number of them is still 15. Fix an ordering of \mathscr{E}_{4} and let

$$
\begin{equation*}
M X=b \tag{3.12}
\end{equation*}
$$

be a matrix expression of the system of simultaneous linear equations, where M is (14×15)-matrix of coefficients, X is a 15 -vector of $\mu(S(T, e)$)'s, and b is a 14 -vector of $\mu(\tilde{S}(T, e)$'s. Let $M(k)$ be the (14×14)-matrix obtained from M by deleting the k-th column. If we write down the explicit form of M, it is easy to check that $M(k)$ is invertible for any $k=1, \ldots, 15$. Suppose that the following proposition is true:

Proposition 3.2. For any $T=\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$ there exists a label $e \in \mathscr{E}_{4}$ such that $S(T, e)=\varnothing$.

For the T that we are considering, let the element e indicated in Proposition 3.2 be the k-th in the order of \mathscr{E}_{4}. For this e we have $\mu(S(T, e))=0$. So, the number of unknows is reduced to $14(=15-1)$. The reduced system of simultaneous linear equations has $M(k)$ as its coefficient matrix. Since $M(k)$ is invertible, the system of equations has a unique solution. Thus all $\mu(S(T, e))$, $e \in \mathscr{E}_{4}$, are determined. So, in order to prove Proposition 3.1, it is enough to show Proposition 3.2.

Let us prove Proposition 3.2. First we define complementary labels in general. For any $e=\left(e_{1}, \ldots, e_{n}\right) \in \mathscr{E}_{n}$ we define the complementary label of e as

$$
\begin{equation*}
e^{*}=\left(e_{1}^{*}, \ldots, e_{n}^{*}\right), \quad e_{i}+e_{i}^{*}=1 \text { for } i=1, \ldots, n \tag{3.13}
\end{equation*}
$$

Let $T=\left(t_{1}, \ldots, t_{n}\right) \in\left(\mathbb{R}^{2}\right)^{n}$. We define $C_{i}(T, e)=C_{t_{i}}$ if $e_{i}=1, C_{i}(T, e)=C_{t_{i}}^{\mathrm{c}}$ if $e_{i}=0$ and denote $\bigcap_{i=1}^{n} C_{i}(T, e)$ by $C(T, e)$. The set $S(T, e)$ is decomposed into two disjoint sets as follows:

$$
\begin{equation*}
S(T, e)=\left\{S(T, e) \cap C_{0}\right\} \cup\left\{S(T, e) \cap C_{0}^{\mathrm{c}}\right\} \tag{3.14}
\end{equation*}
$$

Moreover, we have

$$
S(T, e) \cap C_{0}=\left(\bigcap_{i=1}^{4} S_{i}(T, e)\right) \cap C_{0}=\bigcap_{i=1}^{4}\left(S_{i}(T, e) \cap C_{0}\right)
$$

If $e_{i}=1$, then

$$
S_{i}(T, e) \cap C_{0}=S_{t_{i}} \cap C_{0}=\left(C_{t_{i}} \Delta C_{0}\right) \cap C_{0}=C_{t_{i}}^{c} \cap C_{0}=C_{i}\left(T, e^{*}\right) \cap C_{0}
$$

If $e_{i}=0$, then

$$
S_{i}(T, e) \cap C_{0}=S_{t_{i}}^{\mathrm{c}} \cap C_{0}=\left(C_{t_{i}} \Delta C_{0}\right)^{\mathrm{c}} \cap C_{0}=C_{t_{i}} \cap C_{0}=C_{i}\left(T, e^{*}\right)
$$

Hence we have

$$
\begin{aligned}
\bigcap_{i=1}^{4}\left(S_{i}(T, e) \cap C_{0}\right) & =\bigcap_{i=1}^{4}\left(C_{i}\left(T, e^{*}\right) \cap C_{0}\right)=\left(\bigcap_{i=1}^{4} C_{i}\left(T, e^{*}\right)\right) \cap C_{0} \\
& =C\left(T, e^{*}\right) \cap C_{0}
\end{aligned}
$$

We have also

$$
S(T, e) \cap C_{0}^{\mathrm{c}}=C(T, e) \cap C_{0}^{\mathrm{c}} .
$$

Then (3.14) is written as

$$
\begin{equation*}
S(T, e)=\left\{C\left(T, e^{*}\right) \cap C_{0}\right\} \cup\left\{C(T, e) \cap C_{0}^{\mathrm{c}}\right\} \tag{3.15}
\end{equation*}
$$

Hence $e \in \mathscr{E}_{4}$ satisfies $S(T, e)=\varnothing$ if and only if

$$
\begin{equation*}
C\left(T, e^{*}\right) \cap C_{0}=\varnothing \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
C(T, e) \cap C_{0}^{\mathrm{c}}=\varnothing \tag{3.17}
\end{equation*}
$$

If we consider $\tilde{T}=\left(0, t_{1}, t_{2}, t_{3}, t_{4}\right)$ and $\tilde{e}=\left(0, e_{1}, e_{2}, e_{3}, e_{4}\right) \in \mathscr{E}_{5}$ instead of $T=\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$ and $e=\left(e_{1}, e_{2}, e_{3}, e_{4}\right) \in \mathscr{E}_{4}$, respectively, we realize that

$$
\begin{equation*}
C\left(T, e^{*}\right) \cap C_{0}=C\left(\tilde{T}, \tilde{e}^{*}\right) \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
C(T, e) \cap C_{0}^{c}=C(\tilde{T}, \tilde{e}) \tag{3.19}
\end{equation*}
$$

Thus Proposition 3.2 is equivalent to the following
Proposition 3.3. Let $T=\left(t_{1}, \ldots, t_{5}\right)$, where $t_{1}, \ldots, t_{5} \in \mathbb{R}^{2}$ are not assumed to be different. Then there exists a label $e \in \mathscr{E}_{5}$ such that both $C(T, e)=\varnothing$ and $C\left(T, e^{*}\right)=\varnothing$ hold true.

The proof of Proposition 3.3 is reduced to geometry in the 2-dimensional Euclidean space. We prepare lemmas.

Lemma 3.4. Let $t_{1}, t_{2}, t_{3} \in \mathbb{R}^{2}$ be vertices of a triangle and assume that t_{4} lies in its interior or boundary. Then

$$
\begin{equation*}
\bigcap_{i=1}^{3} C_{t_{i}} \subset C_{t_{4}} \tag{3.20}
\end{equation*}
$$

Proof. Let $l>0$ and $P_{i}=\left\{(l, x) ; x \in \mathbb{R}^{2}\right\}$. Then $P_{l} \cap C_{t_{i}}$ is a closed disc with radius l and center $\left(l, t_{i}\right)$. The relation (3.20) is equivalent to

$$
\begin{equation*}
\bigcap_{i=1}^{3}\left(C_{t_{i}} \cap P_{t}\right) \subset\left(C_{t_{4}} \cap P_{t}\right) \quad \text { for any } l>0 \tag{3.21}
\end{equation*}
$$

From the assumption it is obvious that, for any $x \in \mathbb{R}^{2}$,

$$
\begin{equation*}
\max \left(d\left(t_{1}, x\right), d\left(t_{2}, x\right), d\left(t_{3}, x\right)\right) \geqslant d\left(t_{4}, x\right) \tag{3.22}
\end{equation*}
$$

which implies that if $(l, x) \in \bigcap_{i=1}^{3}\left(C_{t_{i}} \cap P_{l}\right)$, then $(l, x) \in C_{t_{4}} \cap P_{l}$.
Lemma 3.5. Let $t_{1}, t_{2}, t_{3} \in \mathbb{R}^{2}$ be different points on a circle B. Suppose that two line segments $t_{1} t_{2}$ and $t_{3} t_{4}$ have a common point.
(i) If t_{4} lies inside of B or on B, then

$$
\begin{equation*}
C_{t_{1}} \cap C_{t_{2}} \subset C_{t_{3}} \cup C_{t_{4}} \tag{3.23}
\end{equation*}
$$

(ii) If t_{4} lies outside of B or on B, then

$$
\begin{equation*}
C_{t_{1}} \cup C_{t_{2}} \supset C_{t_{3}} \cap C_{t_{4}} . \tag{3.24}
\end{equation*}
$$

Proof. (i) Let $x \in \mathbb{R}^{2}$ and suppose that $\max \left(d\left(t_{1}, x\right), d\left(t_{2}, x\right)\right)=d\left(t_{1}, x\right)$. Let \tilde{B} be a circle with center x and radius $d\left(t_{1}, x\right)$. Then $\tilde{B}=\boldsymbol{B}$ or \tilde{B} intersects with B at most at one point except t_{1}. Hence, by the assumption, we have

$$
\begin{equation*}
\max \left(d\left(t_{1}, x\right), d\left(t_{2}, x\right)\right) \geqslant \min \left(d\left(t_{3}, x\right), d\left(t_{4}, x\right)\right) \tag{3.25}
\end{equation*}
$$

So, if $(l, x) \in\left(C_{t_{1}} \cap C_{t_{2}}\right) \cap P_{l}$, then $(l, x) \in\left(C_{t_{3}} \cup C_{t_{4}}\right) \cap P_{l}$.
(ii) If t_{1}, t_{2}, t_{4} are on a circle B^{\prime}, then t_{3} is inside of B^{\prime} or on B^{\prime} and the proof is reduced to (i). If t_{1}, t_{2}, t_{4} lie on a line, then t_{1}, t_{3}, t_{4} lie on a circle and the argument is similar.

Proof of Proposition 3.3. We give the proof in the non-degenerated case, that means, in the case where no 3 points out of 5 lie on a line. Degenerated cases will be considered at the end of the proof.

Consider the smallest convex set that contains t_{1}, \ldots, t_{5}. Changing the numbering if necessary, we have the following three cases:
(i) t_{1}, t_{2} and t_{3} are the vertices of a triangle and t_{4} and t_{5} lie inside of the triangle;
(ii) $t_{1}, t_{2}, t_{3}, t_{4}$ are the vertices of a convex quadrangle and t_{5} lies inside of it;
(iii) t_{1}, \ldots, t_{5} are the vertices of a convex pentagon.

Let T_{i} be the set of t_{1}, \ldots, t_{5} with t_{i} deleted.
In each of the cases (i), (ii) and (iii), we will apply either Lemma 3.4 or 3.5 for any T_{i} and find out a label e which satisfies the conditions of $C(T, e)=\varnothing$ and $C\left(T, e^{*}\right)=\emptyset$.

Let us introduce some simplified notation. Given $\boldsymbol{t}_{\boldsymbol{i}}, \boldsymbol{t}_{\boldsymbol{j}}, \boldsymbol{t}_{\boldsymbol{k}}, \boldsymbol{t}_{\boldsymbol{l}} \in \boldsymbol{R}^{\mathbf{2}}$, we denote $C_{t_{i}} \cap C_{t_{j}} \subset C_{t_{k}} \cup C_{t_{i}}$ and $C_{t_{i}} \cap C_{t_{j}} \cap C_{t_{k}} \subset C_{t_{i}}$ by $\{i, j\}<\{k, l\}$ and $\{i, j, k\} \prec\{l\}$, respectively. Let us write $\{i, j\} \sim\{k, l\}$ to indicate that at least one of $\{i, j\}<\{k, l\}$ and $\{i, j\} \succ\{k, l\}$. holds true.
(i) Changing the numbering again if necessary, we can assume that the points are arranged as illustrated in Fig. 2. Then

$$
\begin{gathered}
T_{1}:\{2,3,4\} \prec\{5\}, \quad T_{2}:\{1,5\} \sim\{3,4\}, \quad T_{3}:\{1,2,5\}<\{4\}, \\
T_{4}:\{1,2,3\}<\{5\}, \quad T_{5}:\{1,2,3\} \prec\{4\} .
\end{gathered}
$$

Fig. 2

Fig. 3

Case I. Suppose that $\{1,5\} \prec\{3,4\}$ holds true for T_{2}. Then $C(T, e)=\varnothing$ for $e=\left(1, e_{2}, 0,0,1\right)$ whichever e_{2} is 0 or 1 . Next we see the relation for T_{1}. The relation $\{2,3,4\}<\{5\}$ shows that $C\left(T, e^{\prime}\right)=\varnothing$ for $e^{\prime}=\left(e_{1}^{\prime}, 1,1,1,0\right)$ whichever e_{1}^{\prime} is. Take $e_{2}=0$ and $e_{1}^{\prime}=0$. Then e and e^{\prime} are complementary with each other and they satisfy the condition of Proposition 3.3.

Case II. Suppose that $\{1,5\} \succ\{3,4\}$. Then $C(T, e)=\varnothing$ for $e=\left(0, e_{2}, 1,1,0\right)$ whichever e_{2} is. This time from the relation $\{1,2,5\} \prec\{4\}$ for T_{3} we have $C\left(T, e^{\prime}\right)=\emptyset$ for $e^{\prime}=\left(1,1, e_{3}^{\prime}, 0,1\right)$ whichever e_{3}^{\prime} is. So, we take $e_{2}=0$ and $e_{3}^{\prime}=0$ to get $e^{\prime}=e^{*}$.
(ii) We can assume that the points are arranged as illustrated in Fig. 3. This time, the relations are as follows:

$$
\begin{gathered}
T_{1}:\{2,3,4\}<\{5\}, \quad T_{2}:\{1,3\} \sim\{4,5\}, \\
T_{3}:\{1,5\} \sim\{2,4\}, \quad T_{4}:\{1,2,3\} \prec\{5\}, \quad T_{5}:\{1,3\} \sim\{2,4\} .
\end{gathered}
$$

The relations for T_{2}, T_{3}, T_{5} are linked as

$$
\begin{equation*}
\{4,5\} \sim\{1,3\} \sim\{2,4\} \sim\{1,5\} . \tag{3.26}
\end{equation*}
$$

If, in this chain of relations,

$$
\begin{equation*}
\{4,5\} \prec\{1,3\} \prec\{2,4\} \tag{3,27}
\end{equation*}
$$

holds true, then we get a label e which satisfies the required condition. Indeed, from $\{4,5\}<\{1,3\}$ it follows that $C(T, e)=\varnothing$ for $e=\left(0, e_{2}, 0,1,1\right)$ and from $\{1,3\}<\{2,4\}$ it follows that $C\left(T, e^{\prime}\right)=\varnothing$ for $e^{\prime}=\left(1,0,1,0, e_{5}^{\prime}\right)$. If we take $e_{2}=1$ and $e_{5}^{\prime}=0, e$ and e^{\prime} are complementary labels which satisfy the condition. A similar argument applies if there are two consecutive relations $<$ or two consecutive relations \rangle in (3.26). So, we consider the remaining case

$$
\begin{equation*}
\{4,5\} \prec\{1,3\} \succ\{2,4\} \prec\{1,5\} \tag{3.28}
\end{equation*}
$$

or

$$
\begin{equation*}
\{4,5\} \succ\{1,3\} \prec\{2,4\} \succ\{1,5\} \tag{3.29}
\end{equation*}
$$

If (3.28) holds true, then from $\{4,5\} \prec\{1,3\}$ and the relation $T_{4}:\{1,2,3\}$ $\prec\{5\}$ we can find out a label e which satisfies the condition. If (3.29) holds true, then from $\{2,4\} \succ\{1,5\}$ and the relation $T_{1}:\{2,3,4\} \prec\{5\}$ we get the required label e.
(iii) We can assume the points are arranged as illustrated in Fig. 4. The relations are the following:

$$
\begin{gathered}
T_{1}:\{2,4\} \sim\{3,5\}, \quad T_{2}:\{1,4\} \sim\{3,5\}, \quad T_{3}:\{1,4\} \sim\{2,5\}, \\
T_{4}:\{1,3\} \sim\{2,5\}, \quad T_{5}:\{1,3\} \sim\{2,4\} .
\end{gathered}
$$

We can make a chain of relations

$$
\begin{equation*}
\{2,4\} \sim\{3,5\} \sim\{1,4\} \sim\{2,5\} \sim\{1,3\} \sim\{2,4\} . \tag{3.30}
\end{equation*}
$$

This time we have a circle of relations, as the first term and the last term coincide. Recall that each \sim stands for $<$ or \rangle. Since the number of terms in
this circle is odd, there must be two consecutive relations $<$ (or \succ) in this circle. Moreover, any three adjacent terms have the form $\{i, j\} \sim\{k, l\}$ $\sim\{m, i\}$, where i, j, k, l, m are different. Hence we can find a label e which satisfies the condition (3.27).

Thus Proposition 3.3 is proved in the non-degenerate case.

Fig. 4

If 3 points are on a line and no 4 points lie on a line, then we can apply Lemmas 3.4 and 3.5 again. A similar argument can be used. If $t_{1}, t_{2}, t_{3}, t_{4}$ are on a line in this order, then it is easy to see that $C_{t_{1}} \cap C_{t_{3}} \subset C_{t_{2}}$ and $C_{t_{2}} \cap C_{t_{4}}$ $\subset C_{t_{3}}$. Then $S(T, e)=\varnothing$ for $e=\left(1,0,1, e_{4}, e_{5}\right)$ and $S\left(T, e^{\prime}\right)=\varnothing$ for $e^{\prime}=\left(e_{1}^{\prime}, 1,0,1, e_{5}^{\prime}\right)$, whatever $e_{4}, e_{5}, e_{1}^{\prime}, e_{5}^{\prime}$ are. In the case where some of t_{1}, \ldots, t_{5} coincide the assertion is obvious.

Remark. The proof of Theorem 2.2 shows us that if $n>d+1$, then there exists $e \in \mathscr{E}_{n}$ such that the points $\xi(e)$ carry no λ-measure. That is, if $n>d+1$, then the support of the λ-measure of $\left(X\left(t_{1}\right), \ldots, X\left(t_{n}\right)\right)$ is a proper subset of Λ_{n}.

Acknowledgment. The author expresses her thanks to a referee for useful comments.

REFERENCES

[1] N. N. Chentsov, Lévy's Brownian motion of several parameters and generalized white noise, Theory Probab. Appl. 2 (1957), pp. 265-266.
[2] P. Lévy, Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris 1937.
[3] Y. Sato, Joint distributions of some self-similar stable processes, preprint, 1989.
[4] - Distributions of stable random fields of Chentsov type, Nagoya Math. J. 123 (1991), pp. 119-139.
[5] - and S. Takenaka, On determinism of symmetric α-stable processes of generalized Chentsov type, Gaussian random fields, K. Itô and T. Hida (Eds.), World Scientific, Singapore 1991, pp. 332-345.
[6] S. Takenaka, Integral-geometric constructions of self-similar stable processes, Nagoya Math. J. 123 (1991), pp. 1-12.

Department of General Education
Aichi Institute of Technology
Yakusa-cho, Toyota 470-03, Japan

Received on 6.12.1990;
revised version on 22.11.1991

