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Abstract. The paper deals with stochastically compact sequences 
of scalar modifications of powers of probability measures taken in the 
sense of a generalized convolution. Our aim is to give a charac- 
terization of all possible limit laws for these sequences. 

1. Notation and preliminaries. In this paper we adopt definitions and 
notation given in [3] and [4]. In particular, P will denote the space of all Bore1 
probability measures defined on the positive half-line [0, m). The space P is 
endowed with the topology of weak convergence. For any a ~ ( 0 ,  m), T, will 
denote the scale change (T,p)(E) = p(a-l E) (p E P). Further, 6, will denote the 
probability measure concentrated at the point c. A continuous commutative 
and associative P-valued binary operation o on P is called a generalized 
convolution if it is distributive with respect to the convex combinations of 
measures and the operations T, (a > 0), 60 is its unit element and an analogue 
of the law of large numbers is fulfilled: 

for a choice of a norming sequence c, of positive numbers. The power 6:" is 
taken here in the sense of the operation o. The limit measure y is uniquely 
defined up to a scale change and is called the characteristic measure of the 
generalized convolution in question. Generalized convolution algebras admit- 
ting a non-constant continuous homomorphism into the algebra of real 
numbers with the operations of multiplication and convex combinations are 
called regular. All generalized convolution algebras under consideration in the 
sequel will tacitly be assumed to be regular. Moreover, we shall always assume 
that the characteristic measure y has finite q-th moment, where q denotes the 
characteristic exponent of the generalized convolution in question. It has been 
proved in [3], Theorem 6, that the convolution o admits the characteristic 
function, i.e., the map p + $ from P into the set of continuous bounded 
real-valued functions commuting with convex combinations and scale change 
and fulfilling the condition (po v)^ = @.Moreover, the characteristic function 
is an integral transform 

m 
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with a continuous kernel l2 satisfying the conditions Il2(t)l < 1 and 

where the function L is continuous at the origin and L(0) > 0. 
A measure p  from P is said to be infinitely divisible if for every positive 

integer n there exists a measure p , e P  such that p  = p,On. By the condition 
L(0) > 0 and Theorem 13 in [3] the family of the characteristic functions of 
infinitely divisible measures p from P coincides with the family of functions 

where m(x) = min(1, xq) and M runs over all finite Bore1 measures on the 
positive half-line [0, a). The integrand is defined as its limiting value - L(O) 
when x = 0. Changing the scale if necessary we may assume without loss of 
generality that L(0) = 1. In what follows the measure p with the characteristic 
function given by, formula (1.2) will be denoted by e(M). 

The paper [S] has been devoted to the study of limit sets consisting of 
cluster points of normalized powers under a generalized convolution of 
probability measures. The family F consists of all cluster points of sequences 
T,"ilon, where an > 0, A E P ,  the sequence T,,ilon is conditionally compact and 
all its cluster points are non-degenerate laws. It is clear by Theorem 12 in 131 
that the family F is contained in the family of infinitely divisible probability 
measures. Put N = (e(lM): M E  F )  . For ordinary convolution a nice analytic 
characterization of the family N has been given by Pruitt in [2]. Our aim is to 
extend this result to the case of generalized convolutions. Namely, we shall 
prove the following statement: 

THEOREM. A measure M  belongs to W if and only if it does not vanish 
identically and there exists a positive number c such that 

a, M ( ~ Y )  yq 
(1.3) xq W G  C I - M(dy) 

o mOl) 
for all x ~ ( 0 ,  m). 

The proof of the necessity of the condition is in the next section. The final 
section contains the proof of the sufficiency. 

2. The necessity of the eon&~on. Suppose that M e H .  There exist then 
a measure A  E P and a sequence a, of positive numbers such that the sequence 
of measures T,,Ion is conditionally compact and its set of cluster points 
consists of non-degenerate measures and contains the measure e(M). By 
Theorem 4.1 in [5] we infer that 
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for some c > 0, xo > 0 and all x 2 xo. Put 

By the Jurek Theorem on accompanying laws in [I] we conclude that the 
measure M is a cluster point of the sequence M,. Suppose that M,, + M. 
Further, suppose that x is not an atom of the limiting measure M. Then 

and 

Taking into account the definition (2.2) we have 

" f &- (dy)  - nkA((xa&', a)) 
x +  m(y)  

and 

which, by (2.1), yields inequality (1.3) for all positive x which are not atoms of 
the measure M. The'general case follows from the continuity on the right of 
both sides of inequality (1.3). This s the proof of the necessity of our 
condition. 

3. The sufficiency of the condjition. We may restrict ourselves to the case of 
the measures M which are not concentrated at the origin. In fact, if M is 
concentrated at 0, then e(A4) is of the form T,y, where y is the characteristic 
measure of the convolution in question. In this case the relation M E W  is 
a direct consequence of formula (1.1). In what follows we assume that 
inequality (1.3) is fulfilled and 

(3.1) 

We introduce auxiliary functions for x E (0, a) 

" W ~ Y )  f (x )  = X" j - yq , g(x) = f - W d y )  
x +  m(y)  0 m(y) 

and I 
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It is easy to verify the following formulae: 

(3.2) lim f  ( x )  = lim f  ( x ) x - 4  = 0,  
x - 0  x- m 

(3.3) 
M ( ~ Y )  > 0 ,  lim f (x )x-4  = 1 - 

3-0 o+ m(y)  

w 

(3.5) lim g(x) = J max(1, yq)M(dy) > M((O)),  

(3.6) lim g ( x ) ~ - ~  = 0. 
x - m  

Of course, inequality (1.3) can be written in the form 

(3.7) f ( x ) < c g ( x )  for x ~ ( 0 , w ) .  

Observe that, by (3.3) and (3.6), 

lim x 4 y - " f - l ( x ) g O  = 0. 
x-+O 
Y-+w 

Consequently, we can choose a pair r , ,  s, of positive numbers fulfilling the 
conditions r ,  < 1 < s, and 

We start the construction by choosing sequences r ,  > r ,  > . . . -* 0 and 
s ,  < s, < . . . + ao and setting A, = 1, 

Applying (3.2), (3.4) and (3.5) we get the formula 

lim A, = ao. 
n+ w 

Moreover, introducing the notation B = M((o})/J;  max(1, )P)M(dy) we have, 
by (3.51, 

n- 1 

(3.10) lim A;' Aj = B/(1-B).  
n+ w j=  1 

Next, we let p ,  = r; ' ,  t ,  = p;qh-l(r,)  and, for n > 1, 
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Put J ,  = (r,, s,] and I,  = p,J, (n  = 1, 2 ,  .. .). Since r,p, = s,-,p ,-,, the 
intervals I, ,  I,, ... are disjoint and 

m u 1, = (1,  00). 
n= 1 

Define the sequence Q,, Q,, . . . of measures on the half-line LO, a) by setting 

where 1, denotes the indicator of the set 2. It is clear that the measure Q, is 
concentrated at the set I,. We list a few facts for later reference. Given u,  V E J ,  
fulfilling the condition u c v we have the formula 

In particular, for u = r,, u = s, we have 

which, by (3.2) and (3.3), yields 

(3.14) Qn(I,) > 0 for sufficiently large n ,  

Further, for the same pair u, v we have the formula 
! 

(3.15) " ~ Y ~ Q J ~ Y )  = f ,d(dv)-g(u)) ,  
UPn 

which yields 

Put w, = t,r;qh(r,) ( n  = 1, 2 ,  .. .). Taking into account notation (3.8) we 
obtain the inequality 

w,+ 1 -- - esiqh-'(r,)g(s,J < d (n = 1 , 2 ,  ...I, 
w m 

which yields 
w 

(3.17) ~ t , r i q h ( r , ) < ( l - d ) - l t k r ~ q h ( r k )  ( k=1 ,2 , . . . ) .  
n=k 

Observe that, by (3.13), Qm(In) C t ~ - @ h Q ,  which, by (3.17), yields xnw= , Q,,(Zn) < m. Moreover, by (3.14), z,=, Qn(In) > 0. Now we may define 
a probability measure R. by setting 

m w 
R.=b C Q,, where b - I =  Q,(I,). 

n= 1 n= 1 

I 1  - PAMS 13.1 

I 
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To prove the sufficiency of our condition it is enough to show that the measure 
A fulfils condition (2.1) for a certain constant c and belongs to the domain of 
attraction of the measure e (M) .  

First we shall prove the inequality 

(3.18) A((x, a ) )  < b(2-d)(l -d ) - l t k~ -qp ih (~pk l )  

for x E I, (k = 1, 2, . . .). From the formula 

by virtue. of (3.12), (3.13) and (3.17) we .get the inequality 

< b(l-d)-ltk+lrk$l h ( ~ k + l ) + b t ~ x - ~ p f h ( ~ p k ~ ) .  

Since 
t k + l  < tkrf+lskqh(sk)h-l(rk+l) 

and the function x-"(x) is monotone non-increasing, we have the inequality 

t k + l  < tkrf+lx-q~fh(~pkl )h- l (rk+l ) ,  

which yields (3.18). 
Further, for any x E Ik (k = 1, 2, . . .) the formula 

k-  1 

= b 1 l yqQn(dy)+b j yqQk(dy) 
0 )1=1 I n  rkPk 

together with (3.15) and (3.16) yields 

= btkpfg(xp, l) - b . 
Taking into account (3.7) and the inequality 

tkpfh(xpkl) 2 tkpih(rk) = Ak-l 

we conclude, by (3.9), that for sufficiently large k the inequality 

holds. Comparing this with (3.18) we obtain the inequality 
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for sufficiently large x. This shows, by Theorem 4.1 in [ 5 ] ,  that there exists 
a sequence of norming constants a, such that the sequence T,,/ZO" is 
conditionally compact and all its cluster points are non-degenerate. 

Put n, = [b-'tL1] and b, = pL1 (k = 1,2 ,  . . .), where the square brackets 
denote the integer part. Since, by (3.8), 

tk < dk-'rfhF1(rk) 
and, by (3.3) and (3.6), 

. h(x) M ( ~ Y )  > O ,  lim - = j - 
x-0 xq 0 +  m(y) 

we infer that t, -, 0 and, consequently, n, -, oo. Using Lemma 1.1 from [4] to 
prove that M E N  it suilices to show that T,,Aonk+ e(M) as k -, m. By the 
Jurek Theorem on accompanying laws in [I] the last statement is equivalent to 
Mk -, My where 

M k ( q = n k j m ( ~ ) T , k / Z ( d ~ )  ( k = 1 , 2 , * . v ) q  
E 

It is evident that the inequality n < k yields snpn < rkpk. Consequently, 

1 I n  c (0, rkl c (0, 11. Hence and from (3.16) we get the formula 

Using this formula and applying (3.2), (3.4) and (3.10) we get 
k - 1  

(3.20) t i '  C j ~ ( Y P ;  ')Qn(dy) 
n = l  I, 

k -  1 

= h(rk)Ak=ll x (An-An-lg(rn)h-i(rn)) +M((O)) as k + co. 
n =  1 

Observe that the inequality n > k yields rnpn > skpk. Hence pLIIn c (s,, oo) 
c (1, oo). Consequently, 

j m(ypil)Qn(dy) = Qn(In). 
I" 

Now, applying (3.13) and (3.17) we get the inequality 

which, by (3.6), yields 
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Finally, we note that by (3.11) 

(3.22) t , l j m ( y p ; l ) Q k ( d y ) = M ( J k ) - , M ( ( O , o o ) )  ask-,co. 
Ik 

Moreover, for any XE Jk being a continuity point of M 

rkPk + 

Formulae (3.20H3.22) yield the relation 

M,([O, a ) )  + M(CO9 4)- 
Furthermore, (3.20), (3.21) and (3.23) imply 

Mk(CO9 4) -, M(C% x)) 

for any x ~ ( 0 ,  oo) being a continuity point of the limiting measure M. This 
shows that M, -, M, which completes the proof of the sufficiency of the 
condition in question. The Theorem is thus proved. 
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