A STOCHASTIC TAYLOR FORMULA FOR TWO-PARAMETER STOCHASTIC PROCESSES

VU VIET YEN (HANOI)

Abstract

The purpose of the present paper is to prove a stochastic Taylor formula for two-parameter processes which extends the results of W. Wagner and E. Platen in the one-parameter case (cf. [5]-[7]).

1. Introduction and notation. Let (Ω, \mathscr{F}, P) be a complete probability system and let \leqslant be the natural ordering in \mathbb{R}_{+}^{2}, i.e., for $\left(s_{i}, t_{i}\right) \in \mathbb{R}_{+}^{2}, i=1,2$, $\left(s_{1}, t_{1}\right) \leqslant\left(s_{2}, t_{2}\right)$ if $s_{1} \leqslant s_{2}$ and $t_{1} \leqslant t_{2}$. An integrable process $M=\left\{M_{z}, z \in \mathbb{R}_{+}^{2}\right\}$ is said to be a martingale (w.r.t. an increasing family $\left\{\mathscr{F}_{z}, z \in \mathbb{R}_{+}^{2}\right\}$ of sub- σ-fields of $\mathscr{F})$ if it is $\left\{\mathscr{F}_{z}\right\}$-adapted and $\mathrm{E}\left(M_{z^{\prime}} \mid \mathscr{F}_{z}\right)=M_{z}$ for any $z \leqslant z^{\prime}$. In this paper we assume that the family $\left\{\mathscr{F}_{z}\right\}$ satisfies the usual conditions in [3] or [4]. Given $p \geqslant 1$ let m_{c}^{p} be the class of all continuous martingales M such that $M_{z}=0$ on the axes and $\sup _{z} \mathbb{E}\left|M_{z}\right|^{p}<+\infty$. If $p \geqslant 2$ and $M \in m_{c}^{p}$, we denote by \tilde{M} and $\langle M\rangle_{z},\langle\tilde{M}\rangle_{z},\left\langle M_{s .}\right\rangle_{t},\left\langle M_{t}\right\rangle_{s}$ the martingale and the continuous versions of quadratic variations of the martingales (cf. [3]).

Let $B=\{1,2, \ldots, 7\}$ and $A=\{\varnothing\} \cup\left(\bigcup_{l=1}^{\infty} B^{l}\right)$, where B^{l} denotes the l-fold Cartesian product of the set B. Further, let φ and ψ be functions from the set B into $\{1,2,3,4\}$ such that

$$
\begin{gathered}
\varphi(1)=1, \quad \varphi(2)=\ldots=\varphi(5)=2, \quad \varphi(6)=3, \quad \varphi(7)=4, \\
\psi(1)=\psi(2)=1, \quad \psi(3)=\ldots=\psi(7)=2 .
\end{gathered}
$$

Given $\alpha \in A$, set

$$
|\alpha|= \begin{cases}0 & \text { if } \alpha=\varnothing \\ l & \text { if } \alpha \in B^{l}, l \geqslant 1,\end{cases}
$$

and if $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\imath}\right) \in A \backslash\{\emptyset\}$, we put

$$
\begin{aligned}
\|\alpha\| & =\sum_{i=1}^{l} \varphi\left(\alpha_{i}\right), \quad \psi(\alpha)=\sum_{i=1}^{l} \psi\left(\alpha_{i}\right) \\
\alpha- & = \begin{cases}\varnothing & \text { if } l=1 \\
\left(\alpha_{1}, \ldots, \alpha_{l-1}\right) & \text { if } l \geqslant 2\end{cases}
\end{aligned}
$$

The composition of the vectors $\alpha=\left(\alpha_{1}, \ldots, \alpha_{1}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)$ is defined by $\alpha * \beta=\left(\alpha_{1}, \ldots, \alpha_{l}, \beta_{1}, \ldots, \beta_{k}\right)$.

For a continuous stochastic function h defined on \mathbb{R}_{+}^{2} and adapted to \mathscr{F}_{z} we put

$$
\begin{gather*}
I_{1}(h, s, t)=\int_{R_{s t}} h(z) d M_{z}, \quad I_{2}(h, s, t)=\int_{R_{s t}} h(z) d \tilde{M}_{z}, \\
I_{3}(h, s, t)=\frac{1}{2} \int_{0}^{s} h(x, t) d\left\langle M_{t}\right\rangle_{x}, \quad I_{4}(h, s, t)=\frac{1}{2} \int_{0}^{t} h(s, y) d\left\langle M_{s .}\right\rangle_{y}, \\
I_{5}(h, s, t)=-\frac{1}{2} \int_{R_{s t}} h(z) d\langle M\rangle_{z}, \quad I_{6}(h, s, t)=-\int_{R_{s t}} h(z) d\langle M, \tilde{M}\rangle_{z}, \tag{1.1}\\
I_{7}(h, s, t)=-\frac{1}{4} \int_{R_{s t}} h(z) d\langle\tilde{M}\rangle_{z},
\end{gather*}
$$

where $R_{\text {st }}=\left\{z \in \mathbb{R}_{+}^{2}: z \leqslant(s, t)\right\}$.
If $\alpha \in A$ is a multi-index, we define inductively a multiple stochastic integral I_{α} by

$$
I_{\alpha}(h, z)= \begin{cases}h(z) & \text { if } \alpha=\varnothing \tag{1.2}\\ I_{\alpha-}\left(I_{\alpha_{l}}(h, \cdot), z\right) & \text { if } \alpha=\left(\alpha_{1}, \ldots, \alpha_{\nu}\right), l \geqslant 1\end{cases}
$$

In what follows we shall use the following Ito formula for functions of two-parameter martingales due to Nualart [4].

Suppose that $f: \mathbb{R} \rightarrow \boldsymbol{R}$ is a function belonging to C^{4} and $f(0)=0$ and suppose that \tilde{M} is a martingale in m_{c}^{4}. Then for any $(s, t) \in \mathbb{R}_{+}^{2}$ we have

$$
\begin{align*}
f\left(M_{s t}\right)= & \int_{R_{s t}} f^{\prime}\left(M_{z}\right) d M_{z}+\int_{R_{s t}} f^{\prime \prime}\left(M_{z}\right) d \tilde{M}_{z}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(M_{x, t}\right) d\left\langle M_{t}\right\rangle_{x} \tag{1.3}\\
& +\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(M_{s y}\right) d\left\langle M_{s .}\right\rangle_{y}-\frac{1}{2} \int_{R_{s t}} f^{\prime \prime}\left(M_{z}\right) d\langle M\rangle_{z} \\
& -\int_{R_{s t}} f^{\prime \prime \prime}\left(M_{z}\right) d\langle M, \tilde{M}\rangle_{z}-\frac{1}{4} \int_{R_{s t}} f^{\mathrm{IV}}\left(M_{z}\right) d\langle\tilde{M}\rangle_{z} .
\end{align*}
$$

Using the notation (1.1) we can rewrite (1.3) as follows:

$$
f\left(M_{z}\right)=\sum_{|\alpha|=1} I_{\alpha}\left(D^{\|\alpha\|} f \circ M, z\right)
$$

From the above formula we shall introduce a wide class of M-differentiable processes and prove a Taylor formula for this class. We also obtain estimations of errors for such an expansion and apply these results to the problem of the approximation of stochastic processes by stochastic polynomials.

Definition 1.1. Let $M \in m_{c}^{4}$. A stochastic process $f=\left\{f(z), z \in \mathbb{R}_{+}^{2}\right\}$ is said to be n-times M-differentiable (or belonging to the class C_{M}^{n}) if there exist continuous stochastic processes $\left\{f_{\alpha}(z), 1 \leqslant|\alpha| \leqslant n\right\}$ such that for any $z \in \mathbb{R}_{+}^{2}$:

$$
\begin{gather*}
f(z)=f(0)+\sum_{\alpha \in B} I_{\alpha}\left(f_{\alpha}, z\right), \tag{1.4}\\
f_{\alpha}(z)=f_{\alpha}(0)+\sum_{\beta \in B} I_{\beta}\left(f_{\alpha * \beta}, z\right) \quad(1 \leqslant|\alpha|<n) . \tag{1.5}
\end{gather*}
$$

2. Stochastic Taylor formula.

Theorem 2.1. Suppose that $f=\left\{f(z), z \in \mathbb{R}_{+}^{2}\right\}$ is an n-times M-differentiable stochastic process where $M \in m_{c}^{4}, n \geqslant 1$. Then for each $z \in \mathbb{R}_{+}^{2}$:

$$
\begin{equation*}
f(z)=f(0)+\sum_{0<|\alpha|<n} I_{\alpha}\left(f_{\alpha}(0), z\right)+\sum_{|\alpha|=n} I_{\alpha}\left(f_{\alpha}, z\right) . \tag{2.1}
\end{equation*}
$$

Proof (by induction). (i) For $n=1$, (2.1) follows from (1.4).
(ii) Suppose that (2.1) is true for any $n=m$. Then

$$
\begin{equation*}
f(z)=f(0)+\sum_{0<|\alpha|<m} I_{\alpha}\left(f_{\alpha}(0), z\right)+\sum_{|\alpha|=m} I_{\alpha}\left(f_{\alpha}, z\right) . \tag{2.2}
\end{equation*}
$$

According to Definition 1.1 and induction assumption, for each $\alpha \in B^{m}$ f_{α} is 1 -time M-differentiable. Hence

$$
\begin{equation*}
f_{\alpha}\left(z^{\prime}\right)=f_{\alpha}(0)+\sum_{\beta \in B} I_{\beta}\left(f_{\alpha * \beta}, z^{\prime}\right) \quad\left(\alpha \in B^{m}\right) . \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3) we have

$$
\begin{aligned}
f(z) & =f(0)+\sum_{0<|\alpha|<m} I_{\alpha}\left(f_{\alpha}(0), z\right)+\sum_{|\alpha|=m} I_{\alpha}\left(f_{\alpha}(0), z\right)+\sum_{|\alpha|=m} \sum_{\beta \in B} I_{\alpha}\left(I_{\beta}\left(f_{\alpha * \beta}, z\right)\right) \\
& =f(0)+\sum_{0<|\alpha|<m+1} I_{\alpha}\left(f_{\alpha}(0), z\right)+\sum_{\alpha * \beta} I_{\alpha * \beta}\left(f_{\alpha * \beta}, z\right) \\
& =f(0)+\sum_{0<|\alpha|<m+1} I_{\alpha}\left(f_{\alpha}(0), z\right)+\sum_{|\alpha|=m+1} I_{\alpha}\left(f_{\alpha}, z\right),
\end{aligned}
$$

which shows that (2.1) also holds for $n=m+1$. The proof is complete.
Theorem 2.2. Suppose that $M \in m_{c}^{4}$ and let C^{m} be the class of all real functions defined on \mathbb{R}_{+}^{2}, m-times continuously differentiable. Then

$$
\begin{equation*}
\left\{f \circ M, f \in C^{4 n}\right\} \subset C_{M}^{n} \quad(n \geqslant 1) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(M_{z}\right)=f(0)+\sum_{0<|\alpha|<n} I_{\alpha}\left(D^{\|\alpha\|} f(0), z\right)+\sum_{|\alpha|=n} I_{\alpha}\left(D^{\|\alpha\|} f \circ M, z\right) \tag{2.5}
\end{equation*}
$$

for any $f \in C^{4 n}$ and any $z \in \mathbb{R}_{+}^{2}$.
Proof (by induction). (a) Suppose that $f \in C^{4}$; then $g=f-f(0) \in C^{4}$ and $g(0)=0$.

Applying the two-parameter Ito formula (1.3') for $g \circ M$, we get

$$
g\left(M_{z}\right)=\sum_{|\alpha|=1} I_{\alpha}\left(D^{\|\alpha\|} g \circ M, z\right)
$$

Hence

$$
\begin{equation*}
f\left(M_{z}\right)=f(0)+\sum_{|\alpha|=1} I_{\alpha}\left(D^{\|\alpha\|} f \circ M, z\right) \tag{2.6}
\end{equation*}
$$

which shows that $F=f \circ M \in C_{M}^{1}$, i.e., (2.4) holds for $n=1$. Moreover, the functions F_{α} in Definition 1.1 are of the form

$$
\begin{equation*}
F_{\alpha}=D^{\|\alpha\|} f \circ M \tag{2.7}
\end{equation*}
$$

Now we suppose that (2.4) holds for $n=m \geqslant 1$ and (2.7) is true for every α with $|\alpha| \leqslant m$.

Let f be an arbitrary function in $C^{4(m+1)}$. It is clear that $D^{\|\alpha\|} f \in C^{4}$ for any $\alpha \in B^{m}$ and $F=f \circ M \in C_{M}^{m}$, and (2.7) holds for $\alpha \in \sum_{l=1}^{m} B^{l}$ (by induction assumption). Applying the Itô formula (1.3') for each $F_{\alpha}=D^{\|\alpha\|} f \circ M$ with $|\alpha|=m$ we get

$$
\begin{aligned}
F_{\alpha}(z) & =D^{\|\alpha\|} f\left(M_{z}\right)=D^{\|\alpha\|} f(0)+\sum_{|\beta|=1} I_{\beta}\left(D^{\|\beta\|} D^{\|\alpha\|} f \circ M, z\right) \\
& =D^{\|\alpha\|} f(0)+\sum_{|\beta|=1} I_{\beta}\left(D^{\|\alpha * \beta\|} f \circ M, z\right), \quad z \in R_{+}^{2},
\end{aligned}
$$

where $D^{\|\alpha * \beta\|} f$ is continuous.
Thus, by Definition 1.1, $F_{\alpha} \in C_{M}^{1}\left(\alpha \in B^{m}\right)$, and $F=f \circ M \in C_{M}^{m+1}$. Moreover, for $\alpha \in B^{m+1}, F_{\alpha}=D^{\|\alpha\|} f \circ M$.

Hence (2.4) and (2.7) hold for $n=m+1$.
(b) Now (2.5) follows from (2.4), (2.7) and Theorem 2.1. The proof is complete.

Remark 2.1. Putting $I_{\alpha}(z):=I_{\alpha}(1, z)$ we get $I_{\alpha}(h, z)=h \cdot I_{\alpha}(z)$ for any $h=$ const. Therefore, (2.5) can be written as follows:

$$
f\left(M_{z}\right)=f(0)+\sum_{0<|\alpha|<n} D^{\|\alpha\|} f(0) I_{\alpha}(z)+\sum_{|\alpha|=n} I_{\alpha}\left(D^{\|\alpha\|} f \circ M, z\right) .
$$

Example. (a) Let $f(x)=\sum_{k=0}^{n} a_{k} x^{k}\left(a_{n} \neq 0\right)$. From (2.5) we have

$$
f\left(M_{z}\right)=a_{0}+\sum_{0<\|\alpha\| \leqslant n}(\|\alpha\|!) a_{\|\alpha\|} I_{\alpha}(z)
$$

(b) $e^{M_{z}}=1+\sum_{0<|\alpha|<n} I_{\alpha}(z)+\sum_{|\alpha|=n} I_{\alpha}\left(e^{M}, z\right)$.
3. Estimation of errors. We denote by $m_{c d}^{4}$ a subclass of m_{c}^{4} such that $M \in m_{c d}^{4}$ iff the following domination condition is satisfied:

There exist continuous increasing non-stochastic functions $\lambda_{1}, \lambda_{2} \geqslant 0$ on \mathbb{R}_{+}^{1} such that

$$
\langle M\rangle(B) \leqslant\left(\lambda_{1} \otimes \lambda_{2}\right)(B), \quad\langle\tilde{M}\rangle(B) \leqslant\left(\lambda_{1} \otimes \lambda_{2}\right)(B)
$$

for all Borel subsets B of \mathbb{R}_{+}^{2},

$$
\begin{array}{ll}
\left\langle M_{s .}\right\rangle_{t_{2}}-\left\langle M_{s_{s}}\right\rangle_{t_{1}} \leqslant \lambda_{1}(s)\left(\lambda_{2}\left(t_{2}\right)-\lambda_{2}\left(t_{1}\right)\right), & t_{1} \leqslant t_{2}, s \geqslant 0, \\
\left\langle M_{. t}\right\rangle_{s_{2}}-\left\langle M_{. t}\right\rangle_{s_{1}} \leqslant \lambda_{2}(t)\left(\lambda_{1}\left(s_{2}\right)-\lambda_{1}\left(s_{1}\right)\right), & s_{1} \leqslant s_{2}, t \geqslant 0 .
\end{array}
$$

It is obvious that the class $m_{c d}^{4}$ contains all two-parameter Wiener processes.

Theorem 3.1. Suppose that $M \in m_{c d}^{4}$ and $f \in C_{M}^{m}$. Furthermore, suppose that there exist numbers A_{1} and B_{1} such that

Then

$$
\begin{equation*}
\sup _{z \leqslant z_{0}} E\left|f(z)-f(0)-\sum_{0<|\alpha|<n} I_{\alpha}\left(f_{\alpha}(0), z\right)\right|^{2} \leqslant A_{1} \cdot B_{2}^{n} /(n!), \tag{3.2}
\end{equation*}
$$

where B_{2} is a positive constant depending only on $\lambda_{1} \otimes \lambda_{2}\left(z_{0}\right)$ and B_{1}.
Lemma 3.1. Let $h: R_{z_{0}} \rightarrow \mathbb{R}^{1}$ be a continuous adapted process such that $\sup _{z \leqslant z_{0}} \mathbb{E}|h(z)|^{2} \leqslant K$. Then for any $\alpha \in A \backslash\{\varnothing\}$

$$
\begin{equation*}
\mathrm{E}\left|I_{\alpha}(h, z)\right|^{2} \leqslant K\left[\lambda_{1} \otimes \lambda_{2}(z)\right]^{\psi(\alpha)} /(|\alpha|!) \tag{3.3}
\end{equation*}
$$

for any $z \in R_{z_{0}}$.
Proof of Lemma 3.1. By the isometry property of the stochastic integral (cf. [1]) and the Schwarz inequality we infer that (3.3) holds for any $\alpha \in B^{1}$. Suppose that (3.3) is true for every $\alpha \in B^{n}$. Let $\bar{\alpha}=\alpha_{0} * \alpha \in B^{n+1}$ be any but fixed and $\alpha_{0} \in B$. Applying the same inequalities, for $M \in m_{c d}^{4}$ we get

$$
\begin{align*}
& \mathrm{E}\left|I_{\bar{\alpha}}(h, s, t)\right|^{2} \tag{3.4}\\
& \leqslant \begin{cases}\int_{R_{s t}} \mathrm{E}\left|I_{a}(h, x, y)\right|^{2} d \lambda_{1}(x) d \lambda_{2}(y) & \text { for } \alpha_{0}=1,2, \\
\lambda_{1}(s) \lambda_{2}^{2}(t) \int_{0}^{s} \mathrm{E}\left|I_{a}(h, x, t)\right|^{2} d \lambda_{1}(x) & \text { for } \alpha_{0}=3, \\
\lambda_{1}^{2}(s) \lambda_{2}(t) \int_{0}^{1} \mathrm{E}\left|I_{a}(h, s, y)\right|^{2} d \lambda_{2}(y) & \text { for } \alpha_{0}=4, \\
\lambda_{1}(s) \lambda_{2}(t) \int_{R_{s t}} \mathrm{E}\left|I_{a}(h, x, y)\right|^{2} d \lambda_{1}(x) d \lambda_{2}(y) & \text { for } \alpha_{0}=5,6,7,\end{cases}
\end{align*}
$$

where λ_{1}, λ_{2} are the same as at the beginning of Section 3.
By (3.4) and induction assumption, we get

$$
\mathbb{E}\left|I_{\bar{\alpha}}(h, z)\right|^{2} \leqslant \begin{cases}\frac{K\left[\lambda_{1} \otimes \lambda_{2}(z)\right]^{\psi(\alpha)+1}}{(|\alpha|!)[\psi(\alpha)+1]^{2}} & \text { for } \alpha_{0}=1,2, \\ \frac{K\left[\lambda_{1} \otimes \lambda_{2}(z)\right]^{\psi(\alpha)+2}}{(|\alpha|!)[\psi(\alpha)+1]^{2}} & \text { for } \alpha_{0}=3,4, \\ \frac{K\left[\lambda_{1} \otimes \lambda_{2}(z)\right]^{\psi(\alpha)+2}}{(|\alpha|!)[\psi(\alpha)+1]^{2}} & \text { for } \alpha_{0}=5,6,7 .\end{cases}
$$

Moreover, since $\psi(\alpha) \geqslant|\alpha|$ and $\psi(\bar{\alpha})=\psi(\alpha)+\psi\left(\alpha_{0}\right)$, we have

$$
\mathbb{E}\left|I_{\bar{\alpha}}(h, z)\right|^{2} \leqslant \frac{K\left[\lambda_{1} \otimes \lambda_{2}(z)\right]^{\psi(\bar{\alpha})}}{(|\bar{\alpha}|!)} \text { for any } z \leqslant z_{0}
$$

Hence (3.3) is true for any $\alpha \in B^{n+1}$, which completes the proof of Lemma 3.1.

Proof of Theorem 3.1. Let

$$
R_{n}(z):=\mathrm{E}\left|f(z)-f(0)-\sum_{0<|\alpha|<n} I_{\alpha}\left(f_{\alpha}(0), z\right)\right|^{2}=\mathrm{E}\left|\sum_{|\alpha|=n} I_{\alpha}\left(f_{\alpha}, z\right)\right|^{2} .
$$

By Buniakovsky's inequality and from (3.1) and (3.3) we have

$$
\begin{aligned}
R_{n}(z) & \leqslant 7^{n} \sum_{|\alpha|=n} \mathrm{E}\left|I_{\alpha}\left(f_{\alpha}, z\right)\right|^{2} \\
& \leqslant A_{1} \cdot 7^{n} \sum_{|\alpha|=n}\left[B_{1} \lambda_{1} \otimes \lambda_{2}(z)\right]^{\Psi(\alpha)} /(n!) \quad \text { for any } z \leqslant z_{0} .
\end{aligned}
$$

Hence, by the inequality $|\alpha| \leqslant \psi(\alpha) \leqslant 2|\alpha|$ for any $\alpha \in A$ and the equality $\operatorname{card}\{\alpha \in A:|\alpha|=n\}=7^{n}$ for $n \geqslant 1$, we obtain

$$
\begin{aligned}
\sup _{z \leqslant z_{0}} R_{n}(z) & \leqslant A_{1} \cdot 7^{2 n}\left[B_{1} \lambda_{1} \otimes \lambda_{2}\left(z_{0}\right) \vee 1\right]^{2 n /(n!)} \\
& =A_{1} \cdot B_{2}^{n} /(n!),
\end{aligned}
$$

where $B_{2}=\left\{7\left[B_{1} \lambda_{1} \otimes \lambda_{2}\left(z_{0}\right) \vee 1\right]\right\}^{2}$ and $a \vee b:=\max \{a, b\}$, which completes the proof of Theorem 3.1.

Remark 3.1. The expression

$$
a_{0}+\sum_{0<|\alpha| \leqslant n} a_{\alpha} I_{\alpha}(z), \quad \text { where } a_{0}, a_{\alpha} \in \mathbb{R},
$$

can be considered as a stochastic polynomial of degree n. Thus (3.1) is a sufficient condition for the approximation of a process by stochastic polynomials.

Corollary 3.1, Let $f \in C^{\infty}$ and suppose that there exists a constant $B_{3} \geqslant 1$ such that

$$
\begin{equation*}
\sup _{x \in \mathbb{R}}\left|D^{k} f(x)\right| \leqslant B_{3}^{k} \quad \text { for } k=1,2, \ldots \tag{3.5}
\end{equation*}
$$

Then for any $M \in m_{c d}^{4}$ and any $z_{0} \in \mathbb{R}_{+}^{2}$ we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{z \in R_{z_{0}}} \mathrm{E}\left|f\left(M_{z}\right)-\sum_{0<|\alpha| \leqslant n} D^{\|\alpha\|} f(0) I_{\alpha}(z)\right|^{2}=0 . \tag{3.6}
\end{equation*}
$$

Proof of Corollary 3.1. By (3.5) we have

$$
\sup _{z \leqslant z_{0}}\left|D^{k} f\left(M_{z}\right)\right| \leqslant B_{3}^{k} \quad \text { for } k \geqslant 1 \text {. }
$$

Hence

$$
\begin{equation*}
\sup _{z \leqslant z_{0}} E \mid D^{\|\alpha\|} f\left(M_{z} \|^{2} \leqslant B_{3}^{2\| \| \|} \leqslant B_{3}^{4(\alpha)} \quad \text { for any } \alpha \in A \backslash\{\varnothing\} .\right. \tag{3.7}
\end{equation*}
$$

It follows from (3.7) and Theorem 3.1 that for any $z_{0} \in \mathbb{R}_{+}^{2}$ and every $n \geqslant 1$

$$
\begin{equation*}
\left.R_{n}:=\sup _{z \leqslant z_{0}} \mathrm{E}\left|f\left(M_{z}\right)-\sum_{0<|\alpha| \leqslant n} D^{\| \| \|} f(0) I_{a}(z)\right|^{2} \leqslant B_{4}^{n+1} /(n+1)!\right), \tag{3.8}
\end{equation*}
$$

where $B_{4}=\left[7\left(B_{3}^{4} \lambda_{1} \otimes \lambda_{2}\left(z_{0}\right) \vee 1\right)\right]^{2}$.
By (3.8) we get $\lim _{n \rightarrow \infty} R_{n}=0$, which completes the proof of Corollary 3.1.

Acknowledgment. The author would like to express his sincere gratitude to Dr. Nguyen Van Thu for helpful discussions.

REFERENCES

[1] R. Cairoli and J. B. Walsh, Stochastic integrals in the plane, Acta Math. 134 (1975), pp. 111-183.
[2] L. Chevalier, Martingales continues à deux paramètres, Bull. Sci. Math. (2) 106 (1982), pp. 19-62.
[3] D. Nualart, On the quadratic variation on two-parameter continuous martingales, Ann. Probab. 12 (1984), pp. 445-457.
[4] - Une formule d'Itô pour les martingales continues à deux indices et quelques applications, Ann. Inst. H. Poincaré 20 (1984), pp. 251-275.
[5] E. Platen, A generalized Taylor formula for solutions of stochastic equations, Sankhyā, Indian J. Statist. 44, Series A (1982), pp. 169-172.
[6] - and W. Wagner, On a Taylor formula for a class of Itô processes, Probab. Math. Statist. 3 (1982), pp. 37-51.
[7] W. Wagner and E. Platen, Approximation of Itô integral equations, preprint - AdW. der DDR, ZIMM, Berlin 1978.

Institute of Mathematics
P. O. Box 631, Bo Ho

Hanoi, Vietnam

Received on 16.11.1989;
revised version on 9.1.1991

