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TESTS OF FIT FOR COX'S REGRESSION MODEL 

M. D. BURKE* (CALGARY) AND E. GOMBA Y ** (EDMONTON, ALBERTA) 

Abstract. An omnibus test of fit for Cox's proportional hazards 
regression model is proposed for continuous data. The vrocedure is 
extended to a random censorship model. Density estimation methods 
are used. 

1. Intrducdon. One of the principal models of failure time data analysis is 
the proportional hazards model of Cox [6], [71. This semiparametric model 
has been assumed as the underlying structure in numerous instances, and so it 
is important to have a test which can be used to determine whether it is 
appropriate in a given situation or not. Bednarski [3] shows how the Cox 
estimator can misbehave if. the model is not correct. We propose an omnibus 
test procedure in which the test statistic is asymptotically normal under the 
null hypothesis that Cox's model is true. The results are generalized to the 
random censorship case in Section 4 (cf. Theorem 4.1). 

Our approach is based on density function estimates. Although their 
convergence rate is slower than that of the sample distribution function, they 
enjoy the desirable property that their limiting distribution does not depend on 
the fact that'I;arameters of the model must be estimated. For an approach 
based on the sample distribution function, the results of Durbin [S] and Burke 
et al. [4] indicate that the limiting behavior would depend on the parametric 
family of distribution functions underlying the model and possibly on the 
values of the unknown parameters. 

Previous approaches are mostly based on data analytic techniques (e.g., 
Kay €123, Andersen [I] and Schoenfeld [1 51). Schoenfeld [14] proposed a class 
of chi-squared tests where p-dimensional Euclidean space is partitioned into 
a finite number of classes. His approach, thus, discretizes the data and, by 
choosing different partitions, one arrives at different tests in the continuous 
case. While there are many ingredients in the density approach which can be 
varied (kernel function, bandwidth), this approach seems more natural in view 
of the modei's definition in the continuous case. The monograph by Prakasa 
Rao [I31 gives a good survey of density estimation results. Worvhth [lo] 
obtained asymptotic normality for L,-norms of multivariate densities. 
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We define the hazard rate function of a random variable T given Z as 

(1.1) L(t, z) = lim (At)- '~{t < T < t + d t  I T > t ,  Z = z), 
At+O 

where T denotes the failure time and Z is the (p- 1)-dimensional covariate or 
Our null hypothesis is that Cox's model is true: 

Ho:A(t,z)=AO(t)eZfl, 

where is an unknown (p- 1)-vector of regression parameters and L,(t) an 
unknown base-line hazard function. Our results will also be true if we replace 
ezfl by a known function q(z, p) for which ~ ( 0 ,  P) = 1. 

Our test procedure will be based on the fact that N,' is equivalent to 

being a function of t only. 
Let F(t, z) denote the joint survival function of (T, Z), that is, . 

(1.4) . F(t,z)= P{T 2 t, Z Gz}. 

We assume that the corresponding density f (t, z) exists. Hence L(t, z) of (1.1) 
can be written as 

(1.5) 2) =f (t, z)[g(t, z)1-l9 

where , 

(1.6) g(t, 2) = (ap- lldz,, . . . , l ) ~ ( t ,  z). 

Statement (1.5) is well defined if the denominator is not zero. Our approach is 
to estimate p by fin, Cox's [7] partial likelihood estimator, the density f by S,, 
a p-variate kernel estimate, and the derivative g by the estimator gn of (1.10) 
below. We then arrive at the process 

(1.7) X,(t,z,w) 

=S,(t? z)Cqn(t, ~) l -~ex~{-Dn~)-S, ( t>  w)Cgn(t, ~ ) I - ~ e x ~ { - B n w ) ,  

Under H, and in view of (1.3), each term in the difference (1.7) is an 
estimate of the base-line hazard rate Lo(t). We will establish the asymptotic 
normality of 

where D = (0, Q) x M2 (cf. Condition 2.1 (a)). 
Let (TI, Z,), (T,, Z,), . . ., (T,,, 2,) be independent random vectors with 

survival function (1.4) and let 
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denote the empirical survival function, u E R, v E RP- l. For the kernel function 
K(u, v)  satisfying Condition 2.1 (c), we define 

where the "bandwidth" sequence of constants ( b  = b,) satisfies Condi- 
tion 2.1 (e). Next, with the kernel function K ,  satisfying Condition 2.1 (d), we 
define 

(1.10) gn(t, Z )  = b-(p-1)K2[b-1(z, v)]d,Fn(t, v) 
n 

- - (nb)-(P-l) K,[b-'(z-Zi)]I{T > t). 
i=  1 

Lastly, let #fn be the sequence of estimators obtained by maximizing the partial 
likelihood (Cox [6], [7]): 

where S is the set of indices 1, 2, . . . , n corresponding to individuals who died 
(failed), ti is the failure time of the i-th individual, and R(ti) is the set of'indices 
corresponding to individuals who survived until time ti. 

In Section 2 we give the main results for the uncensored case. The proofs 
are indicated in Section 3. Although these results may be considered as 
preliminary to the results on randomly censored data (Section 4), they are of 
interest in their own right. (The behavior of Cox's partial likelihood estimator 
under a sequence of local alternatives is treated in Burke and Gombay [S].) We 
follow the approach of Hall [9] in our handling of density-type estimators. 

2. The ~ncensored case. We will assume the following conditions: 

CONDITION 2.1. (a) Let = (0, Q) x M be the support of (T, Z), where A4 is 
a bounded subset of Rp-l having (finite) Lebesgue measure 1,. 

(b) Let f be the joint density of (T, Z). Assume that all partial derivatives 
of order 2 are bounded and uniformly continuous on RP. 

(c) Let K be a p-variate density function satisfying 

for each i ,  j = 1, 2, . . .., p, where the constant C does not depend on i and 
Sij = 1 if i = j, and Sij = 0 otherwise. 

(d) Let K, be a ( p -  1)-variate density function satisfying 

for each i, j = 1,2, . . ., p- 1, where C is independent of i. 

9 - PAMS 13.1 
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I 

I (e) b = b, is a nonincreasing sequence of positive numbers such that 

I nbP+m and nbP+4+0 as n 4 m .  

The main result of this paper is 

THEOREM 2.2. Under Conditions 2.1 and the null hypothesis No defined by 
(1.2), we have 

(2.1) nbp120-1(W,2 -p) 7 N(0,  I), 

where Wf is defined by (1.8), p = pin +p2n +p3,, with 

0 

P3n = -4(nbp-l)-l j a(x)r(x) j j K(v).K2(v2) f (x-bv)du,dv,dx, 
d - m  RP-1 

and 

(2.3) a2 = 81, { J I i ( t ) a 2 ( t ,  z ) - j [ J K ( u ) K ( u - ~ ) d v ] ~ d u ,  
g 

with 

(2.4) a(t ,  z)  = [g(t ,  z)eZB]-l .  

Remark 2.3. To use the result of Theorem 2.2 as a test of the null 
hypothesis H, of (1.2), one can estimate p, a of ( 2 4 ,  (2.3) by fi ,  8, where ,4 and 
B are defined like p and a but with f, g and /3 replaced by f,, g, and IT, 
respectively. It is easy to show that 

- 

under H,. Hence No would be rejected if 

2 Z I - ~ ,  

where zl -, is the (1 -a) 100 percentile of the standard normal distribution. 
As an alternative to a test based on K2, one can also consider the vector 

t n  = CXn(t1, Z ~ Y  ~ 1 1 ,  .+., Xn(tk, zk, wk)I 
and establish 

THEOREM 2.4. Assume that Conditions 2.1 hold and that the support of K is 
finite. Then, as n + coy 

InbP)tn -if N ,  

where N is a k-variate normal distribution with zero mean and covariance matrix 



where 

(3.2) Xkl)(t, z ,w)=a( t , z )C f , ( t , z ) - f ( t , z ) ] -a ( t ,  w)[ f , ( t ,w) - f ( t ,w)]  
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.Z having entries 

As a consequence of Theorem 2.4, by replacing .Z by its estimator 2 as in 
Remark 2.3, we have 

(nb34.Z- I t : ,  7 x2(k), 

where x2(k) is a chi-square distribution with k degrees of freedom. The test: 
reject W, of (1.2) if 

(nbp)mf - l  5: 2 ~?-c ,k ,  
where 

P(z2(k)  < ~;-a,k)  = 1-a 

is an asymptotically a-level test which would detect departures from H, at 
a finite number of points. 

3. Prmf of the uncensored results. We herewith sketch the proofs of the 
results. Details of the proofs can be found in the technical report of Burke and 
Gombay [S]. 

We will consider a closely related statistic to that of W,", namely 

-r(ty z)Cg,(t, z)-g(t, 4 1  +r(t, w)[g,(t, w)-g(t, w)], 

a(t ,  z) is defined by (2.4), and r(t, z) = f ( t ,  z)a(t, z)g(t, z)-l.  We will prove the 
following 

THEDREM 3.1. Under the conditions of Theorem 2.2, 

where p and o are dejined by (2.2) and (2.3), respectively, and is defined 
by (3.1). 

We have the expansion 
4 
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- 

We will first consider TI and write 

where 

T2 = jjj{a(t9 z)[Ef.(t9 2)-f (t9 z)1-a(t9 w)CEf,(t, 4-f (t, w)])*dtdzdw, 
D 

(3.4) 

%3 = 4 2 ~  Sf a2(t9 z)[f,(t9 z)-Ei(t, z)l[Efn(t9 2)-f (t, zlldtdz, 
'a 

 TI^ = 4 j j ja ( t9  z)a(t9 w)[f,(t, z)-Efn(t9 z)][Efm(t9 w)-f (t, w)]dtd~dw. 
D 

Under Conditions 2.1, 

(3.5) sup IEf,(t, z)-f (t9 z)-b2 cv2f (t, z)I + 0, 
'a 

where PZf is the Laplacian and C is a constant. Hence, as n oo, we obtain 

(3.6) TI,  = O(b4). 

LEMMA 3.2. Under Conditions 2.1, 

where Z is a standard normal (0, 1) random variable, C is a constant, and 

a& = j a4[P2f12f-[ j a2(v2f) fIz. 
'a 'a 

LEMMA 3.3. Under Conditions 2.1, 
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where Z is a standard normal random variable, C is a constant, and 

a:, = j ja2( t ,  r)m2(t) f ( t ,  2)dtd.z-[jj a(t,  r)m(t) f ( t ,  z)dtdzI2 
d w 

with 

(3.7) m(t) = ja(t ,  w)V2f( t9  w)dw. 
i 

As a consequence of (3.6) and Le .2 and 3.3 we have 

(3.8) n b p 1 2 ( T 1 2 + T 1 3 + T 1 4 ) ~ 0  as n - m .  
Hence the term T I ,  determines the asymptotic distribution of TI which is 
described by 

LEMMA 3.4. Under Conditions 2.1, nbPi2o-l(T1 -pl,) 7 2, where Z is 
a standard normal random variable, pl, and o are defined by (2.2) and (2.3), 
respectively. . 

We can treat the term T2 of (3.3) in a similar manner to that of TI and 
write 

4 

where Gi is defined like TIi in (3.4) but with g and r replacing f and a, 
respectively. We then obtain 

(3.9) nbP12(T22 + TZ3 + T24) 7 0 as n+oo 
in a similar way to (3.8). 

LEMMA 3.5. Under Conditions 2.1, 

n b P 1 2 ( T , - p 2 J ~ 0  a s n + m ,  

where p2, is defined by (2.2). 

Since g, is a (p -  1)-dimensional kernel estimator, the deviation of T2 from 
its mean is asymptotically negligible as wmpared to TI .  Similarly, we have 

LEMMA 3.6. Under Condirions 2.1, 

nbPl2 (T, - p,) 7 0, nbpt2 T, 7 . 0  as n + m , 

where T, and T, are defined by (3.3) and p3, is defined by (2.2). 

Proof o f  Theorem 3.1. The theorem follows directly from (3.81, (3.9) 
and Lemmas 3.4, 3.5 and 3.6. 

Proof of Theorem 2.2. We have 

I/V2 = j j j [ X r ) ( t ,  Z ,  w)+R,(t, z ,  ~ ) ] ~ d t d z d w  
D 
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where 
4 

Rn(t, z, w) = C CRinlt, 2) -Rin(t, w)I 
i =  1 

and 

Rl,(t, 2) =f,(t, z)g(t, ~)-~Cexp{-Bz)-ex~{-(Jz}l ,  

Under conditions weaker than ours, Tsiatis [I61 has shown that n1l2(B-P) is 
asymptotically normal with zero mean and finite variance. For another 
approach, see Andersen and Borgan 121. Hence, by the mean value theorem, 

I 

I exp {(jz) - exp (pz} = Op(n- 12), 

1 uniformly in Z E  M. Since fn is a uniformly consistent estimator of J; we have 

sup IRln(t, z)l = Op(n-'I2). , 

'8 

Consequently, 

f j j a ( t ,  z)[f,(t, z)-f (t, z)]Rln(t, z)dtdzdw = oi(nbPI2). 
D 

I 

Using similar calculations to those above, we obtain 

(3.11) j 1 j xi1) R,, = op(nbpt2), j j j R: = op(nbPI2). 
D D 

Hence Theorem 2.2, follows from (3.111 and Theorem 3.1. . , 

Remark  3.7. We have ed throughout that nbP+4 +O. The cases 
nbPf4 4 c and nb*+4 -+ o~ can also be treated with an asymptotic normal 
result. However, in these cases the terms T2 and T, (i = 1, 2, 3,4) are the ones 
determining the asymptotic behavior of [Wi1)l2 (cf., e.g., Lemmas 3.2 and 3.3). 
The resulting asymptotic variance would be too'complicated for this approach 
to be practical$. 

Proof  of Theorem 2.4. The proof follows as in the proof of Theorem 2.2 
above. We can replace 5, by 

5;') = [xkl)(tl, Z1, 'wl), . m . 9  Xkl)(tkr Zk, ~k)] ,  
that is, 

i (nbp)li2 11 rn - gr)ll 7 0. 
I 
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The vector ti1) is a sum of independent random vectors with zero mean and 
covariance matrix (nbP)- Z + o((nbp)- I). Note that 

On applying a central limit theorem the theorem is proved. ra 

4. The censored ease. Suppose that the survival times TI, T,, . . . , T, of 
n individuals are subject to random censoring by the random variables 
C,, C,, . . . , C,, which are assumed to be independent. Moreover, K and Ci are 
assumed to be conditionally independent given the covariate vector Z i  
(cf. Tsiatis [16]). The observable time until death will be denoted by 
5 = min(T, Ci) and let 6, = I { ?  = I I ; I ) ,  i = 1,  2 ,  ..., n. 

Let F* denote a joint "survival" function of Y and Z, 

F*(t, z) = P { Y  2 t ,  Z < z}, 

where Q < t < Q and Z E M  c Rp-I (cf. Condition 2.1). Let 

(4.1) g*(t, Z )  = (ap-l/azl, . . . , azp- ~ * ( t ,  z). 

Then, if fz is the marginal density of Z and if 

F( t I z )=  P { T > t  I Z i = z ) ,  G ( t l z ) =  P i c i >  t I Z i = z ) ,  

we have 

g*(t, z) =fz(z)F( t  I z)G(t I z) 

by the conditional independence of and Ci, given Zi .  Also, 

where 

(4.3) J ( t ,  Z) = -(aP/at, azl, . . . , azP- 1 ) ~ ( ~  > t ,  6, = 1, zi G Z) 

= f  (t., z)G(t Iz) 

is the joint subdensity of 3 and Z i  with = ?;. (uncensored), and f is the joint 
density of (T,  Zi). 

To proceed with our test of W, of (1.2) in this random censorship case, we 
estimate /Z by 

where 
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and 

F,*(u, v) = n-I C Z{q > u, Zi < v ) .  
i =  1 

Note that both Pn and F,* are based on the observed data (q, Zi, a,), 
i = 1, 2, ..., n. 

Let fin denote the Cox estimator for the ( p -  1)-vector p (cf. Tsiatis [16]). 
We arrive at the process corresponding to (1.7): 

and to the statistic corresponding to (1.8): 

where and g,* are defined by (4.4). 
We have 

THEOREM 4.1. Assume Conditions 2.1 hold with f and g replaced byrand g*, 
respectively. Then the conclusions of Theorems 2.2 and 2.4 and Remark 2.3 hold 
for (w*)* and X,* with f and g replaced by 3 and g*, respectively. 

The proof of Theorem 4.1 follows from the arguments in Section 3 and on 
noting (4.2). 
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