ADMISSIBLE ESTIMATORS OF VARIANCE COMPONENTS IN NORMAL MIXED MODELS

BY
STEFAN ZONTEK (WROCLAW)

Abstract. A sufficient condition for an invariant quadratic estimator of a linear function of the vector of variance components to be admissible under the mean square error among all translation. invariant estimators is given.

1. Introduction. Throughout the paper Y will stand for a random n-vector normally distributed with expectation $A \beta$ and covariance matrix $\sum_{i=1}^{p} \sigma_{i} V_{i}$, i.e., let

$$
Y \sim N\left(A \beta, \sum_{i=1}^{p} \sigma_{i} V_{i}\right)
$$

where A is a known ($n \times k$)-matrix, V_{1}, \ldots, V_{p} are known nonnegative definite $(n \times n)$-matrices, while $\beta \in \mathscr{R}^{k}$ and $\sigma_{1} \geqslant 0, \ldots, \sigma_{p} \geqslant 0$ are the unknown parameters. Assume that

$$
\mathscr{R}(A)+\mathscr{R}\left(\sum_{i=1}^{p} V_{i}\right)=\mathscr{R}^{n}
$$

where $\mathscr{R}(\cdot)$ denotes the range of the matrix argument.
We concentrate on estimation of a linear function $F^{\prime} \sigma$, where F^{\prime} is the transpose of $(p \times s)$-matrix $F(s \leqslant p)$, while $\sigma=\left(\sigma_{1}, \ldots, \sigma_{p}\right)^{\prime}$ is the vector of variance components. The regression vector is treated as a nuisance parameter.

We consider a class \mathscr{I}_{F} of estimators based on $M Y$, where M is the orthogonal projection matrix on the null space of A^{\prime}. These estimators are invariant with respect to the translations $Y \rightarrow Y+A \beta, \beta \in \mathscr{R}^{k}$, and $M Y$ is a maximal invariant for this group of translations. Clearly, $M Y \sim N\left(0_{n}, M_{\sigma}\right)$, where O_{n} denotes the zero vector in \mathscr{R}^{n}, while

$$
M_{\sigma}=\sum_{i=1}^{p} \sigma_{i} M_{i}, \quad M_{i}=M V_{i} M, i=1, \ldots, p
$$

To compare estimators we shall use the mean square error defined for any estimator $\delta=\delta(M Y)$ of $F^{\prime} \sigma$ by

$$
R(\delta, \sigma)=\mathbb{E}\left(\delta-F^{\prime} \sigma\right)^{\prime}\left(\delta-F^{\prime} \sigma\right)
$$

Let Θ be a subset of \mathscr{R}^{p} defined by

$$
\Theta=\left\{\sigma \in \mathscr{R}^{p}: \sigma \geqslant \boldsymbol{0}_{p}, \mathscr{R}\left(M_{\sigma}\right)=\mathscr{R}(M)\right\}
$$

where the expression $\sigma \geqslant 0_{p}\left(\sigma>0_{p}\right)$ means that all coordinates of σ are nonnegative (positive). Consider a subset $\mathscr{Q}_{F} \subset \mathscr{I}_{F}$ of the form

$$
\begin{equation*}
q_{u}=q_{u}(Y)=\frac{Y^{\prime} M_{u}^{+} Y}{2+r} F^{\prime} u, \quad u \in \Theta \tag{1.1}
\end{equation*}
$$

where $r=\operatorname{rank}(M)$, while M_{u}^{+}denotes the Moore-Penrose g-inverse of M_{u}. The estimators in \mathscr{Q}_{F} have the following property. For a given $u \in \Theta$ the estimator q_{u} minimizes the risk at each point $\sigma=\lambda u, \lambda>0$, among all invariant quadratic estimators, i.e., among estimators of the form

$$
\left(Y^{\prime} M A_{1} M Y, \ldots, Y^{\prime} M A_{s} M Y\right)^{\prime}
$$

where A_{1}, \ldots, A_{s} can be arbitrary symmetric $(n \times n)$-matrices.
Note that if M_{1}, \ldots, M_{p} commute, as in the case of balanced models, then there exist idempotent nonzero matrices Q_{1}, \ldots, Q_{m}, say, with their ranges contained in $\mathscr{R}(M)$, such that $Q_{i} Q_{j}$ is zero matrix for $i \neq j=1, \ldots, m$, and that

$$
M_{i}=\sum_{j=1}^{m} h_{i j} Q_{j}, \quad i=1, \ldots, p
$$

In this case M_{u}^{+}can be represented as

$$
M_{u}^{+}=\sum_{j=1}^{m}\left(1 / \theta_{j}\right) Q_{j}
$$

where $\left(\theta_{1}, \ldots, \theta_{m}\right)^{\prime}=H^{\prime} u$, while $H=\left(h_{i j}\right)$.
Karlin [3] has proved that for $p=1$ the set $\mathscr{Q}_{F}, F \in \mathscr{R}$, contains exactly one estimator, which is the only invariant quadratic estimator admissible for σ among \mathscr{I}_{F}. For $p>1$ and under the assumption that matrices M_{1}, \ldots, M_{p} commute Farrell et al. [2] have shown that each estimator in \mathscr{Q}_{F} is admissible among \mathscr{I}_{F}. Moreover, they have also proved that \mathscr{V}_{I}, where I denotes the identity $(p \times p)$-matrix, represents the class of all invariant quadratic estimators admissible for σ among \mathscr{I}_{I}. Dey and Gelfand [1] have established the admissibility of estimators in $\mathscr{Q}_{F}, F \in \mathscr{R}^{p}$, under more restrictive conditions.

In this paper we drop the assumption that matrices M_{1}, \ldots, M_{p} commute and prove that each estimator in a subset \mathscr{Q}_{F}^{*} of \mathscr{Q}_{F} consisting of q_{u} with $u>\boldsymbol{O}_{p}$ is admissible for $F^{\prime} \sigma$ among \mathscr{I}_{F}.
2. Results. We shall use an idea of Farrell et al. [2] to establish the admissibility of estimators in \mathscr{Q}_{F}^{*} also in the case where matrices M_{1}, \ldots, M_{p} do not commute.

THEOREM. All estimators in \mathscr{Q}_{F}^{*} are admissible for $F^{\prime} \sigma$ among the class \mathscr{I}_{F} of invariant estimators.

Proof. According to a lemma due to Shinozaki (see, e.g., [4]) it is sufficient to prove the theorem for $F=I$.

First note that since

$$
M_{\sigma} M_{u}^{+} M_{\sigma} M_{u}^{+} M_{\sigma}=\frac{\lambda}{2} M_{\sigma} M_{u}^{+} M_{\sigma}
$$

for $\sigma=\sigma_{\lambda}=(\lambda / 2) u, \lambda>0$, and since $\operatorname{rank}\left(M_{v}\right)=r$ for $u>0_{p}$, it follows that when $\sigma=\sigma_{\lambda}$, the random variable $Y^{\prime} M_{u}^{+} Y$ has the gamma distribution with the shape parameter $r / 2$ and the scale parameter λ. Thus, by Karlin's theorem,

$$
q=\frac{2}{2+r} Y^{\prime} M_{u}^{+} Y
$$

is admissible for λ among all estimators based on $Y^{\prime} M_{u}^{+} Y$.
The risk of any estimator $\delta=\left(\delta_{1}, \ldots, \delta_{p}\right)^{\prime}$ at σ_{λ} can be written as

$$
R\left(\delta, \sigma_{\lambda}\right)=\frac{1}{4} \mathrm{E} \sum_{i=1}^{p}\left(2 \delta_{i}-\lambda u_{i}\right)^{2}=\frac{a}{4} \mathrm{E}\left[\sum_{i=1}^{p} \frac{u_{i}^{2}}{a}\left(\frac{2 \delta_{i}}{u_{i}}-\lambda\right)^{2}\right],
$$

where $a=\sum_{i=1}^{p} u_{i}^{2}$. Applying Jensen's inequality to the expression in brackets, we obtain the inequality

$$
R\left(\delta, \sigma_{\lambda}\right) \geqslant \frac{a}{4} \mathrm{E}\left(\frac{2}{a} \sum_{i=1}^{p} u_{i} \delta_{i}-\lambda\right)^{2}
$$

which is strict unless $\delta_{i} / u_{i}=\delta_{j} / u_{j}$ for all $i, j=1, \ldots, p$.
Since the random variable $Y^{\prime} M_{u}^{+} Y$ is a sufficient statistics for λ when $\sigma=\sigma_{\lambda}$, there exists an estimator δ^{*} of λ based on $Y^{\prime} M_{u}^{+} Y$ as good as $2 a^{-1} \sum_{i=1}^{p} u_{i} \delta_{i}$. Moreover, since, as we have already noted, q is admissible for λ and since the mean square error of q_{u} and q are related at $\sigma=\sigma_{\lambda}$ by

$$
R\left(q_{u}, \sigma_{\lambda}\right)=\frac{a}{4} R\left(q, \sigma_{\lambda}\right),
$$

it follows that if, say, δ dominates q_{u}, then

$$
R(q, \lambda)=\mathrm{E}\left(\frac{2}{a} \sum_{i=1}^{p} u_{i} \delta_{i}-\lambda\right)^{2} .
$$

Consequently, $\delta_{i}=u_{i} q$ for all i with probability 1 , so that $\delta=q_{u}$ with probability 1. But this contradicts the assumption that δ dominates q_{u} and concludes the proof of the Theorem.

It is an open problem whether there exist alternative invariant quadratic estimators to (1.1) admissible for σ in the case where matrices M_{1}, \ldots, M_{p} do not commute.

REFERENCES

[1] D. K. Dey and A. E. Gelfand, Improved estimation of a patterned covariance matrix, Technical Report No. 87-20, University of Connecticut.
[2] R. H. Farrell, W. Klonecki and S. Zontek, All admissible linear estimators of the vector of gamma scale parameters with application to random effects models, Ann. Statist. 17 (1989), pp. 268-281.
[3] S. Karlin, Admissibility for estimation with quadratic loss, Ann. Math. Statist. 29 (1958), pp. 404-436.
[4] C. R. Rao, Estimation of parameters in a linear model, Ann. Statist. 4 (1976), pp. 1023-1037.

Institute of Mathematics
Polish Academy of Sciences
ul. Kopernika 18
51-617 Wrocław, Poland

