ADMISSIBLE ESTIMATORS OF VARIANCE COMPONENTS IN NORMAL MIXED MODELS

BY

STEFAN ZONTEK (WROCŁAW)

Abstract. A sufficient condition for an invariant quadratic estimator of a linear function of the vector of variance components to be admissible under the mean square error among all translation invariant estimators is given.

1. Introduction. Throughout the paper Y will stand for a random n-vector normally distributed with expectation $A\beta$ and covariance matrix $\sum_{i=1}^{p} \sigma_i V_i$, i.e., let

 $Y \sim N(A\beta, \sum_{i=1}^{p} \sigma_i V_i),$

where A is a known $(n \times k)$ -matrix, V_1, \ldots, V_p are known nonnegative definite $(n \times n)$ -matrices, while $\beta \in \mathcal{R}^k$ and $\sigma_1 \ge 0, \ldots, \sigma_p \ge 0$ are the unknown parameters. Assume that

$$\mathscr{R}(A) + \mathscr{R}\left(\sum_{i=1}^{p} V_{i}\right) = \mathscr{R}^{n},$$

where $\Re(\cdot)$ denotes the range of the matrix argument.

We concentrate on estimation of a linear function $F'\sigma$, where F' is the transpose of $(p \times s)$ -matrix F $(s \le p)$, while $\sigma = (\sigma_1, \ldots, \sigma_p)'$ is the vector of variance components. The regression vector is treated as a nuisance parameter.

We consider a class \mathscr{I}_F of estimators based on MY, where M is the orthogonal projection matrix on the null space of A'. These estimators are invariant with respect to the translations $Y \to Y + A\beta$, $\beta \in \mathscr{R}^k$, and MY is a maximal invariant for this group of translations. Clearly, $MY \sim N(\theta_n, M_\sigma)$, where θ_n denotes the zero vector in \mathscr{R}^n , while

$$M_{\sigma} = \sum_{i=1}^{p} \sigma_{i} M_{i}, \quad M_{i} = M V_{i} M, \ i = 1, ..., p.$$

To compare estimators we shall use the mean square error defined for any estimator $\delta = \delta(MY)$ of $F'\sigma$ by

$$R(\delta, \sigma) = \mathbb{E}(\delta - F'\sigma)'(\delta - F'\sigma).$$

Let Θ be a subset of \mathcal{R}^p defined by

$$\Theta = \{ \sigma \in \mathcal{R}^p \colon \ \sigma \geqslant \theta_p, \, \mathcal{R}(M_\sigma) = \mathcal{R}(M) \},$$

where the expression $\sigma \geqslant \theta_p$ ($\sigma > \theta_p$) means that all coordinates of σ are nonnegative (positive). Consider a subset $\mathcal{Q}_F \subset \mathcal{I}_F$ of the form

(1.1)
$$q_u = q_u(Y) = \frac{Y'M_u^+ Y}{2+r} F'u, \quad u \in \Theta,$$

where $r = \operatorname{rank}(M)$, while M_u^+ denotes the Moore-Penrose g-inverse of M_u . The estimators in \mathcal{Q}_F have the following property. For a given $u \in \Theta$ the estimator q_u minimizes the risk at each point $\sigma = \lambda u$, $\lambda > 0$, among all invariant quadratic estimators, i.e., among estimators of the form

$$(Y'MA_1MY, ..., Y'MA_sMY)',$$

where A_1, \ldots, A_s can be arbitrary symmetric $(n \times n)$ -matrices.

Note that if M_1, \ldots, M_p commute, as in the case of balanced models, then there exist idempotent nonzero matrices Q_1, \ldots, Q_m , say, with their ranges contained in $\mathcal{R}(M)$, such that Q_iQ_i is zero matrix for $i \neq j = 1, \ldots, m$, and that

$$M_i = \sum_{j=1}^m h_{ij}Q_j, \quad i = 1, \ldots, p.$$

In this case M_u^+ can be represented as

$$M_u^+ = \sum_{j=1}^m (1/\theta_j) Q_j,$$

where $(\theta_1, \ldots, \theta_m)' = H'u$, while $H = (h_{ij})$.

Karlin [3] has proved that for p=1 the set \mathcal{Q}_F , $F \in \mathcal{R}$, contains exactly one estimator, which is the only invariant quadratic estimator admissible for σ among \mathscr{I}_F . For p>1 and under the assumption that matrices M_1,\ldots,M_p commute Farrell et al. [2] have shown that each estimator in \mathscr{Q}_F is admissible among \mathscr{I}_F . Moreover, they have also proved that \mathscr{Q}_I , where I denotes the identity $(p \times p)$ -matrix, represents the class of all invariant quadratic estimators admissible for σ among \mathscr{I}_I . Dey and Gelfand [1] have established the admissibility of estimators in \mathscr{Q}_F , $F \in \mathscr{R}^p$, under more restrictive conditions.

In this paper we drop the assumption that matrices M_1, \ldots, M_p commute and prove that each estimator in a subset \mathcal{Q}_F^* of \mathcal{Q}_F consisting of q_u with $u > \theta_p$ is admissible for $F'\sigma$ among \mathscr{I}_F .

2. Results. We shall use an idea of Farrell et al. [2] to establish the admissibility of estimators in \mathcal{Q}_F^* also in the case where matrices M_1, \ldots, M_p do not commute.

THEOREM. All estimators in 2_F^* are admissible for $F'\sigma$ among the class \mathscr{I}_F of invariant estimators.

Proof. According to a lemma due to Shinozaki (see, e.g., [4]) it is sufficient to prove the theorem for F = I.

First note that since

$$M_{\sigma}M_{u}^{+}M_{\sigma}M_{u}^{+}M_{\sigma} = \frac{\lambda}{2}M_{\sigma}M_{u}^{+}M_{\sigma}$$

for $\sigma = \sigma_{\lambda} = (\lambda/2)u$, $\lambda > 0$, and since $\operatorname{rank}(M_u) = r$ for $u > 0_p$, it follows that when $\sigma = \sigma_{\lambda}$, the random variable $Y'M_u^+Y$ has the gamma distribution with the shape parameter r/2 and the scale parameter λ . Thus, by Karlin's theorem,

$$q = \frac{2}{2+r} Y' M_u^+ Y$$

is admissible for λ among all estimators based on $Y'M_u^+Y$.

The risk of any estimator $\delta = (\delta_1, ..., \delta_p)'$ at σ_{λ} can be written as

$$R(\delta, \sigma_{\lambda}) = \frac{1}{4} \operatorname{E} \sum_{i=1}^{p} (2\delta_{i} - \lambda u_{i})^{2} = \frac{a}{4} \operatorname{E} \left[\sum_{i=1}^{p} \frac{u_{i}^{2}}{a} \left(\frac{2\delta_{i}}{u_{i}} - \lambda \right)^{2} \right],$$

where $a = \sum_{i=1}^{p} u_i^2$. Applying Jensen's inequality to the expression in brackets, we obtain the inequality

$$R(\delta, \sigma_{\lambda}) \geqslant \frac{a}{4} \operatorname{E} \left(\frac{2}{a} \sum_{i=1}^{p} u_{i} \delta_{i} - \lambda \right)^{2}$$

which is strict unless $\delta_i/u_i = \delta_i/u_j$ for all i, j = 1, ..., p.

Since the random variable $Y'M_u^+Y$ is a sufficient statistics for λ when $\sigma = \sigma_{\lambda}$, there exists an estimator δ^* of λ based on $Y'M_u^+Y$ as good as $2a^{-1}\sum_{i=1}^p u_i\delta_i$. Moreover, since, as we have already noted, q is admissible for λ and since the mean square error of q_u and q are related at $\sigma = \sigma_{\lambda}$ by

$$R(q_u, \sigma_\lambda) = \frac{a}{A}R(q, \sigma_\lambda),$$

it follows that if, say, δ dominates q_u , then

$$R(q, \lambda) = \mathbb{E}\left(\frac{2}{a}\sum_{i=1}^{p}u_{i}\delta_{i}-\lambda\right)^{2}.$$

Consequently, $\delta_i = u_i q$ for all i with probability 1, so that $\delta = q_u$ with probability 1. But this contradicts the assumption that δ dominates q_u and concludes the proof of the Theorem.

It is an open problem whether there exist alternative invariant quadratic estimators to (1.1) admissible for σ in the case where matrices M_1, \ldots, M_p do not commute.

REFERENCES

- [1] D. K. Dey and A. E. Gelfand, Improved estimation of a patterned covariance matrix, Technical Report No. 87-20, University of Connecticut.
- [2] R. H. Farrell, W. Klonecki and S. Zontek, All admissible linear estimators of the vector of gamma scale parameters with application to random effects models, Ann. Statist. 17 (1989), pp. 268-281.
- [3] S. Karlin, Admissibility for estimation with quadratic loss, Ann. Math. Statist. 29 (1958), pp. 404-436.
- [4] C. R. Rao, Estimation of parameters in a linear model, Ann. Statist. 4 (1976), pp. 1023-1037.

Institute of Mathematics Polish Academy of Sciences ul. Kopernika 18 51-617 Wrocław, Poland

Received on 12.6.1990