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Abstract. In this work the approach to the reduite is made in 
a simple and unified way. More precisely, we use the same probabilis- 
tic technique to study the optimal stopping problem associated with 
the reduite, to prove the expression of the Snell envelope in terms of 
the reduite under very general assumptions, and to show continuity 
properties of the reduite. We finally describe the example of diffusion , 
processes with jumps. 

0. I N T R O D U C T I O N  

During the sixties and seventies, the problem of optimal stopping of 
continuous time processes was the object of many papers. Without quoting all 
of them let us stress the importance of Mertens' works [21] and [22] which 
deal with the problem in its most general setting; in these articles, the Snell 
envelope is systematically studied and is characterized as the smallest super- 
martingale which is greater than or equal to the process. In this general setting, 
the works of Bismut and Skalli [8], Maingueneau [19], and El Karoui [I21 
describe precisely an optimal stopping time (whenever it exists) as the 
"beginning" of the set where the process is equal to its Snell envelope and, more 
generally, give the exact default of optimality. 

In the case of a Markov process (Xt), a new question arises: if the process 
one wants to stop depends only on the state of the process at time t, i.e., it can 
be written as g(Xt)lg<51, where 5 denotes the life-time of the process (Xt), does 
its Snell envelope have the same property? The function associated with this 
stopping problem is called the reduite of g, and denoted by Rg. The "general 
theory" of processes yields that the functions g and Rg are related by thc 
following equation: 

(0.1) Rg(x) = sup {Ex Cg(X,) I{,< *)I; S stopping time) , 
and that Rg is the smallest strongly supermedian function, in the sense of 
Mertens, which dominates g. In order to prove that Rg exists and show its 
main properties, two different points of view have been used in the literature: 
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In potential theory, it is assumed that g is the difference of two excessive 
functions. Then Rg is set to be the smallest excessive function greater than or 
equal to g, and checking that Rg satisfies equation (0.1) is not too difficult. This 
point of view justifies the name of "reduite" given to the function Rg(.). 

In [22], Mertens starts from the opposite point of view: He studies the 
right-hand side of (0.1) when "gs the indicator function of some set A and he 
shows easily that 

R(l,)(x) = PAD, < 0, 
where DA = inf(t 2 0; X,E A} is the beginning of the set A. Then he extends his 
result to step functions and to arbitrary measurable functions g. However, the 
arguments required to show that (0.1) holds are more and more difficult. 

In [23], Meyer solves the problem by using the dual point of view (in the 
sense of convex analysis) of that of potential theory: namely he introduces the 
family M(x) of measures p which satisfy 

M(x) = {p; ,u( f )  < f (x) for excessive functions f} , 

and he uses the function 

Clearly, for any stopping time T the measure pT defined by 

belongs to M(x), and hence Rg(x) Q ~ ~ ( x ) .  
The converse inequality is much more difficult to prove; it depends on 

a theorem of Rost [27] which gives a complete characterization of the set M(x), 
at least in the transient case. 

The interest of this formulation is to introduce a functional analysis setting 
which is well suited for solving the optimal stopping problem: under mild 
hypotheses, the set M(x) as well as its graph are shown to be weakly compact. 

Our point of view is quite similar to this last one: we introduce the set 

d ( x )  = {p; p = pT for some stopping time T )  

which will be endowed with the topology induced by that of Baxter and 
Chacon [3] on processes; this topology is stronger than the topology of 
convergence in law. More precisely, let W(x) denote the set of stopping rules 
starting from x, which are measures on the set of processes (x(u); 
(a, t) E Q x R+),  defined by 

ReW(x) o there exists a stopping time T such that R(Y) = E,(YT), 

and let W(x) be endowed with the Baxter-Chacon topology defined as follows: 
Rn converges to R if and only if Rn(Y) converges to R(Y) for every continuous 
process I: The set d ( x )  is convex compact in the induced topology. 
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It is easy to see that the graphs of the multivalued mapping x N+ W ( x )  and 
x N+ d(x) are Bore1 subsets of products of compact spaces. Furthermore, if the 
map xw P, is weakly continuous, then these graphs are closed. 

If g  is measurable, then the function sup { p ( g ) ;  p ~  d ( x ) )  is also measura- 
ble, and it is identified with the reduite Rg of g (in the sense of Snell's envelope). 

The same arguments show the continuity of Rg if g  and X are continuous 
and if the map XI-+ P, is weakly continuous. 

Hence the novelty of the present method lies in the fact that the restriction 
of a topology, defined on a set of probabilities acting on a set of processes, to 
the set of stopping measures yields a "good" convex compact topology. 

The paper is organized as follows. In the first section we define the optimal 
stopping problem and we show that the reduite is independent of the realization. 
In the second section we define and characterize the set of stopping rules; we also 
prove (0.1). Section 3 establishes the expression of the Snell envelope in terms of 
the reduite Rg. In the fourth section we study the continuity properties of the 
reduite, and the example of diffusion processes with jumps on Rd is described in 
the fifth section. Finally, in the Appendix, we prove the weak continuity of the 
map x WP, for Feller processes on a compact state space. 

1. FIRST PROPERTIES OF W E  OPTIMAL STOPPING PROBLEM 

1.1. *he NIoprkov process. We consider a Markov process (XJ taking on 
values in a metrizable Lusin space E; in some cases E is supposed to be LCCB. 
We denote its semigroup by (P,) and its resolvent by (Ua). We suppose that the 
semigroup is conservative, i.e., P,1 = 1 for every t. Notice that this assumption 
is not restrictive. Indeed, if the semigroup (P,) is sub-Markovian, we extend it to 
a Markovian semigroup over Ed = E v { A } ,  where A  is a coffin-state (see, 
e.g., [9] or 1281). Let n ( E )  denote the set of probabilities on E. 

In the paper we will make various assumptions on the semigroup (PJ; 
however, they all imply the existence of a strong Markov realization of (P,) (see, 
e.g., [9], [28]). There is no uniqueness of strong Markov realizations of 
a semigroup (P,). Thus on a given space there exists a realization which is the 
smallest one. 

DEFINITION 1.1. Let 3 = (8, Q,, X,, O,, P,; x E E) be a strong Markov 
realization of (P,). The canonical realization associated with 3 is defined on 
D with the filtration (&) deduced from %O = a(X,; s < t) by standard 
regularization procedures (completeness and right-continuity), say V ( q  = (a, 
q, Xt,.Ot, px; x ~ a .  

1.2. DefiniCion of the ophal  stopping problem. Let X = (Q, Q,, &, O,, P,; 
x E E) be a strong Markov realization of the semigroup (PJ. Extend the process 
(X,) to R+ = R+ u {+ a} by setting X, = A, and let (e) denote the canonical 
filtration of V(3). 
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DEFINITION 1.2. Let Y(g) denote the set of stopping times (finite or not) 
with respect to the filtration (9,) (i.e., T E ~ ( % )  e V t, {T  < t) ~ 6 , ) .  For the 
canonical filtration, simply set F = F(9). 

Let p be a probability on E. The aim is to stop the evolution of a reward 
process (x) at a stopping time T* EY(B) which maximizes the expected 
reward, i.e., such that 

E,(YT*) = sup{E,(YT); T ~ y ( 3 ) ) .  

The definition of the optimal stopping problem obviously requires 
integrability conditions on I: The simplest condition, which will be often used, 
is to suppose that (q) is bounded. The "good" hypothesis is to assume that (x) 
is of class (D) with respect to the filtration (63, i.e., is uniformly integrable over 
the set of stopping times, uniformly with respect to the initial condition 

A process of class (D) with respect to the canonical filtration will simply be said 
to be of class (D). 

We will study thoroughly the particular case of a process (q) which 
depends only on the state of the process (X,): 

V t ER+ , I: = eVatg(X,); Y, = 0, 

where a > 0, g: E -+ R is borelian and either bounded or of class (D,), i.e., such 
that (x) is of class (D). We will also study the case where x = g(X,) and 
Y, = limsupg(Xt) as in [29]. We refer to these situations by the following 
notation: 

Va > 0, g: = e-"g(X,) or g, = g(X,) = gp, 

with the convention that g", lim supg: for a 2 0, e-"" = 0 if a > 0 (e-"" = 1 
if a = 0 ) ,  and g(A)=g;. 

DEFINITION 1.3. Let Y be a reward process of class (D).with respect to (g*). 
The reduite of Y is the maximal payoff function 

If Y = g: (a 2 0), we will denote the reduite v(x, Y) by RUg(x). 

Remark. This last definition refers to that in potential theory where the 
reduite of a function g is the smallest a-excessive function which is greater than 
g. One of the aims of this paper is to show that both notions coincide by means 
of probabilistic arguments, which are substantially s i ~ p l e r  than the usual ones 
when g does not have any regularity property (cf,, e.g., [12]). 

1.3. Randomized stopping times. A classical approach of such problems 
consists jn introducing a convex set of randomized stopping times containing 
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F(B)  and extending the optimal stopping problem. This technique is indeed 
natural to study the relationship between the reduite and the realization of the 
semigroup. 

DEFINITION 1.4. Let 33" = (52, B,, X,, 0,, P,; X E  E) be a strong Markov 
realization of (P,). A randomized stopping time is an increasing, (%,)-adapted, 
right-continuous process (A,) such that A, = 1 P, as.  for every initial 
probability peII(E). Let d ( 9 )  denote the set of randomized stopping times. 
For the canonical filtration, simply set d = d ( 9 ) .  

The set F ( 9 )  can be embedded in d ( g ) ;  indeed, for T E F(B)  and t E R+ , 
set A, = Changes of time describe the connection between stopping 
times and randomized stopping times (see also [3], [24]). Indeed, let 
r, = inf(s: A, 2 t} denote the pseudoinverse of (A,), with the convention 
inf0  = + co; then each r, is a stopping time. The following proposition shows 
that the maximal expected values are the same over the sets F and d. It is 
essentially shown in [24], p. 419. 

PROPOSITION 1.5. Let Y be a process of class (D) with respect to thefiltration 
(93,). Then 

(i) The family of random variables {Y, = jEo,+ ml Y,dA,; AE d ( 9 ) )  is 
uniformly integrable, uniformly with respect to the initial probability. 

(ii) The reduite of Y is the same over the sets F(B) a d  d(B) .  More precisely, 

for every ~EIZI(E). 

Finally, the following theorem shows that the reduite of an (a-adapted 
process is independent of the realization. It is a consequence of Property (K), 
which holds for the filtrations ( a  and (9,) (see [20]). We need first the 
following result: 

PROPOSITION 1.6. Let 33" = (51, $It, X,, 9,, P,; x E E) be a strong Markov 
realization of (P,) and let (q) denote its canonicalfiltration. Given any stopping 
time T with respect to theJiEtration ($I,), there exists a randomized stopping time 
(AT)€& such that E,(Z,) = E,(ZA*) for every p~17(E)  and every 
(9m091(R+))-rneasurable process Z which is positive (respectively, bounded). 

Proof.  For every t€[O, + co], let a,T = E,(1{,,t)19m) be the version 
independent of p. The Markov property yields that 

Efl(l{~<t) 1 Fm) = Ep(l{~<t) 1 Pp 
and therefore that (aT) is P, as. (a-adapted, increasing and such that 
AT, = 1 P, a.s. Let (A? denote its increasing, right-continuous, (8)-adapted 
regularization such that AT, = 1 P, a.s. The definition of AT shows that, given 
any positive, Fm-measurable random variable H and any interval Is, t], 
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The monotone class theorem shows that this equality extends to positive 
processes Z which are (c @ g ( R  +))-measurable and yields 

THE~REM 1:7. Let X = (8,  8,, X,, 8,, P,; x E E) be a strong Markov 
realization of (PJ with canonical filtration ( )  Let Y be an 
(9m@B(R+))-rneasurable reward process of class (D) (with respect to (a). Then 
Y is of class (D) with respect to (8,) and  he reduites of Y over both$ltrations (e) 
and (3,) coincide, i.e., for every , u ~ n ( E ) ,  

(1.2) sup {E,(YT); Y E Y ( 9 ) )  = sup {E,(YT); TE Y(P)}. 

Proof. It is well known (see, e.g., [lo], t. 1, p. 38) that the uniform 
integrability condition is equivalent to the existence of a convex function 
4: R+ + R +  such that 

. +(t) lim - = oo and sup sup E, [ + ( I  Y,I)] < + oo . 
r-m t ge l I (E)  T E S  

Let T ~ y ( 8 )  and ,u EI;I(E); then i f  A T €  d is the increasing process constructed 
in Proposition 1.6, then 

by Proposition 1.5. 
To show the equality of the reduites, we use a similar argument; indeed, by 

Proposition 1.5, we only need to compare the suprema over the sets d and 
Y(8). Let T E Y(8), p E U ( E ) ,  and let A T E  d be the process defined as above. 

Since P c 8, the converse inequality is obvious. 

This last result shows that we can work with the canonical filtration, 
whose topological properties we use. 

2. STOPPING RULES A N D  REDUITE 

2.1. Stopping roles. Following Baxter and Chacon [3], Bismut [6], and 
Meyer [24], we introduce the "good" set of parameters to solve the op- 
timization problem, i.e., probabilities on O x  d7+ which can be written as 
P,(dw)A(w, dt),  where the process A,(w) = A(w,  [O,t]) is a randomized 
stopping time for the canonical filtration. These are Meyer's "temps d'arret 
flous". 
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DEFINITION 2.1. Let p E I7(E);  a stopping rule starting from p is a probability 
R on Q x R+ which can be desintegrated with respect to P, as 

R(dw, dt) = P,(dw)A(w, dt) 

with a randomized stopping time A E d. 

Let B(p) denote the set of stopping rules starting from p. When p is a Dirac 
measure 6,, we write W(x) for simplicity. Baxter and Chacon [3] and Meyer [24] 
have given characterizations of stopping rules in the case of an abstract 
measurable space endowed with one probability. Our setting will be slight- 
ly different since we are working with the canonical realization, and thus 
with a topological space B of trajectories endowed with various probabili- 
ties P,. 

Given an Fm-measurable random variable h and a Bore1 function f on 
a + ,  set hOf (m, t) = h(w) f (t). 

THEOREM 2.2. Let p E ~ ( E ) ;  a stopping rule starting from p is a probability 
on Q x R+ satiisfyiying the following conditions: 

(i) For any bounded random variable h, R(h@l) = 

(ii) For any bounded random variable h and any t in a countable dense 
subset D of R+,  

R(hO1[0,t,) = R(E,(h I a@ l[O,t,). 

Re mark. Condition (i) ensures that the projection of R on 1;2 is P,, and 
condition (ii) gives the suitable adaptation property of the desintegration of 
R with respect to P,. 

Proof. A probability R E W@) clearly satisfies (i) and (ii). We prove only 
the converse implication. Condition (i) shows that the projection of R on Q is 
P,, and hence that R can be desintegrated in the form R(do, dt) 
= P,(dw)A(m, dt), where A is a transition probability from Q to R,,  with 
repartition function A, = A(., [0, t]). This fact has already been used in [15], 
p. 541, and in [24], p. 411; it comes from general results concerning the 
desintegration of measures ([lo], t. 1, p. 125). Condition (ii) shows that, for 2ach 
a E D, Aa is P, a.s. Fa-measurable. Let A"a be an Sa-measurable random variable 
P, a.s. equal to Aa. Set A", = 1 and let (A,) be an increasing right-continu- 
ous extension of (Ja,  ED). Since both processes A. and A* are right- 
-continuous, they are P, indistinguishable, and R(do, dt) = P,(dco)A(o, dt). 
Furthermore, the right-continuity of the filtration (e) shows that (A3 is 
(a-adapted. s 

Baxter and Chacon, and Meyer have endowed the set W(p)  with 
a compact topology. Since we work with a topological space SE and several 
probabilities P,ED(SZ), our definition of the topology on W ( p )  will look 
different from theirs. For a fixed probability P,, both topologies coincide. 
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THEOREM 2.3. Let W(p) be endowed with the Baxter-Chacon topology, i.e., 
the coarsest topobgy such that the maps 

REW(~)HR(X)=E, (  J XsdA,) with R(dw,dt)=P,(dw)A(w,dt) 
[O, + 001 

are continuous for every bounded (F,@B(R+))-measurable process (~ , (w) )  with 
cori.tinuous trajectbries on R+ (i.e., V w, t H X , ( ~ )  is continuous). Then the set 
W(p) is compact in the Baxter-Chacon topology. 

P r o  of. We briefly sketch the argument, and refer to 131 and [24] for 
details. Theorem 2.2 and approximations of lI0,,, by continuous functions 
clearly show that W(p) is closed in 17(D x R,).  To show that W Q  is relatively 
compact, we use a criterion of Jacod and Memin [I51 and we prove that the set 
of projections of W(p) on D and R+ are both weakly relatively compact. This is 
obvious since {RR; R E WO) = {P,) , and { R ~ +  ; R E W(p)) is a set of probabili- 
ties on a compact set. rn 

I 

2.2. Dependence on the initial condition. The characterization of stopping 
rules given in Theorem 2.2 allows us to precise the dependence of the reduite of 
a (not necessarily adapted) process Y on the initial condition. The proof 
depends on the properties of the graph of the multivalued mapping x * W(X). 
It is easy under an additional hypothesis. We consider at first the following 
particular case: 

We suppose that the state space E is Polish. Let Do = D([O, + a ] ,  E) 
denote the set of right-continuous and left-limited (cad-lag) maps from 
[O, +a] into E. The set Do is a Polish space (i.e., separable, complete 
metrizable when it is endowed with the Skorokhod topology). Let F0 denote 
its canonical o-algebra and let C(E) denote the set of continuous functions 
on E. 

In the sequel, we will denote by X a countable family of bounded random 
variables which is stable by product, and generates the a-algebra 9," = a(X,; 
s e R + ) .  Depending on the special assumption made on the Markov process 
(Feller, right, . . .) we will mainly consider several sets X ,  which will be the best 
suited for the particular problem under study. 

Let Xb(I)  denote the set of random variables - 

(2.1) h =  n fi(X,), where k 2 1 ,  t , < t , <  ... < t k € I ,  
16i6k 

and the functionsfi are bounded and measurable. We suppose that (ti) belong 
to a countable dense subset I c R+ and that (A) belong to a countable set 
generating 9 ( E ) .  

If E is compact, let #,(I) denote the subset of Xb(I)  corresponding to 
functions (A) that belong to a countable dense subset of C(E) .  When no 
confusion is possible, simply set X, and X,. 
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By the Markov property, for every y ~ l 7 ( E )  and for every h~&',, 

(2.2) fit = Ex,,, Ch (wltl. )I 

is a version of E,(h I &), where the trajectory w/t/w' is defined by (cf., e.g., 1281) 

The assumptions we make in the following proposition ensure the 
measurability of the map xi-+B,. 

PROPOSITION 2.4. Let (P,) be a Borel semigroup on E. We suppose that there 
exists a family (P,; XEE) of probabilities on (Go, F O )  such that X = (QO, F:, 
X,, O,, P,.; x E E) is a strong Markov realization of the semigroup (PJ. Then, for 
each reward process Y of class (D), the reduite 

V(X, Y) = SUP{E,(Y~); T E  F )  

is an analytic function and, for each y~17(E) ,  

(2.3) S V ( X , Y ) ~ ( ~ X ) = S U ~ { R ( Y ) ; R E ~ ( ~ ) ] = S U ~ ( E , ( Y , ) ;  T E F ) .  

Proof.  We study the graph G = {(x, R); R E ~ ( x ) ) .  The map x w P X  is 
Borel from E into U(QO), since the Borel o-algebra on ZI(QO) is generated by 
the maps p ~ y ( Z ) ,  where Z is 9'-measurable. The monotone class theorem 
shows that in the characterization of W(x) given in Theorem 2.2 it suffices to 
consider the maps R(h@ 11, E,(h), R(hQ 4 0 , ~ ~ )  and R(E,(h l %I@ l,0.,3 
= ~(fi~;,81~,,,,) for h E H,, and a in a countable dense subset of R+ . Under our 
assumptions all these functions are Borel on E@17(Q0 x R+).  Hence the graph 
G is a Borel subset of the product space E@17(SZ0 x a,). 

Suppose at first that Y is bounded. Since Y is (~O@g(k?+))-measurable, 
the map R i-+ R(Y) is Borel from U(QO x a+) into R, and the theory of analytic 
functions ([lo], t. 1, p. 119, theoreme 62) implies that the function 

V(X, Y) = sup{R(Y); REW(X)} 

is analytic. We follow the proof of lemme 17 in [lo], chapitre X. The function 
u is universally measurable and, consequently, we can find a Borel function 
w(x), majorized by v(x, Y), and y a.s. equal to v(x, Y). Given E > 0, the set 

GE = {(x, R); R(Y)+E 2 w(x), REB(x)) 

is Borel, and its section along a fixed x, say G:, is non-empty. From the section 
theorem ([lo], t. 1, chapitre 111.44-45) there exists a Borel set A carrying p, and 
a Borel section Re(x, .) of G" defined on A. We set RE(x, a )  = E, on A'. Since 
j Ryx, -)p(dx) belongs to BQ by Theorem 2.2, we deduce that 

Jv(x, Y)y(dx) G sup{R(Y); R E ~ ( P ) ] .  
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Conversely, let R = P,(do). dA,(w) E W(,u). Since (A,) is a randomized stopping 
time, we have 

VXEE, Bx(dw)-dA,(w)~W(x). 
Then 

R(Y) = Jp(dx) J~ , (dw)~(w)d~ , (w) 'G  Jp(dx)v(x, Y ) .  

Let Y be of class (D); we compare v(x, Y) and v(x, Yc), where Yc is the 
(bounded) truncated process (Y A c) v (-c). Set 

4 ~ )  = SUP{E,(IY~-I ~ I I Y ~ ~ > ~ I ) ;  T E ~ )  

for fixed x E E. Then, for every T EF, 

G ExC(IYTI-c)l~lYTl>cll G E(c), 
and 

Iv(x, Y)-v(x, Yc)l < ~UP(~E~(Y~)-E,(Y,')I; T E Y )  < E(c). 

Hence v(., Y) is the pointwise limit of vt, YC) as c + ao, and the Lebesgue 
theorem implies that the first equality in (2.3) holds for Y; Finally, Proposi- 
tion 1.5 concludes the proof. rn 

2.3. Measurability of the reduite for right processes. We now consider 
a right semigroup (P,) on a Lusin space E. The Ray compactification of a right 
semigroup is very long to be described completely, and we refer systematically 
to the notation and proofs of Getoor [14] (see also 1281). Let E denote the 
Ray-Knight compactification of E; the extension of (P,) to E is denoted by (FJ.  
The relations between X and the Ray process associated with (I',) are described 
in the following theorem: 

THEOREM 2.5. Let W be the set of applications w: R+ + E which are 
right-continuous both in the initial topology and in the Ray topology, and which 
have left limits in E in the Ray topology. Let (XJ denote the coordinate process 
and set 9; = cr(X,, s G t). Then for each probability p on E, P, is the measure 
constructed on (W, S o )  by using (P,), and F, is the corresponding one constructed 
by means of (P,). These probabilities P, and P, are equal, and (X,, 9:, P,) is 
a Markov process with semigroup (P,) (resp. (F,)), if we consider E (resp. E) as 
a state space. 

Following the remark of Getoor ([14], p. 80), by changing the topology on 
E into the Ray topology, the resolvent and the semigroup become Borel, and 
we can apply the argument above. The kind of measurability will be the 
following: a function v defined on E will be analytic if it is the restriction to E of 
a function 5 which is analytic on the Ray-Knight compactification E endowed 
with the metric Q. 
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THEOREM 2.6. With the notation above, let %? = (Q, KO.', X,, O,, P,; X E  E) 
denote the canonical realization of a right semigroup (P,). For each 
(F0*'637(R+))-measurable process Y of class (D), the map 

V(X, Y) = SUP{E,(Y~); T E Y )  

'is universally measurable on E, and 

(2.4) Sp(dx)~(x, Y) = sup(E,(YT); T E Y ) .  

Proof. If = g(X,), let B denote the set of branching points, and D = B". If 
p(B) = 0, then (X,) behaves like a right process taking on values in D. The reduite 
v can be defined on D and extended to R by setting v = Pov. Given any probability 
p on E, the probability pPo does not charge By and hence (see, e.g., [8]) 

For a general process I: let p ED@); 'Q is not Lusin, but we can restrict 
ourselves to a Borel subset SZ' of Q included in W = D(R+, 0, where E is 
endowed with the Ray topology. Then replace E by a Borel subset E' such that 
p(E') = 1 and P,(Q') = 1 for X E ~ ,  and replace Y by a (Q0@91(R+))-measura- 

I 
I ble process Y' which is P, indistinguishable of I: The proof of Proposition 2.4 
I 
i 

shows that v(x, Y') is @-analytic on E', and (2.4) holds by a selection theorem. FA 

1 3. REDUITE A N D  SNELL'S ENVELOPE 

'The most important application of Theorem 2.6 is the connection between 
the reduite and the Snell envelope for homogeneous processes and, more 
precisely, for processes of the form g: = e-"'g(X,), t E R ,  (a 2 0), where g is 
a fixed nearly Borel function of class (Db. We recall the conventions we made 
in Section 1: 

X,=A,  g",limsupg;, g(A)=gO,; 
f - m  

set 
R"g(x)=v(x,ga) for X E E  and Rag(A)=g:. 

We at first apply Theorem 2.6 to prove that Rag is an a-strongly supermedian 
function. 

PROPOSITION 3.1. Let % = (9, e, X,, O,, P,; x E E) bg the canonical realiza- 
tion of a right semigroup (P,). For each stopping time S E T  and each probability 
p E n(E) the following holds: 

(3.1) E,(e-"SRag(Xs)) < sup {E,(gd;.); T 2 S, T  E 3) < ( p ,  Rag). 

Proof. Fix S E ~ ,  and let Si denote the measure on E defined by 
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Theorem 2.6 applied to the probability S;(~)-'SE and the strong Markov 
property show that 

G su~{E,(e-*~g,; S < + oo); T 2 S, T EY}. 

On the set {S = + oo} , for T 2 S the random variables e-as Rag(Xs) and g",re 
both null if a > 0 and equal to gO, if a = 0. Hence 

E,(e-aSRag(Xs)) < sup{E,(g%; S < oo); T >, S, T E Y }  

Remark. Inequality (3.1) shows that the reduite Rag is the smallest 
a-supermedian function greater than or equal to g. Its a-excessive regulariza- 
tion fig is defined by 

ffag = lime-atPtRag G Rag on E and ffag(d) = g:. 
t+O 

The converse inequality of (3.1) is established in lemme 2.7.1 of [12]. It is clear 
if g is 1.s.c. on trajectories, since ffag 2 g yields that gag = Rag. Let (42;') denote 
the filtration generated by (X,; s < t). 

LEMMA 3.2. Let W = (Q, e, X,, O,, P,; x E E) be the canonical realization of 
a right semigroup (PJ. Then, for all stopping times T 2 S with T E zO'+ 
= narOe+E and SEY/I(*'), 

P r o  of. We denote by F0 (resp. yo) the set of stopping times with respect 
to &O (resp. & O T ~ ) .  Let S (resp. T) be a stopping time in Yo (resp. yo), with 
S 4 jl: By a slight modification of a theorem of Courrege-Priouret (cf. [lo], t. 1, 
p. 237) there exists an (9$'@F:)-rneasurable random variable U: 52 x 62 
-, [0, + oo] such that 

(i) U(o, w) = 0 if S(w) = + oo or if S(o) < + co and Xo(w) Z Xs(o). 
(ii) U(o, - ) belongs to yo. 
(iii) T (o) = S(o) + U(o , O,(w)). 
The proof is similar to that in [lo], using the Galmarino test for 

42;';' stopping times ([lo], t. 1, p. 234, thtoreme 101) instead of the Galmarino 
test for R0 stopping times ([lo, t. 1, p. 234, thkorkme 100). By the strong 
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Markov property, 

(3.3) Ep(gaT; S < + a) = Ep(e-aSEXs(g%(o,.)); S ( W )  < + +) 
d E,(e-aSRag(X,); S < + co). 

Since g-nd ePaSRag(Xs) coincide on {S = +a), this concludes the proof 
of (3.2). rn 

Hence, if g is 1.s.c. on trajectories, approximating any stopping time S by 
a decreasing sequence in Yo yields that inequality (3.2) holds for any S E F. The 
following lemma gives a more precise inequality for any arbitrary nearly Bore1 
function g. 

LEMMA 3.3. Let %? = (R, 9;, Xi, B,, P,; x E E) be the canonical realization of 
a right semigroup (Pi). Then, for all stopping times T 2 S in 

(3.4) Ep(gQT) G Ep(e-aS(Rag V d(XS)) 

and Rag = g v P g .  

Proof. At first we extend inequality (3.2) to stopping times SET'. Apply 
(3.2) to S = E > 0, and T = sup(V, e), where V is a strictly positive stopping 
time in 9'. Then 

E,(Q%,(",&)) G E,(e - RUg(X,)) - 
Since g: is of class (Da), we'can let E + 0, and obtain E,(gt) d gag(x). If we 
suppose that T > SE Yo on {T  < a), then the stopping time U(o, .) is strictly 
positive, and we have 

E,(g", S s + +) d E ~ ( ~ - " ~ I ? ~ ~ ( X , ) ;  S < +GO). 

Fix S E go, T  > S on { T  < + oo), and approximate it by a strictly 
decreasing sequence (S,) of so stopping times. Let (3) be a sequence in Po 
defined by 

T, = T on { T  > S,} and T, = + co otherwise. 

The sequence (T,) decreases to T in a stationary way (i.e., for. every w there 
exists an integer N(co) such that T,(o) = T(o) for all n 2 N(w)), and since 
T, > S, on {T, < a ) ,  we have 

Ep(g$,,; S, < + m) < ~ , ( e - ~ ~ ~ l ? ~ g ( ~ ~ ~ ) ;  S, < + a). 

We use the right-continuity of the process e-"'ffag(~,) to deduce that 

E,(g", S s + +) d ~ , ( e - " ~ I ? d ~ ( ~ d ;  S < + +) 

by letting n -, co. . 
Suppose at last that T 2 S belongs to F, and set 

?= T on { S  < T }  and p= + co otherwise, 

$ = S on { S  < T )  and $ = + oo otherwise. 
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I 
Then 

~ Ep(g$; {S < + m}) = E,(g$; {S < T} n (S < + a } )  

i + E , ( ~ - ~ ~ ~ ( x ~ ) ~ ~ ~ = ~ ~ ;  s < +w)  
, = E,(g%; $< +oo)+E,(e-aSg(Xs)l(s=n; S < +a) 

6 ~ , ( e - ~ p ~ ( ~ ~ ) ;  $ < + m) 

+E,(e-QSg(Xs)l(s=,,; S < + oo) 

6 ~ , ( e - " ~ ( p ~  v g)(X,); S < + oo). 

Since ( P g  v g)(d) = g: on {S = + a } ,  the proof of (3.4) is complete. Finally, 
(3.4) applied with S = 0 yields that Rag < pg v g G Rag. a 

The main consequence of those two results is the description of the Snell 
I envelope in terms of the reduite. Let 8" denote the a-algebra generated by 
1 
I excessive functions. 

THEOREM 3.4. Let X = (a, $,, X,, B,, P,; x E) be a strong Markov 
realization of a right semigroup (PJ and let g be a universally measurable function 
of class (DJ. Then, if g is Be-measurable, the process 

is a strong supermartingale which is the Snell envelope ~ ( ~ 9  of (g:, t E [O, + m]), 
i.e., 

& = ess sup {E,(g", 3,); S < T E Y(B)} . 
Proof. Theorem 1.7 shows that we can use the canonical realization of 

(P,). By Proposition 3.1 and Lemma 3.3, we see that, given S E T  and p E 17(E), 

sup(E,(g"T); S < T E Y }  6 E,(e-PSRag(Xs)) 

< sup{E,(g"T); S < T E YE 

= E,( J(ga)s) 9 

where the last equality is deduced from the property of decreasing filtrations 
for the set (E,(g",), T 2 S, T E Y) (cf., e.g., [22]). Therefore, 

(3.5) e-aS Rag(Xs) = ess sup {E,(ga Fs); S < T E Y }  on {S < + ao) . 
, Since pg is obviously be-measurable, the equation Rag = pg v g shows 
I 
I 

that Rag is be-measurable, and hence the process P g .  is optional (cf., e.g., [lO], 

I t. 3, or [28]). Thus, equation (3.5) concludes the proof. 
1 Remark 3.5. (1) The Snell envelope is a crucial tool in the theory of 

optimal. stopping. Thus it is very important to relate the reduite and the Snell 
envelope. For example, optimal stopping times of a process (9 can be char- 

I 
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acterized in terms of the Snell envelope J(Y) of Y as follows (see, e.g., [12]): 
A stopping time T* is optimal if and only if: 

YT* = J(Y),*; 
the process (J(Y),, p, t 0) is a martingale. 

The Snell envelope also gives an explicit construction of optimal stopping 
times under u.s.c. assbmptions on the process (cf., e.g., [12]). More precisely, let 
(x) be an optional process of class (D). Then: 

@ If Y is u.s.c. on trajectories, then inf{t: I: = J(Y),} is the smallest 
optimal stopping time. 

@ If Y is u.s.c. in expectation (i.e., EYT 2 limsupEYT, for every sequence 
(T,) of stopping times converging to T), lbt J(Y), = M,-A,  be the Doob 
decomposition of the supermartingale J(Y). Then inf{t: = J(Y),} and 
inf{t: J(Y), # M,} are optimal. 

(2) Given an arbitrary function g, the reduite Rag we have studied is the 
smallest strongly a-supermedian function greater than or equal to g. Then: 

@ For fixed a > 0, the optimal stopping time for the process gK and the 
probability P, is the entrance time in a subset of E which does not depend on 
the initial law y 

If g is 1.s.c. or, more generally, 1.s.c. on trajectories (e.g., the difference of 
two excessive functions), then Rag is excessive, and hence it is the "excessive" 
reduite in the sense of potential theory (cf., e.g., [lo], t. 3). 

4. CONTINUITY PROPERTIES OF THE REDUITE 

In this section we prove continuity results on the reduite when both the 
function f and the semigroup (P,) have "continuity" properties, e.g., f is 
continuous and (P,) is Feller. Thus we generalize some known results about the 
reduite, but the novelty lies mainly in the method which we develop. Instead of 
the penalization iterative method (cf. [26], [12]) or a discretization method 
(cf. [18], [7], [31]) we use the more probabilistic notion of stopping rule, which 
also yields functional results. Furthermore, our method depends only on the 
weak continuity of the map x I+ P,, which is well known for diffusion Markov 
processes (cf., e.g., [25]). In the Appendix, we prove that this continuity 
property also holds for Feller processes on a compact state space E. 

Since the initial condition X E E  will not be fixed, we cannot u k  the 
Baxter-Chacon topology on 2 = (J Se(x); indeed, this would imply that the 
laws of the processes are strongly continuous. ' 

Throughout this section we suppose that the state space is Polish and that 
sometimes it is compact metrizable. Let D = D([O, + oo], E) denote the 
canonical set of right-continuous and left-limited maps from [0, + a33 into E, 
and let cot denote the coordinate maps. The set l2 is endowed with the 
Skorokhod topology for which it is metrizable, complete and separable (cf., e.g., 
141, [16]). We recall some well-known properties of this topology on d. 
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PROPOSITION 4.1. (a) For every bounded continuous function f on E, every 
a > 0 and 0 < t ,  < t ,  < + m ,  the map w ~ f ~ , , , , , , e - ~ ~ f  (a,)ds is continuous. 

(b) For every given probability P on (Q, 9: ), almost every t (with respect to 
Lebesgue measure), there exists a P-null set N, such that the map w w  w, is 
continuous for every w $  N,. 

In this section we will assume that the following assumptions (Ha) and 
(Nb) hold: . , 

(Ha) One can define on l2 a family of probabilities (P,; X E  E) such that 
( S Z ,  %, P,, O,, P,; X E  E) is a strong Markov realization of the semigroup (P,). 

(Wb) The map x H P, is weakly continuous. 

Note that the assumption (Hb) is satisfied when E = Rd, and (P,) is 
solution of a "good" martingale problem. The following theorem shows that 
(Hb) also holds for an arbitrary Feller process on a compact state space E (i.e., 
such that P,(C(E)) c C(E)  for each t > 0, and P, f + f pointwise as t -, 0 for 
each f E C(E)), or Feller in the following weaker sense: UQ(C(E)) c C(E) for 
each a > 0, and rxUaf + f pointwise as ol -, + oo for each f E C(E). Its proof is 
given in the Appendix. 

THEOREM 4.2. Let (P, e, a,, 4, P,; x E E) be the canonical realization of 
a Feller semigroup (P,) on a compact metric space E. Then the map x HI', is 
continuous when n ( D )  is endowed with the weak topology. 

We now prove regularity properties of the sets W@) of stopping rules when 
Q = D([O, + a], E) under the assumptions (Ha) and (Hb) on the semigroup. The 
set 9 = u a G n o W Q  is included in n ( D  x [0, + m]) ,  and is endowed with the 
weak-star topology. Note that for fixed p~ n(E), the restriction to W Q  of the 
weak-star topology is the same as the Baxterxhacon topology on 90, since 
p,, -r p in the Baxter-Chacon topology if p,(X) -, p(X) as n + + m for every 
bounded continuous process X (see [3] or 1241, p. 419). Indeed, for fixed p choose 
a countable dense subset I c R+ and a subset N c D* such that P,(N) = 0, and 
W H W ~  is continuous for each t e I  and w$N (cf. Proposition 4.1). Then the 
random variables h E Sc(l) and fit = E,,(h(w/t/- )) are "continuous" on SZ if t E I. 

THEOREM 4.3. Let SZ = D([O, + m ] ,  E), let K be a compact subset of E such 
that the map X H P ,  is continuous on K. Then: 

(a) The graph 6, = {(x ,  R); x E K, R E  9 ( x ) )  is a compact subset of 
K x n ( P  x [O,  + a]), where n(bE x [0, + a]) is endowed with the weak-star 
topology. 

(b) The set 9, = U,, W(x)  is a weakly compact subset of n(S2 x [O, + a]). 

Proof. First we check that G ,  is closed. Let (x,, R,) be such that x, + x 
and R, -+ R. The sequence (P,) of projections of R, on D converges weakly to 
P,, which is hence the projection of R on 52. To show that R E ~ ( x ) ,  it suffices 
to prove that the second condition in Theorem 2.2 is satisfied. Let I = (a,) be 
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a countable dense subset of [0, + co] such that the maps o I-+ Xai(o) are continuous 
except-on a P;null set N of 0. Let aE I, h E Xc(I), and 4 be a continuous function on 
[0, + co] with support inclu&d in [0, a]. Then ' by Theorem 2.2 we have 

R"(hO4) = R,(fia@4), v n  2 0. 

Since the functions h and La are continuous except on N x [0, + co], which is 
an R-null set, letting n -, + oo yields that R(h64) = R(fia@$), and hence that 
GK is closed. 

Since G, is closed, it suffices to prove that W, is weakly compact, and 
hence that the sets 92; and w!+ of projections of 9, on n(Q) and 
n([O, + co]), respectively, are tight. The continuity assumption made on the 
map x H P, shows that @ = U,, Px is a compact subset of n(f2). Since 
LO, + co] is compact, the tightness of 9!+ is obvious, and W, is compact. Since 
G, is a closed subset of K x9,, it is clearly compact. s 

The following lemma gives sufficient conditions for the upper semicon- 
tinuity of a map defined in terms of suprema of continuous functions. The 
lower semicontinuity of such maps is intuitively expected. Similar results can be 
found in the more general setting of set-valued maps (cf. [2]). 

LEMMA 4.4. Let X be metrizabte and let 92 be compact metrizable. Let 
F: X x 9 -+ R be bounded u.s.c., and for every x E X  let 9(x)  c W be such that 
G = {(x, R); x E X, R E W(x)) is closed in X x 9. Then 

V(X) = sup{F(x, R); REB(x)) 
is U.S.C. 

Thus we obtain the upper semicontinuity of the reduite of a u.s.c. process 
Y which is not necessarily a function of X. 

THEOREM 4.5. Let D = D([O, + co], E) and suppose that E is LCCB and 
that the map XHP, is continuous from E to n(0). Let Y be an (Ft@a(R+))- 
-measurable process of class (D). If the map (w, t)c, x(w) is U.S.C. on D 
x [0, + co], then the reduite v(x, Y) = sup {R(Y); R E  L%?(x)) is U.S.C. 

Proof. Fix x, E E and let K be a compact neighbourhood of x,. First we 
suppose that Y is bounded. Set F(x, R) = R(Y); then the map R H R(Y) is 
u.s.c., and hence F is u.s.c. Therefore, Lemma 4.4 applied with X = K and 
W = WK(= UX,,9(x)) shows that v is u.s.c. at x,. 

Suppose that Y is of class (D) and fm c > 0. Let Yc be the truncated process 
(-c) v (Y A c). Then F,(R) = R ( q  converges uniformly to F as c -, + co; indeed, 

lim sup sup (R(Y)-R(Yc))( G lim sup R(IY( 1(1y1,6) 
c ReB c Red 

= lim SUP ~ ~ P E ~ ( I Y T I ~ ( ~ Y , ~ > ~ $  = 0. 
c ~IEJZ(E) T E S  

Hence the map v ( . , Y) is also u.s.c. ar 

8 - PAMS 13.1 
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The extension of the optimal stopping problem to a larger convex 
compact set has yielded the upper semicontinuity of u. As might be expected, 
the lower semicontinuity of v is easier; it is obtained by restricting the study to 
the smaller class FI of I-valued simple stopping times T (i.e., taking on fnitely 
many values in I c R,). 

THEOREM 4.6. Let a = D([O, + 031, E) and let Y be a measurable (not 
necessarily adapted) process of class (D).  Then: 

(a) If (x) has lower semicontinuous trajectories, then for every p E n(E) and 
any dense subset I c 8, 

(b) Suppose that the map x I+ Px is continuous from E in n(Q) and lit (Q be 
Z.s.c. on Q x R , ;  then v ( - , 'Y )  is 1.s.c. 

Proof. We suppose first that Y is bounded. 
(a) Let T E F  and let I be a countable dense subset of 8,. Let T, be 

a decreasing sequence of I-valued simple stopping times converging to ?: Then 
since Y has 1.c.s. trajectories, we obtain 

E, (YT) G lim inf E, ( Y,,) < SUP {E,  ( Y,); S E 61, 
so that sup (E,(YT); T E F )  < SUP (Ep(YT); T E TI}; the converse inequality is 
obvious, and Theorem 1.7 concludes the proof. 

(b) Let (x,) be a sequence in E converging to x. Let I be a countable dense 
subset of R,, and N be a P,-null subset of f2 such that for every t ' ~  I the map 
ow w, is continuous on Nc. Let 

and fix E > 0. For each i < k choose an Ki -measurable random variable Hi 
such that o - H , ( o )  is continuous except on N ,  and 

E x ( Y ) E x ( Y A ) < ~  for A ( o , d t ) =  z H i ( o ) G , , ( d t ) ~ d .  
idk 

Since the map Y is 1.s.c. on f2 x R,, the map ow Y,(o) is 1.s.c. except on N. 
Therefore, for xn + x 

lim inf ~ ( x , ,  Y) 2 lim inf Exn(YA) 2 Ex(YA) 2 Ex(YT) - E .  
n n 

This clearly shows that lim inf u(x,, Y) 2 sup {E,(YT); T E FI} = V ( X ,  Y), 
and hence that the map v(., Y) is 1.s.c. 

The standard truncation argument used in the proof of Theorem 4.5 yields 
the lower semicontinuity of v(-, Y )  for processes Y of class (D) .  

Theorems 4.5 and 4.6 imply the continuity of the reduite in the particular 
case of continuous processes or of continuous functions of (X,). 
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COROLLARY 4.7. Let E be compact rnetrizable and let D = D([O, + a], E). 
Suppose that the map x - Px is weakly continuous and that Y is a process of class 
(D)  which is continuous on S1 x R,. Then the reduite v(x,  Y )  = sup{E,(YT); 
T E F )  is continuous. 

Thus we obtain the continuity of the reduite qa of a continuous function of 
a Feller process (see, e.g., [12], thkoreme 2.82). 

COROLLARY 4.8. Let %" = (a,  g,, Xt, O,, P,; x EE) be a strong Markov 
realization of a Feller semigroup (P,) on a compact set E. Then, for every g E C(E) 
and a > 0, 

Rag(x) = sup (E,  [e -aTg (XT)]  ; T E F(9)) 
is continuous. 

Proof. We suppose at first that g is the a-potential of a continuous 
function J: Then for each T E  Y and x E E, by the strong Markov property, 

E,(e-aT Uaf (XT))  = Ex( l e-"f (X,)ds). 
IT. + m l  

The map (w, t)-  I;(w) = h,+ e - " ~ ( ~ ) d i  is continuous. Indeed, since f is 
bounded, the map t I+ I;(w) is continuous uniformly in w, and for fixed t 
Proposition 4.1 (a) implies that the map w w  x(w) is continuous. Hence 
Corollary 4.7 shows that Rag = v(. ,  Y )  is continuous. The uniform ap- 
proximation of continuous functions by potentials concludes the proof. 

Remark. Suppose that the assumptions of Corollary 4.8 are satisfied and 
let g, h be continuous functions on E. Then the map 

is continuous. Indeed, 

Since the maps h and g are continuous and (P,) is Feller, Uah€ C(E), and 
Ra(g-Uah)~C(E) .  

5. EXARIPLE: OPTMAL STOPPING 
FOR DIFFUSIQN PROCESSES WITH 

In this section, we prove that in the case of a "good" diffusion with jumps 
the reduite of a continuous function in also continuous. We use the continuity 
results established in the previous section for potentials of continuous functions 
and an exponential estimation to conclude the proof. 
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5.1. Hypothesis and notation. Let L be an integro-differential operator of 
the form 

Lf (t, x) = [iaijD: f+bjDj f+Dt f](t, x) 

+ j [f ( x + ~ ) - f  (x) - ~ I ~ u ~  < I)(u, vf (t, ~ ) ) lS ( t ,  X, du) 
Rd - {O) 

where we assume that the following assumptions (Nl) and (W2) hold (cf. [17] 
for details): 

(HI) ~ ( t ,  X) = (aij, bj)(t, x) is Bore1 bounded by K, e(t, x) is continuous 
for each t, and (aij) is strictly positive. 

(N2) S(t, x, du) is a positive kernel on Rd-(0) such that 

sup{S(t, x, lu12 A 1); t, x) G K .  

Furthermore, for each bounded continuous function f and each t, S(t, ., f )  
is continuous. i 

Then by [30], for each X E R ~  the martingale problem corresponding to 
(x, a,  b, S) is "well-set", i.e., there exists a unique probability Px on the space 
B = D([O, + m], Rd) endowed with the canonical filtration (8 such that 

(i) Px(Xo = x) = 1; 
(ii) Vf EC;*'(R+ xRd), f( t ,  Xt)-f(0, Xo)- jI0,,]Lf(s, XJds is a Px-mar- 

tingale. 
The assumptions made on a, b, and S imply that Lf (t, .) is continuous for 

every function f E Ct*2(R+ x Rd). 

5.2. Continuity proper~es. We use the following result which can be 
deduced from the exponential majorization in the setting of differential 
operators ([17], theor6me 13). 

LEMMA 5.1. Given A E  R and positive numbers A, q, K, there exists a constant 
k which depends only on K such that 

P,(sup {IX, - X,I > q; 0 < s < t)) 

The following result generalizes a classical result for continuous diffusions 
(see, e.g., 1251): 

LEMMA 5.2. Under the assulnptions (HI) and (H2), the map x I+ P, is weakly 
continuous from Rd to Il(L2). 

S k e t c h of the pro  of. The technique used in [17], th6orGme 20, shows 
at first that the family (P,; x E Rd) is weakly relatively compact. Let x, x; the 
sequence (P,,,) is weakly compact, and let P be one of its cluster points. Given 
f EC~,? (R+ xRd) set 

=f (t, Xt)-f (0, X0)- J Lf (s, X,W. 
10,tI 



A probabilistic approach to the reduite 117 

The set (X, = x) is closed in the Skorokhod topology, and P(X, = x) = 1. On 
the other hand, the right-continuity of (X,) and the definition of Px show that, 
in order to prove that P = P,, it suffices to check that Exn(CW{) + E,({H{) for 
t in a countable dense subset of R+ such that the maps o ~ X , ( o )  are 
continuous except on a Px-null subset of Q, for f E C ~ , ~ ( R +  x Rd), and for 
a bounded %-measurable random variable 5. This last convergence is a direct 
consequence of the continuity of H{. a 

Let f E Cb(Rd) and a > 0;  we want to prove that 

is a bounded continuous function. We suppose at first that f = Uag with 
g E C,(Rd). Then Lemma 5.2 and Corollary 4.7 show that Raf E Cb(Rd). In order 
to deduce the general result, we need the following technical lemma: 

LEMMA 5.3. Let f E Cb(Rd). Then for each E > 0 and each compact set 
K c Rd there exists a Cm-function gk with compact support such that: 

(9 sup{If (x)-sZ(x)l; xEK) < E ;  

(ii) Ilsk ll G I l  f ll , + 8. 

This yields the main result of this section. 

THEOREM 5.4. Under the assumptions (Wl) and (W2), given ct > 0 and 
a bounded continuous function g, the reduite Rag is continuous. 

Proof. The continuity of the reduite is true for C"-functions ,with 
compact support, since they are the a-potentials of some continuous functions. 
For every n, let Kn denote the closure of the ball B(O, n), and let g, = g2nn be the 
function constructed in Lemma 5.3. Given t > 0 and T E 

IEx(e-aTf (XT))-E~(~-"~~,(XT))I  G I1 + I2 + 
with 

= IEx[e-uTf (xT)-e-acTAty(~TAt)]I,  
I2 = IE, [~-U(TA~)  (f (xTAt)-gn(xTAt))]l 

I3 = IEx[e-aTgn(XT)-e-a(TAt)gn(xTAt)]I. 

Then I, 6 2e-"'Il f 11, and I, < 2e-"'(II f 11, +n-l). Fix E > 0 and choose t such 
that I, +I3 G E. Given any n, set T, = inf {t: X, 4 K,) . Then 

< n-'+(2llf ll,+n-l)Px(t 2 T,). 
Thus Lemma 5.1 shows that one can choose N such that I, < E for n > N. 
Hence 

su~{lE,(e-"~Cf (xT)-gn(XT)l)1; T E ~ ,  x€Rd] < 2~ 

for each n > N, and the sequence of continuous functions Rugn converges 
uniformly to Rag. s 
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APPENDIX 

In this Appendix we prove Theorem 4.2, i.e., the continuity of the map 
XHB, for a Feller semigroup on a compact space E. 

(a) The prod reduces to showing that (P,; x E E) is tight. Indeed, let (P,,) 
converge to a probability P on B. Since E is compact, extract a subsequence 
(still denoted by (x,)) such that x, converges to x. By Proposition 4.1 (b) choose 
a countable dense I c R+ and a P-null N such that ow ot is continuous for 
w$N and t e I .  Let 

h = n fi(Xt,)~=%(I) 
1 Q i Q k  

The choice of I ensures that Ex,(h) -P 1 hdP. On the other hand, for every,y EE, 

* Ey(h) = p~i(f~pt2-tj(f~"'(ptk-tk-~fk))"')~~)' 

Since (P,) is Feller, the function E.(h) is continuous, and E,,(h) + E,(h). Hence 
both probabilities P and P, coincide on Xc(I), and the monotone class theorem 
shows that they are equal on c(ZC(l)) = Fm. 

(b) To establish the tightness of a sequence (P,,; n E N )  of probabilities on 
B, we use the following criteria due to Aldous [I] (see also [16]). The following 
conditions are satisfied: 

(i) The laws of oo are tight on E. 
(ii) For every e > 0, 

liin lim sup sup sup PX,(d(a + s, w T )  > 8) = 0, 
h + O  n T E F  O d s d h  

where d denotes the ~korokhod metric on B. 
Since E is compact, condition (i) is trivially satisfied. To prove that (ii) 

holds, we apply the strong Markov property; for every ~ E E ,  

Hence the proof of (ii) reduces to showing that 

lim sup sup P,(d(w,, wo) > E) = 0. 
h + O  xeE O S s d h  

This is Dynkin's stochastic continuity property [Ill ,  which is always satisfied 
by a Feller process on a compact set. We briefly sketch the proof. Set 

q ( u ) = l - u / ~ i f  u < e  and q ( u ) = O  if u > e .  

The function 4,(.) = q(d(x, - )) is continuous, and 11 4, - + y ) I  '< d(x, y ) / ~ .  Fix 
0 < a < E ~ ,  and let (xi; 1 < i < k) be the centers of balls of radius a covering the 
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compact set E. Given X E E ,  let xi be such that d ( x ,  xi)  < a. Then, for every s, 

R(d(w09  a s )  > &) = P , ( d ( x ,  03 > 8) G 4x(a-E,(4xc@s)) 

l4x(x) - 4 x ,  (41 + l 4 x ,  (4 - Ex(4xi(as))l  + Ex(14x, - (as)) 

2m/& + 1 4 X i ( X )  - EX(4XicwS))l. 

Since (P,) is a Feller 'semigroup and since $,, is continuous, we have 

Re m ark. Theorem 4.2 is also true for Markov processes which are ~ e l l e r  
in the following weaker sense: Uu(C(E)) c C ( E )  for each a > 0, and orUaf + f 
pointwise as a -, co for each f E C ( E ) .  Indeed, in part (a) of the proof, replace 
the class of r.v.'s Hc(I) by the following class Hu made of random variables h: 

for k 2 1, i l , ~ . Q  and J;- in a dense subset of C ( E ) .  
The characterization of potentials given in [14], p. 38, shows that Ex(h) is 

the 3, = CAi potential of the function P,g, with 

in wich A indicates the quantity which has been omitted. Since U k P 0  = U< an 
easy induction argument together with the weaker Feller property shows that 
Ex(h) is the potential of a continuous function g on E. The continuity of 
potentials shows that 

The proof of (b) carries over without change. Indeed, the last convergence 
property can be checked on potentials which are dense in C(E) for the uniform 
topology. 
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