Vol. 1, Fasc. 2 (1980), p. 151-169

ON CONVERGENCE OF L_{1}-BOUNDED MARTINGALES INDEXED BY DIRECTED SETS

BY

ANNIE MILLET and LOUIS SUCHESTON (Columbus, Ohio)

Abstract. Let $\left(\mathscr{F}_{t}\right)$ be an increasing family of σ-algebras indexed by a directed set J. In this paper ${ }^{*}$ it is shown that every L_{1}-bounded real-valued martingale converges essentially if and only if a weak type of maximal inequality holds for all martingales. A new covering condition \mathbf{C} stated in terms of multivalued stopping times is introduced and characterized in terms of maximal inequalities. C is shown to be strictly weaker than the Vitali condition V, than SV (see [15]), and also sigma-SV. Under C, L_{1}-bounded martingales taking values in a Banach space with the Radon-Nikodým property converge essentially.

It was shown by Dieudonné [5] that Doob's martingale convergence theorem in general fails when the index set is not totally ordered. In 1956, Krickeberg introduced the Vitali condition V (also denoted by V_{0} and V_{∞}) on the σ-algebras, and proved that V was sufficient for essential convergence of L_{1}-bounded martingales ([9], or [17], p. 99). In a recent note [15], we showed that V was not necessary, replacing it by the condition SV, the logical union of conditions $\operatorname{SV}(m), m=0,1,2, \ldots$ Informally, V may be stated as follows:

Every adapted 2 -valued process can be stopped by a (genuine) stopping time τ as close as desired to the essential lim sup.

The condition SV (m) allows stopping by multivalued stopping times, with excess bounded in L_{∞} by the integer m. A new condition \mathbf{C} introduced in the sequel ensures the approximation of ess $\lim \sup$ up to ε, the excess of the stopping time being bounded in L_{∞} by a number depending on ε (precise definitions are given in Section 1). We show in Section 4 that \mathbf{C}

[^0]is strictly weaker than SV, and also than sigma-SV (the space is a countable union of properly measurable sets each of which satisfies SV). In Section 3, C is shown to be sufficient for essential convergence of L_{1}-bounded martingales taking values in a Banach space with the Radon-Nikodým property.

As is our wont, at the beginning of the paper, in. Section 1, we characterize our new condition by appropriate maximal inequalities. In Section 2 we connect maximal inequalities with convergence of real-valued martingales. The main result, Theorem 2.2, asserts that every L_{1}-bounded martingale converges essentially if and only if every martingale satisfies a simple maximal inequality. Section 3 proves convergence in the Banach valued case and Section 4 compares different covering conditions.

Martingale theory in part traces its origins to the point-derivation theory. Thus Krickeberg's condition V was an adaptation of R. de Possel's abstraction of the classical Vitali property; similarly, SV is the stochastic version of the Besicovitch property (cf. [7] and [8]). We attempt to repay the debt, offering in [16] a point-derivation version of condition C, sufficient to obtain Lebesgue's theorem.

In an independent work, Astbury [2] introduced a remarkable new sufficient condition A for convergence of real-valued L_{1}-bounded martingales. In [16] we show that, in the presence of a countable cofinal subset, A is equivalent to C; also other equivalent conditions are given.

1. Condition C and maximal inequalities. Let J be a directed set filtering to the right, i.e., a set of indices partially ordered by \leqslant, such that for each pair t_{1}, t_{2} of elements of J there exists an element t_{3} of J such that $t_{1} \leqslant t_{3}$ and $t_{2} \leqslant t_{3}$. Let (Ω, \mathscr{F}, P) be a probability space. Sets and random variables are considered equal if they are equal almost surely. All considered sets and functions are measurable. Let $\boldsymbol{X}=\left(X_{t}\right)$ be a family of random variables taking values in $\overline{\boldsymbol{R}}$. The stochastic upper limit of \boldsymbol{X},

$$
\tilde{X}=\mathrm{s} \lim \sup X_{t}
$$

is the essential infimum of the set of random variables Y such that $\lim P\left(Y<X_{t}\right)=0$. The stochastic lower limit of X is

$$
\mathrm{s} \lim \inf X_{t}=-\mathrm{s} \lim \sup \left(-X_{t}\right)
$$

The directed family is said to converge stochastically (or in probability) if

$$
\mathrm{s} \lim \sup X_{t}=\mathrm{s} \lim \inf X_{t}
$$

The essential upper limit of $X, X^{*}=\lim \sup X_{t}$, is defined by

$$
X^{*}=\underset{s}{\operatorname{ess} \inf }\left(\underset{t \geqslant s}{\text { ess.sup }} X_{t}\right)
$$

The essential lower limit of $X, X_{*}=\lim \inf X_{t}$, is $-\lim \sup \left(-X_{t}\right)$.

The directed family X is said to converge essentially if $X^{*}=X_{*}$; this common value is called the essential limit of $X, \lim X_{t}$. If $A=\left(A_{t}\right)$ is a directed family of measurable sets, the stochastic upper limit of A, $\tilde{A}=\mathrm{s} \lim \sup A_{t}$, is the set defined by

$$
1_{\tilde{A}}=\mathrm{s} \lim \sup 1_{A_{t}} ;
$$

the essential upper limit of $A, A^{*}=\lim \sup A_{t}$, is the set defined by

$$
1_{A^{*}}=\lim \sup 1_{A_{t}} .
$$

A stochastic basis $\left(\mathscr{F}_{t}\right)$ is an increasing family of sub- σ-algebras of \mathscr{F} (i.e., for every $s \leqslant t, \mathscr{F}_{s} \subset \mathscr{F}_{t}$). A stochastic process X is a family of random variables $X_{t}: \Omega \rightarrow \boldsymbol{R}$ such that X_{t} is \mathscr{F}_{t}-measurable for every t. The process is called integrable (positive) if X_{t} is integrable (positive) for every t. A family of sets A is adapted if $A_{t} \in \mathscr{F}_{t}$ for every $t \in J$.

Denote by \mathscr{J} the set of finite subsets of J. An (incomplete) multivalued stopping time is a map τ from Ω (from a subset of Ω called $D(\tau)$) to \mathscr{J} such that $R(\tau)=\bigcup \tau(\omega)$ is finite and such that, for every $t \in J$,

$$
\{\tau=t\} \stackrel{\text { def }}{=}\{\omega \in \Omega: t \in \tau(\omega)\} \in \mathscr{F}_{t}
$$

(cf. [13]). Denote by M (IM) the set of (incomplete) multivalued stopping times. A simple stopping time is an element τ of M such that, for every ω, $\tau(\omega)$ is a singleton; the set of simple stopping times is denoted by T. The excess function of $\tau \in I M$ is

$$
e_{\tau}=\sum 1_{\{\tau=t\}}-1_{D(\tau)} .
$$

Let σ and τ be in $I M$; we say that $\sigma \leqslant \tau$ if, for every s and every t, $\{\sigma=s\} \cap\{\tau=t\} \neq \varnothing$ implies $s \leqslant t$. For the order \leqslant, M is a directed set filtering to the right. Let $\tau \in I M$; if X is a positive stochastic process, we set

$$
X(\tau)=\sup \left(1_{\{\tau=t\}} X_{t}\right)
$$

if A is an adapted family of sets, we set

$$
A(\tau)=\bigcup_{t}\left(\{\tau=t\} \cap A_{t}\right) .
$$

Clearly, $1_{A(\tau)}=1_{A}(\tau)$ for every $\tau \in I M$. The stochastic basis $\left(\mathscr{F}_{t}\right)$ satisfies the covering condition C if for every $\varepsilon>0$ there exists a constant $M_{\varepsilon}>0$ such that for every adapted family of sets A there exists $\tau \in I M$ with

$$
e_{\tau} \leqslant M_{\varepsilon} \quad \text { and } \quad P\left[A^{*} \backslash A(\tau)\right] \leqslant \varepsilon
$$

The following theorem gives several equivalent formulations of the covering condition C in terms of maximal inequalities:

Theorem 1.1. Let $\left(\mathscr{F}_{t}\right)$ be a stochastic basis. The following conditions are equivalent:
(1) $\left(\mathscr{F}_{t}\right)$ satisfies the condition C .
(2) For every $\varepsilon>0$ there exists a number $M_{\varepsilon}>0$ such that for every adapted family of sets A there exists $\tau \in I M$ with

$$
e_{\tau} \leqslant M_{\varepsilon} \quad \text { and } \quad P\left[A^{*} \Delta A(\tau)\right] \leqslant \varepsilon .
$$

(3) For every $\varepsilon>0$ there exists $M_{\varepsilon}>0$ such that for every adapted family of sets A there exists $\tau \in I M$ with

$$
e_{\tau} \leqslant M_{\varepsilon} \quad \text { and } \quad P\left(A^{*}\right)-P[A(\tau)] \leqslant \varepsilon
$$

(4) There exists a constant $\alpha>0$ such that for every $\varepsilon>0$ there exists $M_{\varepsilon}>0$ such that for every adapted family of sets A there exists $\tau \in I M$ with

$$
e_{\tau} \leqslant M_{\varepsilon} \text { and } P\left[A^{*} \cap A(\tau)\right] \geqslant \alpha P\left(A^{*}\right)-\varepsilon .
$$

(5) For every $\varepsilon>0$ there exists $M_{\varepsilon}>0$ such that for every adapted family of sets A satisfying $P\left(A^{*}\right)>\varepsilon$ there exists $\tau \in I M$ with

$$
1 \leqslant\left\|e_{\tau}\right\|_{\infty} \leqslant M_{\varepsilon} P[A(\tau)] .
$$

(6) $\lim _{n \rightarrow \infty}\left\{\sup _{A} P\left[A^{*} \backslash \lim _{e_{\tau} \leq n} \sup A(\tau)\right]\right\}=0$.
(7) For every $\varepsilon>0$ there exists $M_{\varepsilon}>0$ such that, for every $\lambda>0$ and every positive stochastic process X,

$$
P\left[X^{*} \geqslant \lambda\right] \leqslant \varepsilon+\frac{1}{\lambda} \lim _{e_{\tau} \leqslant M_{\varepsilon}} \operatorname{su}[X(\tau)] .
$$

(8) There exists $K>0$ such that for every $\varepsilon>0$ there exists $M_{\varepsilon}>0$ such that, for every adapted family of sets A,

$$
P\left(A^{*}\right) \leqslant \varepsilon+K \lim _{e_{\tau} \leqslant M_{\varepsilon}} \sup _{\varepsilon} P[A(\tau)]
$$

Proof. Obviously, (2) $\Rightarrow(1),(1) \Rightarrow(3)$ and $(7) \Rightarrow(8)$. It is easy to see that, given any index s, one may require the stopping times given in (1)-(5) to be larger than s, and in M. Indeed, given $\tau \in I M$, there exists $\tau^{\prime} \in M$ with $\left.\tau^{\prime}\right|_{D(\tau)}=\tau$ and $e_{\tau^{\prime}}=e_{\tau}$.
(3) \Rightarrow (7). Fix $\varepsilon>0$; let X be a positive stochastic process and let $\lambda>0$. Fix $s \in J$ and $\delta, 0<\delta<\lambda$; set $A_{t}=\left\{X_{t}>\lambda-\delta\right\}$ if $t \geqslant s, A_{t}=\varnothing$ otherwise, and let $\tau \in M$ be such that $e_{\tau} \leqslant M_{\varepsilon}$ and $P\left(A^{*}\right)-P[A(\tau)]<\varepsilon$. Then

$$
\begin{aligned}
P\left[X^{*}>\lambda\right] & \leqslant P\left[A^{*}\right] \leqslant P[A(\tau)]+\varepsilon \leqslant \varepsilon+P\left[\cup\left(A_{t} \cap\{\tau=t\}\right)\right] \\
& \leqslant \varepsilon+\frac{1}{\lambda-\delta} \mathrm{E}\left[\sup \left(1_{\{\tau=t\}} X_{t}\right)\right] \leqslant \varepsilon+\frac{1}{\lambda-\delta} \sup _{\tau \geqslant s, e_{\mathrm{t}} \leqslant M_{\varepsilon}} \mathrm{E}[X(\tau)] .
\end{aligned}
$$

The maximal inequality follows on letting $s \rightarrow \infty$ and $\delta \rightarrow 0$.
(8) \Rightarrow (4). We may and do assume that $K>1$. Fix $\varepsilon>0$ and let A be an adapted family of sets such that $P\left(A^{*}\right)>0$. Choose $s \in J$ such that

$$
P\left[\underset{t \geqslant s}{\text { ess } \sup } A_{t} \backslash A^{*}\right] \leqslant \varepsilon,
$$

and choose $\tau \in M$ such that

$$
\tau \geqslant s, \quad e_{\tau} \leqslant M_{\varepsilon} \quad \text { and } \quad\left|P[A(\tau)]-\lim _{e_{\sigma} \leqslant M_{\varepsilon}} P[A(\sigma)]\right| \leqslant \varepsilon .
$$

Then

$$
A(\tau) \subset \underset{t \geqslant s}{\operatorname{ess} \sup } A_{i},
$$

and, applying (8), we obtain

$$
\begin{aligned}
P\left[A^{*} \cap A(\tau)\right] & \geqslant P\left[\underset{t \geqslant s}{\left.\operatorname{ess} \sup _{t} \cap A(\tau)\right]-P\left[\operatorname{ess} \sup _{t \geqslant s} A_{t} \backslash A^{*}\right]}\right. \\
& \geqslant P[A(\tau)]-\varepsilon \geqslant \lim _{e_{\sigma} \leqslant M_{\varepsilon}} P[A(\sigma)]-2 \varepsilon \\
& \geqslant \frac{1}{K}\left[P\left(A^{*}\right)-\varepsilon\right]-2 \varepsilon \geqslant \frac{P\left(A^{*}\right)}{K}-3 \varepsilon .
\end{aligned}
$$

(4) \Rightarrow (5). Fix $\varepsilon>0$ and let A be an adapted family of sets such that $P\left(A^{*}\right) \geqslant \varepsilon$. Applying (4), choose $\tau_{1} \in I M$ such that

$$
e_{\tau_{1}} \leqslant M_{\alpha \varepsilon / 4} \quad \text { and } \quad P\left[A^{*} \cap A\left(\tau_{1}\right)\right] \geqslant \alpha P\left(A^{*}\right)-\frac{\alpha \varepsilon}{4}
$$

Let s_{1} be an index larger than τ_{1}, and set $A_{t}^{1}=A_{t} \backslash A\left(\tau_{1}\right)$ if $t \geqslant s$, and $A_{t^{-}}^{1}=\varnothing$ otherwise; then

$$
\lim \sup A_{t}^{1}=A^{*} \backslash A\left(\tau_{1}\right)
$$

Let $\tau_{2} \in I M$ satisfy
$\tau_{2} \geqslant s_{1}, . e_{\tau_{2}} \leqslant M_{\alpha \varepsilon / 4}$ and $P\left[\left(A^{*} \backslash A\left(\tau_{1}\right)\right) \cap A\left(\tau_{2}\right)\right] \geqslant \alpha P\left[A^{*} \backslash A\left(\tau_{1}\right)\right]-\frac{\alpha \varepsilon}{4}$.
Define by induction an increasing sequence of stopping times $\tau_{n} \in I M$ such that $e_{\tau_{n}} \leqslant M_{\alpha \varepsilon / 4}$ and

$$
P\left[\left(A^{*} \backslash \bigcup_{j<n} A\left(\tau_{j}\right)\right) \cap A\left(\tau_{n}\right)\right] \geqslant \alpha P\left[A^{*} \backslash \bigcup_{j<n} A\left(\tau_{j}\right)\right]-\frac{\alpha \varepsilon}{4}
$$

Then, for every n,

$$
\begin{aligned}
P\left[A^{*} \backslash \bigcup_{j \leqslant n} A\left(\tau_{j}\right)\right] & \leqslant(1-\alpha) P\left[A^{*} \backslash \bigcup_{j<n} A\left(\tau_{j}\right)\right]+\frac{\alpha \varepsilon}{4} \\
& \leqslant(1-\alpha)^{n} P\left(A^{*}\right)+\frac{\alpha \varepsilon}{4}\left[1+(1-\alpha)+\ldots+(1-\alpha)^{n-1}\right] \\
& \leqslant(1-\alpha)^{n} P\left(A^{*}\right)+\frac{\varepsilon}{4}
\end{aligned}
$$

Choose N such that $(1-\alpha)^{N} \leqslant 1 / 12$; define $\tau \in I M$ by

$$
\{\tau=t\}=\left\{\tau_{j}=t\right\} \cap A_{t} \cap\left(\bigcup_{k<j} A\left(\tau_{k}\right)\right)^{\mathrm{c}} \quad \text { for every } t \in R\left(\tau_{j}\right), j=1, \ldots, N
$$

Then $e_{\tau} \leqslant M_{a \varepsilon / 4}$, and since $A(\tau)=\bigcup_{j \leqslant N} A\left(\tau_{j}\right)$, we have

$$
P\left[A(\tau) \cap A^{*}\right] \geqslant 2 P\left(A^{*}\right) \cdot 3^{-1}
$$

Let t be an index larger than τ; similarly define a multivalued stopping time $\sigma \geqslant t$ such that

$$
e_{\sigma} \leqslant M_{\alpha e / 4} \quad \text { and } \quad P\left[A(\sigma) \cap A^{*}\right] \geqslant 2 P\left(A^{*}\right) \cdot 3^{-1}
$$

The multivalued stopping time ϱ defined by $\{\varrho=s\}=\{\sigma=s\} \cup\{\tau=s\}$ satisfies

$$
\begin{aligned}
1 & \leqslant\left\|e_{\varrho}\right\|_{\infty} \leqslant 2\left[M_{\alpha \varepsilon / 4}+1\right] \leqslant 2\left[M_{\alpha \varepsilon / 4}+1\right] P\left(A^{*}\right) \varepsilon^{-1} \\
& \leqslant 3\left[M_{\alpha \varepsilon / 4}+1\right] \varepsilon^{-1} P[A(\varrho)] .
\end{aligned}
$$

(5) \Rightarrow (2). Fix $\varepsilon>0$ and let A be an adapted family of sets such that $P\left(A^{*}\right) \geqslant \varepsilon$. Choose an index s_{1} such that

$$
\left.P \underset{t \geqslant s_{1}}{[\operatorname{ess} \sup } A_{t} \backslash A^{*}\right] \leqslant \frac{\varepsilon}{2}
$$

and let $\tau_{1} \in I M$ satisfy

$$
\tau_{1} \geqslant s_{1} \quad \text { and } \quad 1 \leqslant\left\|e_{\tau_{1}}\right\|_{\infty} \leqslant M_{\varepsilon / 2} P\left[A\left(\tau_{1}\right)\right]
$$

Then $e_{\tau_{1}} \leqslant M_{\varepsilon / 2}$ and $P\left[A\left(\tau_{1}\right)\right] \geqslant 1 / M_{\varepsilon / 2}$. If $P\left[A^{*} \backslash A\left(\tau_{1}\right)\right] \geqslant \varepsilon / 2$, let s_{2} be an index larger than τ_{1}, and apply (5) to the adapted family of sets defined by $A_{t} \backslash A\left(\tau_{1}\right)$ if $t \geqslant s_{2}$ and by \varnothing otherwise; there exists $\tau_{2} \in I M$ such that

$$
\tau_{2} \geqslant s_{2} \quad \text { and } \quad 1 \leqslant\left\|e_{\tau_{2}}\right\|_{\infty} \leqslant M_{z / 2} P\left[A\left(\tau_{2}\right) \backslash A\left(\tau_{1}\right)\right] .
$$

If $\tau_{1}, \ldots, \tau_{k}$ have been defined and if

$$
P\left[A^{*} \backslash \bigcup_{j \leqslant k} A\left(\tau_{j}\right)\right] \geqslant \frac{\varepsilon}{2}
$$

let s_{k+1} be an index larger than τ_{k}, and apply (5) to the adapted family of sets defined by $A_{t} \backslash \bigcup_{j \leqslant k} A\left(\tau_{j}\right)$ if $t \geqslant s_{k+1}$ and by \emptyset otherwise; there exists
$\tau_{k+1} \in I M$ such that

$$
\tau_{k+1} \geqslant s_{k+1} \quad \text { and } \quad 1 \leqslant\left\|e_{\tau_{k+1}}\right\|_{\infty} \leqslant M_{\varepsilon / 2} P\left[A\left(\tau_{k+1}\right) \backslash \bigcup_{j \leqslant k} A\left(\tau_{j}\right)\right]
$$

Let N be the first integer such that

$$
P\left[A^{*} \backslash \bigcup_{j \leqslant N} A\left(\tau_{j}\right)\right]<\frac{\varepsilon}{2}
$$

define $\tau \dot{\in} I M$ by

$$
\{\tau=t\}=\left\{\tau_{k}=t\right\} \backslash \bigcup_{j<k} A\left(\tau_{j}\right) \quad \text { for every } t \in R\left(\tau_{k}\right), k=1, \ldots, N
$$

Clearly, $e_{\tau} \leqslant M_{\varepsilon / 2}$ and $P\left[A^{*} \backslash A(\tau)\right]<\varepsilon / 2$; therefore

If $P\left(A^{*}\right)<\varepsilon$, then the proof of the existence of a multivalued stopping time τ such that $e_{\tau} \leqslant M_{\varepsilon / 2}$ and $P\left[A^{*} \Delta A(\tau)\right] \leqslant \varepsilon$ is trivial.
(1) \Rightarrow (6). For every integer n and every adapted family of sets A, put

$$
\tilde{A}_{n}=\mathrm{s} \lim _{e_{\tau} \leqslant n} \sup A(\tau)
$$

clearly, \tilde{A}_{n} is an increasing sequence of subsets of A^{*}. By the definition of $s \lim \sup , \tilde{A}_{n}$ is the smallest set C such that

$$
\lim _{e_{\tau} \leqslant n} P[A(\tau) \backslash C]=0
$$

Hence, for every n,

$$
\lim _{e_{\tau} \leqslant n} P\left[A(\tau) \cap\left(A^{*} \backslash \tilde{A}_{n}\right)\right]=\lim _{e_{\tau} \leqslant n} P\left[A(\tau) \cap \tilde{A}_{n}^{c}\right]-\lim _{e_{\tau} \leqslant n} P\left[A(\tau) \cap A^{* c}\right]=0
$$

Fix $\varepsilon>0$, and let $s \in J$; there exists $\tau \in M$ such that $e_{\tau} \leqslant M_{\varepsilon}, \tau \geqslant s$ and

$$
P\left[\left(A^{*} \backslash \tilde{A}_{M_{\varepsilon}}\right) \cap A(\tau)\right] \geqslant P\left[A^{*} \backslash \tilde{A}_{M_{\varepsilon}}\right]-\varepsilon .
$$

Hence

$$
0=\limsup _{e_{\tau} \leqslant M_{\varepsilon}} P\left[\left(A^{*} \backslash \tilde{A}_{M_{\varepsilon}}\right) \cap A(\tau)\right] \geqslant P\left[A^{*} \backslash \tilde{A}_{M_{\varepsilon}}\right]-\varepsilon
$$

holds for every adapted family of sets A. It follows that

$$
\sup _{A} P\left[A^{*} \backslash \tilde{A}_{M_{\varepsilon}}\right] \leqslant \varepsilon .
$$

(6) \Rightarrow (3). The proof depends on the following lemma [14], which may be interpreted to mean that the stochastic version of the condition $\operatorname{SV}(N)$ is always true:

Lemma 1.1. Let A be an adapted family of sets and let N be an integer. Then for every $\varepsilon>0$ and every index s there exists $\tau \in M$ with

$$
\tau \geqslant s, \quad e_{\tau} \leqslant N \quad \text { and } \quad P\left[\mathrm{~s} \limsup _{e_{\sigma} \leqslant N} A(\sigma) \backslash A(\tau)\right]<\varepsilon .
$$

Now suppose that (6) holds, and for every adapted family of sets A put

$$
\tilde{A}_{n}=\mathrm{s} \lim _{e_{\sigma} \leqslant n} \sup A(\sigma)
$$

Fix $\varepsilon>0$, let N be such that

$$
\sup _{A} P\left[A^{*} \backslash \tilde{A}_{N}\right]<\varepsilon,
$$

and fix a family \boldsymbol{A}. Applying Lemma 1.1, we may choose $\tau \in M$ with $e_{\tau} \leqslant N$ and $P\left[\tilde{A}_{N} \backslash A(\tau)\right] \leqslant \varepsilon$, which implies

$$
P A^{*} \leqslant P \tilde{A}_{N}+\varepsilon \leqslant P[A(\tau)]+2 \varepsilon .
$$

Thus the proof of the theorem is completed.
The following proposition states that C implies a maximal inequality for positive submartingales:

Proposition 1.1. Let $\left(\mathscr{F}_{t}\right)$ be a stochastic basis satisfying the condition C. For every $\varepsilon>0$ there exists a number $M_{\varepsilon}>0$ such that for every positive submartingale X and $\lambda>0$ we have

$$
P\left(\lim \sup X_{t} \geqslant \lambda\right) \leqslant\left(\frac{M_{\varepsilon}}{\lambda} \lim \mathrm{E} X_{t}\right) \vee \varepsilon
$$

Proof. Fix $\varepsilon>0, \lambda>0$ and let X be a positive submartingale. If $\cdot P\left(X^{*} \geqslant \lambda\right)>\varepsilon$, fix $M>0$, let $\tau \in I M$ satisfy $e_{\tau} \leqslant M$, and let v be an index larger than τ; then

$$
\begin{aligned}
\mathrm{E}[X(\tau)] & \leqslant \mathrm{E}\left[\sum 1_{\{\mathrm{r}=\mathrm{t}\}} X_{t}\right] \leqslant \mathrm{E}\left[\sum 1_{\{t=t\}} X_{v}\right] \\
& \leqslant \mathrm{E}\left[\left(e_{\tau}+1\right) X_{v}\right] \leqslant(M+1) \lim \mathrm{E} X_{t} .
\end{aligned}
$$

Hence applying Theorem 1.1 (7) we have, letting $M=M_{\varepsilon / 2}$,

$$
\begin{aligned}
P\left(X^{*} \geqslant \lambda\right) & \leqslant \frac{\varepsilon}{2}+\frac{M_{\varepsilon / 2}+1}{\lambda} \lim E X_{t} \\
& \leqslant 2^{-1} P\left[X^{*} \geqslant \lambda\right]+\frac{M_{\varepsilon / 2}+1}{\lambda} \lim E X_{t}
\end{aligned}
$$

Therefore,

$$
P\left(X^{*}>\lambda\right) \leqslant\left[2\left(M_{\varepsilon / 2}+1\right) \lambda^{-1} \lim \mathrm{E} X_{t}\right] \vee \varepsilon,
$$

which completes the proof.
2. Maximal inequalities and essential convergence of martingales: Real case. Recall that an ordered stopping time is a simple stopping time τ such that the elements $t_{1}, t_{2}, \ldots, t_{n}$ in the range of τ are linearly ordered. Denote by T^{\prime} the set of ordered stopping times. The forthcoming lemma states that the stochastic Vitali condition holds for every stochastic basis. The proof, being similar to that of $(6) \Rightarrow(3)$ in Theorem 1.1 , is omitted. The lemma is completely proved in [14].

Lemma 2.1. Let A be an adapted family of sets. Then for every $\varepsilon>0$ and $s \in J$ there exists $\tau \in T^{\prime}$ such that

$$
\tau \geqslant s \quad \text { and } \quad P\left(\mathrm{~s} \lim \sup A_{t} \Delta A(\tau)\right)<\varepsilon
$$

The following theorem gives the stochastic maximal inequality; part (i) appears in [14].

Theorem 2.1. Let X be a positive stochastic process.
(i) For every $\lambda>0$,

$$
P\left(\mathrm{~s} \lim \sup X_{t} \geqslant \lambda\right) \leqslant \frac{1}{\lambda} \lim _{\tau \in T^{\prime}} \sup \mathrm{E} X(\tau)
$$

(ii) If, in addition, $\left(X(\tau), \tau \in T^{\prime}\right)$ is uniformly integrable, then for every $\lambda>0$, letting $A=\left\{s \lim \sup X_{t} \geqslant \lambda\right\}$, we have

$$
P(A) \leqslant \frac{1}{\lambda} \lim _{\tau \in T^{\prime}} \sup \int_{A} X(\tau) d P
$$

Remark. For a positive uniformly integrable submartingale $X,(X(\tau), \tau \in T)$ is always uniformly integrable.

Proof. Fix a positive process X and $\lambda>0$. For a number α with $0<\dot{\alpha}<\lambda$, set $A_{t}=\left\{X_{t}>\lambda-\alpha\right\}$; then

$$
\left\{s \lim \sup X_{t} \geqslant \lambda\right\} \subset s \lim \sup A_{t} .
$$

Given $\varepsilon>0$, choose $s \in J$ and $\tau \in T^{\prime}$ such that $\tau \geqslant s$ and, letting $\tilde{A}=\mathrm{s} \lim \sup A_{t}, P(\tilde{A} \Delta A(\tau)) \leqslant \varepsilon$. Then we have

$$
P(\tilde{A}) \leqslant P[A(\tau)]+\varepsilon \leqslant \frac{1}{\lambda-\alpha} \mathrm{E}\left[1_{A(\tau)} X(\tau)\right]+\varepsilon
$$

The maximal inequality in (i) follows on letting $s \rightarrow \infty, \alpha \rightarrow 0$ and $\varepsilon \rightarrow 0$. If $\left(X(\tau), \tau \in T^{\prime}\right)$ is uniformly integrable, then given $\delta>0$ choose $\varepsilon<\delta$ such that $P(B)<2 \varepsilon$ implies

$$
\sup _{\tau \in T^{\prime}} \mathrm{E}\left[1_{B} X(\tau)\right] \leqslant \delta \lambda
$$

Let $\alpha<\lambda / 2$ be such that $P(\tilde{A} \backslash\{\tilde{X} \geqslant \lambda\})<\varepsilon$, and given an index $s \in J$ choose $\tau \in T^{\prime}$ such that $\tau \geqslant s$ and $P(\tilde{A} \Delta A(\tau)) \leqslant \varepsilon$. Then

$$
P(\tilde{A}) \leqslant \frac{1}{\lambda-\alpha} \mathrm{E}\left[1_{\{\tilde{X} \geqslant \lambda\}} X(\tau)\right]+\frac{\delta \lambda}{\lambda-\alpha}+\varepsilon \leqslant \frac{1}{\lambda-\alpha} \mathrm{E}\left[1_{\{\tilde{X} \geqslant \lambda]} X(\tau)\right]+3 \delta
$$

The maximal inequality in (ii) follows on letting $s \rightarrow \infty, \alpha \rightarrow 0$ and $\delta \rightarrow 0$.
We now characterize the convergence of L_{1}-bounded martingales in terms of maximal inequalities for martingales. A non-negative, finitely additive set function on an algebra \mathscr{A} is called a charge. A pure charge on \mathscr{A} is a charge which does not dominate any non-trivial measure. Two charges λ and μ are said to be nearly orthogonal if for every $\varepsilon>0$ and every $\delta>0$ there exists $A \in \mathscr{A}$ such that $\lambda(A)<\varepsilon$ and $\mu\left(A^{c}\right)<\delta$. The following known variant of the Yosida-Hewitt theorem [4] gives the decomposition of a charge into a measure and a pure charge nearly orthogonal to this measure.

Proposition 2.1. Let λ be a charge defined on an algebra \mathscr{A}. Then λ admits a unique decomposition $\lambda=\lambda_{m}+\lambda_{c}$, where λ_{m} is a measure and λ_{c} is a pure charge. Moreover, λ_{c} is nearly orthogonal to every measure.

Lemma 2.2. Let $\left(\mathscr{F}_{t}\right)$ be a stochastic basis such that there exists a function $\boldsymbol{M}: \boldsymbol{R}^{+} \times \boldsymbol{R}^{+} \rightarrow \boldsymbol{R}^{+}$which for every $\lambda>0$ satisfies:
(1) $\lim _{\varepsilon \rightarrow 0} M(\lambda, \varepsilon)=0$;
(2) for every positive martingale $X, \lim \mathrm{E} X_{t} \leqslant \varepsilon$ implies

$$
P\left(\lim \sup X_{t} \geqslant \lambda\right) \leqslant M(\lambda, \varepsilon) .
$$

Let \boldsymbol{Z} be a positive submartingale such that the charge π defined on $\mathscr{A}=\bigcup \mathscr{F}_{t}$ by

$$
\pi(A)=\lim \int_{A} Z_{t} d P
$$

is nearly orthogonal to P.
Then Z_{t} converges essentially to zero.
Proof. Fix $\delta>0$, and using the near orthogonality of P and π, choose a sequence $\left(A_{k}\right)$ of sets in \mathscr{A} such that

$$
\sum P\left(A_{k}\right)<\delta \quad \text { and } \quad \lim M\left(k^{-1}, \pi\left(A_{k}^{c}\right)\right)=0
$$

here each set A_{k} is measurable with respect to some \mathscr{F}_{t}, say $\mathscr{F}_{t_{k}}$. For every k, the process $\left(Z_{t} 1_{A_{k}^{c}}^{c}\right)_{\geqslant t_{k}}$ is a positive L_{1}-bounded submartingale such that

$$
\lim \mathrm{E}\left[1_{A_{k}^{c}} Z_{t}\right]=\pi\left(A_{k}^{\mathrm{c}}\right)
$$

This process can be extended to a submartingale S with respect to (\mathscr{F}_{t}) by setting $S_{s}=0$ if $t_{k} \leqslant s$ fails. Denote by T the subset of M composed
of single-valued stopping times, i.e., τ such that $e_{\tau}=0$. Let X be the Snell supermartingale corresponding to S, i.e.,

$$
X_{t}=\underset{\tau \leqslant \tau \in T}{\operatorname{ess} \sup } \mathrm{E}^{\mathscr{F}_{t}} S(\tau)
$$

we prove that X is a martingale which dominates S. (The use of X_{t} was suggested to us by C. Stegall; see also [18].) Fix indices $s \leqslant t$; let $\sigma \in T$ be larger than s, and let u be an index such that $u \geqslant \sigma$ and $u \geqslant t$. By the submartingale property, $S(\sigma) \leqslant \mathrm{E}^{\mathscr{F}}{ }^{\sigma} S_{u}$. Therefore,

$$
\begin{aligned}
X_{s} & =\underset{s \leqslant \sigma \in T}{\operatorname{ess} \sup } \mathrm{E}^{\mathscr{F}_{s}} S(\sigma)=\underset{t \leqslant \tau \in T}{\operatorname{ess} \sup } \mathrm{E}^{\mathscr{F} s} S(\tau) \\
& =\underset{t \leqslant \tau \in T}{\operatorname{ess} \sup } \mathrm{E}^{\sigma_{s}}\left[\mathrm{E}^{\sigma} S(\tau)\right] \leqslant \mathrm{E}^{\mathscr{F}_{s}}\left[\underset{t \leqslant \tau \in T}{\operatorname{ess} \sup } \mathrm{E}^{\mathscr{F} t} S(\tau)\right],
\end{aligned}
$$

which shows that X is a submartingale, and hence a martingale. Furthermore, since for every index t there exists a sequence $\tau_{n} \in T$ such that

$$
X_{t}=\lim _{n} \uparrow E^{\sigma^{t} t} S\left(\tau_{n}\right)
$$

we have

$$
\mathrm{E} X_{t} \leqslant \sup _{t \leqslant \tau \in T} \mathrm{E} S(\tau)=\sup _{u \geqslant t} \mathrm{E} S_{u}=\pi\left(A_{k}^{\mathrm{c}}\right) .
$$

Applying (2) to X with $\lambda=k^{-1}$ and $\varepsilon=\pi\left(A_{k}^{c}\right)$, we obtain
$P\left[\lim \sup 1_{A_{k}^{c}} Z_{t}>k^{-1}\right]=P\left[\lim \sup S_{t}>k^{-1}\right] \leqslant P\left[\lim \sup X_{t}>k^{-1}\right]$

$$
\leqslant M\left(k^{-1}, \pi\left(A_{k}^{c}\right)\right)
$$

Set $A=\bigcup A_{k}$; then $P A<\delta$ and, for every k,
$P\left[A^{\mathrm{c}} \cap\left\{\lim \sup Z_{t}>k^{-1}\right\}\right] \leqslant P\left[A_{k}^{\mathrm{c}} \cap\left\{\lim \sup Z_{t}>k^{-1}\right\}\right] \leqslant M\left(k^{-1}, \pi\left(A_{k}^{\mathrm{c}}\right)\right)$, which implies that $\lim \sup Z_{t}=0$ a.e. on A^{c}. Since δ is arbitrary, Z_{t} converges essentially to zero.

Theorem 2.2. Let $\left(\mathscr{F}_{t}\right)$ be a stochastic basis. The following properties are equivalent:
(i) For every martingale \boldsymbol{X} and for every $\lambda>0$,

$$
P\left(\lim \sup \left|X_{t}\right| \geqslant \lambda\right) \leqslant \frac{1}{\lambda} \lim \mathrm{E}\left|X_{t}\right| .
$$

(ii) There exists a function $M: \boldsymbol{R}_{+} \times \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}$such that, for every $\lambda>0$,
(1) $\lim _{\varepsilon \rightarrow 0} M(\lambda, \varepsilon)=0$;
(2) for every positive martingale $\mathrm{X}, \lim \mathrm{E} X_{t} \leqslant \varepsilon$ implies

$$
P\left(X^{*} \geqslant \lambda\right) \leqslant M(\lambda, \varepsilon)
$$

(iii) Every L_{1}-bounded martingale converges essentially.

Proof. Obviously, (i) \Rightarrow (ii).
(ii) \Rightarrow (iii). Let X be an L_{1}-bounded martingale. By Krickeberg's decomposition, $\left(X_{i}\right)$ is the difference of two positive L_{1}-bounded martingales (see, e.g., [17], p. 99); hence we may and do assume that X is positive. Let $\mathscr{A}=\bigcup \mathscr{F}_{t}$ and let $\mathscr{F}_{\infty}=\sigma(\mathscr{A})$ be the σ-algebra generated by \mathscr{A}. Define a charge λ on \mathscr{A} by $\lambda(A)=\lim \mathrm{E}\left[1_{A} X_{t}\right]$, and let $\lambda=\lambda_{m}+\lambda_{c}$ be the decomposition of λ given by Proposition 2.1. Still denote by λ_{m} the (unique) extension of λ_{m} to \mathscr{F}_{∞}, and let $\lambda_{m}=X \cdot P+v$ be the Lebesgue decomposition of λ_{m} with respect to $P: X \in L_{1}^{+}\left(\mathscr{F}_{\infty}\right), X \cdot P: \mathscr{F}_{\infty} \rightarrow R^{+}$is defined by

$$
(X \cdot P)(A)=\int_{A} X d P
$$

and v is a measure singular with respect to P. Since λ_{c} and v are both nearly orthogonal to P on \mathscr{A}, so is their sum $\pi=\lambda_{c}+v$. Set $Y_{t}=\mathrm{E}^{F_{t}} X$, and write $X_{t}=Y_{t}+Z_{t}$; then Y is a positive uniformly integrable martingale, and Z is a positive martingale such that $\lim \mathrm{E}\left[1_{A} Z_{t}\right]=\pi(A)$ for every $A \in \mathscr{A}$. Fix $\varepsilon>0$ and $\lambda>0$, and choose $\alpha, 0<\alpha<\varepsilon \lambda / 2$, such that $M(\lambda / 2, \alpha)$ $\leqslant \varepsilon$. Let $Y \in \bigcup L_{1}\left(\mathscr{F}_{t}\right)$ satisfy $\|X-Y\|_{1} \leqslant \alpha$; then
$P\left\{\lim \sup \left|Y_{t}-X\right|>\lambda\right\}$.

$$
\begin{aligned}
& \leqslant P\left\{\lim \sup \left[\left|\mathbb{E}^{\mathscr{F}}(X-Y)\right|+\left|\mathrm{E}^{\mathscr{t}} \boldsymbol{Y}-Y\right|+|X-Y|\right]>\lambda\right\} \\
& \leqslant P\left\{\lim \sup \mathrm{E}^{\mathscr{F}_{t}}|X-Y|+|X-Y|>\lambda\right\} \\
& \leqslant P\left\{\lim \sup \mathrm{E}^{\mathscr{F}_{t}}|X-Y|>\frac{\lambda}{2}\right\}+P\left\{|X-Y|>\frac{\lambda}{2}\right\} \\
& \leqslant M\left(\frac{\lambda}{2}, \alpha\right)+\frac{2}{\lambda}\|X-Y\|_{1} \leqslant 2 \varepsilon
\end{aligned}
$$

Therefore, Y_{t} converges essentially to X and, by Lemma 2.2, Z_{t} converges essentially to zero.
(iii) \Rightarrow (i). Let X be an L_{1}-bounded martingale; since X_{t} converges essentially, we have

$$
\lim \sup \left|X_{t}\right|=\mathrm{s} \lim \sup \left|X_{t}\right| .
$$

Applying Theorem 2.1 (i) to the L_{1}-bounded submartingale $\left|X_{t}\right|$, for every $\lambda>0$ we obtain

$$
P\left(\lim \sup \left|X_{t}\right| \geqslant \lambda\right) \leqslant \frac{1}{\lambda} \lim _{\tau \in T^{\prime}} \mathrm{Eup}|X(\tau)|=\frac{1}{\lambda} \lim \mathrm{E}\left|X_{t}\right| .
$$

3. Convergence of vector-valued martingales. In this section we characterize convergence of Banach-valued martingales $\mathrm{E}^{F_{t}} \boldsymbol{X}$ in terms of maximal inequalities. We also show that if a Banach space E has the Radon-Nikodym
property, and if $\left(\mathscr{F}_{t}\right)$ satisfies C, then every E-valued L_{1}-bounded martingale converges essentially. An application to derivation of Banach-valued finitely additive measures is given in [16]. For notation and definitions, see [17].

Theorem 3.1. Let $\left(\mathscr{F}_{t}\right)$ be a stochastic basis. The following properties are equivalent:
(i) For every Banach space $(\mathbb{E},|\cdot|)$, for every Bochner integrable \mathbb{E}-valued random variable X, and for every $\lambda>0$, letting $A=\left\{\lim \sup \left|\mathbb{E}^{F_{t}} X\right| \geqslant \lambda\right\}$, we have

$$
P(A) \leqslant \frac{1}{\lambda} \int_{A}|X| d P
$$

(ii) There exists a function $M: \boldsymbol{R}_{+} \times \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}$such that, for every $\lambda>0$,
(1) $\lim _{\varepsilon \rightarrow 0} M(\lambda, \varepsilon)=0$;
(2) for every positive integrable random variable $X, \mathrm{E} X \leqslant \varepsilon$ implies

$$
P\left(\lim \sup \mathrm{E}^{t} X \geqslant \lambda\right) \leqslant M(\lambda, \varepsilon)
$$

(iii) For every Banach space \mathbb{E} and for every Bochner integrable E-valued random variable X, the martingale $\mathrm{E}^{\boldsymbol{E}_{t}} X$ converges essentially.

Proof. Obviously, (i) \Rightarrow (ii).
(ii) \Rightarrow (iii). Let $X \in L_{1}^{E}$; fix $\alpha>0, \lambda>0$, choose $\varepsilon<\alpha \lambda / 2$ such that $M(\lambda / 2, \varepsilon)<\alpha$, and choose $Y \in \bigcup L_{1}^{E}\left(\mathscr{F}_{t}\right)$ such that $E|X-Y|<\varepsilon$. Then, if $\mathscr{F}_{\infty}=\sigma\left(\cup \mathscr{F}_{t}\right)$, we have

$$
\begin{aligned}
& P\left(\lim \sup \left|\mathrm{E}^{\mathscr{F}} X-\mathrm{E}^{\infty} X\right| \geqslant \lambda\right) \\
\leqslant & P\left(\lim \sup \mathrm{E}^{\mathscr{F}}|X-Y| \geqslant \frac{\lambda}{2}\right)+P\left(\mathrm{E}^{\infty}|X-Y| \geqslant \frac{\lambda}{2}\right) \leqslant \alpha+\frac{2 \varepsilon}{\lambda} \leqslant 2 \alpha,
\end{aligned}
$$

which proves the essential convergence of $\mathrm{E}^{g^{t} t} X$ to $\mathrm{E}^{\mathscr{F}^{\infty}} \boldsymbol{X}$.
(iii) \Rightarrow (i). Let $X \in L_{1}^{E}$; since $E^{F_{t}} \boldsymbol{X}$ converges essentially, we have

$$
s \lim \sup \left|\mathrm{E}^{\mathscr{F}_{t}} X\right|=\lim \sup \left|\mathrm{E}^{\mathscr{F}_{t}} \cdot X\right|
$$

Applying Theorem 2.1 (ii) and the Remark which follows it to the uniformly integrable positive submartingale $Y_{t}=\left|\bar{E}^{\mathscr{E}} X\right|$, and letting $A=$ $\left\{\lim \sup \left|E^{E_{t}} X\right| \geqslant \lambda\right\}$, for every $\lambda>0$ we obtain

$$
\begin{aligned}
P\left(\lim \sup \left|\mathrm{E}^{\text {gt }} X\right| \geqslant \lambda\right) & \leqslant \frac{1}{\lambda} \lim \sup _{\tau \in T^{\prime}} \int_{A} Y_{\tau} d P \\
& \leqslant \frac{1}{\lambda} \limsup _{\tau \in T^{\prime}} \int_{A} \mathrm{E}^{\boldsymbol{T}}|X| d P \leqslant \frac{1}{\lambda} \int_{A}|X| d P
\end{aligned}
$$

The following theorem shows that the maximal inequality of Proposition 1.1 insures essential convergence of L_{1}-bounded E-valued martingales:

Theorem 3.2. Let $\left(\mathscr{F}_{t}\right)$ be a stochastic basis such that there exists a function $M: \boldsymbol{R}_{+} \times \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}$which for every $\lambda>0$ satisfies:
(1) $\lim _{\varepsilon \rightarrow 0} M(\lambda, \varepsilon)=0$;
(2) for every positive martingale $\boldsymbol{X}, \lim \mathrm{E} X_{t} \leqslant \varepsilon$ implies

$$
P\left(\lim \sup X_{t} \geqslant \lambda\right) \leqslant M(\lambda, \varepsilon) .
$$

If the Banach space \mathbf{E} has the Radon-Nikodým property, then every E-valued L_{1}^{E}-bounded martingale converges essentially.

Proof. Set $\mathscr{A}=\bigcup \mathscr{F}_{t}, \mathscr{F}_{\infty}=\sigma(\mathscr{A})$, and let X be an L_{1}^{E}-bounded martingale. Define a finitely additive \boldsymbol{E}-valued measure λ on \mathscr{A} by $\lambda(A)$ $=\lim \mathrm{E}\left[1_{A} X_{t}\right]$. We write $\mu \ll P$ if for every $\varepsilon>0$ there exists $\delta>0$ such that $P(A)<\delta$ implies $(\operatorname{Var} \mu)(A)<\varepsilon$. Since $\operatorname{Var} \lambda=\lim \mathrm{E}\left|X_{t}\right|<\infty$, λ can be decomposed as $\lambda=\mu+\pi$, where μ is a σ-additive measure on \mathscr{A}, $\mu \ll P, \operatorname{Var} \mu<\infty$, and π is. a finitely additive measure on \mathscr{A}. such that the positive charges Var π and P are nearly orthogonal (for this result due to Chatterji and Uhl, see, e.g., [4], p. 30-31). Since E has the Radon-Nikodým property, there exists $X \in L_{1}^{E}$ such that $\mu(A)=\mathrm{E}\left[1_{A} X\right]$ for each $A \in \mathscr{A}$. The martingale $E^{g t_{t}} X$ converges by Theorem 3.1. Set $Z_{t}=X_{t}-\mathrm{E}^{\bar{Z} t} X$; Lemma 2.2 applied to the submartingale $\left|Z_{t}\right|$ shows that Z_{t} converges essentially to zero.

From Proposition 1.3 and Theorem 3.2 we derive
Theorem 3.3. Let $\left(\mathscr{F}_{i}\right)$ be a stochastic basis satisfying the condition C and let E be a Banach space with the Radon-Nikodým property. Then every L_{1}^{E}-bounded martingale converges essentially.
4. Conditions C and sigma-SV. In a previous paper [15] we introduced a condition SV defined as follows:

For every integer $m,\left(\mathscr{F}_{t}\right)$ satisfies the condition $\operatorname{SV}(m)$ if for every $\varepsilon>0$ and for every adapted family of sets A there exists an incomplete multivalued stopping time τ such that $P\left(A^{*} \backslash A(\tau)\right)<\varepsilon$ and $\varepsilon_{\tau} \leqslant m ;$ SV is the logical union of the conditions $\operatorname{SV}(m)$.

Let \boldsymbol{E} be a Banach space with the Radon-Nikodym property. We showed that the condition SV implies the essential convergence of L_{1}^{E}-bounded martingales. Therefore, the following condition sigma-SV also implies essential convergence of L_{1}^{E}-bounded martingales:

There exists a sequence of sets Ω_{n} in the algebra $\mathscr{A}=\bigcup \mathscr{F}_{t}$ such that $\Omega=\bigcup \Omega_{n}$ and, for every n, the restriction of $\left(\mathscr{F}_{t}\right)$ to Ω_{n} satisfies SV.

Since all the conditions $\mathrm{SV}(m), m=0,1,2, \ldots$, are different [15], sigma-SV is properly weaker than SV. The following example shows that C is strictly weaker than sigma-SV:

Theorem 4.1. There exists a stochastic basis which satisfies the condition C , but not the condition sigma-SV.

Proof. Set $(\Omega, \mathscr{F}, P)=[0,1)$ with Lebesgue measure; all the intervals considered are of the form $[a, b)$. Given a subinterval $[a, b)$ of Ω, an integer m, and a number $\delta>0$, a family of sets $A_{1}, \ldots, A_{k} \subset[a, b)$ is an (m, δ)-family of $[a, b$) according to the partition $\{D, I\}$ if $\{D, I\}$ is a partition of $[a, b)$ into intervals such that
(1) $\left\{A_{i} \cap D: i=1, \ldots, k\right\}$ is a partition of D into intervals of equal length;
(2) $1_{I} \sum_{i \leqslant k} 1_{A_{i}}=m$;
(3) for any subfamily $\left\{B_{i}\right\}\left(1 \leqslant i \leqslant k^{\prime}\right)$ of $\left\{A_{i}\right\}, \sum_{i \leqslant k^{\prime}} 1_{B_{i}} \leqslant m-1$ implies

$$
P(I)+P\left(\bigcup_{i \leqslant k^{\prime}} B_{i}\right) \leqslant \delta P([a, b))
$$

We now show that for any interval $[a, b)$, any integer m and any $\delta>0$, there exists an (m, δ)-family of $[a, b)$ (see also [24]). Indeed, let I be the extreme left interval of $[a, b)$ such that $P(I)<\delta(b-a) / 3$, and fix $k>m$. Divide the interval $D=[a, b) \backslash I$ into k disjoint intervals of equal length $D(i), 1 \leqslant i \leqslant k$, and divide I into $k!(m!(k-m)!)^{-1}$ disjoint intervals of equal length $I\left(s_{1}, \ldots, s_{m}\right), 1 \leqslant s_{1}<\ldots<s_{m} \leqslant k$. For every i with $1 \leqslant i \leqslant k$, set

$$
A_{i}=D(i) \cup\left\{I\left(s_{1}, \ldots, s_{m}\right): \exists q, s_{q}=i\right\}
$$

The construction is such that any subfamily $\left\{B_{i}\right\}, 1 \leqslant i \leqslant k^{\prime}$, satisfying

$$
\sum_{i \leqslant k^{\prime}} 1_{B_{i}} \leqslant m-1,
$$

contains at most $m-1$ sets; hence

$$
P\left(\bigcup_{i \leqslant k^{\prime}} B_{i}\right) \leqslant P(l)+(m-1)(b-a) / k \leqslant 2 \delta(b-a) / 3 \quad \text { if } k \geqslant 3(m-1) / \delta
$$

Given a sequence of integers $\left(n_{r}\right)$, which will be determined by induction, let

$$
J=\left\{\left(i_{1}, \ldots, i_{r}\right): r \geqslant 1,1 \leqslant i_{j} \leqslant n_{j}\right\}
$$

ordered by the relation $\left(i_{1}, \ldots, i_{r}\right)<\left(i_{1}^{\prime}, \ldots, i_{k}^{\prime}\right)$ iff $r<k$. We construct $\left(\mathscr{F}_{t}\right)$ by induction as follows:

Step 1. Fix a number $p_{1}(2)$ satisfying $0<p_{1}(2)<1$, and let L be the extreme left interval of Ω, of measure $p_{1}(2)$. Set $m_{1}=3(3-1) \cdot 2^{2}$ and $n_{1}=2 m_{1}$. Define a $\left(2,2^{-2}\right)$-family of sets $A(i)\left(1 \leqslant i \leqslant m_{1}\right)$ of the interval L according to a partition $\left\{D^{\prime}, I^{\prime}\right\}$. Define a ($3,2^{-2}$)-family of sets $A(i)$, $m_{1}+1 \leqslant i \leqslant n_{1}$, of the remaining interval $\Omega \backslash L$, according to a partition $\left\{D^{\prime \prime}, I^{\prime \prime}\right\}$. For every i set

$$
D(i)= \begin{cases}A(i) \cap D^{\prime} & \text { if } 1 \leqslant i \leqslant m_{1}, \\ A(i) \cap D^{\prime \prime} & \text { if } m_{1}+1 \leqslant i \leqslant n_{1} .\end{cases}
$$

For every i with $1 \leqslant i \leqslant n_{1}$, let $\mathscr{F}(i)$ be the σ-algebra generated by $A(i)$. Let \mathscr{G}_{1} be the σ-algebra generated by all the intervals introduced in the first step.

Step 2. Fix two numbers $P_{2}(j)$ with $0<P_{2}(j)<1$ for $j=2$, 3: Let $A\left(i_{1}\right)$ be a fixed interval obtained in the first step; $A\left(i_{1}\right)$ belongs to a $\left(j, 2^{-2}\right)$-family, where $j=2$ or 3 . Let $L\left(i_{1}\right)$ be the extreme left interval of $D\left(i_{1}\right)$ with $P\left[L\left(i_{1}\right)\right]$ $=P_{2}(j) P\left[D\left(i_{1}\right)\right]$. Set $m_{2}=3(4-1) \cdot 2^{3}$ and $n_{2}=2 m_{2}$. Define a $\left(j, 2^{-3}\right)$-family of sets $A\left(i_{1}, i\right)\left(1 \leqslant i \leqslant m_{2}\right)$ of $L\left(i_{1}\right)$ according to a partition $\left\{D^{\prime}\left(i_{1}\right), I^{\prime}\left(i_{1}\right)\right\}$. Define a $\left(j+1,2^{-3}\right)$-family of sets $A\left(i_{1}, i\right)\left(m_{2}+1 \leqslant i \leqslant n_{2}\right)$ of the interval $D\left(i_{1}\right) \backslash L\left(i_{1}\right)$ according to a partition $\left\{D^{\prime \prime}\left(i_{1}\right), I^{\prime \prime}\left(i_{1}\right)\right\}$. Set

$$
D\left(i_{1}, i\right)= \begin{cases}A\left(i_{1}, i\right) \cap D^{\prime}\left(i_{1}\right) & \text { if } 1 \leqslant i \leqslant m_{2}, \\ A\left(i_{1}, i\right) \cap D^{\prime \prime}\left(i_{1}\right) & \text { otherwise }\end{cases}
$$

For every i with $1 \leqslant i \leqslant n_{2}$, let $\mathscr{F}\left(i_{1}, i\right)$ be the σ-algebra generated by \mathscr{G}_{1} and $A\left(i_{1}, i\right)$. Let \mathscr{G}_{2} be the σ-algebra generated by all the intervals introduced in the two first steps.

Step $k+1$. Fix $k+1$ numbers $P_{k+1}(j)$ with $0<P_{k+1}(j)<1$ for $j=2, \ldots$ $\ldots, k+2$. Let $A\left(i_{1}, \ldots, i_{k}\right)$ be a fixed interval obtained at the step k; $A\left(i_{1}, \ldots, i_{k}\right)$ belongs to a $\left(j, 2^{-(k+1)}\right.$)-family, where $j=2$ or 3 or \ldots or $k+2$. Let $L\left(i_{1}, \ldots, i_{k}\right)$ be the extreme left interval of $D\left(i_{1}, \ldots, i_{k}\right)$ with

$$
P\left[L\left(i_{1}, \ldots, i_{k}\right)\right]=P_{k+1}(j) P\left[D\left(i_{1}, \ldots, i_{k}\right)\right]
$$

Set $m_{k+1}=3(k+2) \cdot 2^{k+2}$ and $n_{k+1}=2 m_{k+1}$. Define a $\left(j, 2^{-(k+2)}\right.$)-family of sets $A\left(i_{1}, \ldots, i_{k}, i\right)\left(1 \leqslant i \leqslant m_{k+1}\right)$ of $L\left(i_{1}, \ldots, i_{k}\right)$ according to a partition $\left\{D^{\prime}\left(i_{1}, \ldots, i_{k}\right), I^{\prime}\left(i_{1}, \ldots, i_{k}\right)\right\}$. Define a $\left(j+1,2^{-(k+2)}\right)$-family of sets $A\left(i_{1}, \ldots, i_{k}, i\right)$ $\left(m_{k+1}+1 \leqslant i \leqslant n_{k+1}\right)$ of $D\left(i_{1}, \ldots, i_{k}\right) \backslash L\left(i_{1}, \ldots, i_{k}\right)$ according to a partition $\left\{D^{\prime \prime}\left(i_{1}, \ldots, i_{k}\right), I^{\prime \prime}\left(i_{1}, \ldots, i_{k}\right)\right\}$. Set

$$
D\left(i_{1}, \ldots, i_{k}, i\right)= \begin{cases}A\left(i_{1}, \ldots, i_{k}, i\right) \cap D^{\prime}\left(i_{1}, \ldots, i_{k}\right) & \text { if } 1 \leqslant i \leqslant m_{k+1} \\ A\left(i_{1}, \ldots, i_{k}, i\right) \cap D^{\prime \prime}\left(i_{1}, \ldots, i_{k}\right) & \text { otherwise }\end{cases}
$$

- For every i with $1 \leqslant i \leqslant n_{k+1}$, let $\mathscr{F}\left(i_{1}, \ldots, i_{k}, i\right)$ be the σ-algebra generated by \mathscr{G}_{k} and $A\left(i_{1}, \ldots, i_{k}, i\right)$. Let \mathscr{G}_{k+1} be the σ-algebra generated by all the intervals introduced in the previous steps.

Suppose that

$$
\sum_{k} \sum_{j=2}^{k+1}\left[1-p_{k}(j)\right]<\infty .
$$

For any $\varepsilon>0$, choose M such that

$$
2^{-M}<\varepsilon, \quad \sum_{k=M}^{\infty}\left[\sum_{j=2}^{k+1}\left(1-p_{k}(j)\right)\right]<\varepsilon
$$

and

$$
\prod_{k=M}^{\infty}\left[\prod_{j=2}^{k+1} p_{k}(j)\right]>1-\varepsilon
$$

For every i denote by \bar{A}_{i} the union of all sets $A\left(s_{1}, \ldots, s_{i}\right)$ which are elements of a $\left(j, 2^{-(i+1)}\right)$-family for some j with $2 \leqslant j \leqslant M+1$. The sequence \bar{A}_{i} is decreasing, and for every $i \geqslant M$ we have

$$
P\left(\bar{A}_{i}\right) \geqslant \prod_{k=M}^{i}\left[\prod_{j=2}^{k+1} p_{k}(j)\right] \geqslant 1-\varepsilon
$$

therefore $P\left(\cap \bar{A}_{i}\right) \geqslant 1-\varepsilon$.
Let \boldsymbol{B} be an adapted family of sets; define an adapted family of sets \boldsymbol{C} by

$$
C\left(s_{1}, \ldots, s_{i}\right)=B\left(s_{1}, \ldots, s_{i}\right) \cap \bar{A}_{i-1},
$$

and for every number i put

$$
\bar{C}_{i}=\bigcup\left\{C\left(s_{1}, \ldots, s_{i}\right): 1 \leqslant s_{j} \leqslant n_{j}, 1 \leqslant j \leqslant i\right\}
$$

We show that for any fixed i there exists a stopping time $\tau_{i} \in I M$ such that

$$
e_{\tau_{i}} \leqslant M, \quad P\left(\bar{C}_{i} \backslash C\left(\tau_{i}\right)\right) \leqslant \sum_{j=2}^{i+1}\left[1-p_{i}(j)\right]+\frac{M+2}{m_{i}}
$$

and τ_{i} only takes on values among the subsets of $\left\{\left(s_{1}, \ldots, s_{i}\right): 1 \leqslant s_{j} \leqslant n_{j}\right.$, $1 \leqslant j \leqslant i\}$. Fix i; for any (s_{1}, \ldots, s_{i}) set

$$
C\left(s_{1}, \ldots, s_{i}\right)=G\left(s_{1}, \ldots, s_{i}\right)+H\left(s_{1}, \ldots, s_{i}\right),
$$

where $G\left(s_{1}, \ldots, s_{i}\right)$ is the largest subset of $C\left(s_{1}, \ldots, s_{i}\right)$ which is \mathscr{G}_{i-1}-measurable. Since $\mathscr{G}_{i-1} \subset \mathscr{F}\left(s_{1}, \ldots, s_{i}\right)$, we can assume that sets $G\left(s_{1}, \ldots, s_{i}\right)$ to be disjoint; if $G\left(s_{1}, \ldots, s_{i}\right) \neq \varnothing$, put $\tau_{i}=\left(s_{1}, \ldots, s_{i}\right)$ on this set. Let

$$
\bar{G}_{i}=\bigcup\left\{G\left(s_{1}, \ldots, s_{i}\right): 1 \leqslant s_{j} \leqslant n_{j}, 1 \leqslant j \leqslant i\right\}
$$

each set of the form $C\left(s_{1}, \ldots, s_{i}\right) \backslash \bar{G}_{i}$ is either ϕ, or $A\left(s_{1}, \ldots, s_{i}\right)$, or $D\left(s_{1}, \ldots, s_{i-1}\right) \backslash A\left(s_{1}, \ldots, s_{i}\right)$. Fix s_{1}, \ldots, s_{i-1}; if one of the sets $C\left(s_{1}, \ldots, s_{i}\right) \backslash \bar{G}_{i}$ is $D\left(s_{1}, \ldots, s_{i-1}\right) \backslash A\left(s_{1}, \ldots, s_{i}\right)$, then put $\tau_{i}=\left(s_{1}, \ldots, s_{i}\right)$ on this set. If all non-empty sets $C\left(s_{1}, \ldots, s_{i}\right) \backslash \bar{G}_{i}$ are of the form $A\left(s_{1}, \ldots, s_{i}\right)$, then let $\left(s_{1}, \ldots, s_{i}\right) \in \tau_{i}(\omega), \omega$ belonging to one of the above sets $A\left(s_{1}, \ldots, s_{i}\right)$. Since $\bar{C}_{i} \subset \bar{A}_{i-1}$, we have $e_{\tau_{i}} \leqslant M$. Furthermore,

$$
P\left(\bar{C}_{i} \backslash C\left(\tau_{i}\right)\right) \leqslant \sum_{j=2}^{i+1}\left[1-p_{i}(j)\right]+2^{-i-1}+\frac{1}{m_{i}} .
$$

For $i_{0}<i_{1}$, set

$$
\begin{array}{r}
\tau=\tau_{i_{0}} \text { on } \bar{C}_{i_{0}}, \quad \tau=\tau_{i_{0}+1} \text { on } \bar{C}_{i_{0}+1} \backslash \bar{C}_{i_{0}}, \ldots, \\
\tau=\tau_{i_{1}} \text { on } \bar{C}_{i_{1}} \backslash\left(i_{i_{n} \leqslant j<i_{1}} \bigcup_{j}\right) .
\end{array}
$$

For a fixed $i_{0} \geqslant M$, by a suitable choice of i_{1} we have

$$
\begin{aligned}
P\left(B^{*} \backslash B(\tau)\right) \leqslant & P\left[\bigcup_{i \geqslant i_{0}} \bar{B}_{i} \backslash B(\tau)\right] \leqslant P\left[\bigcup_{i_{0} \leqslant i \leqslant i_{1}} \bar{B}_{i} \backslash B(\tau)\right]+\varepsilon \\
\leqslant & P\left[\bigcup_{i_{0} \leqslant i \leqslant i_{1}}\left\{\left(\bar{B}_{i} \backslash B(\tau)\right) \cap \bar{A}_{i-1}\right\}\right]+2 \varepsilon \\
\leqslant & \sum_{i=M}^{\infty} \sum_{j=2}^{i+1}\left[1-p_{i}(j)\right]+\sum_{i=M}^{\infty} 2^{-i-1}+ \\
& \quad+3^{-1} \sum_{i=M}^{\infty}(i+1)^{-1} \cdot 2^{-i-1}+2 \varepsilon \leqslant 5 \varepsilon .
\end{aligned}
$$

Hence $\left(\mathscr{F}_{t}\right)$ satisfies C.
We now show that $\left(\mathscr{F}_{t}\right)$ does not satisfy sigma-SV. Let $A \in \mathscr{A}=\bigcup \mathscr{F}_{t}$; there exists k such that $A \in \mathscr{G}_{k}$. Suppose that A is not included in

$$
\bar{I}=\bigcup\left\{I^{\prime}\left(s_{1}, \ldots, s_{i}\right) \cup I^{\prime \prime}\left(s_{1}, \ldots, s_{i}\right): 1 \leqslant s_{j} \leqslant n_{j}, j \geqslant 1\right\},
$$

and notice that $F^{*}=\lim \sup F_{t}=A \backslash \bar{I}$ for the adapted family F defined by

$$
F\left(s_{1}, \ldots, s_{i}\right)= \begin{cases}A\left(s_{1}, \ldots, s_{i}\right) \cap A & \text { if } i>k \\ \varnothing & \text { otherwise }\end{cases}
$$

We show that, given any fixed $M>0$, there exist $\varepsilon>0$ and $s \in J$ such that for every $\tau \in I M$ the relations $\tau>s$ and $e_{\tau} \leqslant M$ imply $P\left(F^{*} \backslash F(\tau)\right) \geqslant \varepsilon$; this shows that none of the conditions $\operatorname{SV}(M)$ holds on A. Indeed, fix $M>0$; by definition of the family A, there exists $k>0$ such that if \bar{F}_{k} is the union of sets $F\left(s_{1}, \ldots, s_{k}\right)=A\left(s_{1}, \ldots, s_{k}\right) \cap A$ such that $A\left(s_{1}, \ldots, s_{k}\right)$ belongs to an $\left(M+1,2^{-k-1}\right)$-family, then $P\left(F^{*} \backslash \bar{F}_{k}\right)>0$. Then for every $i>k$ all the sets $A\left(s_{1}, \ldots, s_{i}\right)$ included in $A \backslash \bar{F}_{k}$ belong to ($j, 2^{-i-1}$)-families for some $j \geqslant M+2$. Fix $\varepsilon<P\left(F^{*} \backslash \bar{F}_{k}\right) / 2$ and fix $m>k$ such that $2^{-m}<\varepsilon$. By definition of A, the optimal way to cover $F^{*} \backslash \bar{F}_{k}$ by means of multivalued stopping times τ such that $e_{\tau} \leqslant M$ and $\tau>\left(n_{1}, \ldots, n_{m}\right)$ is to set $\left\{\tau=\left(s_{1}, \ldots, s_{i}\right)\right\}=F\left(s_{1}, \ldots, s_{i}\right)$ at each level $i>m$ and in each set $D\left(s_{1}, \ldots, s_{i-1}\right)$ for $M+1$ distinct values of s_{i} with $1 \leqslant s_{i} \leqslant n_{i}$. Therefore, if $e_{\tau} \leqslant M$ and $\tau>\left(n_{1}, \ldots, n_{m}\right)$, we have

$$
P\left[\left(F^{*} \backslash \bar{F}_{k}\right) \cap F(\tau)\right] \leqslant \sum_{i>m} 2^{-m-1} \leqslant 2^{-m} \leqslant \varepsilon \leqslant P\left(F^{*} \backslash \bar{F}_{k}\right) \cdot 2^{-1}
$$

which implies

$$
P\left[F^{*} \backslash F(\tau)\right]>P\left(F^{*} \backslash \bar{F}_{k}\right) \cdot 2^{-1} \geqslant \varepsilon .
$$

If $\left(\mathscr{F}_{t}\right)$ were satisfying the condition sigma-SV, then since $P(\bar{I}) \leqslant 1 / 2$, at least one set $A_{k} \in \mathscr{A}$ such that $\operatorname{SV}(k)$ holds on A_{k}, say $A_{k} \in \mathscr{G}_{n_{k}}$, would have to intersect \bar{I}, which would contradict the result above.

REFERENCES

[1] K. Astbury, Amarts indexed by directed sets, Ann. Probability 6 (1978), p. 267-278.
[2] - The order convergence of martingales indexed by directed sets (to appear).
[3] S. D. Chatterji, Martingale convergence theorem and the Radon-Nikodým theorem in Banach spaces, Math. Scand. 22 (1968), p. 21-41.
[4] J. Diestel and J. J. Uh1, Vector measures, Mathematical Surveys 15 (1977).
[5] J.- Dieudonné, Sur un théorème de Jessen, Fund. Math. 37 (1950), p. 242-248.
[6] G. A. Edgar and L. Sucheston, Amarts: A class of asymptotic martingales, J. Multivariate Anal. 6 (1976), p. 193-221 and p. 572-591.
[7] M. de Guzman, Differentiation of integrals in R^{n}, Springer Verlag Lecture Notes in Mathematics 481 (1975).
[8] C. A. Hayes and C. Y. Pauc, Derivation and martingales, Springer-Verlag, New York 1970.
[9] K. Krickeberg, Convergence of martingales with a directed index set, Trans. Amer. Math. Soc. 83 (1956), p. 313-337.
[10] A. Millet, Sur la caractérisation des conditions de Vitali par la convergence essentielle des martingales, C. R. Acad. Sci. Paris, Série A, 287 (1978), p. 887-890.
[11] - and L. Sucheston, Classes d'amarts filtrants et conditions de Vitali, ibidem 286 (1977), p. 835-837.
[12] - Convergence of classes of amarts indexed by directed sets, Canad. J. Math. 32 (1980), p. 86-125.
[13] - Characterization of Vitali conditions with overlap in terms of convergence of classes of amarts, ibidem 31 (1979), p. 1033-1046.
[14] - A characterization of Vitali conditions in terms of maximal inequalities, Ann. Probability 8 (1980), p. 339-349.
[15] - La convergence des martingales bornées dans L^{1} n'implique pas la condition de Vitali V, C. R. Acad. Sci. Paris, Série A, 288 (1979), p. 595-598.
[16] - On covering conditions and convergence, Proceedings of the 1979 Oberwolfach Conference in Measure Theory, Springer Verlag Lecture Notes 794 (1980), p. 431-454.
[17] J. Neveu, Discrete parameter martingales, North Holland, Amsterdam 1975.
[18] C. Stegall, A proof of the martingale convergence theorem in Banach spaces, Springer Verlag Lecture Notes in Mathematics 604 (1976), p. 138-141.
[19] L. Sucheston, On existence of finite invariant measures, Math. Z. 86 (1964), p. 327-336.

The Ohio State University
Department of Mathematics
Columbus, Ohio 43210, U.S.A.

Received on 20. 11. 1979

0

[^0]: * Research supported in part by the National Science Foundation (U.S.A.).

