# ON MARCINKIEWICZ-ZYGMUND LAWS OF LARGE NUMBERS IN BANACH SPACES AND RELATED RATES OF CONVERGENCE 

BY

WOJBOR A. WOYCZYŃSKI (Cleveland, Ohio)


#### Abstract

The paper studies asymptotic almost sure and tail behavior of sums $\left(X_{1}+\ldots+X_{n}\right) / n^{1 / p}, 1 \leqslant p<2$, for independent, centered random vectors $X_{n}, n=1,2, \ldots$, taking values in Banach space $E$. The obtained results are in the spirit of Mazurkiewicz--Zygmund, Hsu-Robbins-Erdös-Spitzer, and Brunk theorems for real random variables and show the essential role played by the geometry of $E$ in the infinite-dimensional case.


1. Introduction and preliminaries. Let $(E,\|\cdot\|)$ be a real separable Banach space. In the present paper we study strongly measurable random vectors $X$ on a probability space $(\Omega, \mathscr{F}, P)$ with values in $E$. If $\mathrm{E}\|X\|<\infty$, then $\mathrm{E} X$ stands for the Bochner integral, and throughout the paper $\left(X_{i}\right)_{i=1,2, \ldots}$ will be independent random vectors in $E$, with $S_{0}=0, S_{n}=X_{1}+\ldots+X_{n}$, $n=1,2, \ldots$, and ( $r_{i}$ ) will stand for a Rademacher sequence, i.e., a sequence of real independent random variables with $P\left(r_{i}= \pm 1\right)=1 / 2$.

We recall a couple of definitions (for more information cf., e.g., [14]).
Definition 1.1. Let $1 \leqslant p \leqslant 2$. A Banach space $E$ is said to be of Rademacher type $p$ ( $R$-type $p$ ) if there exists $C$ such that for every $n \in N$ and for all $x_{1}, \ldots, x_{n} \in E$

$$
\mathrm{E}\left\|\sum_{i=1}^{n} r_{i} x_{i}\right\| \leqslant C\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{1 / p}
$$

Definition 1.2. Let $1 \leqslant p \leqslant 2 . l_{p}$ is said to be finitely representable in $E$ if for every $\varepsilon>0$ and every $n \in N$ there exist $x_{1}, \ldots, x_{n} \in E$ such that for all $\alpha_{1}, \ldots, \alpha_{n} \in \boldsymbol{R}$

$$
\left(\sum_{i=1}^{n}\left|\alpha_{i}\right|^{p}\right)^{1 / p} \leqslant\left\|\sum_{i=1}^{n} \alpha_{i} x_{i}\right\| \leqslant(1+\varepsilon)\left(\sum_{i=1}^{n}\left|\alpha_{i}\right|^{p}\right)^{1 / p}
$$

Example 1.1. $l_{p}$ is of $R$-type $\min (p, 2)$ for any $p \geqslant 1 . l_{p}$ is finitely representable in $l_{q}$ for any $q \leqslant p$, but $l_{p}$ is not finitely representable in $l_{q}$ if $q>p$. On the other hand, by Dvoretzky's theorem, $l_{2}$ is finitely representable in $E$ for any infinite dimensional $E$.

Definition 1.3. A sequence $\left(X_{i}\right)$ of random vectors in $E$ is said to have uniformly bounded tail probabilities by tail probabilities of a real random variable $X_{0}$ if there exists $C>0$ such that for every $t>0$ and every $i \in N$

$$
P\left(\left\|X_{i}\right\|>t\right) \leqslant C P\left(\left|X_{0}\right|>t\right)
$$

The main results of the paper deal with the almost sure convergence of sums $S_{n}^{n} / n^{1 / p}$ and with the rate of convergence to zero of tail probabilities $P\left(\left\|S_{n} / n^{1 / p}\right\|>\varepsilon\right)$ under restrictions on individual random vectors $X_{i}$ and on geometric structure of $E$. For real-valued independent identically distributed $\left(X_{i}\right)(E=R)$ the problem of rates of convergence was studied in a series of papers by Erdös [3], Spitzer [12], Baum and Katz [1], and in the case of a general Banach space $E$ certain interesting results have been obtained by Jain [4].

As far as the strong and weak laws of large numbers of Marcinkiewicz--Zygmund type (i.e., for $S_{n} / n^{1 / p}$ and i.i.d. $\left(X_{i}\right)$ ) are concerned the following is known:

In the case $p=1, \mathbf{R}$. Fortet and M. Mourier proved in 1953 that, without any restrictions on $E$, if $\left(X_{i}\right)$ are i.i.d., $\mathrm{E}\left\|X_{1}\right\|<\infty$ and $\mathrm{E} X_{1}=0$, then $S_{n} / n \rightarrow 0$ a.s. On the other hand, Maurey and Pisier [10] have shown that $\left(r_{1} x_{1}+\ldots+r_{n} x_{n}\right) / n^{1 / p} \rightarrow 0$ a.s. for any bounded sequence $\left(x_{n}\right) \subset E$ if and only if $l_{p}$ is not finitely representable in $E(1 \leqslant p<2)$. In 1977, Marcus and Woyczyński [8], [9] proved that $S_{n} / n^{1 / p} \rightarrow 0$ in probability for any i.i.d. $\left(X_{i}\right)$ satisfying the condition

$$
\lim _{n \rightarrow \infty} n^{p} P\left(\left\|X_{1}\right\|>n\right)=0
$$

if and only if $l_{p}$ is not finitely representable in $E$.
In this paper we show, in particular, that for independent $\left(X_{i}\right)$ with uniformly bounded tail probabilities the implication "if $E\left\|X_{i}\right\|^{p}<\infty$ and $\mathrm{E} X_{i}=0$, then $S_{n} / n^{1 / p} \rightarrow 0$ a.s." also depends in an essential way on $l_{p}$ not being finitely representable in $E$. We also prove that a Banach space analogue of Brunk's strong law of large numbers (cf. [2], [11]) depends on the $R$-type of $E$. Brunk's type strong law is particularly useful in cases where one has information about existence of moments of $X_{i}$ 's of orders greater than 2. Such information may not be utilized in the framework of Kolmogorov--Chung's strong law.

As far as the rates of convergence are concerned a number of simple remarks are in order here. Directly from definitions and from Chebyshev's inequality one can obtain the following "trivial" rate:

Proposition 1.1. Let $1 \leqslant p \leqslant 2$ and let $E$ be of R-type p. If $\left(X_{i}\right)$ are i.i.d. with $\mathrm{E}\left\|X_{1}\right\|^{p}<\infty$ and $\mathrm{E} X_{1}=0$, then

$$
P\left(\left\|S_{n} / n\right\| \geqslant \varepsilon\right)=O\left(n^{1-p}\right) \quad \text { for every } \varepsilon>0
$$

Also some exponential rates can be immediately obtained without any restrictions on the geometric structure of $E$.

Proposition 1.2. If $\left(X_{i}\right)$ are i.i.d. with $\mathrm{E} X_{1}=0$ and with the property that for every $\varepsilon>0$ there exist $C_{\varepsilon}$ and $\beta_{\varepsilon}$ such that for every $\beta \leqslant \beta_{\varepsilon}$

$$
\mathrm{E} \exp \left[\beta\left\|X_{1}\right\|\right] \leqslant C_{\varepsilon} \exp [\beta \varepsilon]
$$

then for every $\varepsilon>0$ there exists $\alpha<1$ such that

$$
P\left(\left\|S_{n} / n\right\|>\varepsilon\right)=O\left(\alpha^{n}\right)
$$

Proof. By Chebyshev's inequality and for $\delta<\varepsilon$ we get

$$
\begin{aligned}
P\left(\left\|S_{n} / n\right\|>\varepsilon\right) & \leqslant \exp \left[-\beta_{\delta} n \varepsilon\right] \mathrm{E} \exp \left[\beta_{\delta}\left\|S_{n}\right\|\right] \\
& \leqslant \exp \left[-\beta_{\delta} n \varepsilon\right]\left(\mathrm{E} \exp \left[\beta_{\delta}\left\|X_{1}\right\|\right]\right)^{n} \leqslant C_{\delta}\left(\exp \left[(\delta-\varepsilon) \beta_{\delta}\right]\right)^{n}
\end{aligned}
$$

It is also interesting to notice that a sufficiently rapid rate of convergence to zero of tail probabilities $P\left(\left\|S_{n} / a_{n}\right\|>\varepsilon\right)$ implies similar rates of convergence in the strong law, i.e., for the suprema.

Proposition 1.3: Let E be a Banach space and let $\left(X_{i}\right)$ be independent symmetric random vectors in E. Let $\left(a_{i}\right),\left(b_{i}\right),\left(c_{i}\right) \subset \boldsymbol{R}$ be such that

$$
0<a_{i} \uparrow \infty, \quad b_{i}, c_{i} \downarrow 0 \quad \text { and } \quad \sum_{i=1}^{j} 2^{i} b_{2^{i}}=O\left(2^{j} c_{2^{j}}\right)
$$

and let

$$
\sum_{n=1}^{\infty} c_{n} P\left(\left\|S_{n} / a_{n}\right\|>\varepsilon\right)<\infty \quad \text { for every } \varepsilon>0
$$

Then

$$
\sum_{n=1}^{\infty} b_{n} P\left(\sup _{k \geqslant n}\left\|S_{k} / a_{k}\right\|>\varepsilon\right)<\infty \quad \text { for every } \varepsilon>0
$$

Proof. Grouping the terms in exponential blocks ( $n: 2^{j}<n \leqslant 2^{j+1}$ ) we get

$$
\begin{aligned}
A & \equiv \sum_{n=1}^{\infty} b_{n} P\left(\sup _{k \geqslant n}\left\|S_{k} / a_{k}\right\|>\varepsilon\right) \leqslant \sum_{i=1}^{\infty} b_{2^{i}} \cdot 2^{i} P\left(\sup _{k \geqslant 2^{i}}\left\|S_{k} / a_{k}\right\|>\varepsilon\right) \\
& \leqslant \sum_{i=1}^{\infty} \sum_{j=i}^{\infty} b_{2^{i}} 2^{i} P\left(\max _{2^{j}<k \leqslant 2^{j+1}}\left\|S_{k} / a_{k}\right\|>\varepsilon\right)
\end{aligned}
$$

and, by Lévy's inequality,

$$
\begin{aligned}
A & \leqslant 2 \sum_{i=1}^{\infty} \sum_{j=i}^{\infty} b_{2^{i}} \cdot 2^{i} P\left(\left\|S_{2^{j+1}} / a_{2^{j+1}}\right\|>\varepsilon\right) \\
& =2 \sum_{j=1}^{\infty}\left(\sum_{i=1}^{j} b_{2^{i}} \cdot 2^{i}\right) P\left(\left\|S_{2^{j+1}} / a_{2^{j+1}}\right\|>\varepsilon\right) \\
& \leqslant 2 C \sum_{j=1}^{\infty} c_{2^{j}} \cdot 2^{j} P\left(\left\|S_{2^{j+1}} / a_{2^{j+1}}\right\|>\varepsilon\right)
\end{aligned}
$$

Now, by the symmetry assumptions, grouping the terms again as follows:

$$
S_{n}=S_{2^{j+1}}-X_{2^{j+1}}-X_{2^{j+1-1}}-\ldots-X_{n+1}, \quad 2^{j-1} \leqslant n<2^{j}
$$

we obtain

$$
A \leqslant 8 C \sum_{n=1}^{\infty} c_{n} P\left(\left\|S_{n} / a_{n}\right\|>2 \varepsilon\right)
$$

Two special cases of Proposition 1.3 will be of interest later on.
Corollary 1.1. Let $E$ be a Banach space and let $\left(X_{i}\right)$ be independent symmetric random vectors in E. Then
(i) for every $q>1$ there exists $C>0$ such that

$$
\sum_{n=1}^{\infty} n^{-q} P\left(\sup _{k \geqslant n}\left\|S_{k} / a_{k}\right\|>\varepsilon\right) \leqslant C \sum_{n=1}^{\infty} n^{-q} P\left(\left\|S_{n} / a_{n}\right\|>\varepsilon\right) ;
$$

(ii) there exists $C>0$ such that

$$
\sum_{n=1}^{\infty} n^{-1} P\left(\sup _{k \geqslant n}\left\|S_{k} / a_{k}\right\|>\varepsilon\right) \leqslant C \sum_{n=1}^{\infty} n^{-1}(\log n) P\left(\left\|S_{n} / a_{n}\right\|>\varepsilon\right) .
$$

2. Rates of convergence based on the Marcinkiewicz-Zygmund inequality. In Proposition 1.1 we could have only used moments of order $p, 1 \leqslant p \leqslant 2$, and in Proposition 1.2 exponential moments were needed. The following analogue of the Marcinkiewicz-Zygmund inequality (cf. also results by P. Assouad and B. Maurey and G. Pisier quoted in [14]) permits us to use the information on moments of arbitrary order.

Proposition 2.1. Let $1 \leqslant p \leqslant 2$ and $q \geqslant 1$. The following properties of $E$ are equivalent:
(i) $E$ is of R-type $p$.
(ii) There exists $C$ such that for every $n \in N$ and for any sequence $\left(X_{i}\right)$ of independent random vectors in $E$ with $E X_{i}=0$

$$
\mathrm{E}\left\|\sum_{i=1}^{n} X_{i}\right\|^{q} \leqslant C \mathrm{E}\left(\sum_{i=1}^{n}\left\|X_{i}\right\|^{p}\right)^{q / p}
$$

Proof. (i) $\Rightarrow$ (ii). Let $\left(\tilde{X}_{i}\right)=\left(X_{i}-X_{i}^{\prime}\right)$ be a symmetrization of $\left(X_{i}\right)$ and let $\left(r_{i}\right)$ be independent of $\left(X_{i}\right)$ and ( $X_{i}^{\prime}$ ). Then

$$
\begin{aligned}
\mathrm{E}\left\|\sum_{i=1}^{n} X_{i}\right\|^{q} & \leqslant \mathrm{E}\left\|\sum_{i=1}^{n} \tilde{X}_{i}\right\|^{q}=\mathrm{E}\left\|\sum_{i=1}^{n} r_{i} \tilde{X}_{i}\right\|^{q} \\
& \leqslant C \mathrm{E}\left(\sum_{i=1}^{n}\left\|\tilde{X}_{i}\right\|^{p}\right)^{q / p} \leqslant C \cdot 2^{q} \mathrm{E}\left(\sum_{i=1}^{n}\left\|X_{i}\right\|^{p}\right)^{q / p}
\end{aligned}
$$

where the first inequality follows from the condition $\mathrm{E} X_{i}=0$, and because ( $X_{i}^{\prime}$ ) are independent of $\left(X_{i}\right)$, the equality holds by symmetry of $\left(\tilde{X}_{i}\right)$, the second inequality by $R$-type of $E$ and Fubini's theorem, and the third one by the triangle inequality.

The implication (ii) $\Rightarrow$ (i) follows from the proof of Theorem 3.1 given in the sequel.

Corollary 2.1. Let $E$ be of $R$-type $p$ and $q \geqslant p$. If $\left(X_{n}\right)$ are i.i.d. random vectors in E with $\mathrm{E}\left\|X_{1}\right\|^{q}<\infty$ and $\mathrm{E} X_{1}=0$, then $\mathrm{E}\left\|S_{n}\right\|^{q}=O\left(n^{q / p}\right)$.

Proof. If $p=q$, the estimate follows directly from the definition of $R$-type $p$. If $q>p$, then by Hölder's inequality with exponents $q / p$ and $q /(q-p)$ and by Proposition 2.1 we have

$$
\begin{aligned}
\mathrm{E}\left\|\sum_{i=1}^{n} X_{i}\right\|^{q} & \leqslant C \mathrm{E}\left(\sum_{i=1}^{n}\left\|X_{i}\right\|^{p}\right)^{q / p} \\
& \leqslant C \mathrm{E}\left(\sum_{i=1}^{n}\left\|X_{i}\right\|^{q}\right)^{(q-p) / p}=C n^{q / p} \mathrm{E}\left\|X_{1}\right\|^{q} .
\end{aligned}
$$

- Hence, by Chebyshev's inequality we obtain immediately

Corollary 2.2. Let $E$ be of $R$-type $p$ and $q \geqslant p$. If $\left(X_{n}\right)$ are i.i.d. with $\mathrm{E}\left\|X_{1}\right\|^{q}<\infty$ and $\mathrm{E} X_{1}=0$, then

$$
P\left(\left\|S_{n} / n\right\|>\varepsilon\right)=O\left(n^{q(1 / p-1)}\right) \quad \text { for every } \varepsilon>0
$$

Remark 2.1. Jurek and Urbanik [5], studying stable measures on E, define $E$ as being of type $(s, r), s \geqslant 0, r>0$, whenever there exists $C$ such that for all $\left(X_{i}\right)$ independent and symmetric in $E$

$$
\mathrm{E}\left\|\sum_{i=1}^{n} X_{i}\right\|^{r} \leqslant C n^{s} \sum_{i=1}^{n} \mathrm{E}\left\|X_{i}\right\|_{\because}^{r}
$$

Proposition 2.1 implies (as in the proof of Corollary 2.1) that if $E$ is of-$R$-type $p$, then

$$
\mathrm{E}\left\|\sum_{i=1}^{n} X_{i}\right\|^{q} \leqslant C n^{q / p-1} \sum_{i=1}^{n} \mathrm{E}\left\|X_{i}\right\|^{q}, \text { for every } q \geqslant p
$$

i.e. $E$ is also of Jurek-Urbanik's type $(q / p-1, q)$ or, equivalently, $E$ is of type ( $s, p(s+1)$ ) for every $s \geqslant 0$. One can also show (as in Theorem 3.1
below) that if for some $s>0$ the space $E$ is of type $(s, p(s+1)$ ), then $E$ is of $R$-type $p$.
3. Brunk's type strong law and related rates of convergence. The following result extends the Kolmogorov-Chung type strong law in $E$ obtained by the author and J. Hoffmann-Jфrgensen and G. Pisier (cf. [14], p. 390, where $E$ is of $R$-type $p, 1 \leqslant p \leqslant 2$, and $q=1$ ). In the case $E=R, p=2, q \geqslant 1$, the theorem is due to Brunk [2] and Prohorov [11].

Theorem 3.1. (a) Let $1 \leqslant p \leqslant 2$, let $E$ be of R-type $p$, and $q \geqslant 1$. If $\left(X_{n}\right)$ are independent zero-mean random vectors in $E$ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mathrm{E}\left\|X_{n}\right\|^{p q}}{n^{p q+1-q}}<\infty \tag{3.1}
\end{equation*}
$$

then $S_{n} / n \rightarrow 0$ a.s. in norm.
(b) Conversely, if $q \geqslant 1,1 \leqslant p \leqslant 2$, and, for each $\left(x_{i}\right) \subset E$ such that $\sum\left\|x_{i}\right\|^{p q} / i^{p q+1-q}<\infty$,

$$
\sum_{i=1}^{n} r_{i} x_{i} / n \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

a.s. in norm, then $E$ is of R-type $p$.

Proof. (a) For $q=1$ the theorem boils down to the Kolmogorov-Chung type strong law as mentioned above.

Assume $q>1$. Then $\left\|S_{n}\right\|^{p q}$ is a real submartingale and, by the well-known Hajek-Rényi-Chow type inequality, we get

$$
\begin{array}{r}
\varepsilon^{p q} P\left(\sup _{j \geqslant n}\left\|S_{j} / j\right\|>\varepsilon\right)=\varepsilon^{p q} \lim _{m \rightarrow \infty} P\left(\sup _{n \leqslant j \leqslant m}\left\|S_{j} / j\right\|^{p q}>\varepsilon^{p q}\right)  \tag{3.2}\\
\leqslant n^{-p q} \mathrm{E}\left\|S_{n}\right\|^{p q}+\sum_{j=n+1}^{\infty} j^{-p q} \mathrm{E}\left(\left\|S_{j}\right\|^{p q}-\left\|S_{j-1}\right\|^{p q}\right) \\
\text { for every } \varepsilon>0
\end{array}
$$

By Proposition 2.1 and by Hölder's inequality,

$$
\mathrm{E}\left\|S_{j}\right\|^{p q} \leqslant C \mathrm{E}\left(\sum_{i=1}^{j}\left\|X_{i}\right\|^{p}\right)^{q} \leqslant C j^{q-1} \sum_{i=1}^{j} \mathrm{E}\left\|X_{i}\right\|^{p q}
$$

so that by (3.1) and Kronecker's lemma we obtain

$$
j^{-p q} \mathrm{E}\left\|S_{j}\right\|^{p q} \rightarrow 0 \quad \text { as } j \rightarrow \infty
$$

Also the series on the right-hand side of (3.2) converges because of Proposition 2.1. Hence, summing by parts,

$$
\begin{aligned}
\sum_{j=1}^{n}\left((j-1)^{-p q}+j^{-p q}\right) \mathrm{E}\left\|S_{j}\right\|^{p q} & \leqslant \sum_{j=1}^{n}\left((j-1)^{-p q}+j^{-p q}\right) j^{q-1} \sum_{i=1}^{j} \mathrm{E}\left\|X_{i}\right\|^{p q} \\
& \leqslant C \sum_{j=1}^{n} \mathrm{E}\left\|X_{j}\right\|_{i}^{p q} / j^{p q+1-q}+\sum_{i=1}^{n} \mathrm{E}\left\|X_{i}\right\|^{p q} / n^{p q+1-q}
\end{aligned}
$$

Therefore, for every $\varepsilon>0$,

$$
P\left(\sup _{j \geqslant n}\left\|S_{j} / j\right\|>\varepsilon\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

(b) Kahane's theorem (cf. [14], p. 275) states that, for any Banach space $E$ and any $p(0 \leqslant p<\infty)$, all the $L_{p}(E)$-norms are equivalent on the span of $\left(r_{i} x_{i}\right),\left(x_{i}\right) \subset E$. Hence, in view of the closed graph theorem, there exists $C$ such that for all $\left(x_{i}\right) \subset E$
so that

$$
\mathrm{E}\left\|\sum_{i=1}^{n} n^{-1} i^{1+(1-q) / p q} r_{i} \ddot{x}_{i}\right\| \leqslant C\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p q}\right)^{1 / p q} \quad \text { for all }\left(x_{i}\right) \subset E .
$$

## Hence

$$
\begin{aligned}
\mathrm{E}\left\|\sum_{i=1}^{n} r_{i} x_{i}\right\| & =\mathrm{E}\left\|\sum_{i=n+1}^{2 n} r_{i} x_{i-n}\right\| \\
& \leqslant n^{-(1-q) / p q} \mathrm{E}\left\|\sum_{i=1}^{n} \frac{i^{1+(1-q) / p q}}{2 n} r_{i} x_{i}+\sum_{i=n+1}^{2 n} \frac{i^{1+(1-q) / p q}}{2 n} r_{i} x_{i}\right\| \\
& \leqslant n^{-(1-q) / p q} C \cdot 2^{1 / p q}\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p q}\right)^{1 / p q} .
\end{aligned}
$$

Now, since for any $\alpha, \beta(0<\alpha, \beta<\infty)$ and $a_{i} \geqslant 0$ the inequality

$$
\left(\sum a_{i}^{\alpha}\right)^{1 / \alpha} \leqslant n^{1 / \alpha-1 / \beta}\left(\sum a_{i}^{\beta}\right)^{1 / \beta}
$$

holds, we have

$$
\mathrm{E}\left\|\sum_{i=1}^{n} r_{i} x_{i}\right\| \leqslant C \cdot 2^{1 / p q} n^{-(1-q) / p q} n^{1 / p q-1 / p}\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{1 / p} \leqslant C \cdot 2^{1 / p q}\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{1 / p}
$$

The following "rate of convergence" result for the weak law is associated with the strong law above.

Theorem 3.2. Let $1 \leqslant p \leqslant 2$ and $q \geqslant 1$. The following properties of a Banach space $E$ are equivalent:
(i) $E$ is of R-type $p$.
(ii) for every $\varepsilon>0$ there exists $C_{\varepsilon}$ such that for any independent zero--mean $\left(x_{i}\right)$ in $E$

$$
\sum_{n=1}^{\infty} n^{-1} P\left(\left\|S_{n} / n\right\|>\varepsilon\right) \leqslant C_{\varepsilon} \sum_{n=1}^{\infty} \frac{\mathrm{E}\left\|X_{n}\right\|^{p q}}{n^{p q+1-q}}
$$

Proof. (i) $\Rightarrow$ (ii). By the Chebyshev, Marcinkiewicz-Zygmund (Proposition 2.1) and Hölder inequalities we get

$$
\begin{aligned}
\sum_{n=1}^{\infty} n^{-1} P\left(\left\|S_{n}\right\|>\varepsilon n\right) & \leqslant \sum_{n=1}^{\infty} n^{-1} n^{-p q} \varepsilon^{-p q} \mathrm{E}\left\|S_{n}\right\|^{p q} \\
& \leqslant \varepsilon^{-p q} C \sum_{n=1}^{\infty} n^{-1+(q-1)-p q} \sum_{k=1}^{n} \mathrm{E}\left\|X_{k}\right\|^{p q} \\
& \leqslant C \varepsilon^{-p q} \sum_{k=1}^{\infty} \mathrm{E}\left\|X_{k}\right\|^{p q} \sum_{n=k}^{\infty} n^{-p q+q-2} \\
& \leqslant C \varepsilon^{-p q} \sum_{k=1}^{\infty} \mathrm{E}\left\|X_{k}\right\|^{p q} / k^{p q+1-q} .
\end{aligned}
$$

(ii) $\Rightarrow$ (i) follows directly from the proof of (b) in Theorem 3.1.
4. Marcinkiewicz-Zygmund's type strong laws and related rates of convergence.

Theorem 4.1. Let $1<p<2$. Then the following properties of a Banach space $E$ are equivalent:
(i) $l_{p}$ is not finitely representable in $E$.
(ii) For any sequence ( $X_{i}$ ) of zero-mean independent random vectors in $E$ with tail probabilities uniformly bounded by tail probabilities of an $X_{0} \in L^{p}$, the series

$$
\sum_{n=1}^{\infty} \frac{X_{n}}{n^{1 / p}}
$$

converges a.s. in norm.
(iii) For any sequence ( $X_{i}$ ) as in (ii), $S_{n} / n^{1 / p} \rightarrow 0$ a.s.

The proof of Theorem 4.1 will be based on the following
Lemma 4.1: Let $1 \leqslant p<2$, let $l_{p}$ be not representable in $E$, and let $\left(X_{n}\right)$ satisfy assumptions of Theorem 4.1 (ii). Then the series

$$
\sum_{n=1}^{\infty}\left(X_{n}-\mathrm{E} Y_{n}\right) / n^{1 / p}
$$

where $Y_{n}=X_{n} I\left(\left\|X_{n}\right\| \leqslant n^{1 / p}\right)$, converges a.s.
Proof. Since
$\sum_{n=1}^{\infty} P\left(X_{n} \neq Y_{n}\right)=\sum_{n=1}^{\infty} P\left(\left\|X_{n}\right\|>n^{1 / p}\right) \leqslant C \sum_{n=1}^{\infty} P\left(\left|X_{0}\right|>n^{1 / p}\right) \leqslant C_{1} \mathrm{E}\left|X_{0}\right|^{p}<\infty$,
in view of the Borel-Cantelli lemma it suffices to show that the series $\sum\left(Y_{n}-\mathrm{E} Y_{n}\right) / n^{1 / p}$ converges a.s.

Let $r>p$. Then

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \mathrm{E}\left\|Y_{n}-\mathrm{E} Y_{n}\right\|^{r} n^{-r / p} \leqslant 2^{r+1} \sum_{n=1}^{\infty} \mathrm{E}\left\|Y_{n}\right\|^{r} n^{-r / p} \\
& =2^{r+1} \sum_{n=1}^{\infty} n^{-r / p} \int_{\| X_{n} \mid \leqslant n^{1 / p}}\left\|X_{n}\right\|^{r} d P=2^{r+1} \sum_{n=1}^{\infty} n^{-r / p} \int_{0}^{n^{1 / p}} t^{r} d P\left(\left\|X_{n}\right\| \leqslant t\right) \\
& =2^{r+1} \sum_{n=1}^{\infty} n^{-r / p}\left(n^{r / p} P\left(\left\|X_{n}\right\| \leqslant n^{1 / p}\right)-r \int_{0}^{n^{1 / p}} P\left(\left\|X_{n}\right\|<t\right) d t\right) \\
& \leqslant C_{1} \sum_{n=1}^{\infty}\left(1-r n^{-r / p} \int_{0}^{n^{1 / p}} t^{r-1}\left(1-P\left(\left|X_{0}\right|>t\right)\right) d t\right) \\
& =C_{1} \sum_{n=1}^{\infty} r n^{-r / p} \int_{0}^{n^{1 / p}} t^{r-1} P\left(\left|X_{0}\right|>t\right) d t=C_{1} \sum_{n=1}^{\infty} \int_{0}^{1} P\left(\left|X_{0} s^{-1 / r}\right|>n^{1 / p}\right) d s \\
& \leqslant C_{2} \mathrm{E}\left|X_{0}\right|^{p} \int_{0}^{1} s^{-p / r} d s=C_{2} \frac{r}{r-p} \mathrm{E}\left|X_{0}\right|^{p}<\infty .
\end{aligned}
$$

By Maurey-Pisier's theorem (see [10] and [14], p. 371) and by assumption, there exists $r>p$ such that $E$ is of $R$-type $r$. Therefore, the estimate above and Theorem V.7.5 in [14] give the desired a.s. convergence of $\sum\left(Y_{n}-E Y_{n}\right) n^{-1 / p}$.

Proof of Theorem 4.1. (i) $\Rightarrow$ (ii). In view of Lemma 4.1 it is sufficient to prove the absolute convergence of the series $\sum \mathrm{E} Y_{n} n^{-1 / p}$. Since $\mathrm{E} X_{n}=0$ and $p>1$, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left\|\mathrm{E} Y_{n}\right\| n^{-1 / p} & \leqslant \sum_{n=1}^{\infty} n^{-1 / p} \int_{n^{1 / p}}^{\infty} t d P\left(\left\|X_{n}\right\| \leqslant t\right) \\
& =-\sum_{n=1}^{\infty} n^{-1 / p} \int_{n^{1 / p}}^{\infty} t d P\left(\left\|X_{n}\right\|>t\right) \\
& =\sum_{n=1}^{\infty}\left(P\left|X_{0}\right|>n^{1 / p}\right)+\int_{1}^{\infty} P\left(\left|X_{0} / s\right|>n^{1 / p}\right) d s \leqslant C \mathrm{E}\left|X_{0}\right|^{p}
\end{aligned}
$$

which gives (i) $\Rightarrow$ (ii).
The implication (ii) $\Rightarrow$ (iii) follows by a straightforward application of Kronecker's lemma.
(iii) $\Rightarrow$ (i). This implication is essentially due to Maurey and Pisier [10] (cf. also [14], p. 389). We quote the proof for the sake of completeness.

In view of Kronecker's lemma it suffices to construct, in any Banach space $E$ such that $l_{p}$ is finitely representable in $E$, a sequence $\left(x_{n}\right) \subset E$,
$\left\|x_{n}\right\| \leqslant 1, n=1,2, \ldots$, such that for a sequence $\left(N_{k}\right) \subset N, N_{k} \rightarrow \infty$, for all choices of $\varepsilon_{n}= \pm 1$ and for all $k \in N$

$$
\begin{equation*}
N_{k}^{-1 / p}\left\|\sum_{i=1}^{N_{k}} \varepsilon_{i} x_{i}\right\|>\frac{1}{2} . \tag{4.1}
\end{equation*}
$$

Put $N_{1}=1$ and choose any $x_{1} \in E,\left\|x_{1}\right\|=1$. Suppose $N_{1}, \ldots, N_{k}$ and $x_{1}, \ldots, x_{N_{k}}$ have been chosen so that $\left\|x_{i}\right\| \leqslant 1, i=1, \ldots, N_{k}$, and for all $\varepsilon_{i}= \pm 1$ inequality (4.1) is satisfied. Choose $N_{k+1} \in N$ large enough for

$$
N_{k+1}^{-1 / p}\left[\frac{2}{3}\left(N_{k+1}-N_{k}\right)^{1 / p}-N_{k}\right]>\frac{1}{2} .
$$

Since $l_{p}$ is finitely representable in $E$, we can find $x_{N_{k}+1}, \ldots, x_{N_{k+1}}$ such that for all $\left(\alpha_{k}\right) \subset \boldsymbol{R}$

$$
\frac{2}{3}\left(\sum_{i=N_{k}+1}^{N_{k+1}}\left|\alpha_{i}\right|^{p}\right)^{1 / p} \leqslant\left\|\sum_{i=N_{k}+1}^{N_{k+1}} \alpha_{i} x_{i}\right\| \leqslant\left(\sum_{i=N_{k}+1}^{N_{k+1}}\left|\alpha_{i}\right|^{p}\right)^{1 / p}
$$

Therefore

$$
\begin{aligned}
N_{k+1}^{-1 / p}\left\|\sum_{i=1}^{N_{k+1}} \varepsilon_{i} x_{i}\right\| & \geqslant N_{k+1}^{-1 / p}\left[\left\|\sum_{i=N_{k}+1}^{N_{k+1}} \varepsilon_{i} x_{i}\right\|-\left\|\sum_{i=1}^{N_{k}} \varepsilon_{i} x_{i}\right\|\right] \\
& >N_{k+1}^{-1 / p}\left[\frac{2}{3}\left(N_{k+1}-N_{k}\right)^{1 / p}-N_{k}\right]>\frac{1}{2} \quad \text { for all } \varepsilon_{n}= \pm 1
\end{aligned}
$$

For spaces $E$ such that $l_{1}$ is not finitely representable in $E$, i.e., for $B$-convex spaces (see [14], Chapter VII), Lemma 4.1 permits to prove the following

Theorem 4.2. The following properties of a Banach space E are equivalent:
(i) $l_{1}$ is not finitely representable in $E$.
(ii) For any sequence ( $X_{i}$ ) of independent zero-mean random vectors in $E$ with tail probabilities uniformly bounded by tail probabilities of an $X_{0} \in L \log ^{+} L$, the series

$$
\sum_{n=1}^{\infty} \frac{X_{n}}{n}
$$

converges a.s.
(iii) For any sequence $\left(X_{i}\right)$ as in (ii), $S_{n} / n \rightarrow 0$ a.s. as $n \rightarrow \infty$.

Proof. (i) $\Rightarrow$ (ii). In view of Lemma 4.1 it suffices to prove that $\sum\left\|E Y_{n}\right\| n^{-1}$ converges whenever $X_{0} \in L \log ^{+} L$. Since $E X_{n}=0$, by integration by parts
we obtain

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left\|\mathrm{E} Y_{n}\right\| n^{-1} & \leqslant \sum_{n=1}^{\infty} n^{-1} \int_{n}^{\infty} t d P\left(\left\|X_{n}\right\| \leqslant t\right) \\
& =\sum_{n=1}^{\infty}\left[P\left(\left\|X_{n}\right\|>n\right)+n^{-1} \int_{n}^{\infty} P\left(\left\|X_{n}\right\|>t\right) d t\right] \\
& \leqslant C_{1}\left[\mathrm{E}\left|X_{0}\right|+\sum_{n=1}^{\infty} n^{-1} \sum_{k=n}^{\infty} P\left(\left|X_{0}\right|>k\right)\right] \\
& =C_{1}\left[\mathrm{E}\left|X_{0}\right|+\sum_{k=1}^{\infty} \sum_{n=1}^{i} n^{-1} P\left(\left|X_{0}\right|>k\right)\right] \\
& =C_{1}\left[\mathrm{E}\left|X_{0}\right|+\sum_{k=1}^{\infty}(\log k) P\left(\left|X_{0}\right|>k\right)\right] \\
& \leqslant C_{1}\left[\mathrm{E}\left|X_{0}\right|+\mathrm{E}\left|X_{0}\right| \log ^{+}\left|X_{0}\right|\right]<\infty
\end{aligned}
$$

(ii) $\Rightarrow$ (iii) follows directly from Kronecker's lemma, and (iii) $\Rightarrow$ (i) can be proved exactly as (iii) $\Rightarrow$ (i) in Theorem 4.1.

Theorem 4.3. (a) Let $E$ be a Banach space, $1<p<2$, and let $\alpha \geqslant 1 / p$. Then $l_{p}$ is not finitely representable in $E$ if and only if for each independent zero-mean $\left(X_{i}\right)$ in $E$ with tail probabilities uniformly bounded by tail probabilities of an $X_{0} \in L^{p}$ we have

$$
\sum_{n=1}^{\infty} n^{\alpha p-2} P\left(\max _{1 \leqslant i \leqslant n}\left\|S_{i}\right\|>n^{\alpha} \varepsilon\right)<\infty \quad \text { for every } \varepsilon>0
$$

(b) Let $E$ be a Banach space and let $1 \leqslant p<2$. Then $l_{p}$ is not finitely representable in $E$ if and only if for each independent zero-mean $\left(X_{i}\right)$ in $E$ with tail probabilities uniformly bounded by tail probabilities of an $X_{0} \in L^{p} \log ^{+} L$ we have

$$
\sum_{n=1}^{\infty} n^{-1}(\log n) P\left(\left\|S_{n}\right\|>n^{1 / p} \varepsilon\right)<\infty \quad \text { for every } \varepsilon>0
$$

Proof. (a) We prove first the sufficiency of the condition of $l_{p}$ not being finitely representable in $E$. By Theorem $4.1, S_{n} / n^{1 / p} \rightarrow 0$ a.s. and, as is easy to see, also

$$
M_{n} / n^{1 / p} \rightarrow 0 \text { a.s., where } M_{u}=\max _{1 \leqslant i \leqslant\lfloor u]}\left\|S_{i}\right\|, u \in R,[u]=\text { entier } u
$$

Hence, if we introduce Chow's delayed sums

$$
S_{u, v}=\sum_{1 \leqslant j \leqslant v} X_{[u]+j}, \quad u, v \in R,
$$

we get

$$
M_{n, n} n^{-1 / p} \leqslant\left(M_{n}+M_{2 n}\right) n^{-1 / p} \rightarrow 0 \text { a.s. } \quad \text { as } n \rightarrow \infty .
$$

Now, in the case $\alpha=1 / p$, since $M_{2^{n}, 2^{n}}(n=1,2, \ldots)$ are independent, from the Borel-Cantelli lemma we infer that

$$
\begin{aligned}
& \infty>\sum_{n=1}^{\infty} P\left(M_{2^{n} .2^{n}}>2^{n / p} \varepsilon\right)=\sum_{n=1}^{\infty} P\left(M_{2^{n}}>2^{n / p} \varepsilon\right) \geqslant \int_{1}^{\infty} P\left(M_{2^{t}}>2^{(t+1) / p} \varepsilon\right) d t \\
& \therefore>(\log 2)^{-1} \int_{1}^{\infty} u^{-1} P\left(M_{u}>2^{1 / p} \varepsilon u^{1 / p}\right) d u \quad \text { for every } \varepsilon>0,
\end{aligned}
$$

so that $\sum n^{-1} P\left(M_{n}>n^{1 / p} \varepsilon\right)<\infty$ for every $\varepsilon>0$.
In the case $\alpha>1 / p$, for $m \geqslant 1$ we have

$$
(m+1)^{\alpha p /(\alpha \dot{p}-1)} \geqslant m^{\alpha p /(\alpha p-1)}+\frac{\alpha p}{\alpha p-1} m^{1 /\left(\alpha_{p}-1\right)} \geqslant m^{\alpha p /(\alpha p-1)}+m^{1 /(\alpha p-1)}
$$

 pendent. Moreover, by Theorem 4.1,

$$
\begin{aligned}
& m^{-\alpha /(\alpha p-1)} M_{m^{\alpha} p /(\alpha p-1), m^{1 /(\alpha p-1)}} \leqslant m^{-\alpha /(\alpha p-1)} M_{m^{\alpha} p /(\alpha p-1), m^{\alpha} p /\left(\alpha_{p}-1\right)} \rightarrow 0 \text { a.s. } \\
& \text { as } m \rightarrow \infty \text {. }
\end{aligned}
$$

Therefore, again by the Borel-Cantelli lemma we obtain

$$
\begin{aligned}
\infty & >\sum_{m=1}^{\infty} P\left(M_{m^{\alpha} p /(\alpha p-1), m^{1 /(\alpha p-1)}} \geqslant m^{\alpha /(\alpha p-1)} \varepsilon\right) \\
& =\sum_{m=1}^{\infty} P\left(M_{m^{1 /(\alpha p-1)}} \geqslant m^{\alpha /(\alpha p-1)} \varepsilon\right) \\
& \geqslant \int_{1}^{\infty} P\left(M_{t^{1 /(\alpha p-1)}} \geqslant(t+1)^{\alpha /(\alpha p-1)} \varepsilon\right) d t \\
& \geqslant(\alpha p-1) \int_{1}^{\infty} u^{\alpha p-1} P\left(M_{u} \geqslant 2^{\alpha /(\alpha p-1)} u^{\alpha} \varepsilon\right) d u
\end{aligned}
$$

which gives the desired rate of convergence. The necessity of the condition of $l_{p}$ not being representable in $E$ follows directly from the example developed in the proof of (iii) $\Rightarrow$ (i) in Theorem 4.1.
(b) Sufficiency. We may assume that $X_{n}$ 's are symmetric. The case of zero expectations can be handled by adapting in the standard way the method presented below.

Put $Y_{k n}=X_{k} I\left(\left\|X_{k}\right\|<n^{1 / p}\right)$. Then

$$
\begin{array}{r}
\sum_{n=1}^{\infty} n^{-1}(\log n) P\left(\left\|S_{n}\right\|>n^{1 / p} \varepsilon\right) \leqslant \sum_{n=1}^{\infty} n^{-1}(\log n) P\left(\bigcup_{k=1}^{n}\left(\left\|X_{k}\right\|>n^{1 / p} \varepsilon\right)\right)+ \\
+\sum_{n=1}^{\infty} n^{-1}(\log n) P\left(\left\|\sum_{k=1}^{n} Y_{k n}\right\|>n^{1 / p} \varepsilon\right) .
\end{array}
$$

The series on the right-hand side can be estimated from above by

$$
C \sum_{n=1}^{\infty}(\log n) P\left(\left|X_{0}\right|>n^{1 / p} \varepsilon\right) \leqslant C_{1} \mathrm{E}\left|X_{0}\right|^{p} \log ^{+}\left|X_{0}\right|<\infty
$$

and the convergence of the second series can be proved as follows.
Since $l_{p}$ is not finitely representable in $E$, by Maurey-Pisier's theorem mentioned before there exists $\delta>0$ such that $E$ is of $R$-type $(p+\delta)$. Hence, making use of Chebyshev's inequality and integrating by parts we get

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n^{-1}(\log n) P\left(\left\|\sum_{k=1}^{n} Y_{k n}\right\|>n^{1 / p} \varepsilon\right) \\
& \leqslant C_{1} \sum_{n=1}^{\infty} n^{-1-(p+\delta) / p}(\log n) \sum_{k=1}^{n} \mathrm{E}\left\|Y_{k n}\right\|^{p+\delta} \\
& \leqslant C_{2} \sum_{n=1}^{\infty} n^{-1-(p+\delta) / p}(\log n) \sum_{k=1}^{n} \int_{0}^{n^{1 / p}} t^{p+\delta} d P\left(\left\|X_{k}\right\| \leqslant t\right) \\
& \leqslant C_{2} \sum_{n=1}^{\infty} n^{-(p+\delta) / p}(\log n) \int_{0}^{n^{1 / p}} t^{p+\delta-1} P\left(\left|X_{0}\right|>t\right) d t \\
&=C_{2} \int_{0}^{1} s^{\delta / p} \sum_{n=1}^{\infty}(\log n) P\left(\left|X_{0} s^{-1 / p}\right|>n^{1 / p}\right) d s \\
& \leqslant C_{2} \int_{0}^{1} s^{\delta / p} \mathrm{E}\left|X_{0} s^{-1 / p}\right|^{p} \log ^{+}\left|X_{0} s^{-1 / p}\right| d s \\
& \leqslant C_{3} \mathrm{E}\left|X_{0}\right|^{p} \log ^{+}\left|X_{0}\right| \int_{0}^{1} s^{-1+\delta / p} d s<\infty .
\end{aligned}
$$

This completes the proof of the sufficiency.
The necessity can be obtained exactly as in (a).
Corollary 4.1. If $l_{p}$ is not finitely representable in $E, 1<p<2$, and $\left(X_{i}\right)$ are i.i.d. zero-mean random vectors in $E$ with $\mathrm{E}\left\|X_{1}\right\|^{p}<\infty$, then

$$
P\left(\left\|S_{n} / n\right\|>\varepsilon\right)=o\left(n^{1-p}\right) \quad \text { for every } \varepsilon>0
$$

Corollary 4.2. Let $E$ be of R-type $p, 1<p \leqslant 2$, and let $\left(X_{i}\right)$ be independent zero-mean vectors in $E$ such that

$$
\begin{equation*}
P\left(\left\|X_{k}\right\|>n\right)=o\left(n^{-p}\right) \tag{4.2}
\end{equation*}
$$

miformiy in $k$. Then for every $\delta>0, \varepsilon>0$

$$
P\left(\left\|S_{n} / n\right\|>\varepsilon\right)=o\left(n^{1-p+\delta}\right)
$$

Proof. Since $E$ is of R-type $p, l^{p-d}$ is not finitely representable in $E$ for every $\delta>0$. From (4.2) it follows also that $X_{k}$ 's have tail probabilities uniformly bounded by tail probabilities of an $X_{0} \in L^{p-\delta}$. Therefore, by Theorem 4.3,

$$
\sum_{n=1}^{\infty} n^{p-\delta-2} P\left(\left\|S_{n} / n\right\|>\varepsilon\right)<\infty,
$$

so that

$$
n^{p-\delta-2} P\left(\left\|S_{n} / n\right\|>\varepsilon\right)=o\left(n^{-1}\right),
$$

which gives the corollary.
From Corollary 1.1 and Theorem 4.3 we get immediately
Corollary 4.3. If $1 \leqslant p<2$ and $l_{p}$ is not finitely representable in $E$, then for any sequence $\left(X_{i}\right)$ (of independent zero-mean random vectors in $E$ with tail probabilities uniformly bounded by tail probabilities of an $X_{0} \in L^{p}$ if $1<p<2$ and of an $X_{0} \in L \log ^{+} L$ if $p=1$ we have

$$
\sum_{n=1}^{\infty} n^{p-2} P\left(\sup _{k \geqslant n}\left\|S_{k} / k\right\|>\varepsilon\right)<\infty \quad \text { for every } \varepsilon>0
$$

## 5. Concluding remarks.

5.1. Brunk's type strong law of large numbers in Banach spaces can be also obtained by using the methods developed by Kuelbs and Zinn [6] (J. Zinn - oral communication). These methods use however a rather powerful tool of exponential inequalities in Banach spaces.
5.2. In the i.i.d. case an alternative proof of results concerning rates of convergence is possible by applying a theorem of Jain [4] who proved that by and large, real-line "rates of convergence" results remain valid in general Banach spaces as long as $S_{n} / n^{\alpha}$ are bounded in probability. In presence of our geometric restrictions on $E$ the latter is, of course, implied by the Marcinkiewicz-Zygmund type strong law. Other extensions along the lines of Jain's paper are also possible (e.g., Orlicz space type moment assumptions). We stuck to a simpler set up to emphasize the relation between geometric and probabilistic phenomena in $E$.
5.3. It also follows from Jain's paper that, for any Banach space $E$ and any i.i.d. zero-mean $\left(X_{i}\right)$, if $X_{1} \in L_{1}(E)$, then $\sum n^{\alpha-2} P\left(\left\|S_{n} / n^{\alpha}\right\|>\varepsilon\right)<\infty$ for every $\varepsilon>0$, and if, for an $\alpha \geqslant 1 / p, \sum n^{\alpha p-2} P\left(\left\|S_{n} / n^{\alpha}\right\|>\varepsilon\right)<\infty$ for every $\varepsilon>0$, then $\mathrm{E} X_{1}=0$ and $\mathrm{E}\left\|X_{1}\right\|^{p}<\infty$.
5.4. If $E$ is a Hilbert space, we can prove a result somewhat stronger than Corollary 4.2. Namely, if $\left(X_{i}\right)$ are i.i.d. in $E$ with $\mathrm{E} X_{1}=0$ and
$P\left(\left\|X_{1}\right\| \geqslant n\right)=o\left(n^{-p}\right)$ for a $p>1$, then $P\left(\left\|S_{n} / n\right\|>\varepsilon\right)=o\left(n^{1-p}\right)$ for every $\varepsilon>0$.
5.5. The validity of the Marcinkiewicz-Zygmund strong law of large numbers for i.i.d. $\left(X_{n}\right)$ in $E$ is equivalent to $E$ being of $R$-type $p$ (A. de Acosta - oral communication).
5.6. Taylor and Wei [13] studied weighted sums of independent random vectors in Banach spaces under moment conditions similar to ours, but obtained only weak laws for them (i.e., with convergence in probability).

## REFERENCES

[1] L. Baum and M. Katz, Convergence rates in the law of large numbers, Trans. Amer. Math. Soc. 120 (1965), p. 108-123.
[2] H. D. Brunk, The strong law of large numbers, Duke Math. J. 15 (1948), p. 181-195.
[3] P. Erdös, On a theorem of Hsu and Robbins, Ann. Math. Statist. 20 (1949), p. 286-291.
[4] N. Jain, Tail probabilities for sums of independent Banach space valued random variables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33 (1975), p. 155-166.
[5] Z. Jurek and K. Urbanik, Remarks on stable measures on Banach spaces, Colloq. Math. 38 (1978), p. 269-276.
[6] J. Kuelbs and J. Zinn, Some stability results for vector valued random variables, Ann. Probability 7 (1979), p. 75-84.
[7] J. Marcinkiewicz and A. Zygmund, Sur les fonctions indépendantes, Fụn. Math. 29 (1937), p. 60-90.
[8] M. B. Marcus et W. A. Woyczyński, Domaines d'attraction normale dans les espaces de type p-stable, C. R. Acad. Sci. Paris 285 (1977), p. 915-917.
[9] - Stable measures and central limit theorems in spaces of stable type, Trans. Amer. Math. Soc. 251 (1979), p. 71-102.
[10] B. Maurey et G. Pisier, Séries dés variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), p. 45-90.
[11] Ю. В. Прохоров, Об усиленном ааконе больиих чисел, Изв. Акад. наук GCGP, сер. мат., 14 (1950), p. 523-536.
[12] F. Spitzer, A combinatorial lemma and its application to probability theory, Trans. Amer. Math. Soc. 82 (1956), p. 323-339.
[13] R. L. Taylor and D. Wei, Geometrical consideration of weighted sums convergence and random weighting, Bull. Inst. Math. Acad. Sinica 6 (1978), p. 49-59.
[14] W.-A. Woyczyński, Geometry and martingales in Banach spaces, Part II. Independent increments, Advances in Probability 4 (1978), p. 267-518.

## Department of Mathematics

Cleveland State University
Cleveland, Ohio 44115, U.S.A.

Received on 16. 7. 1979

