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. Abstract. The paper studies asymptotic almost sure and tail 
behavior of sums (XI+ .. +X,)/nltP,  1 $ p < 2, for independent, 
centered random vectors X,, n = 1,2, . . . , taking values in Bana'ch 
space E. The obtained results are in the spirit of Mazurkiewicz- 
-Zygmund, Hsu-Robbins-Erdos-Spitzer, and Brunk theorems for 
real random variables and show the essential role played by the 
geometry of E in the infin~te-dimensional case. 

1. Introduction and preliminaries. Let (E, I/ . I ( )  be a real separable Banach 
space. In the present paper we study strongly measurable random vectors X 
on a probability space (a, 9, P) with values in E. If E IIXII < a, then EX 
stands for the Bochner integral, and throughout the paper (Xi)i= . . will 
be independent random vectors in E, with So = 0, S, = XI + . .. + X,, 
n = 1, 2, ..., and (ri) will stand for a Rademacher sequence, i.e., a sequence 
of real independent random variables with P(ri = f 1) = 1/2. 

We recall a couple of definitions (for more information cf., e.g., [I$.]). 
Definit ion 1.1. Let 1 < p < 2. A Banach space E is said to be of 

Rademacher type p (R-type p) if there exists C such that' for every  EN 
and for- all x,, ..., X,EE 

n I 

Definition 1.2. Let 1 < p < 2. 1, is said to be finitely representable 
in E if for every E > 0 and every n E N  there exist xl, . . . , xn E E such that 
for all a,, . . . , a, E R 

n n A 



118 W. A. W o y c z y n s k i  

Example 1.1. I, is of R-type min(p,2) for any p B 1. 1, is fmitely 
representable in I, for any q < p, but 1, is not finitely representable in 1, 
if q > p. On the other hand, by Dvoretzky's thcorem, l 2  is finitely 
representable in E for any infinite dimensional E. I 

Definition 1.3. A sequence (Xi) of random vectors in E is said to 
have un~urrnly bounded tail probabilities by tail probabilities of a real random 
variable X ,  if there exists C > 0 such that for every t > 0 and every  EN 1 

-- - P(lXij > t) I < CP(IX,I > t ) .  

The main results of the paper deal with the almost sure convcrgence 
of sums S,/n'/P and with the rate of convergence to zero of tail probabilities 

' 

P(1IS,/n'IP~I > E )  under restrictions on individual random vectors Xi and on 
geometric structure of E.  For real-valued independent identically distributed 
( X i )  (E = R )  the problem of rates of convergence was studied in a series I 

of papers by El-dos [3], Spitzer [12], Baum and Katz [I], and in the case 
of a general Banach space E certain interesting results have been obtained 
by Jain [4]. I 

As far as the strong and weak laws .of large numbers of Marcinkiewicz- 
-Zygrnund type (i.e., for S,/n1tp and i.i.d. (Xi)) are concerned the following - 
is known : 

In the case p = 1, R. Fortet and M. Mourier proved in 1953 that, 
without any restrictions on E, if (Xi) are i.i.d., E IIXIII < oo and EX, = 0, 
then S,/n -+ 0 a.s. On the other hand, Maurey and Pisier [lo] have shown 
that ( r ,  xi  + . . . +r,, x,)/nltp + 0 as .  for any bounded sequence (x,) c E if I 

and only if 1, is not finitely representable in E (I < p < 2). In 1977, Marcus 
and Woyczynski [8], [9] proved that Sn/nliP + 0 in probability for any i.i.d. 
(Xi) satisfying the condition I 

lim nPP(IIX,II > n) = 0 
n +a' 

if and only if 1, i s  not finitely representable in E. 
In this paper we show, in particular, that for independent (Xi) with 

uniformly bounded tail probabilities the implication "if E llXillP < cx, and 
EXi = 0, then S,/nl/p -+ 0 a.s." also depends in an essential way on 1, not 
being finitely representable in E. We also prove that a Banach space analogue 
of Brunk's strong law of large numbers (cf. [2 ] ,  [ll]) depends on the R-type . 
of E. Brunk's type strong law is particularly useful in cases where one has 
information about existence of moments of Xi's of orders greater than 2. 
Such information may not be utilized in the framework of Kolmogorov- 
-Chung's strong law. 

As far as the rates of convergence are concerned a number of simple ' 

remarks are in order here. Directly from definitions and from Chebyshev's 
inequality one can obtain the following "trivial" rate: I 



PROPOSJTI~N 1.1. Let 1 < p G 2 arrti let E be of R-type p. I f  ( X i )  are i.i.d. 
with E ]IXllip < co and EXI = 0 ,  then 

Also some exponential rates can be immediately obtained without any 
restrictions on the geometric structure of E. 

PROPOSITION 1.2. If '(Xi) are i.i.d. with EX, = 0 an(/ 1~4th the property 
that fir every E > 0 there exist C, and pF such that for every < BE 

then for every "E > 0 there exists or < 1 such that 

f'(IISn/nIl > 4 = O(an). 
- . -  

Proof. By Chebyshev's inequality and for 6 < E we get 

It is also interesting to notice that a sufficiently rapid rate of convergence 
to zero of tail probabilities P (IIS,/%ll > E )  implies similar rates of convergence 
in the strong law, i.e., for the suprema. 

PROPOSITION 1.3. Let E be a Banach space and let (Xi) be independent 
symmetric random vectors in E. Let (ai), (b,), (ci) c R be such that 

j 

O < a i t ~ ,  bi ,ciJO and C 2'b2i=O(2jc2j)  
i =  1 

and let 
m 

cn P (llSn/u,,ll > E) < co f i r  mery E > 0 .  
n = 1 

Then 

. 
.- b, P (sup IISk/ukI > E) < a~ for every E > 0 .  

n = 1 k > n  

Proof. Grouping the terms in exponential blocks (n: 2j < n ,< 2j'l) 
we get 

< C C bZi - 2 ' ' ~  ( max IISk/akll > E) 
i=1 j=j  2 j < k < 2 j + l  
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and, by Levy's inequality, 

. . - ... 

-Now, by the symmetry assumptions, grouping the terms again as follows: 

we obtain 
m 

A < 8C c,P(IIS./anll > 26). 
n = l  

Two special cases of Proposition 1.3 will be of interest later on. 
COROLLARY 1.1. Let E be a Banach space and let (Xi) be independent 

symmetric random vectors in E. Then 
(i) for every q > 1 there exists C > 0 such that 

(ii) there exists C > 0 such that - 

n - l P ( s u ~  IISk/&il > &) c n-'(Iogn)P(llsdan/l > 6 )  
n = 1 k b n  R = 1 

2. Rates of convergence based on the Marcinkiewicz-Zygmund inequality. 
In Proposition 1.1 we could have only used moments of order p, 1 d p < 2,  
and in Proposition 1.2 exponential moments were needed. The following 
analogue of the Marcinkiewicz-Zygmund inequality (cf. also results by 
P. Assouad and B. Maurey and G. Pisier quoted in t14-J) permits us to 
use the information on moments of arbitrary order. 

PROPUSITION 2.1. Let 1 < p < 2 and q 2 1 .  The foIlowing properties of E 
are equivalent: 

(i) E is of R-type p. 
(ii) There exists C such that for every n~ N and for any sequence (X i )  

of independent random vectors in E with EXi = 0 
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Proof. (i) +- (ii). Let (Ti) -= (Xi-XI) be a symmetrization of (Xi) ,and 
let (ri) be independent of (Xi) and (Xi). Then 

where'the first inequality follows from the condition EXi = 0, and because 
(Xi) are independent of-(Xi), the equality holds by symmetry of (TI), the 
second hequality by R-type of E and Fubini's theorem, and the third one 
by the triangle inequality. 

The implication (ii) * (i) follows from the proof of Theorem 3.1 given 
in the sequel. 

COROLLARY 2.1. Let E be o f  ~ - r j j e  p  and g 3 pl If  (X,) are i i d .  random 
vectors in E with E IIXxllq < co and EX, = 0, then E llSn)Iq = O(nqip).  

Proof. If p = q, the estimate follows directly from the definition of 
R-type p. If q z p, then by Wilder's inequality with exponents q/p and 
q/(q-p)  and by Proposition 2.1 we have 

E 11  f: xillQ c E (  I I X ~ I I ~ ) ~ ~  
i = l  i = l  

2 .  
n 

< C E(  C IIXillq)n(qAp)iP = Cn41P E IIX I 1 1  q .  
i=  1 

. Hence, by Chebyshev's inequality we obtain immediately 
COROLLARY 2.2. Let E be of R-type p and q  2 p .  I f  (X,) are i.i.d. with 

E lIXlllq < ao and EX, = 0 ,  th2n 

P(IIS,/nll > E) = for every E > O .  

Remark 2.1. Jurek and urban& [ S ] ,  studying stable measures on E, 
define E as being of type ( s ,  r ) ,  s  2 0 ,  r > 0 ,  whenever there exists C such 
that for all (Xi) independent and symmetric in E 

Proposition 2.1 implies (as in the proof of Corollary 2.1) that if E is of- 
R-type p, then 

for eveiy q  2 p, 

i.e. E is also of Jurek-Urbanik's type ( q / p -  1, q) or, equivalently, E is of 
type ( s ,  p(s+ 1)) for every s 2 0. One can also show (as in Theorem 3.1 



below) that if for some s > 0 the space E is of type (s ,p(s+l)) ,  then E 
is of R-type p. 

3. Brunk's type strong law and related rates of convergence. The following 
result extends the Kolmogorov-Chung type strong law in E obtained by the 
author and I. Hoffmann-J$rgensen and G. Pisier (cf. [f4], p. 390, where , 

E is of R-type p, 1 6 p < 2, and q = 1). In the case E = R ,  p = 2, q 3 1, 
the theorem is due to Brunk [2] and Prohorov [ll]. 

- THEOREM 3.1. {a) Let 1 S p G 2, let E be of R-type p, and-q 2 1.  If (X,) 
are independent zero-mean random vectors in E such that 

(3.1) -= a, 
- - -  n = l  

then SJn + 0 a s ,  in norm. 
(b) Conversely, if q 2 1, 1 < p < 2, and, for euch (xi) c E such that 
ll~~llW/iW+~-Q < 00, 

n 

a.s. in 'norm, then E is of R-type p. 

Proof. (a) For q = 1 the theorem boils down to the Kolrn~gorov-Chung 
type strong law as mentioned above. 

Assume q > 1. Then IIS,IJW is a real submartingale and, by the well-known 
Hajek-Rdnyi-Chow type inequality, we get 

(3.2) c W P ( s u p  IISj/j]l > E )  = eW lim P (  sup llSj/jllw > E ~ ~ )  
j2 n m-t m nS j S m  

m 

< n-Pq E llS,llPq+ j-Pq E(IISjllW- IISj-lIIW) 
j = n +  1 

for every E > 0. 

By Proposition 2.1 and by Holder's inequality, 
i i 

EIISjllw < CE( C llXillpp < Cjq-' z EIIXillPq, 
i = 1 i = l 

so that by (3.1) and Kronecker's lemma we obtain 

Also the series on the right-hand side of (3.2) converges because of 
Proposition 2.1. Hence, summing by parts, 
n n i 
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Therefore, for every E > 0, 

P (sup IISj/jll > e)  + O as n -r a,. 
Jan 

(b) Kahane's theorem (cf. 1141, p. 275) states that, for any Banach space E 
and any p (0 S p < m), a11 the Lp(E)-norms are equivalent on the span of 
( r ix i ) ,  (xi) c E .  Hence, in view of the closed graph theorem, there exists C 
such that for all (x,) c E 

so that 
n n 

E I I  n - l i l + ( l - q ) ~ ~ g  rixijl < C ( C  I x ~ ~ ~ P ~ ) ~ ~ ~ ~  for all ( x i ) c  E. 
i = i  i = 1 

Hence 

Now, since for any a, /3 (0 < a, #? < a) and ai 2 0 the inequality 

(z d ) l / a  < n l / a  - 110 (c d)ltP 
holds, we have 

n 

E 1 1  z rixill < C . 2 1 / m n - ( 1 - q ) " . 1 " - 1 1 p (  ~ l x ~ l l p ) l k  s ~ . 2 1 @ 9 (  l / x i l l ~ l l p .  
i = l  i = 1 i = l  

The following "rate of convergence" result for the weak law is associated 
with the strong Iaw above. 

THEOREM 3.2. Let 1 < p < 2 '  and q 2 1. The foIlowing properties of 
a Bmach space E are equivalent: 

(i) E is of R-type p .  
(ii) for every E > 0 there exists C, such that for any independent zero- 

-mean (xi) in E .I > 



Proof. (i) = (ii). By the Chebyshev, Marcinkiewicz-Zygmund (Proposi- 
tion 2.1) and Hiilder inequalities we get 

(ii) * (i) follows directly from the proof of (b) in Theorem 3.1. 

4. .Marcinkiewicz-Zygmond's type strong laws and related rates of mn- 
vergeme. 

THEOREM 4.1. Let 1 < p < 2. Then the following properties of a Banach 
spuce E are equivalent: 

(i) I ,  is not finitely representable in E. 
(ii) For any sequence (Xi) of zero-mean independent random vectors in E 

with tail probabilities unSformJy bounded by tail probabilities of an X o  €LP,  
the series 

i& 
n = l  n 1 /P 

converges a.s. in norm. 
(iii) For any sequence (Xi) as in (ii), Sn/nllp -, 0 as.  

The proof of Theorem 4.1 will be based on the following 

LEMMA 4.1: Let 1 < p < 2,  let 1, be not representable in E, and let (X,) 
satisfy assumptions of Theorem 4.1 (ii). Then the series 

where Y, = Xn I ((IXnI( < n'lp), converges a.s. , .  

Proof. Since 

in view of the Borel-CanteIIi lemma it suffices to show that the series 
(G - E ~ ] / n l / ~  converges a.s. 
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Let r > p. Then 

By Maurey-Pisier's theorem (see [10] and [14], p. 371) and by assumption, 
there exists r > p such that E is of R-type r. Therefore, the estimate above 
and Theorem V.7.5 in , [14] give the desired a.s. convergence of 
z ( ~ - ~ K ) n - ' / p .  

Proof  of Theorem 4.1. (i) = (ii). In view of Lemma 4.1 it is sufficient 
to prove the absolute convergence of the series EEKn-'". Since EX,, = 0 - 
and p > 1, we have 

.L . 

which gives (i) (ii). 
The implication (ii) - (iii) follows by a straightforward application of ' 

Kronecker's lemma. 
(iii) * (i). This implication is essentialIy due to Maurey and Pisier [lo] 

(cf. also [14], p. 389). We quote the proof for the sake of completeness. 
In view of Kronecker's lemma it suffices to construct, in any Banach 

space E such that I, is finitely representable in E, a sequence (x,) c'E, 



/lxnll 6 1, n = 1,2, ..., such that for a sequence (Nh c N ,  N ,  -r co, for all 
choices of E, = f 1 and for all k E N 

Put N, = 1 and choose any X, E E, llxl 1 1  = 1. Suppose N , ,  . .., Nk and 
xl, ..., xN, have been chosen so that llxijl < 1, i = I ,  ,.., Nk, and for all 
e, = + 1 inequality (4.1) is satisfied. Choose N ,  + , E N  large enough for 

.. - 

Since 1, is finitely representable in E, we can find x,,,,, ..., x,,,, such 
that for a11 (a,) c R 

2 N k + l  IVk+ 1 N k +  1 
P 1 1 ~ .  - (  1 I%IP)"'" 1 1  C ~ixill ( C \ail) 

3 r = N t + l  i = R k +  1 i = N k +  1 

Therefore 

> N - ~ I P  [: - (Nk+,-Ndl"-Nk for, all E , =  f l .  

For spaces E such that I, is not finitely representable in E, i.e., for 
3-convex spaces (see [14], Chapter VIQ, Lemma 4.1 permits to prove the 
following -. 

THEOREM 4.2. The following properties of a Banach space E are equivalent: 
(i) I ,  is not finitely representable in E. 
(ii) For any sequence (Xi) of independent zeromean random vectors in E 

with tail probabilities uniformly bounded by tail probabilities of an X, E L log+L, 
the series 

" xn k- n= 1 

converges a s .  
(iii) For any sequence (Xi) as in (ii), S,/n + 0 a.s. as n -, GO. 

Proof. (i) * (ii). In view of Lemma 4.1 it suffices to prove that llE K / )  n-' 
converges whenever X , E L  log' L. Since EX, = 0, by integration by parts 
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we obtain i 
1 

< C1 [EIXoI +E/XoI log+ lxol] < KC. 

(ii) (iii) follows directly from Kronecker's lemma, and (iii) = (i) can be 
proved exactly as (iii) 3 (i) in Theorem 4.1. 

THEOREM 4.3. (a) Let E b~ n Banach space, 1 < p < 2,  and k t  cr 2 l/p. 
Then 1, is not finitely representable in E i f  and only if for each independent 
zero-mean (Xi) in E with taiI probabilities uniformly bounded by taiI probabilities 
of an X o  E LP we have 

CC 

I Z " ~ - ~  P(max llSill > n " ~ )  < co for every E > 0 .  
n =  1 1 C i C n  

(b) Let E be a Banach space and let 1 Q p < 2. Then I ,  is not Jinitely 
representable in E if and only i f  for each independent zero-mean (Xi) in E 
with tail probabilities uniformly bounded by tail probabilities of an X, E LP log' L 
we -have 

n-l(logn)P([lS,,II > l a l i p & ) <  co for every E > O .  
n =  1 

Proof. (a) We prove first the sufficiency of the condition of 1, not 
being finitely representable in E. By Theorem 4.1, SJn'IP + 0 a.s. and, as is 
easy to see, also 

Mn/nlIP -+ 0 a.s., where Mu = max /ISill, u E R, [u] = entier u .  
1 C iS[ul 

Hence, if we introduce Chow's delayed sums 



we get 

M,,,. n-'IP G (M,, + MZn)  n-liP + 0 as. as n -+ CO. 

Now, .in the case a = lip, since M a n S z n  (n = 1, 2, . . .) are independent, 
from the Borel-Cantelli lemma we infer that 

cO m m 

KJ > P ('MznB2n > Znl'&) = z P (M2n > 2"" E )  2 J P (M2t > 2(t' ' ) I p  ~ ) d t  
n= 1 n =  1 1 

.. - 
m 

> ( ~ O ~ ~ ) - ~ ~ U - ~ P ( M , > ~ ~ / ~ E U ~ ~ ~ ~ U  for e v e r y & > Q ,  
I 

so that 1 n - ' P ( M ,  > nilP&) < cc for every E > 0, 
In the case a > l/p, for m 3 1 we have 

&P ( m + l ) O L ~ / ( u ~ - l ) ~ m a ~ I ( Q ~ - l ) ~  I I 1 l / ( a ~ - l ) > & ~ / ( @ ~ - l ) + m l / ( a ~ - l )  

up- 1 
I 

i so that the random variables M m a p / b p -  l ) , , , i / ~ ~ ~  - 11, m = 1,2, . . . , are inde- 
pendent. Moreover, by Theorem 4.1, 

I 

Therefore, again by the Borel-Cantelli lemma .we obtain 

which gives the desired rate of convergence.. The necessity of the condition 
of 1, not being representable in E follows directly from the example 
developed in the proof of (iii) (i) in Theorem 4.1. 

(b) Sufficiency. We may assume that X,'s are symmetric. The case 
of zero expectations can be handled by adapting in the standard way the 
method presented below. 
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Put Ykn = X k  I (IIXkll < nilP), Then 

The series on the right-hand side can be estimated from above by 
m 

C (log n) P-(IXOl > nilp E) < C1 E IXOIP log+ IXol < oo , 
n= 1 

and the convergence of the second series can be proved as follows. 
Since I ,  is not finitely representable in E, by Maurey-Pisierys theorem 

mentioned before there exists d > 0 such that E is of R-type (p+6). Hence, 
- - 

making use of Chebyshev's inequality and integrating by parts we get 

1 m 

= 6, I s a l p  C (log n) P (IX, s -  lip/ > nllp)ds 
0 n = l  

This completes the proof of the sufficiency. 
 he-necessity can be obtained exactly as in (a). .' 

COROLLARY 4.1. If iP is not Jinitely representable in E ,  1 < p < 2,  and 
(Xi) are i.i.d. zero-mean random vectors in E with E I(X,((P < m, then 

P(IISn/nll > ~ ) = o ( n ' - P )  for e v e r y & > O .  

COROLLARY 4.2. Let E be of R-type p ,  1 < p < 2 ,  and let (Xi) be indepen- 
dent zero-mean vectors in E such thut 

(4*2) P(llxkli > n, = O ( n - P )  



r:n@:rnrly in k. 7-h~:; for 2vc . r~~  8 > 0,  E > I) . 

Proof. Since E is of R-type p, lPP" is not finitely representable i11 E 
for every 6 > 0. From (4.2) it follows also that Xis  have tail probabilities 
~niforrnly bounded by tail probabilities of an X,E L"-". Therefore, by 
Theorem 4.3, 

x c E ~ - 6 - z  p(ilS./n!l =- 4 < m, 
-. - - n =  1 

so- that 

i a p - 6 - 2  P (IISn/nll > E )  = o(n'-I), . 
_I .- - 

which the corollary. 
From Corollary 1,l and Theorem 4.3 we get immediately 
COROLLARY 4.3. If  1 < p < 2 and I ,  is not $finitely representable in E, 

then for any sequence (Xi){of independe~t zero-mean random vectors in E 
with tail probabilities ungormly bounded by taiI probabilities of an X X , ~  LP 
ij 1 < p < 2 and ofun X 0 ~ L l o g f  L i f p  = 1 we have 

, 
m 

n P - 2 P ( s ~ p  /JSJkI/ > E) < a for every E > 0 .  
n =  1 k B n  

5. Concluding remarks. 
5.1. Brunk's type strong law of large numbers in Banach spaces can 

be also obtained by using the methods developed by Kuelbs and Zinn [6] . 

(J. Zinn - oral communication). These methods use however a rather 
powerful tool of exponential inequalities in Banach spaces. 

5.2. In the i.i.d. case an alternative proof of results concerning rates 
of convergence is possible by applying a theorem of Jain [4] who proved 
that by and large, real-line "rates of convergence" results remain valid in 
general Banach spaces as long as S,/m" are bounded in probability. In presence , . 

of our geometric restrictions on E the latter is, of course, implied by the 
Marcinkicwicz-Zygmund type strong law. Other extensions along the lines 
of Jain's paper are also possible (e.g., Orlicz space type moment assumptions). 
We stuck to a simpler set up to emphasize the relation between geometric 
and probabilistic phenomena in E. 

5.3. It also follows from Jain's paper that, for any Banach spaci E and 
any i.i.d. zero-mean (Xi), if XI E L1 (E), then C n" -' P (IIS./nall > E )  < rn for 
every E > 0, and if, for an ci $ l/p, C n"p-' P(IIS,JnalI > E )  < oo for every 
E > O ,  then EX, = O  and EJJX,IIP < m. 

5.4. If E is a Hilbert space, we can prove a result somewhat stronger 
than Corollary 4.2. Namely. if (Xi) are i.i.d. in E with EX, = 0 and 
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P(IJXIJJ 2 nj = o(nLP) for a p > 1 ,  then P(llSn/nll > E) = ~ ( n l - ~ )  for every 
E > 0. 

5.5. The validity of the Marcinkiewicz-Zygmud strong law of large 
numbers for i.i.d. (X,) in E is equivalent to E being of R-type p 
(A. de Acosta - oral communication). 

5.4. Taylor and Wei [13] studied weighted sums of independent random 
vectors in Banach spaces under moment conditions similar to ours, but 
obtained only weak laws for them (i.e., with convergence in probabj!ity). 

-- - 
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