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Abstract. The paper studies asymptotic almost sure and tail
behavior of sums (X;+...+X,/n'?, 1 < p < 2, for independent,
centered random vectors X,, n = 1,2, ..., taking values in Banach
space E. The obtained resulfs are in the spirit of Mazurkiewicz-
-Zygmund, Hsu-Robbins-Erdos-Spitzer, and Brunk theorems for
real random variables and show the essential role played by the
geometry of .E in the infinite-dimensional case. -

3

" 1. Introduction and prellmmarles Let (E, ||-]) be a real separable Banach
space. In the present paper we study strongly measurable random vectors X
on a probability space (Q, %, P) with values in E. If E ||X | < oo, then EX
stands for the Bochner integral, and throughout the paper (X;);=12.... will
be independent random vectors in E, with S; =0, S, = X;+ ... +X,,
n=1,2,..., and (r) will stand for a Rademacher sequence, ie., a sequence
of real independent random variables with P(r; = +1) = 1/2.

We recall a couple of definitions (for more information cf., e.g., [14]).

Definition 1.1. Let 1 < p < 2.'A Banach space' E is said to be of

Rademacher type p-(R-type p) 1f there exists C such that for every neN
and for~-»a11 Xy, X €E

| EII Z rixi| < Z lac; 1)1, -
Defmltlon 1.2. Let 1 < 2. 1, is said -to be finitely representable

in E if for every ¢ > 0 and every neN there exist x,,...,x,€E such that
for a_ll Ofs e oc,,eR

(3, i) < | z nl <+ ( 3, )™
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Example 1.1. I, is of R-type min(p,2) for any p > 1. [, is finitely
representable in [, for any g < p, but [, is not finitely representable in I,
if ¢ > p. On the other hand, by Dvoretzky’s thcorem, [, is .ﬁnitely

representable in E for any infinite dimensional E.

Definition 1.3. A sequence (X;) of random vectors in E is said to
have uniformly bounded tail probabilities by tail probabilities of a real random
variable X, if there exists C > 0 such that for every ¢t > 0 and every ieN

_ Pl X’-II : CP(|X0| > 1).

_ The main results of the pdper deal WIth the almost sure convergence
of sums S;/n'/? and with the rate of convergence to zero of tail probabilities
P (||S./n*"?| > ¢€) under restrictions on individual random vectors X; and on
geometric structure of E. For real-valued independent identically distributed
(X)) (E = R) the problem of rates of convergence was studied in a series
of papers by Erdos [3], Spitzer [12], Baum and Katz [1], and in the case
of a general Banach space E certain 1nterest1ng results have been obtained
by Jain [4]." '

As far as the strong and weak laws of large numbers of Marcmklewrcz-
-Zygmund type (i.¢., for S,,/n”" and iid. (X)) are concerned the following
is known: :

In the case p = 1 R. Fortet and ‘M. Mourier proved in 1953 that,
without any restrictions on E, if (X;) are iid., E| X < oo and EX; =0,
then S,/n — 0 a.s. On the other hand, Maurey and- Pisier [10] have shown
that . (r; X1+ -{—r,,x,,)/n‘/" — 0 as. for any bounded sequence (x) < E if
and only if I, is not ﬁmtely representable mE(l< p < 2). In 1977, Marcus
and Woyczynskl (8], [9]1 proved that S,,/n”” -0 in probab111ty for any iid.
(X;) satisfying the cond1t10n L s

11m n"P(||X1|[ > n) = 0 e
if and only if l 1is: not ﬁnltely representable in E.

In this paper we show, in particular;-that for . mdependent (X ) with
uniformly bounded tail  probabilities the implication “if E | X;||”? < co and

-EX; = 0, then S,/n'”? - 0 as.” also depends in an essential way on [, not

being finitely representable in E. We also prove that a Banach space analogue
of Brunk’s strong law of large numbers (cf. [2], [11]) depends on the R-type |
of E. Brunk’s type strong law is particularly useful in cases where one has
information about existence of moments of X;’s of orders greater than 2.
Such information may not be. utlhzed in the framework of Kolmogorov-
-Chung’s strong law. g

As far as the rates of comvergence are concerned a number of s1mp1e
remarks are in order here. Directly from definitions and from Chebyshevs ’
inequality one can obtain the followmg ‘trivial” rate:
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ProrosITION 1.1. Let 1 < p < 2 and let E be of R-type p. If (X;) are i.id.
with E||X{||F < o0 and EX; = 0, then

P(|S,/n| = s) O(nl_?’) for ever’:‘y e > 0.

Also some exponential rates can be immediately obtained without any
restrictions on the geometric structure of E.

PROPOSITION 1.2. If (X;) are iid. with EX, = 0 and with the property
that for every ¢ > 0 there exist C, and f, such that for every f < B,

| Eexp [f11X,1]1 < C, exp [Be],
then for every e > 0 there exists o < 1 such that
P(IS, /nll > &) = 0.
Proof. By Chebyshevs mequallty and. for 5 < & we get

P(IIS /nll > ) < CXP[ ﬁane] ECXP [B5 11801
< exp [ - Bsnel (B exp [B; 1X, 11 < (f‘Xp [(5-8) ﬁu])

It is also interesting to notice that a sufficiently rapid rate of éonvergence
to zero of tail probabilities P (||S,/a,| > a) 1mplles similar rates of convergence
in the strong law, ie., for the suprema. '

PROPOSITION 1.3. Let E be a Banach space and let (X;) be mdependenr
symmetric random vectors in E. Let (a;), (b)), (¢;}) = R be such that

0<alw, “b,cl0 and Z 2ib, = 0Qic,;
and let ‘ '
o Y QP (Sal > <0 for every o> 0.

Z an(sulﬁ_llSk/a,;|| _>‘£)_<. 0 ‘foir',evevry e>0.
n=1 kzn ’ . ’

Proof. Grouping the terms in exponential blocks (n: 28 < n < 2*+1)
we get ; o

1]
M

A

I

b,.P(Sup ISk/axll > €) < ), by -2"P(fug_ IS/all > &)
: i=1 22}

n=1

Z by 2P ( max  |Syal > ¢)

j=i 2i<k<2

VAN
Ms

I
o,

i
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and, by Lévy’s inequality,

© .
Z iP(||S2j+1/azj+1” > g) _

1 j=i

( i by 2)P(IS, 4 1/ay 01l > 9)

i=1

"MS

i

Ms

]
-

J
<2cC .Zl i Y P(ISy541/a,541] > #).
R .

-Now, by the symmetry assumptions, grouping the terms again as follows:
Sn = S2j+1 _X2j+1_X2j+1_1,__"' —.Xn+1, . ' 2j_1 g n < 2j,'
we obtain

A< 8C Y ¢, P(ISu/anll > 2¢).
n=1 P

Two special cases of Proposition 1.3 will be of interest later on.

COROLLARY -1.1. Let E be a Banach space and let (X;) be .independent
symmetric random vectors in E. Then o
(i) for every q > 1 there exists C >0 such that _

X nTtPGup ISUad > 9 < C ¥ n P (IS/al > o

(ii) there exists C > 0 such that |

© . @

) n_lP(igp ISy/a]l > &) < C' Y n™'(ogn) P(IS,/a,ll > e).

2. Rates of convergence based on the Marcinkiewicz-Zygmund inequality.
In Proposition 1.1 we could have only used moments of order p, 1 < p < 2,
and in Proposition 1.2 exponential moments were needed. The following
analogue of the Marcinkiewicz-Zygmund inequality (cf. also results by
P. Assouad and B. Maurey and G. Pisier quoted in [14]) permits us to
use the information on moments of arbitrary order.

PROPOSITION 2.1. Let 1. < p<2and q > 1. The followmg propertles of E
are equivalent:

(i) E is of R- type p.
. (ii) There exists C such that for every neN and for any Sequence (X,)
of independent random vectors in E with EX; = 0

E| Z X7 < Z X7y,
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. Proof: (1) > (ii). Let X)=(X;—X) be a symmetnzatlon of (X )-and
let (r;) be 1ndependent of (X;) and (X’) Then :

R OETE 'ui =g nxl

(Z “X ||p)q/” < 'C:29E( ; ”Xi”'f)“’"f :

- where the first inequallty follows from the condition EX ;= 0, and because

(X}) are independent of (X)), the equality holds by symmetry of (X)), the
second inequality by R-type of E and Fubini’s theorem, and the th1rd one
by the triangle inequality.

The implication (ii) = (i) follows fromi the proof of Theorem 3.1 given
in the sequel. ‘ ‘ o :

CoROLLARY 2.1. Let E be of R-type p and q = p. If (X,,) are i.id. random
vectors in E with E||X,]? < oo and EX; =0, then E|S,|* = O(n‘”")

Proof. If p = g, the estimate follows directly from the definition of
R-type p. If g > p, then by Holder’s inequality with exponents q/p and
g/(q—p) and by Proposition 2.1 we have

EIIZXIIQ | :ZHX;-II‘?)““’_.-.

£C ( Z IIX I )n(" pip — qu/p E ||X1”q e

. Hence, by Chebyshevs inequality we obtam 1mmedlately

CoROLLARY 2.2. Let E be of R-type p and q p. If (X,) are iid. with
E|X]l? < o© and EX, =0; then :

P(|Sy/nll > &) = Onie=Yy  for every ¢ > 0.
Remark 2.1. Jurek and Urbanik [5] _studying stable measures on E

* define E as being of type (s,r), s = 0, r > 0, whenever there ex1sts C such -

that for all (X,) independent and symmetric in E
E| Z .X;-II" <cn Z EIXI"

. Proposition 2.1 -implies (as in the proof of Coro]lary 2. 1) that if E:is of-
R -type p, then ; » -

E[| Y X, S-Cn““"l'i E|X,)9 - for every-q > p
i=1 . i=1 .

ie. E is also of Jurek-Urbanik’s type. (g/p—1,q) or, equivalently, E is of
" type (s, p(s+1)) for every s > 0. One can also show (as in Theorem 3.1
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below) that if for some.s > 0 the space E is of type (s, p(s+1)) then E
is of R-type p. .

3. Brunk’s type strong law and related rates of convergence. The followmg
result extends the Kolmogorov-Chung. type strong law in E obtained by the
author and J. Hoffmann-J¢rgensen and G. Pisier (cf. [14], p. 390, where
E is of R-type p, 1 <p<2,and q = 1). In the casc E=R, p=2, q > 1,
the theorem is due to Brunk [2] and Prohorov [11].

" TueoreM 3.1. (a) Let 1 < p < 2, let E be of R-type p, and-q > 1. If (X,,)
are independent zero-mean random vectors in E such that .

. : B i . L Prq
3.1) S E | Xl

"=1 npq+l q

-

then ‘VS,,/n — 0 as. in norm. : .
(b) Conversely, if ¢ =21, 1 <p< 2, and, for each (x;)) = E such that
Y, lx;[1Pa/irat 179 < o0, o .

n
Z rx/mn—-0 asn—- ©

a.s. in ‘norin, then E is of R-type p. :
Proof.(a) For ¢ = 1 the theorem boils down to the Kolmogorov .Chung
type strong law as mentioned above.
Assume'q > 1. Then ||S,]|™ is a real submartingale and, by the well-known
Hajek-Rényi-Chow type inequality, we get :
(32)  eMP(sup |S; /J|| > s) = &% lim P( Sup 1S ,/71%% > 6”“)

jzn m—+ o ns j<m

< n"ME|S, |+ Z JTHE(]S; II""—IIS, 1)

j=n+1
for every ¢ > 0.

By Proposmon 2.1 and by Holder s mequahty, )
i '
E|S;lI7 < (Z, X7 < ¢jat Z EIIX Il’"‘

so that by (3.1) and Kroneckers lemma we obtain
SHEBIS >0 as j— oo,

“Also the series on the right-hand side of (3.2) converges because of
Proposition 2.1. Hence, summing by parts, .

y J
2 G0 B s, < j;l G077 L E LK
<C} E )X ;||Pe/jra+ 1=+ ¥ E“Xi"pq/npqﬂ—q_'
: i S

©j=1



) E“ Z riX; “ 21/pqn—(1 q)/pqnl/pq llp( Z le [ )1/11 < C- 21/pq Z I "p)l/P
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Therefore, for every ¢ > 0,
' P(sup [S/j] > &) >0 asn— oo.
j;" . .
(b) Kahane's theorem (cf. [14], p. 275) states thét, for any Banach space E
and any p (0 € p < o), all the L,(E)-norms are equivalent on the span of

(r;x;), (x;) = E. Hence, in view of the closed graph theorem, there exists C
such that for all (x) < E .

TV e / n ”xi“PlI 1/pq

so that ..~ IR

Ma

l

E| Y n-titt@-oray ) < C( Y [x79  for all (x) < E.
s i=v1 . . - . "

1

Hence

VPR | R . 2n
E| Y rixl =E| ¥ nxis| i
i=1 i=n+ o i
noojlta- —gipa | 2n j1+(1-a)rg !
<n ¢- “””"E Z rxt Y, -———-r,x,- :
= _.2" i=n+1. . .- . s

’ n
< n~(1—q)fmc.21/pq( Z "xt_"pq)llpq'
‘ i=1

Now, since for any «, # (0 < «, ﬁ < o) and g = 0 the inequality

(Z )m < "”a N A .

holds we have

The following “rate of convergence” result for the weak law is assoc1ated
with the strong law above.

THEOREM 3.2. Let 1 < p < 2%and q > 1. The following properties of
a Banach space E are equivalent: .

(i) E is of R-type p.

(i) for. every & > 0 there exists C, such that for any mdependent zero-
-mean (x) in E

sl E|X |
Y Pl > 9 < €, ¥
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Proof. (i) = (u) By the Chebyshev, Marcinkiewicz- Zygmund (Proposi-
tion 2 1) and Hélder 1nequahtles we get

[ ]

% H'IP(HS,.II > en) < Z nin"Pe P E|S, ||
3 . n=1 - : )

-

£ i : n B S
.. <egHMC Z n—l-'j(q-llv:—pq Z E | X, |7
n=1 o k=1

e < Ce™ Y E|X, |7 Y n-rata-2
' k=1 . n=k .

. < Cefpé Z E|X, II”/k”H"".»

(i) = (@) follows directly from the proof of (b) in Theorem 31

4. Marcmklewwz Zygmund’s type strong laws and related rates of con-
vergence. : =

THEOREM 4.1. Let 1 < p < 2. Then the following propertzes of a Banach
space E are equivalent:
(@) I, is not finitely representable in E.
(ii) For any sequence (X;) of zero-mean independent random vectors in E

. with tail probabilities uniformly bounded by tail probablhtles of an X,el?,

the serles .
- X,

oo
Z nl/p

n=1 1

convergés as. in"norm. S
(iii) For any sequence (X;) as in (i), S,/n'" -0 as.
‘The proof of Theorem 4.1 will be based on the following

LEMMA 4.1: Let 1 < p < 2, let 1, be not representable in E, and let (X,,)
satisfy. assumptions of Theorem 41 (11) Then the series ‘ 4

i (Xn»_E}’n)/n”p,
n=1

where 'Y, = X, I (| X,| < n!P), converges a.s.

Proof. Since

Y P(X, # Y..)'= Y P(IX,| >n?)<C Y P(Xo|> n'?) < CLBIXol? < o,
n=1 n=1 n=1 . o

in v1ew of the Borel-Cantelli lemma it suffices to show that the series
2. (Y,—EY,)/n'”? converges as.
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Let r > p. Then

Y EIYL—EY'n~? <271 3 E|Y,I"n~"
n=1 . : n=1

. o o nilp
= Z m by Vel @B = 270 B 7 [ dP (Xl < B
Xy atle = C 0 S
1/p

= 20T w P (X] < ) | P(nx,.u<r)dt)

- .‘ -allp

<G i (1—rnr? j £ (1P (Xl > 1))dr)

n
nllp

- o 1 . X
C, Z rn”TlP j - 1P(|X0| > f)dt = C, Y [P(Xys~ > n'P)ds
n=10 .

Ii

<G, EIXol"j's ”"ds =, E|X0|" < .

By Maurey-Pisier’s theorem (see [10] and [14], p. 371) and by assumption,
there exists » > p such that E is of R-type r. Therefore, the estimate above
and Theorem V.7.5 in-[14] give the desired as. convergence of
Y.(Y,~EX)n" 1. | -

_ Proof of Theorem 4.1. (i) = (ii). In view of Lemma 4.1 it is sufficient
to prove the absolute convergence of the series Y EY, n Ip, Smce EX, =00
and p > 1, we have :

Z IEY!IH‘“”< Z n~ie I th(IIanl )
n=1 -
=— Y ntrf th.(||X,,|| > 1)
n=1 nl/p

L

(PIXol > n'/)+ [ P(Xo/s| > n'?)ds < C E|X,", -
‘ i

-
i

" n

which gives (i) = (ii). ‘ '
The implication (ii} = (iii) follows by a straightforward application -of -
Kronecker’s lemma. 7‘ | o
(iii) = (i). This implication is essentially due to Maurey and Pisier [10]
(cf. also [14], p. 389). We quote the proof for the sake of completeness.
In view of Kronecker’s lemma it suffices to construct, in any Banach.
space E such that l is finitely representable in E, a sequence (x,) = E
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x| €1, m=1,2,.., such that for a sequence (N;) = N, N, — oo, for all
choices of ¢, = +1 and for all keN

@4.1) Ne| X el >

Put N, =1 and -choose any x,€E, ||x{| = 1. Suppose N,,..., N, and
Xy,..., Xy, have been chosen so that |lx;| <1, i=1,...,N,, and for all
= %1 inequality 4.1) is satisfied. Choose N,, €N large enough for

2 1
N [_ (Nk+1,,—Nk)%/p_'_ka:| > 3‘

Smce I, is finitely representable in E, we can find xNkH, <o Xy, such
that for all () = R ' '

2 Nkt . N+ 1 Nk+1
?(__; LALI RIS H Z oc X “ !Otil")”".f' ,
= k+1 ! Nk
’ Therefox_je

C Np4yd

| T S N‘k':‘
LY w2 NEET S exli =1 3, el

N+

1 : -

> N |:_‘ (Nk+1—Nk) 1 — Nkjl 5. fOIf a!l &= 1.
For spaces E such that I/, is not finitely representable in E' ie> fdr
B-convex spaces (see [14], Chapter VII), Lemma 4.1 permlts to prove the
following : '

THEOREM 4.2. The following propertzes of a Banach space E are equwalent
(1) 1, is not finitely representable in E. -
(11) For any sequence (X;) of independent zero-mean random vectors in E
with tail probabllltles umformly bounded by tail probabllltles ofan XqeLlog* L,
the-series -

X
n

o0
n=1
converges a S.

. (m) For any sequence (X) as in (11) S./n—0 as. as n - - 0.

Proof. (i) = (ii). In view of Lemma 4.1 it suffices to prove: that Y IEY, || n”
converges whenever ‘X,€L log™* L. Since EX, = 0, by integration by parts
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et
2
~J

we obtain

&

o . @ - : )
SHEYin ' < Y n7t { WP (X, < 1)
n=1 n .

n=1

Il
t-18

[PUIX,I > n)+n;‘}DP(IIX,.H >-‘t)dt]

1

]

N

CL[EIX+ % 7 X P(Xol > K]

C,[ElXol+ ; z = P(Xol > k)]

Ci[EiXol+ 3. (log KyP(Xol > K]
< Cy [EIXol +EiXo| log* 1Xol] < 0.

(11) (111) follows dlrectly from Kronecker’s lemma and (i) = (1) can be
proved exactly as (iii) = (i) in Theorem 4.1.

THEOREM 4.3. (a) Let E be a Banach space, 1 <p < 2 and let o > l/p
Then 1, is not finitely representable in E if and’ only if for each independent
zero-mean (X;) in E with tail probabllltzes uniformly bounded by tail probabilities
of an XOEL" we have

Z ;1‘?"‘23P(max (S| >n*e) < co - for every g > 0:

(b) Let E be a Banach space and let 1 <'p < 2. Then 1, is not finitely
representable in E if and only if for each independent zero-mean (X))'in E
with tail probabilities unlfm mly bounded by tail probabllltles of an Xo€L? log* L
we -have ,

w

Y n~t(logn)P(|S,| > n'Pe) < o for every & > 0.

n=1

Proof. (a) We prove first the sufficiency of the condition of l, not
being finitely representable in E. By Theorem 4.1, S,/n'/F —» 0 as. and, as is
easy to see, also

M/n”” - 0 as, where M ‘ max HS || ueR, [u] = entier u.-
: Hence if we 1ntroduce Chows delayed sums

CSw= B K wvek

15jSe ¢
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we get

M, n" " < (M,+M,)n " 50 as. as n— oo.

Now, in the case a = 1/p, since Myn,n (n = 1,2,..) are independent,
from the Borel-Cantelli lemma we infer that.

] 23] . o
00 > Y P(Myugn>2"e)= Y P(Myn > 2"Pg) > [ P(My > 20+Wrg) gy
- n=1 n=1 . 1 .

"> (log2)"! fuTtP(M, > 2Y?eu'®)du - for every & > 0,
] : .

so that Y n™'P(M, > n'/Pg). < oo for every & > 0.
In the case a > 1/p, for m > 1 we have '

_ . ) . . i i
(m+ 1Pl > mepler 1)+WILI_ miler=1) > pplep=1) 4 pifep=1)

so that the random variables M., mPICD= Dl /2p=1), M = 1, 2 o are_' inde-
pendent Moreover by Theorem 4.1,

m_al(ﬂp—l)M wiplGp 1), 1/(ap 1y € m-Her= 1)M ap/(ah—l)’m@;/(&p—l‘) —0as
‘ as m — .

Therefore, again By the -Borel-Cantelli lemma :we obtain.

.00 > P M apiep-1) pij@p—1) = m P~ Vg
+m

® ) : Lo
= Y P(Mptep-1 = m@r~Dg)

m=1

= [ P(M,1/@p- 1) 6‘+1)“/("" b )dt |
1

> (ap—1) g n“P‘IP(M,, > 24P~y ey dy,

which gives the desired rate of convergence.. The - nece‘ssi'ty of the condition
of I, not being representable in E follows directly from the example
developed in the proof of (iii) = (i) in Theorem 4.1.

(b) Sufficiency. We may assume that X,’s are symmetric. The case
of zero expectations can be handled by adaptmg in the standagd way the
method presented below
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Put Y, = X, I (|X. < n'?). Then

S‘, log n) P (IS, > nm’s) < Z n~* (log n)P( U (Ilell > n'?e))+

i log n) P(| Z Yool > n””s)

The series on the .r'ight-hand side can be estimated from above by
. 'w . - 7
C Z (log n) P(1X,| > n'/Pe) < C; E| X[ log™ | X, < 00,

and the convergence of the second series can be proved as follows.

Since . I, is not finitely representable in E, by Maurey-Pisier’s theorem
mentioned before there exists § > 0 such that E is of R-type (p+4). Hence,
making use of Chebyshev’s inequality and integrating by parts we get
Y n~ ogm) P(| 5 Yol > nte)

1 . k=1 o

sc;zrr“““wa%n>sznm“5<

n=1
© : r nallp
<C, Y n—l “’”’“’(log n) Z f P2 dP (| X4l < 1)
n=1 . k - .
<G, 2 “"*"’/"(logn) 5 (PP (X | > f)dt

< G5 E[X,l” log* 1Xo |Is"1+5”ds < o,

ThlS completes the proof of the suﬁimency
The necessity can be obtamed exactly as in (a).

" COROLLARY 4.1. If 1, is not fmztely representable in E,Z1<p<2, and
(X,) are lld zero-mean random vectors m E with E || X,|? < oo, then

P(llS,,/nH > g) = o(n'” ") - for every & > 0.

COROLLARY 4.2. Let E be of R-type p,1 < p < 2, and let (X;) be indepen-
dent zero-mean vectors in E such thut : ) '

‘@) ,',-. Pw&u>m—omo
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viniformiy in k. Thew for cvery 6 > 0,6 >0
PSs/nll > & = oln'T7FI),

Proof Since E is of R-type p, IP=% is not hmtely representable in E
for every 6 > 0. From (4.2) it follows also that X,’s have tail probabilities
eniformly bounded by tail probabilities of an X,eL”™° Therefore, by -
Theorem 4.3,

S w02 P(|S./n] > &) < w0,

-n=1

so- that
np - ZP(”Sn/n“ > 8) = 0(’1 1)1 - .

whlch glves the corol]ary o o
From Corollary 1.1 and. Theorem 4.3 we. get 1mmed1ate]y

CoroLLarY 43. If 1<p<?2 and I, is not finitely ,representable -in E,
then for any sequence (X,)(of mdependent zero-mean random’ vectors’ in E
with tail probabilities uniformly bounded by tail probabilities of an X,€ LP

if 1< p<?2and of an XoeLlog+L if p=1 we have

Z ne- 2P(sup llSk/kIf > s) < o for euery e > 0.

kzn

5. Concluding remarks.

5.1. Brunk’s ‘type strong law of large numbers in Banach spaces can
be also obtained by using the methods developed by Kuelbs and Zinn [6]
(J. Zinn — oral commumcatlon) These methods use however a rather
powerful tool of exponential inequalities 1n Banach spaces.

5.2. In the iid. case an alternative proof of results concermng rates
of convergence is possible by ‘applying a theorem of-Jain [4] who proved

~ that by and large, real-line “rates of convergence” results remain valid in

general Banach spaces as long as S,/n" are bounded in probability. In presence
of our geomeiric restrictions on E the latter is, of course, implied by the
Marcinkiewicz-Zygmund type strong law. Other extensions along the lines

‘of Jain’s paper are also possible (e.g., Orlicz. space type moment assumptlons)

We stuck to a simpler set up to emphasme the ‘relation between geometnc
and probabilistic phenomena in E.

5.3. It also follows from Jain’s paper that for ‘any Banach space E and
any iid. zero-mean (X)), if X;eL,(E), then-Y n* 2P (||S,/n’|| > &) < oo for
every ¢ > 0, and if, for an o > 1/p, ) n*?~ 2P(HS,,/n I > &) < o for every
£> 0, then EX; = 0'and E||X,|? < 0.

54. If E is a Hilbert space, we can prove a result somewhat stronger
than Corollary 4.2. Namely, if (X,) are.iid. in E with EX, = 0 and
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P(|X,| > n)=o(m P for a p > 1, then P(|S,/n]| > &) = o(n'~?) for every
e > 0. : '

5.5. The validity of the Marcinkiewicz-Zygmund strong law of large
numbers for iid. (X,) in E is equivalent to E being of R-type p
(A. de Acosta — oral communication).

5.6. Taylor and Wei [13] studied weighted sums of independent random
vectors in Banach spaces under moment conditions similar to ours, .but
obtained only weak laws for them (i.e., with convergence in probability).
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