PROBABILITY AND MATHEMATICAL STATISTICS

Vol. 1, Fasc. 2 (1980), p. 109-115

EMPIRICAL PROCESSES, VAPNIK-CHERVONENKIS CLASSES AND POISSON PROCESSES

BV

de la companya de la

sad har selfer

MARK DURST (LIVERMORE, CALIFORNIA) .AND RICHARD M. DUDLEY (CAMBRIDGE, MASSACHUSETTS)

Abstract. For background of this paper* see [2]. Given a probability space (X, \mathcal{A}, P) , let G_P be the Gaussian process with mean 0, indexed by \mathcal{A} , and such that

 $EG_P(A)G_P(B) = P(A \cap B) - P(A)P(B), \quad A, B \in \mathscr{A}.$

(1) Let $\mathscr{C} \subset \mathscr{A}$ and suppose that, for all probability measures (laws) Q on \mathscr{A} , G_Q has a version with bounded sample functions on \mathscr{C} . (For example, suppose \mathscr{C} is a "universal Donsker class".) Then, for some n, no set F of n elements has all its subsets of the form $C \cap F$, $C \in \mathscr{C}$, i.e. \mathscr{C} is a Vapnik-Chervonenkis class. An example shows that limit theorems for empirical measures need not hold uniformly over a Vapnik-Chervonenkis class of measurable sets, unless further measurability is assumed.

(2) For a law P on $X = \{1, 2, ...\}$, the collection 2^{X} of all subsets is a Donsker class if and only if

$$\sum P(m)^{1/2} < \infty.$$

(3) For any probability space (X, \mathscr{A}, P) , suppose \mathscr{C} is a P-Donsker class, $\mathscr{C} \subset \mathscr{A}$. Let T_a be a Poisson point process with intensity measure aP, a > 0. Then, as $a \to \infty$, $(T_a - aP)/a^{1/2}$ converges in law, with respect to uniform convergence on \mathscr{C} , to the Gaussian process W_P with mean 0 and $EW_P(A)W_P(B) = P(A \cap B), A, B \in \mathscr{C}$.

1. Introduction. Let (X, \mathcal{A}, P) be any probability space. Let G_P and W_P be the Gaussian processes, indexed by \mathcal{A} , with mean 0 and such that for all $A, B \in \mathcal{A}$

 $EW_P(A)W_P(B) = P(A \cap B)$ and $EG_P(A)G_P(B) = P(A \cap B) - P(A)P(B)$.

* This research was partially supported by National Science Foundation Grant MCS-7904474.

Then for all $A \in \mathscr{A}$ we can write

$$W_P(A) = G_P(A) + P(A)H,$$

where $H := W_P(X)$ is a standard Gaussian variable independent of G_P .

Let $X_1, X_2, ...$ be independent and identically distributed with law P, and let P_n be the random empirical measure $n^{-1}(\delta_{X_1} + ... + \delta_{X_n})$. Let $\mathscr{C} \subset \mathscr{A}$. In [2], \mathscr{C} was called a *P-Donsker class* if the convergence of laws $\mathscr{L}(n^{1/2}(P_n - P)) \to \mathscr{L}(G_P)$ holds with respect to uniform convergence on \mathscr{C} in a suitable sense, together with some measurability conditions. Here we will need only the following Skorohod-Wichura form of convergence (see [2], p. 900-902):

1.1. If \mathscr{C} is a *P*-Donsker class, then there is a probability space $(\Omega, \mathscr{B}, Pr)$ and for n = 1, 2, ... there are processes $(\omega, C) \to A_n(\omega, C), \ \omega \in \Omega, \ C \in \mathscr{C}$, such that, for each fixed *n*, the laws of the processes $n^{1/2}(P_n - P)$ and A_n are the same and such that

$$\lim_{n\to\infty} \sup_{C\in\mathscr{C}} |A_n(\omega, C) - G_P(C)(\omega)| = 0 \text{ a.s.},$$

where G_P is defined on the probability space Ω . It follows that

$$\sup_{C\in\mathscr{C}}|G_P(C)(\omega)| < \infty \text{ a.s.}$$

Sections 2, 3 and 4 use the above, but are independent of one another.

2. Universal Donsker classes are Vapnik-Chervonenkis classes. For any set X let 2^X be the collection of all its subsets (power set). Let $\mathscr{C} \subset 2^X$. Then \mathscr{C} is said to shatter a set $F \subset X$ if $2^F = \{F \cap C \colon C \in \mathscr{C}\}$. Also, \mathscr{C} is called a Vapnik-Chervonenkis class if, for some finite n, no set F with n elements is shattered by \mathscr{C} .

2.1. THEOREM. For any set X and collection \mathscr{C} of subsets of X which is not a Vapnik-Chervonenkis class, there are a purely atomic probability measure P on X and a countable collection $\mathscr{D} \subset \mathscr{C}$ such that G_P is almost surely unbounded on \mathscr{D} .

Proof. Since \mathscr{C} shatters sets of all sizes, for each n = 1, 2, ... there is a set F_n with 4^n elements, shattered by \mathscr{C} . Let

$$G_n := F_n \setminus \bigcup F_j.$$

Then the G_n are disjoint and have cardinality

card
$$(G_n) \ge 4^n - \sum_{j=1}^{n-1} 4^j = 4^n - (4^n - 4)/3 > 2^n$$

with G_n shattered by \mathscr{C} . Take $E_n \subset G_n$ with card $(E_n) = 2^n$. Then E_n remain disjoint and are shattered by \mathscr{C} .

· · 110 ·

Let $P({x}) = 6/(\pi^2 n^2 \cdot 2^n)$ for each $x \in E_n$, and let P = 0 outside $\bigcup_{n=1}^{n} E_n$. Then P is a purely atomic probability measure on X.

Let \mathscr{D} be a countable subset of \mathscr{C} which shatters each of the E_n . Let us fix *n*. Then, for each $C \in \mathscr{D}$,

$$W_P(C) = W_P(C \cap E_n) + W_P(C \setminus E_n).$$

Thus for any K, $0 < K < \infty$, we have

$$\{\omega: |W_P(C)(\omega)| < K \text{ for all } C \in \mathcal{D}\} \subset \mathscr{E}_1 \cup \mathscr{E}_2,$$

where

 $\mathscr{E}_1 := \{ \omega \colon |W_P(B)(\omega)| \leq 2K \text{ for all } B \subset E_n \},$

 $\mathscr{E}_2 := \{ \omega: \text{ for some } B \subset E_n, |W_P(B)(\omega)| > 2K, \text{ and for all such } B \\ \text{ and all } C \in \mathcal{D} \text{ with } C \cap E_n = B \text{ we have } |W_P(C \setminus E_n)(\omega)| > K \}.$

Let

$$S_n := \sum_{x \in E_n} |W_P(\{x\})|.$$

Then since $\sup \{|W_P(B)|: B \subset E_n\} \ge S_n/2$, we have $\mathscr{E}_1 \subseteq \{S_n \le 4K\}$. For each $x \in E_n$, $W_P(\{x\})$ is a normal random variable with mean 0 and variance $\sigma_n^2 := 6/(\pi^2 n^2 \cdot 2^n)$. Thus

$$E[W_P({x})] = (2/\pi)^{1/2} \sigma_n$$
 and $var(|W_P({x})|) = \sigma_n^2 (1-2/\pi).$

Then

 $E S_n = 2^n (2/\pi)^{1/2} \sigma_n$ and $var(S_n) = (6/(\pi^2 n^2)) (1-2/\pi),$

since W_P has independent values on disjoint sets. Hence, by Chebyshev's inequality, for large n we get

for any fixed K.

Now we consider the event \mathscr{E}_2 . Let $tt(n) := 2^{2^n}$. Enumerate 2^{E_n} by B(1), ..., B(tt(n)), and let $M_1 := \{\omega : |W_P(B(1))(\omega)| > 2K\},$ $M_m := \{\omega \notin \bigcup_{j=1}^{m-1} M_j : |W_P(B(m))(\omega)| > 2K\}, \quad m \ge 2,$ $D_j := \{\omega \in M_j : \text{ for all } C \in \mathscr{D} \text{ such that } C \cap E_n = B(j), |W_P(C \setminus E_n)(\omega)| > K\}.$ By the independence of W_P on disjoint sets, we have $\Pr(D_j) = \Pr(M_j) \Pr\{\text{ for all } C \in \mathscr{D} \text{ such that } C \cap E_n = B(j),$

$$|W_{\mathsf{P}}(C \setminus E_n)(\omega)| > K\} \leq \Pr(M_i) \cdot 2\Phi(-K),$$

where Φ is the standard normal distribution function, since, for any fixed set A, $W_P(A)$ is normal with mean 0 and variance less than 1. Now,

$$P_2 \subset \bigcup_{1 \leq j \leq tt(n)} D_j,$$

so that

$$\Pr(\mathscr{E}_2) \leq \sum_{1 \leq j \leq tt(n)} \Pr(M_j) \cdot 2\Phi(-K)$$

= $2\Phi(-K) \Pr(|W_P(B)| > 2K$ for some $B \subset E_n) \leq 2\Phi(-K)$.

It follows that ---

 $\Pr(|W_P(C)| < K \text{ for all } C \in \mathcal{D}) \leq f(n, K) + 2\Phi(-K).$

Making K large enough, and then n large enough, completes the proof.

It follows that if \mathscr{C} is a universal Donsker class, i.e. it is a P-Donsker class for all P on the σ -algebra $\mathscr{A} \supset \mathscr{C}$, then \mathscr{C} is a Vapnik-Chervonenkis class. In [2], Section 7 and Correction, it is shown that every Vapnik-Chervonenkis class satisfying some measurability conditions is a universal Donsker class. The remaining problem is to find what measurability conditions are needed. The following example shows that some further measurability is necessary.

2.2. PROPOSITION. There exist a set X and a class \mathscr{C} of countable subsets of X, which shatters no 2-element set, and a probability measure P such that almost surely

$$\sup_{A \in \mathcal{A}} (P_n - P) (A) = 1 \quad for \ all \ n.$$

Assuming the continuum hypothesis, we can take X = [0, 1] and P to be Lebesgue measure.

Proof. Let (X, \prec) be an uncountable well-ordered set such that all its initial segments $\{x: x \prec y\}$, $y \in X$, are countable. Let \mathscr{C} be the collection of all these initial segments. Then \mathscr{C} does not shatter any set with two elements. Let P be any probability measure on X which is 0 on countable sets and 1 on their complements. Given any finite set $\{X_1, ..., X_n\} \subset X$, there is a set A in \mathscr{C} containing all the X_i , so $(P_n - P)(A) = 1$, which completes the proof.

Steele [3] assumes that all sets in \mathscr{C} are measurable and that $\sup_{A \in \mathscr{C}} |(P_n - P)(A)|$ is measurable. These conditions are both satisfied in the example above. Thus it appears that further measurability conditions need to be added to some of the statements and proofs in [3].

3. When is 2^X P-Donsker for X countable? Let X be a countable set, say $X = \{1, 2, ...\}$, and let P be a law on X with $P\{m\} := p_m, m = 1, 2, ...$

112

Empirical processes

3.1. THEOREM. The collection 2^X of all subsets of X is a P-Donsker class if and only if

(*)

$$\sum_m p_m^{1/2} < \infty.$$

Proof. Suppose (*) holds. We have $E(v_n \{m\})^2 = p_m - p_m^2$ for all n and m, where $v_n := n^{1/2} (P_n - P)$. Thus $E|v_n \{m\}| \leq p_m^{1/2}$, and

$$\sup_{n} E \sum_{j \ge m} |v_n\{j\}| \to 0 \quad \text{as } m \to \infty.$$

So, for any $\varepsilon > 0$,

 $\sup_{n} \Pr\left\{\sum_{j \ge m} |v_n\{j\}| > \varepsilon\right\} \to 0 \quad \text{as } m \to \infty.$

Thus condition (b) in Theorem 1.2 of [2] holds; as the other conditions also hold for $\mathscr{C} = 2^{x}$, X countable, it is a P-Donsker class.

On the other hand, if $\sum_{m} p_m^{1/2} = \infty$, then

$$\sum_{m} |G_P\{m\}| = \infty \text{ a.s.}$$

by Proposition 6.6 of [1], letting $b_m := p_m^{1/2}$, $\varphi_m = 1_{\{m\}}/p_m^{1/2}$, and recalling the relations $L(1_A) = W_P(A) = G_P(A) + P(A) W_P(X)$. Thus G_P has sample functions almost surely unbounded on 2^X (it is enough to consider the countable collection of finite sets). Consequently, 2^X is not a Donsker class, which completes the proof.

4. A limit theorem for Poisson processes. Let (X, \mathscr{A}, μ) be a σ -finite measure space. Then the Poisson process T_{μ} with intensity measure μ is indexed by the measurable sets A with $\mu(A) < \infty$; $T_{\mu}(A)$ is a Poisson variable with parameter $\mu(A)$, and T_{μ} has independent values on disjoint sets, being additive for (finitely many) disjoint sets. These conditions, as is known, consistently define a stochastic process.

For $0 < \mu(X) < \infty$, let T(X) = n be a Poisson variable with parameter $\mu(X)$. Then let

$$T=\sum_{1\leqslant i\leqslant n}\delta_{X_i},$$

where the X_i are independent and identically distributed with law $\mu/\mu(X)$, and independent of *n*. It is easily seen that this *T* is a Poisson process T_{μ} . Now let *P* be a probability measure and $0 < \lambda < \infty$. Then, as $\lambda \to \infty$, $(T_{\lambda P} - \lambda P)/\lambda^{1/2}$ converges in law to W_P , at least on any finite collection of measurable sets. For $\mathscr{C} \subset \mathscr{A}$, we say that this convergence in law holds with respect to uniform convergence on \mathscr{C} if there exists a probability space (Ω, \Pr) carrying a process W_P and processes S_{λ} , $0 < \lambda < \infty$, such that for

M. Durst and R. M. Dudley

each λ the process S_{λ} has the same law (as a process on \mathscr{C}) as $(T_{\lambda P} - \lambda P)/\lambda^{1/2}$, and such that

$$\lim_{\lambda\to\infty}\sup_{C\in\mathscr{C}}|(S_{\lambda}-W_{P})(C)|=0 \text{ a.s.}$$

The following result was proposed by E. B. Dynkin in a discussion in Oberwolfach, March 1979.

4.1. THEOREM. For any probability measure P and P-Donsker class \mathscr{C} , $(T_{\lambda P} - \lambda P)/\lambda^{1/2}$ converges in law to W_P with respect to uniform convergence on \mathscr{C} .

Proof. Take $X_1, X_2, ...$, independent with distribution P. For each λ , $0 < \lambda < \infty$, let $n = n(\omega, \lambda)$ be a Poisson variable with parameter λ , independent of the X_i . Then we can write $T_{\lambda P} = n(\omega, \lambda) P_{n(\omega, \lambda)}$ (in law).

Now $(n(\omega, \lambda) - \lambda)/\lambda^{1/2}$ converges in law to a standard Gaussian variable as $\lambda \to \infty$. To replace this convergence by almost sure convergence of real random variables, we use the following standard procedure. For any probability distribution function F on R and for 0 < y < 1, let

$$F^{-1}(y) := \inf \{x: F(x) \ge y\}$$

Suppose laws μ_m on \mathbb{R} with distribution functions F_m converge to a law μ_0 . Then $F_m^{-1}(y) \to F_0^{-1}(y)$ whenever the interval $F_0^{-1}\{y\}$ contains at most one point. Thus $F_m^{-1}(y) \to F_0^{-1}(y)$ for all y, 0 < y < 1, if F_0 has an everywhere positive density, e.g. if it is a non-degenerate normal distribution function. Thus if $\mu_{\lambda} \to \mu_0$ as $\lambda \to \infty$, where μ_{λ} has distribution function F_{λ} and μ_0 has an everywhere strictly positive density, then, for 0 < y < 1, $F_{\lambda}^{-1}(y) \to F_0^{-1}(y)$ as $\lambda \to \infty$ (continuously).

Now, taking a new probability space if necessary, we may assume that, for all ω ,

 $\lim_{\lambda\to\infty} (n(\omega,\lambda)-\lambda)/\lambda^{1/2} = H,$

where *H* is a standard normal variable. Also, by 1.1, we can take $n^{1/2}(P_n-P) := v_n \to G_P$ uniformly on \mathscr{C} almost surely as $n \to \infty$, where the $n(\omega, \lambda)$ and *H* are independent of P_n and G_P .

Now $(n(\omega, \lambda) - \lambda)/\lambda \to 0$ a.s., so $n(\omega, \lambda)/\lambda \to 1$ a.s. and $n(\omega, \lambda) \to \infty$ a.s. Thus $\nu_{n(\omega,\lambda)} \to G_P$ uniformly on \mathscr{C} almost surely. So

$$(n(\omega, \lambda) P_{n(\omega,\lambda)} - \lambda P) / \lambda^{1/2}$$

= $(n(\omega, \lambda) / \lambda)^{1/2} v_{n(\omega,\lambda)} + (n(\omega, \lambda) - \lambda) P / \lambda^{1/2} \rightarrow G_P + HP = W_P$

uniformly on \mathscr{C} almost surely as $\lambda \to \infty$, which completes the proof.

114

Empirical processes

Added in proof. Theorem 4.1 extends a result known in the classical one-dimensional case: cf. P. Gaenssler and W. Stute, Ann. Probability 7 (1979), p. 193-243, Theorem 2.6.2 on p. 230-231.

REFERENCES

- R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Functional Analysis 1 (1967), p. 290-330.
- [2] Central limit theorems for empirical measures, Ann. Probability 6 (1978), p. 899-929; Correction, ibidem 7 (1979), p. 909-911.

[3] J. M. Steele, Empirical discrepancies and subadditive processes, ibidem 6 (1978), p. 118-127.

 [4] V. N. Vapnik and A. Ya. Chervonenkis, On the uniform convergence of the relative frequencies of events to their probabilities, Teor. Verojatnost. i Primenen. 16 (1971), p. 264-279 (in Russian); Theor. Probability Appl. 16 (1971), p. 264-280 (English translation).

Room 2-245, M.I.T. Cambridge, MA 02139, U.S.A.

Mathematics-Statistics Section Lawrence Livermore Laboratory Livermore, CA 94550, U.S.A.

Received on 14. 11. 1979