PROBABILITY AND MATHEMATICAL STATISTICS Vol. 1, Fasc. 2 (1980), pp. 109–115

EMPIRICAL PROCESSES, VAPNIK-CHERVONENKIS CLASSES AND POISSON PROCESSES

Mark Durst Richard M. Dudley

Abstract: For background of this paper see [2]. Given a probability space (X, \mathcal{A}, P) , let G_P be the Gaussian process with mean 0, indexed by \mathcal{A} , and such that

$$EG_P(A)G_P(B) = P(A \cap B) - P(A)P(B), A, B \in \mathcal{A}$$

(1) Let $C \subset A$ and suppose that, for all probability measures, (laws) Q on A, G_Q has a version with bounded sample functions on C. (For example, suppose C is a "universal Donsker class".) Then, for some: n, no set F of n elements has all its subsets of the form $C \cap F$, $C \in C$, i.e. C is a Vapnik-Chervonenkis class. An example shows that limit theorems for empirical measures need not hold uniformly over a Vapnik-Chervonenkis class of measurable sets, unless further measurability is assumed.

(2) For a law P on $X = \{1, 2, ...\}$, the collection 2^X of all subsets is a Donsker class if and only if

$$\sum_{m} P(m)^{1/2} < \infty.$$

(3) For any probability space (X, \mathcal{A}, P) , suppose \mathcal{C} is a P-Donsker class, $\mathcal{C} \in \mathcal{A}$. Let T_a be a Poisson point process with intensity measure aP, a > 0. Then, as $a \to \infty$, $(T_a - aP)/a^{1/2}$ converges in law, with respect to uniform convergence on \mathcal{C} , to the Gaussian process W_P with mean 0 and $EW_P(A)W_P(B) = P(A \cap B)$, $A, B \in \mathcal{C}$.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -; **Key words and phrases:** -

THE FULL TEXT IS AVAILABLE HERE