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NECESSARY AND SUFFICIENT CONDITIONS
FOR EXTENDED CONVERGENCE OF SEMIMARTINGALES

BY

LESZEK SEOMINSKI (TORUN)

Abstract. The extended convergence (in sense of Aldous [17]) of
processes with filtrations is considered. There are examined the
cases where the well-known conditions, sufficient for the weak
convergence of semimartingales, are exactly equivalent to the
extended convergence.

1. INTRODUCTION

Let S be a Polish space. In this paper we adapt the following notation:

%#(S) — the o-algebra of Borel subsets of §;

2(S) — the space of probability measures on #(S) equipped with the
topology of weak convergence;

D(S) — the space of mappings x: R* — S which are right-continuous
and admit left-hand side limits (it is well known that D (S) endowed with the
Skorokhod topology is metrisable as a Polish space, see [2]).

Definition 1. Let (22, F, P) be a probability space. The pair (7, &) is
a process with filtration iff & = {X (t)}‘er, is a family of S-valued random
elements defined on (Q, F, P) and & = {F (1)}, g+ 1s a filtration in this space

(i.e. nondecreasing family of sub-c-algebras of F) such that:
(H;) almost all trajectories w — (%' (-, w): R* - S) belong to D(S);
(H;) X (t) is F(t)-measurable, teR™;
(H3) F(t) = \ F(u), teR*.

u>t
Let Cont & < {teR*: P(X () # X(¢—)) = 0}. -
It has been proved by Aldous [1] that for every process with filtration
(%, %) there exists a unique prediction process (%, #) with values in the
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space 2(D(S)) such that, for every teR* and every Ae Z(D(S)), Z(t)(A)
= P(¥e A|F ).

We define the extended distribution of the process (Z, #) as the
distribution of the random element

Q30— (T(-, ), Z (-, w)eD(S xP(D(9)).

Definition 2 (Aldous [1]). Let {(2", F"}nevoio) DE @ sequence of
processes with filtrations. We say that the sequence {(2", #")},.n converges
extendly to (¥*, #*) (and write (2", F")—(F*, #*)) if the extended
distributions of {(%", #")}..v are weakly convergent to the extended
distribution of (Z'*®, #®).

It is possible to characterise the extended convergence by the weak
convergence of some families of bounded martingales. Let (2, %) be a real
process with filtration. For every meN, every T = (ty,..., t,)eR"™, t, <t,
< ... <ty @=(0,,...,0,) we denote by % ¢, the regular version of the
martingale of the form '

(1 {E(expi kil O X (t)1F (1)}, g+ -

In Section 4 we shall prove the following

ProPosITION 1. Let {(Z7, F")nenoio) b€ a sequence of real processes with
filtrations, X"(0) =0, neNu {w}. The sequence {(X", F")},x coOnverges
extendly to (Z*, F) ijf two Jollowing conditions are satisfied:

(l) ( ']l- 91 (tl) T &n, m(tm)) ( T, Ql’m(tl)a ey X;':igm.m(tm));

@) {27, 273, 9m)}neN is tight in D(Cz) i=1,2,...,m, for every meN,
every Te[Cont F® nCont Z°]", @' cR™, i=1,2,....m

Standard arguments show that in (i) and (ii) it is sufficient to consider
only the countable number of conditions.

We can obtain the similar result for the S-valued processes with
filtrations. In this case we use the new bounded martingales

2 C E(fa(X s XA)IF O

instead of (1) for every meN, every (t;,...,t,)eR™ and bounded and
continuous functions f,,: S" — R.

In this paper we consider the extended convergence of real
semimartingales to the continuous in probability process with independent
increments. Jacod has observed in [9] that the convergence in probability of
the local predictable characteristics of semimartingales is “essentially
equivalent” to the extended convergence. In [12] we have proved that the
sufficient conditions of convergence, discussed by Brown [3], Liptser and
Shiryaev [16], Grigelionis and Mikulevicius [4] and Jacod, Klopotowski and
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Memin [11], are in fact stronger that the extended convergence of
semimartingales. Now we examine the cases where these conditions are
exactly equivalent to the extended convergence.

As a consequence we generalise the well known results by Liptser and
Shiryaev [16], [17] (Theorem 2, Section 2, and Theorem 4, Section 3) and
Aldous [1] (Theorem 1, Section 2, and Theorem 3, Section 3).

Finally, let us add that similar problem was recently discussed by
Grigelionis, Mikulevicius and Kubilius [6] (see also [14] and [13]). They
characterise sufficient conditions of convergence using the finite-dimensional
cthergence of extended distributions. However, we hope that our method is
simpler than that mentioned above.

2. MAIN RESULTS

Let (2, F, P) be a complete probability space and (Z., %) be a
semimartingale (relatively to P) such that X(0) =0 and the filtration &%
satisfies the completeness assumptions, i.e. F(0) contains all P-null sets of .%.

Let h: R—>[—1,1] be a continuous function satisfying h(x) = x for
|x] <1 and h(x) =0 for |x| > 2. Consider the process Z* defined by

(4) X'ty =X(0)-Y (AX(s)—h(4X (s)), teR*.

s€t

The process with filtration (2", %) is a special semimartingale. It can be
uniquely decomposed into the sum 2" =B"+ M, where (B" %) is a
predictable process with bounded variation and (M, %) is a locally square
integrable martingale.

Let (2%, #) be the unique continuous martingale part of the.
semimartingale (Z, #). Define

4 o?(1) = {H(t), teR*.

Let v =v(dt xdx) be the dual predictable projection of the jump-
measure N (dt xdx) of the process (%, %),

(5) N{O,1xA)= Y I(4X(s)ed), AecB(R).

s, 4X(s5) 20

We say that the triplet (BY, o2 v) is a system of local predictable
characteristics of the semimartingale (%, F).

Consider an array t = {t,,} of nonnegative numbers such that for each n
the sequence {1, },ovui0, forms a partitions of R* for which

(6) 0=tn0<tnl< LEES) Iimtﬂk=+w’

k—w
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and

(7) max (tnk—'tn,k— 1) - 0:
k Srp(t)
where r,(f) = max[k: 1, <t], teR", neN.

Now let (%, #) be a process with filtration from the class S, () defined
by Jacod [10], ie. # = ¥+ B, where (%, #) is a semimartingale with the
triplet of local predictable characteristics (0, 62, v), v({t} x(R\{0})) =0,
teR™*, X(0) = 0. The process with filtration (B, &), B(0) = 0, has continuous
trajectories and the following property:

'n(t)
8  sup| Y E(h(B(tw)—B(tni 1)F (tas-))—B@®| 20, qeR*.
15q k=1

It is proved in [20] that for every procéss (%, F)e§,(t) there exists a
unique triplet of local predictable characteristics (B, o2, v).

Let {(Z", #")}..~v be a sequence of semimartingales. For every (2", #")
let us denote the system of local predictable characteristics by (B"", a2, v"),
neN. .

Turorem 1. Let {(X", 7"}, be a sequence of semimartingales. Let
(7=, F=) belong to S,(t) and have the triplet of characteristics (B, 6%®, v*).
Assume that
@ (2", B*), F") > (2™, B®), #=).

If we write M™ = 2™* —B™, then the following conditions are satisfied:

() (M, [M"], <M™) g (M=, [M®], (M) in D(R®);

(ii) (i ]9 N"(ds xd, g J709v"(ds xd)

3 ([ {109 N=(ds xd), {1109y (ds o)

in D(R?) for every f € C,,, where C,y, is a family of bounded and continuous
functions vanishing in an open neighbourhood of 0.

The proof of Theorem 1 is given in Section 4.
For the sake of brevity we will say that (Z*, #®) satisfies (H,) iff
(&>, #*) is continuous in probability process with independent increments.

THEOREM 2. Let {(Z", F")}nen be a sequence of semimartingales. Let the
process (X>®, F*) satisfy (H,) and have the triplet of characteristics
(B®, 6%%, v°). Suppose that

(SupB) sup|[B*"(t)—B* (1)) 3 0, qeR".

1<q

Then the following conditions (i) and (ii) are equivalent:

(¥) (2", F7) = (X, F);
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M) >+ Y [h*(x)v"({s} xdx)— Y (J'h(x) v;‘({s} x dx))?

st R s<t R

(ii) e22(t)+ ), [h*(x)v*({s} xdx), teR",

sStR
(N) j'j S (x)v" (dsxdx) ”f(x)v“’(dsxdx), teRJ',feC‘,(o,.
oR

Proof. (ij)=(i). This implication readily follows from Theorem 2 and
Proposition 2 from [12].
(1) =>(ii). First note that (¥®, # ) belongs to S, (7). Because of equalities

M) = 0" (1)+ Y. [ (9w ({s} xd)— T ([ h()v"({s} xdw))?

sStR s<t R
and
M=) = > )+ Y, [R(0)v°({s} xdx),
sStR
and, by Theorem 1, the conclusions follow.

Let (W, #”) be a standard Brownian motion (by % we denote the
natural filtration of the process #%). In [12] we have proved that under the
condition (SupB) there holds the equivalence: "3 W iff (%" ")
— (W, #¥). Hence Theorem 2 is more general than the well-known result of
Liptser and Shiryaev [16] on the necessary and sufficient conditions for the
weak convergence of semimartingales to Brownian motion. We have also
observed that the assumption (Sup B) is not necessary for the convergence
2", F7) > W, F7).

Now we will show that (SupB) and the weak convergence 2" — %™,
where (>, #=) satisfies (H,), do not imply (ii).

Example. Let (N, #") be a simple Poisson process. Suppose that

{(@", F*")},v is a sequence of processes defined by the equalities: X" (1)
=2N(t)+(1/n) N(2t), teR*, neN. Then condition (N) is not satisfied.

It is interesting that with the use of the concepf of G-stable convergence,
introduced by Grigelionis and Mikulevicius [5], it is possible to generalize
slightly all results of our paper.

Definition 3 (Grigelionis and Mikulevicius [5]). Let G be a sub-o-
algebra of F. We say that the sequence of processes {(Z", Z")}nen COnverges
G-stably to (™, ™) (and write (2", Z") = (X, #*) G-stably) if

(A, 2VaP— [f(@*, 2°)dP
A A ’

for every AeG and every continuous and bounded function f: D(
x P(D (R)))—> R.

& — Probability ...
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We give an example of such-a generalisation.

CoroLLARY 1. Let {(2", F")}.v be a sequence of semimartingales. Let
(Z°, F*) be a process with conditionally independent increments given G,

(* . G < ) F(0),
n=1
such that v® ({t} x(R \{0})) =0, teR™. If we replace condition (i) in Theorem 2
by (X", FN = (™, F=) G-stably, then the conclusion of Theorem 2 is still
true. v '
In some special cases we can also omit the assumption (x¥). A more
extensive discussion of this problem may be found in [19].

3. EXTENDED CONVERGENCE OF INCREASING PROCESSES
AND LOCAL MARTINGALES

By o+ (.d,m.) we denote the family of processes .with filtrations (', %)
which have nondecreasing trajectories .and are integrable (locally integrable).

~Let .4, denote the family of local martingales and let (£, f)eﬂ,oc bea .
predictable compensator of the process (fl" f)e.szi,oc G.e. (Z, #) is pre-

dictable and (-, F)e MH,,).

Definition 4. Let {(2™ ?")},,dv ‘be a sequence of processes w1th
filtrations. We say that {(3&"" F")}uen Satisfies the condition (37 (or JB), p > 0,
iff for every teR* there exists a sequence {r }nen Of F"-stopping times such
that

lim P[z, <t]=0

and _
9 {sup |AX"(t)"}uev i uniformly integrable (or sup Esup|4X” (t)]"
t<1, ) : ' ot gty
< 4+ ). ‘

The two following results (proofs of Wthh are given in Section 4) form a
basis for the present section and are essential for the proof of Theorem 1.
The first one is an extended version of the well-known theorem by Jacod [8].

ProrosiTion 2. Let {(2", .9"")},,9,\, be a sequence of processes from M,
satisfying (Jp). Assume that (X", F")— (Z™, F). Then

(2 (2", #77) - (2>, [2=], F7).

ProposiTION 3. Let {(El“” Fnenw be a sequence of processes from m’k,c
satisfying (JV). Suppose that (Z™, F) belongs to o, v* ({t} x(R\{0})) =
teR*. If for a sequence of processes {(¥", F")),n the convergence

(@", a7, F) - (%>, ™), F~)
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holds, then also .
_ @I (@, T, T
in D(RY). -
We shall also need the concept of a domination between two processes.
This notion was introduced by Lenglart [15]. Let (%, %) and (%, %) be two

processes with filtrations. Suppose that % is nondecreasing, Y (0) = 0. We say
that 4" is #-dominated by % (and write & < %) if, for every #-stopping time

7, E|X () < EY(z). It is clear that Definition 4 and the inequalities of

Rebolledo [18] imply

LemMa 1. Let {(2", F")}uen and {(F", F")},en be two sequences of
processes with filtrations for which ¥" < %", neN.

If {(F", F")} e satisfies (I') or is G sequence of predictable processes, then
(10) Y"(6,) 3 0=sup|X" ()] 3 O,

t<oy,

(11) lim lim P[Y"(s,) > n] = 0= Lim lim P[sup|X"(t) = 7] =0
nron—~o . n—w n—wo t<ay,
for every tight in R sequence {6,},.n Of F"-stopping times.
Now we can formulate and prove our main results about the extended

convergence of processes from o/, and #,,. We assume that the limit
process (2™, #*) has the following property:

(HL) : sup|dX*(t) <1, gqeR".

t<gq

THEOREM 3. Let {(2™, F")}.n be a sequence of processes from o/ .. Let
the limit process (¥, =) satisfy (H.) and (H,). Assume that the sequence
{(Z", F")} v has property (I1). Then the following conditions (i) and (i) are
equivalent:

@ - &, F7) - (T, #%);
i) {(C) .Y"—(t)—? X=(1), teR+
(N) jjf(x) v'(ds xdx) 3 _”f(x) ve(ds xdx), teR",feCyyq.

Proof. (ii) = (i). First we show that condition (Sup B) holds, i.e. |
(12) Xrr) 5 Xho@)=X~(), teR".

Let {f;}e>0 < Cyo) be a family of functions such that |f,(x)] < 1, xeR,
and, for every ¢ >0,

| 5[0 for X<,
(13 L N

for |x

1+e¢.
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By (N), |
}ifs('x)v"(ds xdx)3 0, teR*, ¢>0.
; 0 )
In view of (10) we also have
‘ j‘j‘ﬁ(x)N"(ds xdx) 0, teR", &>0.
OR .

Now we define the new families of processes {(cc,,, F.)} and

{(Bale), 77}

(14) | a,0) £ X"(0) = XP"(0),
(15) Bult, &) £ T AX"()I(AX"(s) > 1+),

s<t ..
where neN, teR* and ¢ > 0.
Note that
Y I(4X"(s) > 1+¢) 50, neN,teR*,&>0.
s<t

Hence B,(t, £) 3 0 for every te R™ and ¢ > 0. By the definition of the
function h, for every & > 0 there exists an ¢ > 0 such that if 1 <|x] < 1+¢,
then |x—h(x)| < 6. Therefore

(16) a,(8) SOX"()+Bu(t, €),  meN, teR*, e>0.
From (11) and (C) one can easily see that

lim Lim P[X"(t) > 5] = 0.

7o N+
So a,(t)3 0, teR™. Since

sup[)?"(t)—)?""‘(t)[ = 07,.(‘1), qER+a

t<gq

s

condition (C) is a consequence of (12).
Now we prove condition (M) from Theorem 2. It is sufficient to check
that '

t

(17) }fhz(x)v"(ds xdx)— ([ {R?(x)v*(ds xdx), teR*,
OR oR

(18) T (AR 0, teR*.

sste

Since £ has continuous trajectories, (18) is satisfied trivially. In order
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to obtain (17) we define a new sequence of functions {h};.v = C,0, such that
h?(x)—h?(x) = 0, xR, and, for ieN,

' 0 for |x] < 1/i,
(19) . hu(x) = {h(x) for |x| > 2/i.

Due to condition (N) there exists a sufficiently slowly increasing se-
quence {i,},en, (i) = (1), for which

(20) 3! h: (x)v"(ds xdx) ¢ 3’ [ (x)v®(ds xdx), teR*.
. OR 0OR
Since
I [(r?(x)— B2 (x)) N"(ds xdx) < (2/i)* X"(5), neN, teRY,
oOR

we have, by (10),

t”( )—hZ (x))v"(ds xdx) 2 0, teR™.

OR

(i)=(ii). It is a trivial consequence of Theorem 2 and Proposition 3.

Due to Theorem 3 we may deduce the necessary and sufficient
conditions for the extended convergence in the case where the limit process is
a simple Poisson process (N, #%).

CoRrOLLARY 2. Let {(Z", #")}.en be a sequence of processes from s,
satisfying (J'). If we define the new sequences of processes {(0,, F™)}nen and
{(va(©)s F)}uew by the formulae

5 L X ()Y AX"(5),  yalt, &) = T AX"()I(AX"(5) 1] > &),

st s<t
» nEN,tER+,3>0,
then the following two conditions are equivalent:
(M) | (2% F) - (N, F"),
(21) i’"(t)—P)EN(t), teR",
(ii) {(22) 8,(1) -0, teR",
‘ (23)  7u(t,©)30, teR",&>0.

It is not difficult to obtain the following characterisation of the extended

convergence of local martingales, applying the arguments from the proof of

Theorem 3 and Proposition 2:
TaeoreM 4. Let {(7™, ™).y be a sequence of processes from M,
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satisfying (J%). Suppose also that for the limit process (¥, F*®) conditions
(Hy) and (HY) holds. Then two following conditions are equivalent:

(l) (ﬂ""’m_)(g-m, 3‘7“"),
(ii) {(D) (D)~ X)), teRY,

t

N [ifG)v"(ds xdx) 3 ”f(x)v“’(ds xdx), teR",feCyy.
OR OR

At the end of this section we discuss the cases where the limit processes
are the most interesting local martingales: (N—EN, #%) and (W, #%).

CoroLLARY 3. Let {(2", F")}.n be a sequence of processes from M,
satisfying (J%). If we define a family of processes {(B,(e), F")}uen> € > 0, by the
Jormulae

Ba(t,8) =Y (AX"(5)*1(14X"(s)—1| >¢), neN,teR*, e>0,
s<t ’
then two following conditions are equivalent:
(i) (2", #"—(N-EN, #");
(249 A" ¢ EN(@®), teR",
{(25) ™50, teR",
(26) Bu(t,€) +0, teR*,e>0.

(i)

COROLLARY 4. Let '{(.%“, F"}aen be a sequence of processes from M,
satisfying (3%). If {(aa(€), F")}aen» € > 0, is a family of processes given by the
Sformulae ' : :

a,(t, &) = Y (AX"(5))*1(|4X"(s) > &), neN,teR*, e>0,

st
then the three following conditions are equivalent:
) (& F1) > (W, F7);

(i) R . Qm@, w; .
27 @™t EW?(1), teR",
(i) (28) (1,970, teR%,e>0.

4. PROOFS

LemMma 2. Let (2, #) be a prediction process of (¥, F). Suppose that on
a probability space (Q, F, P) there are given the process & and the family of
processes  {Yr o}, where meN, TeQ", 0c[Qu—0)"(-Q={t: —teQ))
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and Q is a countable, dense subset of R*, Q = Cont % nCont % such that.
29 LX), Xp g1, D)oo (X (s X g () | o
= 2((X (D), Yy g1 s s (X (), ¥y, mm(rm)))
for every meN, Te@Q" @'c[Qu—-QJ", i=1,2,...,m
Let % be a filtration on (Q, F, P),

GOL N (X)) Yr.om®): s <u, TeQ" Oc[QU —QJ", meN)

u>t

and let (Z, 9 be a prediction process of (X, 4). Then
(30) Zr,0m= Yr,om» meN, TeQ" Oc[QuU —Q0]",
(31) 2(@, 2)= 2(Z. D).

Proof. We have to check that for every te @, Te @™, @c[QuU — 0],
meN, '

Yr,om(t) = E(h1,0:(X)|G (1)),
where the mapping hr g,,: D(R)— C is defined by

(32) , hT.o.m(x)iexpif:Hkx(tk), xeD(R).

Smce Yr e.m(?) is G(t)-measurable and, by the arguments from the proof
of Proposition 1 in [12],

EI(A) Yy, om(t) = EI(A) by, om(®),  teQ, AcG(1),

the first conclusion follows.
In order to finish the proof it is sufficient, due to the inclusion
Q < Cont Z, to verify that, for every me N and Te Q" _ . i

g«X(tl)s Z(tl))a [RRX} (X(tm)’ Z{tm))) = g((X (tl)a Z(tl)), ey (X (tm)a Z(tm))) j
But this result immediately follows from Lemma 6 [12] and the
equalities S .
g(XT ol,m (tl),-'-sX (tm))= ( T@l (tl)’ Tg"m m))

for every meN, Te @™, @‘e[Qu ormi=1,2,.

LemMa 3 (Aldous [17). Let S and S, be two Pohsh spaces. The sequence
{(Xns Zn)Inew = D(S x 8y) is relatively compact iff the following conditions are
satisfied:

(3. {(x.(), 2,(0); t < q} is relatively compact in S xS, ;

(34)  suppose ‘that the sequence {ti),, i=1,2,3, are such that 1
n<t?<t), neN, thi—t, i=1,2,3, and (x,(t)), z,(£))) — (X', 2,
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i=1,2,3; then _
(x' z)=(x%2%) or (¥} ) =(x%2%;
(35)  suppose that the sequence ;{tﬁ}new is such that t,]|0 and (x,(0), 2,(0))
—(x%, 2%, (X4(tn), za(tD) = (x*, 2%); then (x°, 2°) = (x!, 2%).

- Proof of Proposition 1. First suppose that assumptions (i) and (ii) hold
for every meN, every Te @™, @ c[Qu — @]™ for some countable and dense
subset of @ = R™ such that

Qc () [ContZ"nContZ"].
neNu o}

Let .hr,m be the mapping defined by (32) for which Te@™ and
Oc[Qu -1 It follows from the definition that P(Z "eD,,T’ O,m) =0,
neNu {co}, where o

Dip gm = {xeD(R): hy,em is discontinuous in x}.

Due to the maximal inequality we have, for every ¢ > 0, ne N and
geR”,

P[supZ"(t)(Duy, o) = €1 < &' EZ"(9)(Dyy )

1<q
= s“P[X"eD,,T é,_m] =0.
Hence

(36)  P[hr,gm is continuous in Z"(f) and
ZMt—): teR", neNu{0}] =1,
where hy gn: 2(D(R)— C is defined by the formulae

ET.G,m(p) = j CXpi Z Bk Xy pt1.....tm(dx17"'9 dxm)7 pE.@(D(R)).

Bm k=1
By simple calculations
37 Plhrem(Z"0) = X}.0m(0): teR*, neN U {o0}] =1
for every meN, TeQ", @c[Qu — QT ‘

Since Q < Cont XF g, by (i) and (ii), _
(38) (@ T3, g1, (X T N 3 (T T2 gt )y (X, T2 g )

in [D(CH]™, meN, TeQ", @c[Qu 0], i=1.2,...,m.
Condition (38) may be replaced by the equivalent one:

"~ @*®  in [D(CH]*,

where #"=(%],%3,..) and %};=(2", 2%, 6.m) for some TeQ™
O.e[QuU — Q1™ meN, neN.
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According to the Skorokhod representation theorem (see e.g. _[7]) there
exists a probability space (2, F, P) and a sequence of processes {#"},ov. 0
defined on that space, such that £ (%" = ¥(#%") and

I(@) > F=@) in [D(CH]®
for almost all @e. By Lemma 2 we may assume that

39 Y'(w) = H*(w) in [D(CH]™
for almost all weQ.

Now observe that, by Proposition 43.6 from [1], {Z"(1): t <gq} is
relatively compact in #(D(R)) for every geR'. Hence, passing to a
subsequence if necessary, we infer that {Z"(t, ): t < g} is relanvely compact
in 2(D(R)) for every gqeR* and almost all weQ.

Let us fix an weQ. We apply Lemma 3 to the sequence
{2 (@), Z"(®))}aen < D(R x 2(D(R))). By (39) and the considerations above
it is obvious that condition (33) holds.

Let us note that for a fixed function h}, o.m there holds by (39) at least
one of the following pairs of conditions:

(40) (Xn(t:’ CD)’ ﬁT,O,m (Zn(tl )) (Xm(t_ ’ CO), ET,Om (t_ CD) ):
(X"(22, @), by, om(Z7(2, W) = (X=(t—, @), From(Z°(t—, 0));

(41) {(X"(tr%! 0)), ET,O,M (Zn(tna CU))) (Xw (t (1)) ET Bm(Z (t9 CO))),
(X"(Ig, (U) HT Om(Z"(tis w))) (Xw t CD), Tom(Z (ta CU)))
for every sequence {ti},, i =1, 2,3, from (34). -
In the case where (40) holds, (34) is satisfied with x? = x! = X®(t—, w),
z? =z' = Z®(t—, w). Similarly, (41) implies (34) with x2 = x> = X°(¢t, w), z2
=z = Z*(t, w). In the same way (35) can be obtained. Therefore condition
(39) implies

42 (27(0), 2" (@) - (F(w), Z*(@) in D(RxP(D(R)

for almost all weQ and, as a consequence, (%", F") —»(X®, F*).

Now we prove the converse implications. Due to the Skorokhod
representation theorem we may assume (42), so conditions (36), (37) and
Lemma 3 complete the proof of Proposition 1.

CoroLLaRrY 5. Let h: D(R)— D(R) be a measurable mapping such that
P(X*eDy) =0. Assume that (27, F")— (¥®, F®). If the sequence of
processes {h(%")},en is adapted to the sequence of filtrations {F™},., then

(2, h(@m), 77~ (2=, h2=), #7)

CoroLLary 6. Let {(Z7, F")}nenoionien @nd (X" F)}neno ) be families
of processes with filtrations. Suppose that

43) | (27, F7) = (&>, F*),  ieN,
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44 ' (&, F2) = (X, F9),
45) lim Bim P[sup|X'()—X"(®)] =¢] =0, &>0.
i—aw R0 1<q
Then

(X F) - (F™, FO).

Proof of Proposition 2. We use the technics of Jacod [8]. We start from
some elementary remarks.

Let {8;};av be a sequence of positive constants. For xe D(R) we define a
sequence of partitions of R*, {t}i}, such that

(46) 5=0, the =@+ Ainf[: 0>, [4x(@)] > 6],

where 0,/2 <6y, < 6;, i, keN.
Suppose that Ax (t) # 8;, te R*, and Ax, (£3° +8y) = 0. In this case the
mappings h': D(R) — D(R), ie N, defined by
40 '
47 K@ = Y (Hxer A)=x(R), xeD(R),

k=0

are continuous in x,, ieN.
Now let {0;}ien, {Ou}ienranoiwo; DE two families of constants such that
9;10, 8;/2 < 0y < &; and- P(¥*eD,) =0, ie N. Therefore, by Corollary 5,

(48) ((X" K (&™), #F7)— (2=, F (&), F°), ieN.

Using the arguments of Jacod [8] we obtain

LemMa 4. Let {(X", F™)}aen be a sequence of processes from M, and
satisfy (Jg). If X" = X'™, then, for every & >0,

49) lim Tim P[sup|H (7))~ [2710) > ¢] =0, qeR*,
(50) - swlEE@)O-[2*10I 0, qeR”.

In order to complete the proof we use the two-dimensional version of
Corollary 6. We get 27 = (2", K (2™), neNu{x}, ieN, " =(2", [2"]),
neNu{w}, F'=%" neNu{w}.

Proof of Proposition 3.

LemMa 5. Let {(2", #™)}nenw be a sequence of processes from £}, and
(>, F*)e.of*. Suppose that {(X", F")}nn satisfies (J') and Tz, X (7}
means convergence of the finite-dimensional distribution). Then there exists a
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sequence {(U", F") v of processes from . such that

(51) ' | SUPIX"(I) Y"1 30, qeR*,
(52) - sup|X"(t)— Y(t)| -0, geR*,
t<q
(53) {Y"(t)},n is uniformly integrable, teR*.

Proof. Let {e,}mens {tm)mev D€ two sequences of nonnegative numbers
for which ¢, |0, 0=ty <t; < ...,
k—>wx
and {t,,,},,,EN < Cont(Z™). The convergence 3"‘5} Z™ implies that, for every
meN and every i <m, there exists a constant N(m) such that for each
n> N(m) we have

(54) [E(X"(t) A 65 )—E(X® @) A &7Y)] < tm-

Now define a sequence {x,,},,eN of elements from D (R) and a sequence of
processes {#"},y as follows:

(59) n(r)ﬂ{a"' s

Eix1, LSt<tyy, izm,
(56) Y"(0) £ X"()) A x,(), teR",

for meN, N(my<n<N(m+1) and #" £ x, for n < N(1).
Let us fix an meN, & > 0. Since x,(0) - + 00 as n— + 00 and, for every
c>0,e>0,

lim P[sup |X"())— Y"(8) > €] < lim P[X"(1,) > x,(0)]

n—w l'\t n—-aw
< im P[X"(t,) > c] < P[X°°(t,,,) cl,
condition (51) holds.

‘In order to prove (52) let us observe that for n > N(m+1) the pro-
cess (X"—Y"(-At,) is increasing. Since, for n>N (m+1), also
(B =) A ty) <(Z"—H") (" A tL,,), conditions (51) and (10) imply (52).

Finally, let us observe that, by (54),

lim EX"(t,) = EX*(t,)
and, by Theorem 5.4 of [2], the sequence {Y"(r,)}.v is uniformly integrable,
me N. Hence (53) is satisfied.

To prove Proposition 3 we will also use the followmg modification of
Theorem 16.3 from Aldous [1]:
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LemMA 6. Let {(%", F")}un be a sequence of submartingales such that the
families {X"(z,): 1, is F"-stopping time, T, <Glyen> (X T(T0): T I8 F-
stopping time, 1, < q} are uniformly integrable, ge R*. Suppose that v=*({t}
xR*\{0}) =0, teR™, and {(¥", F")}.v is a sequence of processes with
filtrations for which (%", 2™, F") - (¥, X™), F*).

Then (@, 2", ) 5 (¥>, =, T) in D(R®).

Now we are ready to prove Proposition 3.

It is clear, by Corollary 5, that

((@",Q"”/\i), 3‘“’”)—»(@“’, Z* Ai), ieN.
Since (™ A i, F°)es/*, by Lemmas S and 6 we have
— — )
BN A A3 DT AL T D) in DRY).
Now observe that

lim im P[sup|X"()—X"() Ai| 2 €] =0, &>0,qeR",

. i~ n—wm t<gq

sup|X® ()~ X=() A i| 20, qeR".

t<q

Therefore, by (10), for ¢ >0 and geR*,
I . | p—
lim lim P[sup|X"(t)— X" Ai(t) 2&] =0

i~2on—w t<gqg

and
- —
sup|X* ()~ X A i(t) 3 0.

t<gq

Hence, due to the classical Theorem 4.2 from [2], the proof of
Proposition 3 is completed.

Proof of Theorem 1. It is easy to see that, by Corollary 5, we have
(57) (™", B*"), #%) - (2", B®), F),
(58) (J[f(x)N"(dsxdx), F)— ([ [ f(IN®(dsxdx), F°), [feCyq-
oR oR

By (57) and the equalities M" = g""—B"" M® = g%*_B® (neN) we
get (M", #7) - (M=, #*). Since

sup|[AM" () < 4,
t

by Proposition 2 we obtain

(59) (M", [M"]), ") > (M>, [M*]), F=).

Finally, we apply Proposition 3 to the process from (58) and (59), and
conclusions (M) and (N) follow.
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