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BOUNIDED STOPPING 'IlME OF SOME BAUES 
SEQUENTIAL TESTS FOR THE t-TEST MODEL * 

Abstract. For the t-test model the problem is to sequentially 
test whether the sign of the mean is negative or positive. Consider 
normal-gamma priors and the following three loss functions: 

(i) linear combination of cast and 0 - 1 ; 
(ii) line& combination of cost and absolute error; 

(iii) linear combination of cost and absolute error divided by 
the standard deviation. 

For losses (i) and (iii) the Bayes test is shown to have bounded 
stopping time and a bound on the maximum sample size is 
obtainable. For loss (ii) the Bayes test does not have bounded 
stopping time. Intuitive explanations for these somewhat surprising 
results are offered. 

1. Introduction a d  summary. Consider the t-test model. That is, X, X,, 
X 2 ,  ... are independent, identically distributed normal variables with 

,unknown mean p and unknown variance cr2. The problem is to sequentially 
test H: p < 0 vs K: p > 0. Open ended tests based on t-statistics at stage n 
have been recommended testing the sign of R = p/a (see [6] for example). 
Schwartz [ 5 ]  suggests a sequentiaI t-test for this model assuming an 
indifference region separates the hypotheses. He uses the Asymptotic Shapes 
Method which is appropriate for tk. case when the cost of sampling 
approaches 0. 

There appears to be very little work done on the model and hypotheses 
posed here in either the asymptotic or non-asymptotic cases. Bayes tests or 
properties of such have not previously been studied. In this note we address 
the issue of bounded stopping times for a class of Bayes tests. Bounded 
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stopping time results have appeared in problems dealing with exponential 
families. References include Ray [4], Berk, Brown, and Cohen [ I ]  and Cohen 
and Samuel-Cahn [2]. We consider three typical testing loss functions: 

(1.1) linear combination of cost and 0-1 (1 for incorrect terminal 
- ,  decision); cost is assumed constant for each observation. 

! (1.2) linear combination of cost and IpI in case of error. 
I1.3) linear combination of cost and Ipl/a in case of error. 
The interesting and somewhat surprising results are as follows: For the 

normal-gamma family of, priors (normal with mean ,0) and generalized 
priors which are limiting cases of such, we find that the stopping time is 
bounded for losses (1.1) and (1.3). Furthermore, the condition determining 

I T  whether the stopping time is bounded is independent of u = C (xi - z)'. For 
I 

loss (1.2) the stopping time is not bounded. 
Intuitive explanations for the results are discussed in Section 4. Pre- 

I 
liminaries are given in Section 2 and the theorems are proved in Section 3. 

1 2. Preliminaries. Let 

h = l/u2, e = (p, h), 

0 E O,  where O = ( (py h): -m < p < a, 0 < h < a). When the meaning is 
clear, we merely write X, u instead of X,, 06,. The normal c.d.f. is F ,  and the 
standard normal c.d.f. is @. The actions are denoted by the pairs (n, a), where 
n = 0, 1, 2,. . . is the stopping time and a = 1 or 2 depending on whether H 
is accepted or rejected. The loss function (1.1) is written as 

cn+l  f o r p > O ,  c n + l  for p < 0 ,  
cn for p < 0; en for p > 0, 

where c > 0. 
The loss function for (1.2) is 

(2.2) 
cn+p for p > 0 ,  cn-p for p G 0 ,  
cn for F <  0; cn for p > 0. 

The loss function for (1.3) is the same as (2.2) except that p is replaced in 
(2.2) by P/G.  

A normal-gamma prior distribution on (p, h) with parameters (my v, no, v), 
denoted as f n ( p [ r n ,  h, n,)&,(h(v, v), is proportional to 

(2.3) e 
( -  h n o / 2 ) ( ~  - no2 h d ( n ~ l 1 2  ,- Y,,h/2 p~ - 1 

3 

where 6(n0) = 0 if no = 0 and d(n , )  = 1  if no > 0 ([3], p. 300). The joint 
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posterior distribution of ( p ,  h), given 6, = (x,, x,, . . ., xn) depends on (x, u), is 
denoted by d P ( p ,  k J X ,  u) and is proportional to 

(2.4) e - [hlng+ n)/211~- [ m g +  nz/(ng -t- n)12 
X 

-(h/2)([vv+ non21+(u + nz2) - b o r n +  n ~ ~ / ( n ~  f n ) )  ( v +  B(ng1 f (n-  2))12 x e  h 

The proof of the theorems in the next section will be based on some 
results of Bay [4]. A restatement of the relevant theorems appear in Cohen 
and Samuel-Cahn [2] and we state such theorems below. 

Let ~ ( 0 ,  In, t)) = cn+ W(0, a), so that W ( 0 ,  a) is the loss due to 
a terminal decision. Let L(0) = W ( 0 ,  1)- W ( 0 ,  2). For any given prior 
distribution let T,{ denote the psterior distribution of 8 given s,. For 

this problem rSn 6 depends on g only through ( X n ,  u,,), so we write rfWun( for 
rZn (. For any distribution and any integrable function u(B) let 

Let L(T,,<) = E,,nt L(B) be denoted by L(Z,, uJ.  For the family of 
priors in (2.3) with m = 0, giving rise to the posterior distributions in (2.4) 
and for loss functions ( 1.1 ), ( 1.2) and ( 1  -3). it is clear that, regardless of 11,. for 
every 1.1, L(r,,, <) = 0 if and only if 9 = 0. Thus (Z, = 0, un) is called the 
neutral boundary. -Now let 

and define R ( S )  = eo (0- Eg eo (z, 5). Denote A ( T ~ , ~  S )  by A (K, u). The 
following theorems assume loss functions (1.1), (1.2) or (1.3) and priors (2.3) 
with m = 0. They are derivable from [4] and/or [2 ] .  

THEOREM 2.1. We have 

I f  there exists an integer ii such that R(0, u) d c unqorrnly in u for all 
n 2 ii, then the stopping time of the Bayes rule is bounded. 

THEOREM 2.2. Suppose that, for every integer n,  A(0, u) > c for some values 
of u with positive probability. Then the Bayes test does not have bounded 
stopping- time. 

i 
3. Bounded stopping time results. 
THEOREM 3.1. Assume the loss function is (2.1). For prior (2.3) with pn = 0, 

including cases where no = 0 and/or v = 0, the stopping time of the Bayes test 
is bounded. 
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Proof. Use (2.11, the definition of L(B), (2.4) and (2.5) to compute 

(3.1) 
a3 0 m m 

4 = J J  J - @ ( - - P , ~ ~ P ( P ,  hlO, u)+ j J @ ( - P & ~ P ( P :  hI0, u) 
0 - s. 0 0 

m 'v 

= J j ~ @ ~ r f i ) - @ t - r $ ) l d p t ~ ,  h). 
0 0 

Use (2.4) with m = 0, R = 0, so that (3.1) becomes 

where E,,, denotes expectation over the marginal distribution of h which is a 
T(v + 6 (no) +(n- I), vv + u)  distribution. From (3.2) however we note that the 
bracketed term is independent of h and so A(0, u) does not depend on u. 
Clearly, for all n sufficiently larg~,  R (0, u) < c uniformly in u, and the proof 
follows from Theorem 2.1. 

Remark  2.2. The fact that R(0, u) does not depend on u implies that 
computable bounds on the stopping time can be found as in [4]. 

THEOREM 3.3. Assume the loss function is (2.2). For prior (2.3) with m = 0 
the stopping time of the Bayes test is not bounded. 

Proof.  This time use (2.2) in computing (2.5) and follow the steps of the 
proof in Theorem 3.1 to find that 

From (3.2) we see that for any n there exists a u-set of positive 
probability for which A(0, u) > c. Now apply Theorem 2.2. 

COROLLARY 3.4. Assume the loss function is (1.3). For prior (2.3), with 
m = 0, the stopping time of the Bayes test is bounded. 

Proof ,  The proof follows as in the previous theorems and it turns out 
that, as in Theorem 3.1, R(0, u) is independent of u. 

4. Discussiom. We offer some intuitive explanations for the results 
obtained in Section 3. 
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Suppose the loss is (1.1). If X - N ( p ,  cZ), we feel that if c2 is small 
we do not need n to be large to gain information about p. However, if 
p102 - N ( 0 ,  a'), small a2 means small [pi which in turn means we need large 
n to distinguish between H and K .  Hence there is a balancing effect, so that 
the determination of whether the stopping time is bounded does not depend 
on s2. 

If the loss is (1.2), the penalty is too severe for an error in the terminal 
decision for large 1 ~ 1 .  In this case if a2 is large, we need large n, and if o2 is 
small, we do not need n large. TMs is~accomplished by n depending on s2, 
the estimator of c2. We see that '(3.2) reflects this behavior. In connection 
with the loss in (1.3) we again find a balancing effect between the distribution , 

of X and the prior distribution. 
Another intuitive explanation is as follows: If the loss in terminal 

decision is bounded, then stop before n gets too big, otherwise the penalty 
from cn is too severe. On the other hand, for absolute error loss there is a 
trade off in severity between loss due to terminal decision and samplig cost. 
If Ipl/a is the loss due to terminal decision, then, although large a means 
large n, the terminal decision loss is neutralized for large a so that n should 
not actual!y have to be large. 

The author would like to thank Professor M. Woodroofe for a helpful 
discussion. 
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