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MOMENTS AND GENERALIZED CONVOLUTIONS

BY

K. URBANIK (WROCLAW)

" Abstract. There are established basic inequalities for moments
of generalized convolutions of probability measures. Moreover, some
necessary and sufficient conditions for the existence of moments of
the characteristic measure are given. '

1. Generalized convolutions were introduced in [3]. Let us recall some
concepts and definitions.

We denote by P the set of all probability measures defined on Borel
subsets of the positive half-line R, . The set P is endowed with the topology
of weak convergence. For ue P and a > 0 we define the map T, by setting
(T, W)(E) = p(a~ 1 E) for all Borel subsets E of R,. By 4, we denote the
probability measure concentrated at the point c.

A continuous in each variable separately commutative and associative
P-valued binary operation o on P is called a generalized convolution if it is
distributive with respect to convex combinations and maps T, (a > 0) with J,
as the unit element. Moreover, the key axiom postulates the existence of
norming constants c, and a measure ye P other than d, such that 7, 67" — 7,
where 69" is the n-th power of 6; under o. The measure. y is called the
characteristic measure of o. It is defined uniquely up to a scale change T,
(a > 0).

. The set P with the operation o and the operations of convex

‘combinations is called a generalized convolution algebra. Generalized

convolution algebras admitting a non-constant continuous homomorphism

into the algebra of real numbers with the operations of multiplication and

convex combinations are called regular. All generalized convolution algebras

under consideration in the sequel will tacitly be assumed to be regular.
Given a positive real number a, for any pue P we put

m () = | X" u(dx), mFQy= g x*log x p(dx).
0
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’

By monotone convergence theorem the maps o — m,(y) and o — m¥ (y)
are continuous on the left for any ue P. Moreover,

(1) (=B~ (my () — mg () > mF (),

whenever my(p) < co and f — a—. Furthermore, by formula (2.13) in [6],

@ m(1ov) = | [ my(3,08,) u(d9)v(dy),

&) mg (ov) =

Ot § ©O= 8
St 8 ©—8

my (0 00y) uldx) v(dy)

for all u,veP.

We denote by P, and P} the subsets of P consisting of all u fulfilling the
conditions m,(y) < co and |m¥(u)| < oo, respectively. It is clear that P, and
P¥ are invariant under maps 7, (a > 0).

A homeomorphic map u— ji from P into the set of continuous bounded
real-valued functions on R, with the topology of uniform convergence on
every compact subset is said to be a characterzstzc function of the generalized
convolution o if '

Nep+(1=0)v) =ch+(l—-c)¥ (0<ec<,
N e
uov=jgv and Tu()=jat) (a>0)
for all u, veP. ‘ '
It has been proved in [3] (Theorem 6) that a generalized convolution
algebra admits a characteristic function if and only if it is regular. By
Theorem 2.1 in [S] the characteristic function is umque up to a scale change.
Moreover, it is an integral transform

i) = gmm p(dx)

with a continuous kernel Q with the properties |Q2(t)] < 1 (teR.) and Q(r)
= 1—1¢*L(t), where » > 0 and the' function L is slowly varying at the origin.
The constant x is called the characteristic exponent of the generalized
convolution o. ' ,

Changing the scale if necessary and taking into account Theorem 7 in
[3] we may assume without loss of generality. that the characteristic function
of the characteristic measure y is given by the formula

@ B 7(t) = exp(—1*).
Then, by Lemma 1 in [2],
6 ~ lim 1_?@ =m,(y)" !

t—0+
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which yields

©) tim 27RO _ o ym o)

10+ 1"

for any ueP, other than J,.
For every k-tuple uy, us, ..., 44 from P we put

k
(7) ¢(ﬂl:v Moy ooy Pis t) = 1—[1 (l_ﬁy(t))
i=

Since, by Proposition 1.3 in [5], for any u, veP, -

an

a9y = [ 9@,
0 0

we have, by (4),

®) :fcb(ul, oo oes e 1) 7(d%)

k -] o ’ '
=1+ Y (=1 Y [exp(—1*x)(m, 0 p,0...0 i)(d),
r=1 i1582,-00iy 0
where the summation ) runs over all r-element subsets {i,, i, ..., i,} of
- P15i950c0sly
the set of indices {1, 2, ..., k}. '
Given a# %, 2%, ..., (k—1)x, 0<a<kx, we put for any k-tuple
Hys Py oo My from P :

, N . o
9) coa(ul,#z,---,uk):——a j¢(ﬂ1aﬂ2a---:ﬂk;.t)t Ldt.
| F(‘z)o -

If ”l, M2y o -y y'kEPm 'thena by (6)7

1 |@a (tts, t2, -5 )] < 00
and, by formula ' '
' . o a\ (=1
i Jm (2)r(5) =5 =t
A lim_(pa(,ul,uz,...,uk)=0 r=1,2,...,k=-1).

Moreover, if u,, t,, ---, i # 0o, then

Sk
lim (Pu(uls Hay ooy /‘tk) =(_1)kk'mx('y)~k lj[lmx(#y)

a —kx— i
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The above relations enable us to define

(Pa(ﬂla Has - v :uk) (,Ltl, Hayoons #kEPx; His Hay ooy Uy # 50)
for all « satlsfymg the 1nequa11ty 0 <a < kx by setting

(12) (prx(”b Has - :ﬂk)_ (1"21, :’k—l) .
and
k
- (13) P (a5 M2y ey ) = (— 1kl m, (p)7* H m,, (f,).
j=1.

The map a — @, (u;, U3, --., ) is then continuous on the left.

3

Suppose that u, ve P. Since 710V = i, we have, by (9) and (10)

(14) (o) = 0, () + @, ()~ up, V) (0 <o <x).
Moreover, ¢,(d,) = x*m,(d,) and, by Fubini’s Theorem,

(15) P (1) = g% O p(dx) = @, (6)m, () (0 <a <)

Consequently, by (4),

fl et’?i(;tn)dt_ 1. (0<a<w),
0
which yields
(17  e)=-m) ' (0<a<w
and ye P (0 <a <x). Formula (16) has been proved in [1], p. 119.
2. THEOREM 1. Let u, véP. Then J

(18 my (o) < m (W)+m,(v) if 0 <a <x,
(19) ' m, (o) = m, (1) +m, (v)

and

(20) m,(nov) = m, (u)+m v ifa S%

Proof Suppose that 0 <a <x. Then, by (9), ¢,(d,, 6y) 0 for all x, y

and, by (16), ¢,(d,) <O0. Since, by (14) and (15),

@4 (95, J,)

(21) m,(0,006,) = x*+y*— ,
| 0500 = Xy =



~ which, by (22), implies m,(d,09,) = x*+y* Now (20) is a direct consequence
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we have
Mg (0, 00y) < X+ )7,
which, by (2), yields im?quality (18). Further, by (5),
[@©,, 0)t7* dt
(4] .
is bounded on the interval 0 <a< x. Since

-

(1—-!Q(t))t_"‘1dt——> 0 as a-—> ¥

Sty 8

([41, p. 61), we have, by (9), @,(5x, 8,)/®,(8;)— O as a— »—. Consequently,
from (21) we get the equation
(22) m, (9, 08,) = x* +y",
which, by (2), yields (19).
Consider the case o > x. We have then the 1nequa11ty

My (6,00,)"" = m, (6,068,)",

of (2). This completes the proof. :
From Theorem 1 we get the following statement:

CororLrLarY 1. If 0 <o <, then the sets P, are closed under the
generalzzed convolution o.

ProrosiTION 1. Let u, ve P;‘ and p, v # 8y. Then
m (uov) = m¥ () +m¥ (V) +m, () [ @(u, v; )t 1dr.
] .

Proof. Since P, = P¥, ji(f) <1 and ¥(t) < 1 for small enough positive ¢
([3], Theorem 5), we infer, by virtue of (6) and (7), that

0< jdi(y, v; )t %" dt < c0.
] :

By Theorem 1 (formula (19)) for a <x we vhave

ma(uOV) my (p) — my (v) _
=m,(pov)— m(nov)+m (1)— ma(u)+mx(v) m, (v)

which, by (1), yields ‘
(23)  (x~a)”* (m,(moV)—m, (W) —m, (v)) | |
— m} (u)+m,,(v) mi(pov)  as a— x-.
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On the other hand, by (14), (15) and (17),- we have

_ (L OV) — my (1) — m, (v) = my (y) @, (1, v).
Since, by (9) and (11),

) @ '
(=) Lo, V) — [ Bu, vyt ™" dt  as a— u-,
1]

the above equation together with (23) yield our assertion, which completes
the proof.

As a consequence of Proposition 1 we obtain the following statements.

CoroLLARY 2. If yeP,, then PF¥ is closed under the generalized
convolution o. _

CoroLLARY 3. If there exists a pair jp, ve P such that p,v # 6, and
uove P¥, then yeP,. ' ‘

Corollaries 2-and 3 yield

CoroLLARY 4. ye P, if and only if the set P} is closed under the
generalized convolution o. ‘

COROLLARY 5. If there exists a pair p,ve P such that u,v # 8, and
pove P¥, then P} is closed under the generalized convolution o.

Let k=1,2,... and a > x. For every integer r and every k-tuple
Mys U2, -, ty from P we put G

(24) My (11, U, -.--, W) =0

if either r <1 or » > k and

(25) Mop bty Bas oos )= % Mo (4, O, 0...OM;),
10070y

if 1<r<k, where the summation is extended over all r-element subsets
{ig, iz, ..., i,} of the set of indices {1, 2, ..., k}. Obviously,

(26) Mg (Bas Has ooy i) = My (U Of130...0 )
and, by Theorem 1 (formula (19)), ‘

k—1 :
27 m (s B, o ) = (r__l)mx(#1oﬂzo---0#k) (1<r<k).

By Theorem 1 we have also the inequality

k .
(28) ’ ma,r(ﬂls Ha, ..oy Hk) S (r)ma,q(.uls Has -ony ﬂk) lf r \<- q < k

Further, by monotone convergence theorem the map

o= my, (1, Moy -5 )
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is continuous on the left. Taking into account (2) we easily get the following
equation:
(29) ma,r+1 (ﬂla Has ooy Mgy Myt 1)+ma,r— 1 (#u Has vovy .uk—l)+

+my (s By oo Mi—1)
= ma.r(ﬂl! Hzs «oos ﬂk—lh uk)_+ma,r(ﬂl’ By ooy Hg—1s .u'k+1)+

+ j. ma,r—l(”ly K25 ooes Hg—1s 5x)(ﬂkoﬂk-l;1)(dx)'
0

LemMa 1. Given o > % and k > 2. Suppose that there exists a constant c,
such that '

' k ‘ k
(30) . Zl(—l)rma,r(vla V2, ey vk) =Cy [-[lmx(vy)

for every k-tuple vy, v,, ..., v, with v;0v,0...0v,eP,. Then for every n>k

: (31) ] v Z (—1)rma.r(:u1> 1 TR ou'll)=0

r=1

whenever y,0p,0...o0u,eP,..
Proof. It suffices to prove (31) for n = k-+1. Suppose that

UL OpUp0...0 1 EP,.
Then, by Theorem 1 (formulae (19) and (20)), we have -

WOz 0...014€F,, H1OM0... 0t 1Oty €Fy
and, by (2), '
ﬂloﬂzo...oﬂk_loaxEPu

- for o‘pkﬂ-almost all x. Thus, bjr assumption (30),

k ] k . :
Z (—l)rma,r(,uls Has -eey ”k) =Cy 1:[ mx(ﬂj)a

r=1 ji=1
k k~1
: 21("1)"":::.'(#1, B2 eos Hi—1> Mt 1) = Co My (Mt 1) 1—[1 m, (1;)
r= . j=
and o
k. , . k-1
Zl(-l)rma,r(ﬂls #25 cves Ug—1, 6::) = caxx 1—[1 mx(ﬂj)
r= : i=

for pkduk+1-almost all x. Now applying (24) and (29) we get

k+1

Z (_ 1)rma,r(.ula Has oovy Py Myt 1)
r=1 ’ '

k-1 k-1

= ¢, (e () + M (s 1)) TT e (1) = € (1 0 pier 1) TT (1)

i=1 j=1
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which, by Theorem 1 (formula (19)), yields (31) for n = k+1. This completes
the proof.
LemMA 2. Given k> 2 and (k—1)x <o < kx. Then, for every k-tuple

My, Has .-, t from P with the properties py, sz, ..., U # Jo,

(32 M1 Oy 0---OllkEP(k'—1)m

(33) Mg 1 (1 B2y o5 i) < O ijrq;éZx,

and

(34) MO M e P if a = 2%,

we have o

@35 0 <|@a(ptss pias -5 i) < 0

and ' '
k

(36) ®a(p15 M2 -, i) My () = Z (—l)rma,r(#ls Has -es M-
r=1 .

Proof. From assumption (32) and Theorem 1 it follows that u;e P,
(G=1,2,..., k) which, by (10) and (13), yields |@, (1, 2, ..., )| < 0. Since
B <1(G=L2,..,k) for small enough positive ¢ ([3], Theorem 5), we

infer, by (7) and (9), that |, (i1, K2, --., )| > 0 provided- (k—1)x < o < kx.

Finally, consider the case a = kx. Then, by (33) and (34), p, ou,e P¥
which, by Corollary 3, yields ye P,. Consequently, we get from (13) the
- inequality @, (p1, 2, ..., )l >0 because m,(u)>0 (=1,2,...,k).
Inequality (35) is thus proved

Taking into account (26) and (28), we have the inequalities

[k
My (11, My - evy i) S . My (U O Uz O-.. O tly)

K\ . B ‘
s(r)'"fk-l,,,(ulouzo...ouk)f/“‘-” G=1,2 . k=17=1,2, ...,k

which, by (32), yield
mjx,r()ula Ha, ... uk) <o (J = 15 25 s k_la r =.1: 25 ceey k)
Put '

G7  ai(py, pas s ) = Z (=1 my, (g5 pgy -5 )
. r=1

i=1,2,...,k=-1).
By (27) the equation

(38) . . al(.ulv Has oeons uk)_—'o
holds. ' '



\
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Let us introduce the notation

(39)  fua,s B2y oo a3 1)

k-1 Jn %
-1y ¥ “mwfﬁ—ZFth)

i
~
el

ll 12 J
(1, 0, 0...0p; )(dx)

where the summation Z runs over all r-element subsets {i,, i,, ..., i,} of

the set of mdlces {1, 2 k‘ By (8) we have

(40) j"@(ul, Has oees uk; t)v(dx)
0
. ), )
= fpt1, a5 --es My D+ Z —a; (ul,uz,- AT

Further, by (28), (33) and (34),

© (41) Moy (s oy vy i) <00 (r=1,2,..., k=1).

Consequently, for any f satisfying the condition (k—1)x < f <« we get
(42) ff(ﬂl, ﬂz,...,‘u_k;t)t_ﬂ—ldt
0

e (-B) S om0
_x Y = B,r Hyis Hay oooy Hg)

We shall prove (36) by induction with respect to k. First consider the
case k = 2. Since, by (38), ay (py, po) = 0, formula (40) can be rewritten in the
form ‘

fdi(ux, P25 ) y(dx) = f(p1, Has3 8)

which, by (9) and (42), gives

Py (11, Hz2)mg(y) = Mg > (1, H2)—mg (11, 12)

for any B from the interval » < B <a. Since all maps B— @g(uy, 1),
B — my(y) and B — my, (4, py) are continuous on the left, the above equation
and (41) yield (as g — a-) formula (36) for all a from the interval » < a < 2x.

Suppose now that k > 2 and (36) is true for all indices less than k. Then
in particular, for any j-tuple vy, v,, ..., v; from P satisfying the conditions
Vi, Va2, ooos Vj# 69 and v, 0v,0...0v;€ Py, we have

(pju (vh Vas eres 'vj) mjx (7)

J
= Zl(—l)fmj,,l,(vl, V2, cvns Vj) (_]=2, 3,..., k‘—l)
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which, by (13), can be rewritten in the form

; ‘
Z (—l)rmjx,r(vl9 V2, oees V)
r=1

— (—im ) [T m) (=23, ..., k=1)..
i=1

Taking into account (32) and applying Lemma 1 we get the following
equations:

k
Z (—l)rmjx,r(”la Has-eens .uk) =0 (J = 2’ 35 LS k_l)
r=1

Thus, by (37), (38) and (40),

a0
Ju1s s oons s tx)'y(dx) Sy, tas - 3 0)
0 .

which, by (9) and (42), ylelds

k
(Dﬂ(nu'la Hay ooes Auk)mﬁ('Y) = Zl(—l)rmﬂ,r(ﬂli Hay oons ﬂk)
for any § from the interval (k—1)» < f <a. Now taking into account (41)
and the continuity on the left of maps f — @g(y, U3, ..., W), B— mp(y) and
B—mg,(, pa, ..., i) we. get (36) for all « from the interval (k—1)x
< o < kx», which completes the proof.
As a direct consequence of Lemma 2 we get the followmg statement

CoROLLARY 6. Let k=23, (k—1)x <o <kx and yeP,. If H10ﬂ2
O € Py and my i (piys Ha,s -y i) < O, then p;0 py0...0 e P,.

In fact, the k-tuple u,, ps, ..., p fulfils then conditions of Lemma 2.
Since the left-hand side of (36) and '
k-1
Z ( 1) mar(ﬂl’ )u2" tey ﬂk)
are finite, we infer that m,, (uy, g, ..., i) < co, which, by (26), yields our
assertion. ' ‘ '
Furthermore, from Lemmas 1 and 2 and definition (13) we get the
following _ B
CoroLLARY 7. Let k=2 and n>k. If pop,0...ou,eP,, and
H1s Has ---» Py # O, then '

n

2 (_l)rmkx,r(pfla ﬂz, , .un) = 0. -
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THEOREM 2. Let k =2 and (k Dx <a< k. Then yeP if and only if
there exists a k-tuple py, yy, ..., t from P such that py, py, ..., Wy # 0o and
B1OM0...0 e P, : :

Proof. Suppose that yeP,. Then, by (4), y°* = T.y, where ¢ = k"
Consequently, y°*e P, which proves the necessity of the condition. To prove
the sufficiency let us assume that u,, g, ..., tx # 0o and g O p,0...0eP,.
It is clear that the k-tuple p,, fia, ..., M fulﬁls the conditions of Lemma 2
and, by (26) and (28), the right-hand side of (36) is finite. Thus, by (35), ye P,
which completes the proof.

THEOREM 3. Let % <o < 2x%. Then ye P, if and only if the set P, is closed
under the generahzed convolution o.

Proof. The sufficiency of our condition follows 1mmed1ately from
Theorem-2. To prove the necessity we assume that ye P,. Consequently,
ye P, and, by Corollary 2, P¥ is closed under the generalized convolution ©.
Thus 8,06, P¥ for any x, ye R,.. This shows that the pair d,, J, (x y> 0)
fulfils the condltlons of Lemma 2, which yields the equation

(Pa(éx: 5y) ma(‘y) = ma((sxo 5y)"_xa—y

for positive x and y. If either x =0 or y =0, then the above equation is '
evident. Hence, by virtue of (2), we get the formula

m, (1 ov) = m, (1) +m, (V) + @, (1, V) m, ()

for any pair. g, v from P,. This shows that P, is closed under o which
completes the proof.
From Theorems 2 and 3 we get

COROLLARY 8. Let % <« < 2x. If there exists a pair p,v with the
properties y, v # do and uoveP,,, then P, is closed ‘under the generalized
convolution o.

THeoREM 4. Let k > 2 and (k—1)x <o < kx. If /1°"e , then e P, for
aln=1,2,...

Proof. Suppose the contrary. Let k be the least integer for which our
assertion is false for a certain a from the interval (k—1)x <a < kx. By
Corollary 8 and mequahty (20) we conclude that

(43) k>3.
Let ‘

(44 wreP,

and

(45) u°"¢P

Obviously u 5 d, and, by (20) n > k. Without loss of generahty we may
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assume that

(46) _ e bep,

Since our statement is true for the integer k—1 and Py_,,, < P,, we
have p*"e Py_y),. Put py = py =... =y = p and g, = p°"*1~P, Then
47 , B Opa0...00 = p"€ Py 1y

Further, m (u,lo /,c,z o;z,k J S m, (p°"" 1) for every (k—l)-elerﬁeht
subset {iy, iz, ..., ig_ 1} of {1, 2, ..., k}. Thus, by (46),

(48) ma,k—l(ula Has ovey ,uk) < 0.

From (44) and Theorem 2 it follows that ye P,. Consequently, by (43),
(47), (48) and Corollary 6, we have p°" =y, op,0...omeP, which
contradicts (45). The Theorem is thus proved.

The condition p**e P, of Theorem 4 cannot be replaced by the- weaker
one %~ Ve P,. In fact, for the generalized convolution o, ,, defined in [5],
example 1.6, we have ¥ =1 and '

Y(E) = [x"exp(—x~1)dx.
E .

Thus rria (N=T2—a) if 0<a <2 and m,(y) = c0 otherwise. Taking
k =2 we have §{¢ "V =§, e P,, and, accordingly to Theorem 2, 53¢ P,,.
THEOREM 5. Let k > 2 and p*e P,,. Then for every n> k

ko n\(n—r—1
(49) Mo (W) = 3, (-*1)“’( )( )mkx(u‘")-
r=1 r k—r
Proof. Since for p =, our statement is obvious, we may assume that
U # 6g. Then, by Theorem 4, the n-tuple p, = My ==l =p fulfils the

condltlons of Corollary 7. Thus
n

Z (- 1y (:)mkx(ﬂm)'_:() (n > k).

Solving this system of equations we obtain formula (49).
Example. Let u # 6, and uoueP,’f. Then, by Corollary 3, ye P,. Put

L () _
(nm (ﬂ)) n=1,2,..).

By (6), (T, #°" (1)) — exp(—*) which, by (4), yields T, _U"— y. Moreover,
by Theorem { (formula (19),

m (T 1) =m,(y) (n=1,2,..).
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'Suppose in addition that k> 2 and u*e P,,. Then, by Theorem 2,
y€ Py, and, by Lemma 2 and (13),

k k N
(50) > (=1 ( r)mkx (1) = (= Dkt m, (7)™ " my, (1) My, (7).
r=1 Lo .
Further, from Theorem 5 we get, as n— oo, '

1) | :
: mkx(’zzn #c_m) ( ) (x;? Z ( 1)" ( )mku ()ua') '
r=1

which, by (50), yields
| mkx(’lzn ‘uon) = My, (V)
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