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ON SOME CRITERION OF CONVERGENCE IN PROBABILITY
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Abstract. Let (2, =/, P) be a probability space. (S, g) denotes a
metric space, and # stands for the o-field generated by open sets of
S. The set S is assumed to be a separable and complete space.
A sequence {X,,n=1} of random elements, defined on a
probability space (2, o, P) taking values in S, is called stable if for
every Be.o/, with P(B) > 0, there exists a probability measure up
such that

- lim P([X,e A11B) = pp(A).

n—ran

There are given conditions concerning the set 2,(5) -
= {ug, Be s/} of probability measures, under which there exists a
random elerhent X such that the sequence {X,, n> 1} of random
elements converges in probability to X.

Let & be the set of all random elements (r.e.):
F={X:2-8; X" Y(A)ed, Ac B}.

By Py(A) = P([Xe A]), Ac B, we denote the distribution function of
re. X. Let o/, ={Bes/: P(B)> 0} and '

A’ = {x: d(x, 4) = info(x, y) <6}.
Ye
On the set Z(S) of probability measures, defined on (S, £),
(1) L(z,v) =inf{e > 0: v(4) <1(4°)+¢ and t(4) S v(A)+e, Ac B}

denotes the Lévy-Prohorov metric, where 7, ve 2(S). Convergence in this
metric and weak convergence coincide.

~ Let- '

@) r(X, ¥) = inf{¢ > 0: P[o(X, Y)> ] <&}
and ‘ .
@) C nxn = 2%

1+o(X, YY)
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where E(-) denotes the mean value, be two metrics introduced in the
space Z. Convergences with respect to r and r, are equivalent to each other
and to the convergence in probability (X, £ X, n— oo) [3]. It is known
“[2] that L(Py, Py) <r(X, Y). Hence the convergence in probability implies
the weak convergence.

Definition 1. A sequence {X,,, n 2 1} of re. is called stable if, for every
Be o/ ., there exists a probability measure ug such that

lim P([X,e A1|B) = us(4) for every Ae®,, = (deB: up(d4) =0},

where 84 denotes the boundary of A and P(D|B) = P(D n B)/P(B). In what
follows we suppose that P(A{B)=0 and puz(A) =0, whenever P(B)=
Be /.

In the special case, where ug(4) = u(A) for every Be .o/, the sequence
{X,,, n= 1} of re. is called mixing with density pu. A survey of stable and
mixing sequences of r.e. can be found in [1] and [6].

It is well known [2] that X, L X, n— oo, iff

4) '}1_{1:0 P([X,eA] =~ [XeA] = for every Ae ‘é’px,
where A — B denotes the symmetric difference of A and B.
On can prove (cf. [4], [8]) that
) X, 5 X,n- o, iff Oy, Qx)—0, n— o,
for every probability measﬁre Q defined on (22, &) by
QD) = (P(DIB)+P(D))/2 Be .

Lemma 1. If a sequence {X,, n = 1} of r.e. converges in probability to an
r.e. X, then {X,, n> 1} is stable.

Proof. If X,,iX, n— oo, then, for every Be #,,
| X, X, n>w, where Py(-)=P(|B).
Hence :
| P([X,cA]|B)— P((Xc A]|B), n— oo,
for every Ae % P which implies the stability of the sequence {X,, n > 1}
o r‘1’:\Iow we give conditions concerning the set 2,(S) = {uz, Begszﬁ'} of

probability measures under which there exists a random element X such that
the sequence {X,, n> 1} of re. converges in probability to X.

LemMa. Let X and Y be r.e. such that, for all B,
P(IXcAl|B)= P([YeAl|B) for every Ae@.
Then X =Y almost surely (as.). :
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Proof. If P([YeA]) > 0, then, by

P([XcA]l[YeAD) = P([YeAdll[YeAD) =1,
we have ‘

' P([XeA]ln[YeA])=P([XeA]) = P([YeA).

Hence P([Xe A] =~ [Ye A)) =0, which implies that X =Yas.as Sis a
separable space.

For every Xe 4 take the set @d . (8) = {ug, Be oA, } of probability
measures defined on (S 2) by

pp(d) = P([XeA]llB), Bed,.
It is easy to see that probability measures belonging to 2, (S) satisfy
the fol]owing conditions:

(I) P(U Byu , (A)=kzlﬁn,';(A)P(Bk) for any By, By, ..., B,es/

B
klk

such that Bir\B,-=(D, i#j, AeA.

(I) If ug(A) > 0, then there exists a set B' = B, B'e #/,, such that
up(4) = 1.

It is not difficult to state that probability measures belonging to
P, (S), satisfying (I), have the following properties:

©® PO Bak, ()= 3 i, APEB)

U B,
Ca=1 "

for every sequence {B,,n>=1} of sets such that B,est, nz1, and B; nB
=@ when i #j; ,

bp(A) = 0=>pg(A) =0 for every B'c B, Be s,

7) .

-( pp(A)=1=>pug(A)=1 for every B' = B, Besd,;
(8) (us(4) =1 and pp(4) = 1)=pp p(4)=1, B, Bed,;
9 (,u,, (A)—l and B, cB,,+1)=>u (A)= 1, B,ed,.

IIC

LEMMA 3. f 2,4, 8) = {up, Be o .} is a set of probability measures
satysfying (1), (I} and such that, for a fixed Ac B, ug(A) > 0 for some Be o ,,
then there exists a set D4(B) < B, D,(B)e o/, such that

(10) Hp iy (4) =1,
(11)  uc(A) <1 for every C = B, Ce A, such that P(C\DA(B)) > 0,
(12) pc(A) =0 for every C =B, Cesf ., such that P(CnD,(B)) =
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and »
(13) pg(A) = P(DA (B))
Proof. Let ‘ '
ay =supi{P(C): CcB,Ced, and pc(4) =1}, Aea.

Then there exists a sequence of sets C,e #/,, C,=B,n=1,2, ..., such
that yc (4) =1 and P(C,)—>a,, n— oo. Write

c,= U G
k=1
Now, by (8), ﬂc;,(A) =1 and, by (9), ‘
Hy A= =1
Se | §e

n=1

_ Putting D, (B) = U C,, we get (10). Moreover, we see that P(DA(B))

=0y.

To prove (11) assume that ,uC(A) = 1, whenever P(C\DA (B))>.0,Cc< B.
Then, by assumption (I), uc\p s (4) = 1. Moreover, in view of (8) we have '
Heup  (4) = 1, which with P(C\D B)) > 0 proves that P(Cu D,(B)) > a,
and contradicts the definition of o,.

To prove (12) assume that pc(4) >0, whenever P(CnD4(B) =

C < B, Ce . By (II) there exists a set C' = C, C'e /., such that pc. (A) :

=1 and, moreover, P(C'nD,(B)) = 0. Hence, by (8) and (10), pc,p @ (4)
=1 and P(CuD,(B)>a, as P(D,(B) = o and P(C\DA(B)) > 0, which
contradicts the definition of a,. .

(13) follows from (6), (10) and (12):

ua(A) = tig, 5y (4) P (D4 (B))+ bipy 5 (4) P(B\D(B))
= 4(B) 4)rP (DA (B)) (DA '(B)),

whlch completes the proof.
In what follows D, stands for D,(Q).

LemMMa 4. Let g’d . (8) be a set of probability measures of Lemma 3.
Suppose that {A;, i > 1} is a sequence of sets such that A;e &, and u,(A;) > 0,
i > 1. Then there exists a sequence {DA , 0= 1} such that D e 91+, i1, and
the following conditions hold: :

(a) Ho(A4; mAj)—-0=>P(DA nDA)—
(b) bo(A\Aj) =0=P (DA,-\DA,-) =0,

(© ifﬁﬂ(g A) =.1 for A;nA;=Q for i #j, then P(Q D) =1.
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Proof. (a) From Lemma 3 we conclude that there exist D,, and D,
such that ” (4) =1 and y, 4; (A;) = 1. By the assumption ug(4; N 4;) =

and (7) we have Moy, (AN A) = 0 whence pp 4 (4;) = 0. Using once more (7)

we conclude that u, 4,704 (4)=1 and pp A D Aj(A,)—O. Therefore

Dy D, ¢, which proves 'that P(Dy, nDA) =
(b) follows from (a).
(c) By (13) and (a) we have

1= :un(_U1 A)= Y po(4) = Y, P(Dy) = P(_U1 D).
i=1 - i=1 : i=1 i= _
Tueorem 1. Let 24 (S) = {ug, Be o/ .} be a set of probability measures.
If (I) and (II) are fulfield, then there exists an r.e. X such that ‘
ps(4) = P([X e A]|B).

Proof Let 1A,1,2 ,k;iseN,s#l, 2,...,k} be the class of Borel

subsets of S satisfying the following conditions:

(Wl) . : Ai1 i2.. ('\ All i, = ® fOI' ik 'T/‘- lllu
(WZ) U All iy, Ail,irz,...,ikAlﬂ . U Ail = S’
ir=1 i1=1
(Wa)  d(Aiyip,.0.) S 1/2" where d(4) =sup{e(x, y): x, ye A};
(W4) ‘ ‘ “Q(aAll ig,. lk) = 0 (Cf 7)'
From every set A; ;. ..; We can choose an element x; ;.. . and define
re. X, by the formula , ‘
(14) Xk(w) - xll [ TR 74 for w.EDAilnizn----ik = Dil,l'z,...,ik‘

The definition of X,, is correct on the basis of Lemmas 3 and 4.
Using the assumptions we see that

0(Xi» X) < 1/2¢  as. for m> k.
Because the metric spacé is complete, there exists an r.e. X such that
X,—» X as, k— 0. '

‘We now prove that

15) ug(A) = P([XeA]|B) for Be s/, and Ae 4.
First we show that (15) holds for A = 4; ;, ., and B=D; ;, ;ed,.
 The sets 4; ,;,,..; are continuity sets of the measure pg, ie. 4;,;,,. e% .
If Ae ( “then for every ¢ > O there exists an ny such that

Hep?

Ho((84)112™) <&.
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Let K = {iy, iz, .., Ing+ 25 Aiyuigeniyg ”n(aA)“z""“;é(Z)}.
Then .
0A U Aipigeings2 < BV, "o
- i1,i2,...,in0+zeK
[Xno'f‘ZE U Ail.iz.....ino.,.z] = . U Dil,iz ..... in0+2

il’iZ""'ino'FZEK il,iz,...,i"0+zex
and

= P([X e 04]).

P([XedA]n [Xng+2€ U Ail.iz....,i,,0+2])

il,iz,...,i"0+zex
Hence
P(Xeda)<P( U D,

i1s025000s i"0+25K .
. "O N
= pg( U Ail.iz,....i,,o.,.z) < .un((aA)”2 )s.
i1sigyn i"0+26K :
which proves that Ae %p,. Therefore, we have Ai iy, iy € Cpy-
Using properties of measure up we see that, for s= k and any Be .o/,

1,"'2'-"".n0+ 2)

. #Di'l,ih,....i‘s”B(A"hiZ ..... ik) ) ;
_Jrifg=4(=1,2,...,k) and D Dy iy,...uN Bed 4 ;
~ 0 if, for some 0<I<k, fi# iy or Dy, B,
and
P([XGA,I 12 ]lDll i9,. ﬂB) = lim P([XneAil,iz,.. ,lk]IDll i5,. ﬂB)
= P(Dll | T lkIDll i,.. ﬁB)
= 'uDll 9500 zsnB(All 1 37 YA ik)'
Now, by (6), for any Be.«/, we have
(16) P(B) :uB(A:l Pgseens ik.)
= P(B)MBHII 'ZU 11 i9,. (Ail.iz,...,ik)
= Y PXedi,. 3JIBODy,. ,,,)P(BmD,1 bprniy)
i1,479,.0'
= P([X e 4, ,...;11B) P(B).
Let F be. a closed subset of § and
A4, = o U Ail,iz....,i,,'

10820 0inidiy iy, 0, OF 20}
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It is obvious that A, > 4,,, o> Fforn=1,2,...and ) 4, = F. Hence
. n=1

by the .continuity axiom and (15)
up(F) = lim pg(4,) = lim P([X e 4,]|B) = P([Xe F]|B) ‘
n—w n—w ; |
and, by well known property of measure,
ug(A) = P([XeAl|B) for every Ae%‘
TueoreM 2. Let {X,;n>1} be a stable sequence of r.e. and
(17 lim P([X,e A]|B) = ug(4) for Be 4, and Aec%,,
If the measures g, Be o ,, satisfy condition (II), then there exists aﬁ r.e.

- X such that X—»X n— 0.

Proof. It is easy to see that the measure py, Be o, satlsfy condition
(I). By Theorem 1 and (17) there _exxsts an r.e. X such that-

lim P([X,c A]|B) = P((Xc A]|B), Besl., Acbp,.

- Hence lim L(Qx , Qx) =0 for'évery measure Q defined by
Q(D)=[P(DB)+P(D)]/2, Bed,.
By (5), X"i’» X, n— oo, which completes the proof of Theorem 2.

Let Q,(B)=pg(A)P(B). It is well known that Q,(') is absolutely
continuous measure with respect to P and

Q4(B) = ju,dP,

where a4 denotes density of sequence {X,, n>1}.

As a consequence of Theorem 2 we have

THEOREM 3. A stable sequence {X,, n>1} of re. converges in probablhty
to an re. X iff ..

o y(@) = 1  for weD,,
A7)0 for w¢ Dy
for every AcA. :
Proof. Let, for every Ae %,

d(co)— 1 for weD,,
A7 7100 for wéD,.

.. Then o
Q4(B) = gaAdP = P(D,n B) = P(D4|B) P(B) := pg(4) P(B).
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up satisfies (II). Indeed, if 0 < pg(A4) = P(D4|B), then there exists a

- subset B'=D,nB of B such that

g (A) = P(D4|B) =1.
Moreover, we know that (I) is satisfied if {X,,n > 1} is stable. Therefore,
by Theorem 2, X, —>X n— 00.

Assume now that, for some Ae®, B,={w: 0<o,(w) <1} and
P(By) > 0. Then, for every B < B,, Be ., we have

0<0Q,(By)= [ dP < P(By)
By

and ‘ .
0 < Q4(B) = ug(A) P(B) = ‘j;ou dP < P(B),

swhich proves that puz(A4) <1. Now the assumption that X, L£X, no o,
leads to the contradiction condition (II). ThJS completes the proof of
Theorem 3.
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