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Abstract. This is a discussion of probability measures in a
noncommutative setting as required by quantum mechanical
. probability theory. The concepts of a facial, orthostable and
orthofacial subset of probability measures on an orthomodular poset
are introduced. They provide a link between the poset and the
boundary structure of convex sets of such measures.

An orthomodular poset admitting a facial subset A has
interesting properties: e.g. it is a complete lattice and every element
in.4 is a completely additive measure. We mvestlgate the connection
between orthostability and the Jordan-HaHn decomposition of
measures. It is shown that the set of completely additive probability
measures on the projection lattice of a von Neumann algebra is
orthofacial. Finally we use the notion of orthofaciality of a subset A
-of probability measures on an orthomodular poset to give a
necessary and sufficient condition for each bounded affine functional
on 4 to be the expectation functional of some observable having
finite spectrum.

1. PRELIMINARIES

A poset (L, <), *L > 1, with smallest (0) and largest element (1) and
with a map pe L— p’e Lsatisfying (i) if p < g, then ¢’ < p/, (ii) (p) = p and
(iii) p v p' =1 is called orthocomplemented poset; the map p— p’ is referred
to as an orthocomplementation on (L, <). A pair p,qeL, (L, <,') an
orthocomplemented poset, is said to be orthogonal, denoted by p.lg,
provided p < ¢’. A subset C < Lis said to be orthogonal if p # g, p, geC,
implies that p | g. Clearly, every orthogonal set in L—{o} is contained in a
maximal such set. With (L) denote the collection of all maximal orthogonal
sets in L—{o} and with ¢,(L) those members of ¢/(L) which have countably
many elements, e.g. {1}e 0,(L).

An orthocomplemented poset (L, <, ') is called an orthomodular poset
provided (i) p Lgq implies that p v g exists and (i) if pLlg and pv g =1,
then p = ¢'. Notice that in presence of (i), condition (ii) is equivalent to (it') if
p<gq,then g =p v (p' A q) (cf. [6]). Let (B, <) be a Boolean lattice and for
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pe B denote with p’ the unique element in Bsuchthat pv p'=1,p A p' =0.
Then (B, <,’) is an orthomodular poset.

For an orthomodular poset (L, <,’) we consider R’ in the product
topology 7 (the topology of pointwise convergence, a locally convex
Hausdorff topology). An element ue R" is called a measure provided

wpv g =pnp+ulg if plg, p,qelL.

With W (L) we denote the subspace of measures. A measure uec W(L) is
called positive if u(p) =0 for all pelL; K (L) denotes the set of positive
measures on L.

Clearly, p(o) = 0 for all ue W(L). If /.teK(L) and p < g, then u(q)— u(p)
= u(p’ A g@) = 0; hence positive measures are isotone maps from Lto R. Also

K(L) is a cone in W(L) (ie. (1) K(L)+K(L) = K(L), (i) tK(L) = K(L} for
t >0 and K(L)n —K(L) = {0}). '

A measure y is called normalized if u(1) = 1. By a probability measure we
mean a positive normalized measure; Q (L) = W(L) denotes the convex set of
probability measures. One verifies that Q(L) is a base for the cone K (L) (i.e.

" Q(L) is a convex subset of the cone K(L) and every element pec K (L)— {0}

admits a unique representation as u = tv, where ve Q(L) and t > 0) using the
fact that u(1) > 0, ue K(L)—{0}. Also, Q(L) is z-closed and being a subset of
the t-compact Tychonoff cube [0, 11% by isotonicity of a probability
measure, (L) is clearly T-compact.

Quite often we do not consider all the probability measures on an
orthomodular poset but rather a subset of Q(L) e.g. the g-additive measures
etc. In order to have the frame to tackle problems in this context, we are
now going to develop the theory in the appropriate generality. We shall
assume throughout this paper that (L, <,’) is such that Q(L) # Q.

Let A be a non-empty and convex subset of Q(L), V(4):=1lind = W(L)
and K(4):. = {tu|ue 4, t > 0}. Then clearly K(4) is a generating cone for
V(4A), ie. V(4) = K(4)— K (4), and 4 is a base for K(A) also con(4 u —4)
is convex, circled and absorbing in V/(4).

Let V'(4) be the algebraic dual of V(4). With every pe L we associate a
map ey(p): V(4)—» R by setting e, (p)(u): = u(p). Clearly, P(d4): =
{es(p)lpe L} < V'(4) and P (4) is a total set of linear functionals on V(4),
ie. if e (p)(1) = O for all peL, then u=0. The topology o (¥ (4), P(4)) on
V' (4) coincides with the topology |V (4). Also, a subset 4 < Q(L) is t-closed
iff it is | V(Q(L))<losed iff, of course, it is t-compact. Also note that

K(Q(L)) = K(L) and we set V(L): = V(Q(L)).

TueoreMm 1.1. Let A = Q(L) be non-empty and convex. Then (V(A) A) is
a base normed space (i.e. V(4) is a real vector space, A is a base of a
generating cone and the Minkowski functional over con(d u —A4) is a norm).

Moreover, if A, 4, = Q(L) are convex, non-empty and A, < A,, then the
corresponding norms satisfy el sy < Nl ay> EV(4y).
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Proof. It remains to prove that ||y, =0, ue V(4), implies that u =0,
where now . :
_ llull 4 = inf {t > O]petcon(d U —4);.

Suppose that |[[y|[,=0; then O=¢|iull,=lltplis. p— llpll, being a
seminorm. The set con(4 U — A) is circled, hence tuel-con(4 u —A). Since

eA(p)(con(A u-—4)c[-1, 1],

" we conclude that le,(p(tp) < 1, ie. le (p)(w)] < 1/t for peL and ¢ > 0. The
totality of the set P(4) < V'(4) now implies that u =0.

The second assertion follows from the fact that 4, < 4, implies
' con(d, u —4,) ccon(d, U —4,)nV(4,). .

Again let A = Q(L) be non-empty and convex. Then int B(4) = con{(4 u
—A) = B(4), where now B(A) is the n(4)-~closed (norm-closed) unit ball. With
V*(4) we denote the subspace of n(d)-continuous members of V'(4).
Obviously, fe V'(4) is n(d)-continuous iff f is bounded on the base 4;
therefore P(A4) = V*(4A). :

We now follow the general theory of base normed and order unit
normed spaces [1, 10, 13, 15]: if we order V*(4) by f,geV*(4),
f<g:=f(p) <g(p for all ped, then (V*(4), <, e,(1)) is an order unit
normed space, i.e. an Archlmedlan ordered vector space with order unit
e,(1). Also

1£1l: = sup {f (Wlpe B(A)}
=sup {|f (Wllpe 4} =inf{t > 0] fet[— 64(1) +e, (1)1}
~ Note that —||fll;e,(1) < f < fll5 e4(1), thus [—e,(1), +e,(1)] is the
norm-closed unit ball in V*(4).

For feV*(4) define f':=e¢,(1)—f One verifies that f” =f and
f<g=g < f'; also, if fe[O0, e,(1)], then f'c[O0, e,(1)]. .

For convemence, we consider e, as a map from L to P(4); it satlsﬁes

(1)) e4(0) =
(i) p<g= ea (p) < e4(q),
" (iii) e,(p) = (e4(p)) and
(V) pLg=e,(p)+es(q) < e,(1).
Also,- P(4) = [0, e,(1)] and, since P(4) is a total set, we conclude that

V*(4) = 6 (V*(4), V(4))<l lin P(4).

In the sequel, we are going to discuss the boundary structure of certain
convex subsets of Q(L); hence, let us introduce the appropriate notions.

Let V be a real vector space and let C be a convex subset of V with
V=IlinC. A subset F of C is called a face of C provided, for te(0, 1),

v, xeC: tv+(1——t)%elf‘7-®'v, xeF.
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. A point ve C is said to be an extreme point of C if {v} is a face of C;
ext C denotes the set of extreme points of C. Note that C and the empty
subset of C are faces of C; also the intersection of a family of faces of C is
again a face of C. This shows that the collection % (C) of faces of C, ordered
by set-inclusion, is a complete lattice. '

. Let ¢ be a loc. ¢. Hausdorff topology on V. A subset F of C is called a

g-exposed face of C if there exists a g-continuous linear functional f on V and
teR such that Cc f~'(—o0,t] and F=f"1(t)nC. With g-&(C) we
denote the collection of g-exposed faces of C; note that Ceg-&(C). A point
veC is called a g-exposed point of C provided {v}e g-&(C); g-¢xp C denotes
the set of g-exposed points of C. Clearly, g-&(C) = % (C). A subset F of C is
said to be a g-semi-exposed face of C if it is the intersection of g-exposed
faces; ¢-%(C) denotes the collection of g-semi-exposed faces of C. Clearly, by
the very definition, (Q F(C), <) is a complete lattice and ¢-&(C) <
e-F(C) = F(C).

- One can show that #(C) = ¢-6(C) = Q-,S/’(C) provided C is a polytope
[5], ie. C is g-compact and ext C is finite; then V is ﬁnite-dimensibnal and ¢
equals the Euclidean topology on V.

A pair of faces F, G is said to be g-parallel, denoted by F|| <G, provided
there exists a g-continuous lin€ar functional f and s, teR, s <t, such that
Ccf s, t] and G< f~1(t), F < f~(s). Clearly, F||,G= G| F; F|,G
=FnG=0; F| @ for all Fe #(C); F|,G, H =G, He #(C)= F|| H

Let 4<=Q(L) be non-empty and convex. Then n(4)—&(4)
=0a(V(4), V*(4))— &(4) since feV'(4) is a(V(4), V*(d))-continuous if and
only if it is n(4)-continuous. If f [0, e,(1)], then f "' (1)n 4 and f~1(0)~ 4
=(f)"1(1) n4 are n(d)-exposed faces of A. Note that @ = 4 is an n(4)-
exposed face. If Fen(4)— &(4), then there exists an f [0, e,(1)] such that F
=f1)n4a.

Let us prove that sz A, then F =e, (1) "1 (1) nA. If F # 4, then there
exists a ge V*(4), g # 0, such that F =g~ (t)n4 and 4 < g~ (- o0, t] for
some teR. If t =0, then g <0, thus —g/llgll,€[0, e,(1)] and one verifies
that (—g/ligll) ' (0)n4 =F. If ¢t +# 0, then for h:=g—te,(1) we have F
=h 104 and 4 =h (-0, 0]. Since F # 4, we conclude that h#O
and we proceed as above.

Also, if FllysG, F, Ge Pa (4), then there exists an fe[0,-e,4(1)] such that
- Gef (1) and E gf‘l(()). To see this, suppose that A4 =g~ ![s, t],
Gcg'(t)y Fcg'(s) for some geV*(4) and s<t . Then
s-e4(1) < g <t-ey(1). Therefore h:=(g—se, (D(t—s)e[0, e,(1)] and ome
immediately verifies that G < h~!(1), F < h~*(0); this proves the claim. Since
we have 0<f(y)<1 for -all ueA prov1ded fel0,e,(1)], we get
SO A SO

Let (L, <, ') be an orthomodular poset and 4 € Q(L) non-empty and
convex. We associate with every element in L an n(4)-exposed face of 4 as
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follows: for peL we set a,(p): ={pedlu(p)=1}. Clearly, a,(p)
=e,(p) ' (1) nden(4)— &(4). The map pe L— a,(p)en(4)— £(A) has the
following properties:

(i) aA(O) =@, a,l)=4
,(ii) ’ P < qg=a,(p) € a,(9),
(iii) pLa=a,p)lnsasq)-

~ Assertions (i) and (ii) are obvious, (iii) is proved as follows. Lct plg;
then p < g, hence a,(p) Se,(q)™'(0) and a,(q) Se (9~ (D).

2. PROBABILITY MEASURES

With @(L) we denote the collection of all orthogonal sets in L— {o} and
with @,(L) those members of ‘0(L) which have countably many elements.
Clearly, 0(L) < &(L) and 0,(L) < 0,(L). Now let De @(L) and order the
collection D’ of finite subsets of D by set-inclusion. Then (D, <) is a
directed set (i.e. any two. elements of D/ have an upper bound in D) and, for
- any pe W(L), (u(\/ O)cepr is a net in R. If pe K (L), then the corresponding
net is isotone and bounded by u(l); therefore it converges in R. This,
however, proves that for any ue V(L) the net (u(\/ C))ceps converges, since
K (L) is a generating cone for V(L).

A measure g is said to be completely additive, resp. a-additive, if for every .
De &(L), resp. every De@,(L), for which \/D exists, the net (u(\/ C))cecps
converges in R and converges to ,u(\/ D).

The subspace in W (L) of completely additive, resp. a-addmve measures
is denoted by W,(L), resp. W,(L); clearly, W,(L) = W,(L) = W(L). We write
Q.(L):=W.(L)ynQ(L) and Q,(L) = W, (L) nQ(L). -

Lemma 2.1. Let pe W(L). Then ue W,(L), resp. pe W, (L), lfand only if
for each De @(L) resp. De O,(L), .

; tim (#(\/ C))ceps
exists and equdls u(1). R

Proof. First note that De 0(L) belongs to O(L) if and only if \/D
exists and equals 1. ’

The condition holds true if ue W,(L) or ue W,(L). Conversely, suppose
that De @,(L) and that \/D exists. If \/D =1, we are done. If \/D # 1,
then (\/ D) # o and {D, (\/ D)’} e 0,(L). Now

p(1) = lim (u(\/ C)cep,(voyy = lim(u((\/ €) v (V/ DY))eens
the latter net being a subnet of the first. Therefore, _
lim (u(\/ C)eeps = p(1)— M(\/D)) u(\/ D).
The proof for De @(L) is similar.
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Let 4 = Q(L) be non-empty and convex. By the theorem of Bourbaki-
Alaoglu, the unit ball in V*(4) is o (V*(4), V (4))-compact. Since [0, e,(1)] is
the a(V*(4), V(4))-homeomorphic image of the unit ball under the affine

‘map g — (9 +e,(1))/2, we conclude that [0, e,(1)] is o (V*(4), V{(4))-compact

too.

Let De@(L), then (eq(\/ C))ccps is an isotone net in [0, e,(1)].
Therefore, there is a o(V*(L), V(L)}-convergent subnet (eq(\/ C'))e- which
converges to, say, fe[0,eq(1)]. For any ueQ(L), the real net
(ea(\/ O)(W)cepsr is isotone, bounded and therefore converges. Since
lim(eq(\/ C) (W) = f (1), we conclude that

lim(eq(\/ C)W)eens = f (1) for all peQ(L),

hence for all ue V(L) = lin Q(L). Therefore, the net (eﬂ(\/ C))ceps converges
to f in the o(V*(L), V(L))-topology.
For De O(L) define

d(D) := eg(1)—lim(eg(\/ C))cens

the limit being taken in the a(V*(L), V(L)}-topology. Note that
d(D)e[0, ep(1)] for all De @(L); d(D) is called the deficiency functzonal
of D [4].
THEOREM 2.2 (Flscher-Ruttlmann [4]). Let (L, <, ') be an orthomodular
poset with Q(L) # Q. Then
QLy= N kerd(D)nQ(L)
Deo(L) v

and
Q,(L)=  kerd(D)nQ(L).

' De@4(L)
Moreover Q o(L) and Q.(L) are a(V(L) V* (L))-seml-exposed faces of
Q(L).
Proof. With J we denote the canonical isometry from V(L) to V**(L),
ie. J(W(f)=f(w, peV(L), feV*(L). Let ueQ,(L) and De O,(L). Since
J(weV**(L) is a(V*(L), V(L))-continuous and \/D =1, we get

d(D)(w) = J (1)(d(D)) = J (1) (eo(1))—Lim(J (1) (ea(\/ O)cens

= u()=lim(u(\/ O)eeps = 0.
Therefore,
2L = ) kerd(D)nQ(L).

DeCy(L)

Conversely, let u be a probab1hty measure such that d(D)(y) = 0 for all
De 0,(L). Then :

0=J(w(dD)=p@)-limu(\/C)ceps for all DeO,(L).
Thus peQ,(L), by lemma 2.1. : .
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So far we have shown that

Q. (L)= ) (kerd(D)nQ(L)).

De0,(L)
Since d(D)e[0, en(1)], we conclude that -

kerd(D) nQ(L)ea(V(L), V*(L)—&(Q(L),

thus Q,(L)es(V(L), V*(L))— £ (Q(L).

The proof of the remaining assertion is similar.

A subset 4 = Q(L) is said to be separating, if u(p) = u(g) for all pe 4
implies that p = q; 4 is said to be full if u(p) < u(q) for all pe 4 implies that
p < q; 4 is called strong if u(p) = 1= u(qg) =1, ue 4, implies that p<gq; 4 is
said to be unital provided for every pe L— {0} there exists a pe 4 such that
u(p) = 1."'We have the following implications: A4 is strong =>4 is full =4 is
separating, 4 is strong =4 is unital. '

‘LemMaA 2.3. Let (L, <,’) be an orthomodular poset.and 4 < Q(L) be non-
empty and convex.

() If 4 is unital, then |le,(p)li, =1 for all peL, p # o. If A is 1-closed
and |ie (p)l, =1 for all peL, p # o, then A is unital.

(ii) The subset A is separating if and only if e,: L— P(4) is an injection.

(iii) The subset A is full if and only if e, is an order isomorphism from
(L, <) onto (P(4), <). If either is the case, then e, is an ortho-order
isomorphism from (L, <,’) onto (P(4), <,') and the latter becomes an
orthomodular. poset.

(iv) The subset A is strong if and only if a,: L— n(A) &(4) is an order
isomorphism from (L, <) into (n(4)— é’(A), c).

Proof. For (i) simply note that

\ ‘ lle, (P)IIA = Supe, (n)(w

_ e :
and that t-closedness of A implies o(V(4), P(4))-compactness of 4.
Statements (ii), (iii) and (iv) are straightforward.

For ue V(L) we define the functionals u*, u~, |u/e R* as follows:

whp):= supu(@),  w(p)i=—infu(@, W= S
qs - qsp
they are referred to as the upper variation, lower variation and the total
variation of p, respectively. One easily verifies that u* =(—p)* and that p*

are bounded and positive. Note that these functionals are not measures in

general. .

If |u/(1) = 0, then u*(1) =0, hence pu = 0. Clearly, if te R, then ]t,ul(l)
= Itllul(l) CAlso, |+l (1) < lp (D +pal (1), since (g +p2) * (1) < i (1)
+ ui (1). Therefore, .the functional u— fu](l) is a norm, called the variation
norm on V(L).
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Lemma 24. (i) Iui(l)—sup(#(p) 1)), pe V(L)

(ii) Let 4 =Q(L) be non—empty and convex Then |y (1) < ||l 4 fof
pev(4).
Proof. (i) We have

W) =p*(D+p~ Q)= sufeg(p) (u)+su£' eq(p)(—p).

Now just note that eg(p) = (eQ(P)—en(P')"‘eQ(l))/ 2.
(ii) Since e,(p)—e,(P)e[—ey(1), e,4(1)], we get

lul (1) = sup (u(p)~ 1(p))
= Slip (e4(P)—e4(P)) (1) < sup {f(u)lfre [—e4(1), e (1)} = [zl 4-

A non-empty, convex subset 4 of Q(L) is said to have the Jordan-Hahn
property [2, 11] provided for every ue V(4) there exists a triple (p, v, x)e L
x K(4) xK(4) such that y =v—x and v(p') =x(p) =

. LEMMA.2.5. If A < Q(L) has the Jordan-Hahn property, then |y (1) = ||ull 4
for ue V(4) and B(4) =con(4u — A). _ ‘

Proof. By the previous lemma, we already have |y|(1) < |lull,. Let
ueV(4)—{0}. For ufl|pll, there exist pe L, v, xeA 8, t = 0 such that u/”u”‘1 ‘
= sv—tx and sv(p’) = tx(p) = 0. Then

s+t =1 =|lp/luldla = lululld (1) 2 Wil ) ) — (i) @) _
. = sv(p)—tx(p) —sv(p) + 1% (p) > s+1.

This now shows that |uj(1) = {jul|, and also that u/llulldecon(d v —A4).
It also follows that B(4) = con(4 u —A).

The next two results are concerned with the relatlonshlp between the
Jordan-Hahn property of 4, P(4), the extreme points and the
a(V*(4), V(4))-exposed points of the order interval [0, e,(1)]. '

Note that under the map f— f— f’ the extreme points, resp. the
o(V*(4), V(4))-exposed points, of [0, e,(1)] are injectively sent onto the
extreme points, resp. the o (V*(4), V(d4))-exposed points, of [—e,(1), e,(1)].

Lemma 2.6. Let (L, <, ') be an orthomodular poset and A a nonempty,
convex subset of Q(L). If A has the Jordan-Hahn property, then
o (V*(4), V(4))—exp[0, e,(1)] < P(4). - '

Proof. Let feo(V*(4), V(4))—exp[0, e,(1)]. Then there exists a
ueV(4) with [jg], =1 such that . :

{f=1} ={gel—ea), es(D]lg (W) = 1}.

Now there exist v,xed, s,t >0 and pelL such that y=sv—tx and
(sv)(p') = (1) (p) = 0. Using the same arguments as in the proof of lemma 2.5,
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we get
_ (eaP)—e ()W) =s+t=1.
‘Since e, (p)—e4(p)e[—e,(1), e4(4)], we conclude that f=e,(p).

THEOREM 2.7. Let (L, <, ') be an orthomodular poset and A a convex and

strong subset of Q(L).
If 4 has Jordan-Hahn property and

ext [0, e,(1)] = 6(V*(4), V(4))—exp[0, e,(1)],
then
P(4) = ext[0, e,(1)].
Proof. In view of lérﬁma 2.6, it suffices to show that
P(4) Sa(V*(4), V(4)—exp[0, es(].
So, let pe L; then
= {ge[—e (1), es(D]lasP)u —a,(p) =g~ (1)}
is a non-empty, o(V*(4), V(4))closed face of the a(V*(4), V(4))-compact
set [—e,(1), e,(1)]. By the theorem of Krein-Milman, F has an extreme
| point. However, _ ‘
| . extF cext[—e4(l), e4()] S a(V*(4), V(4))—exp[—e (1), es(1)]
E ~ and _
o(V*(4), V(4))—exp[0, e,(1)] < P(4).
Therefore there exists a ge L with
es(@)—ealq)ea(V*(4), Vd))—exp[—e (1), e,(D]NF.

One immediately verifies that a,(p) Sa,(q) and a,(p) Say, (q’)
Strongness of 4 now implies that p =g, thus

a e,(pea(V*(4), V(4)—exp[o, 64(1)]

3. FACIALITY AND ORTHOSTABILITY

We now focus our attention on the relationship between an
orthomodular poset (L, <, ‘) and the boundary structure of non-empty
convex subsets A of Q(L). Recall from section 1 that the map a,: L— n(4)
: — &(4) preserves order while orthogonality goes into parallelity.
. A subset 4 = Q(L) is said to be facial provided (i) 4 is convex, (ii) a, is
‘ surjective and (iii) a,(p) < a,(g) implies that p < q. Clearly, a facial subset is
strong and therefore non-empty. .
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The subset 4 is called orthostable, if (i) .4 is convex and (ii)
- a4(P)l s as(q) implies that p Lg.
An orthostable subset A is strong. To see this, suppose that a,(p) < a,(qg).

Since a,(q)llna 34(q), we get a,(p)llngas(g), hence p Lq'.
An orthostable and facial subset 4 < Q(L) is called orthofacial. Clearly,

A = Q(L) is orthofacial if and only if A is orthostable and a, is surjective.
In other words, with the obvious choice of the morphism, a convex subset
4 is orthofacial if and only if a, is an 1somorph1sm from (L, <, 1) onto
(n(A) g(d)z ——9“1!(4)) .

TueoreM 3.1. Let (L, <,’) be an orthomodular poset and A cQL). If 4
is facial, then A = Q.(L).

Proof. Since d(D)e[0, eﬂ(l)], De ®(L), we conclude that
d(D)|V(4)e [0, e,(1)], hence ' '

ker (d(D)|V(4)) nden(d)— é"’(A) for all De O(L).
Therefore, for each De (¢/(L), there exists a pe L with
a,(p) =ker(d(D)|V(4)) 4.
For geD and for any uea,(q) we ﬁow have

d(D) (@) = 1—lim(s(\/ O)eps = 1—p(g)-

This shows that a,(q) < a,(p); thus, since 4 is also strong, p is an upper
‘bound for D. However, D is- a maximal orthogonal set in L—{o} and,
therefore, p = 1. Then

A = ay(p) = ker (D) V (4)) 4,

thus 4 ckerd(D)nQ(L) for all De @®(L). This shows that 4 = Q. (L), by
theorem 2.2.

THEOREM 3.2. An orthomodular poset (L, <,’) which admits a facial
- subset A of probability measures is a complete orthomodular lattice.
Furthermore, if u(p) =1 for all pe A, A< L, ped, then u(/\A)=1.
Proof. First, we prove that (L, <) is a lattice. To see this, let p, ge L
then ' " '

a4(p) " aalq) = (IEA(P)+294(Q)) (1) den(d)—6 (4).

Therefore, there exists an reL with a 4(r) = a,(p) na,(g). Suppose now
that u < p, g. Then a,(u) < a,(r), hence u <r. This shows that p A q exists
and that a,(p A q) = a,(p) Na,(q).

For any subset A of L, (e(/\ B))g.4s is an antitone net in [0, e,(1)]. By
arguments similar to those used in connection with deficiency functionals,
one shows that this net converges to an eclement ge[0, e,(1)] in the
o(V*(4), V(4))-topology and, furthermore, that g < e,(p) for all pe 4. Now,
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g l(1)nden(d4)—&(4) and, therefore, there exists a gel with a,(g)
=g 1(1) n A. We show that g is the infimum of A. Certainly, g is a lower
bound for A, by virtue of 4 being strong. Suppose that r < A. Then
e,4(r) < e,(/\B) for all Be A’ ; thus, e,(r) < g. Then a,(r) Cg'l(l)mzl thus
a,(r) < ayl(g) and finally r < g.

Clearly,
as(q) < N aqp).
ped
If
re () a4(p),.
peA

then also, for Be A7,

pe ) ayp) = aa(/\B

peB

and, therefore, we have e,( /\B)(,u) = 1. Then g(p) =1, hence uea,(g).
CoroLLARY 3.3. Let (L, <, ') be an orthomodular poset. If A < Q(L) is
facial, then (n(4)— &(4), <) is a complete lattice. The infimum of a family of
n(A)-exposed faces coincides with its set-intersection. Moreover, n(4)— ¥ (A)
=n(d)—&(4).
Next, we give two sufficient conditions, in terms of the Jordan- Hahn

" . property, for a subset of 2(L) to be orthostable.

Tueorem 34. Let (L, <, ') be an atomic orthomodular lattice and 4 a
convex subset of Q(L). Suppose that for every atom p in (L, <) there exists a
p,c A with the properties: (i) p,(p) =1 and (ii) if u,(r) =p,(@) =1, then
pp(r Aq) = 1. ‘

If A has the Jordan-Hahn property, then A is orthostable.

Proof. Let p, g be atoms. Since 4 has the Jordan-Hahn property, there
exist reL, v, xe 4 and s, £ > 0 such that (sv)(r') = () (r) = 0 and p: =3(y,
—,uq =sv—tx. Then, u(l)=0=s—t. :

Suppose now that a,(p)lln4@4(q). There exists an fe[0, e,(1)] with
asp) = f'(1) and a9 Sf7'(0). Then f—f'e[—e,(l),e,(1)] and
(f=f) (W =1. Since 3u,—3u,€B(4), we get ||ull, = 1, hence 1< 2s, by the
triangle inequality. On the other hand, 1 > (e,(r)—e,(r))(sv—sx) = 25 and,
therefore, 1 = (e,(r)—e,(r)) (1) = p,(r)—py (). This shows that u,(r) = u,(r)
=1. Then p,(pAr)=1=p(qAr). Since p,q are atoms and
pAar,qg Anr #0, we conclude that p<r and g <1/, thus plg.

Clearly, if p, ge L— {0} and a,(p)ll444(q), then for all pairs of atoms
u,v with u<p, v<q we get a,(u)llnyas(@®). Therefore, by the preceding
result, u L v. Using (ii') of the definition of an orthomodular poset one can
show that (L, £) is also atomistic. Thus

p=\/{ulu<p,u an atom} L\/{v|]v < g, v an atom} =
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Tueorem 3.5. Let (L, <,’) be an orthomodular poset with a strong
convex subset A of probability measures.
If A has the Jordan-Hahn property and if

ext [0, e,(1)] = o (V*(4), V(4))—exp [0, e,(1)],

then A is orthostable.
Proof. Let a,(p)ll,4@4(q), P, g L. Then

= {ge0, e,(1)))las(p) Sg~*(1) and a,(g) =g~ '(0)}

is a non-empty, o (V*(4), V(4))-compact face of [0, e,(1)]. Thus ext F # @
and, therefore, by theorem 2.7, there exists an reL with e (r)eF. Then
as(p) Se r) ')A =ay(r) and a,(q) e, (r)" 1 (0) 4 = a, (). Since 4 is
strong, we conclude that p<r and ¢ </, thus p Lg.

THEOREM 3.6. Let (L, <,’) be an orthomodular poset. If A = Q(L) is
orthofacial and con(A v —4) is n(4)-closed, then A has the Jordan-Hahn
property. -

Proof. Let pueV(4) with [y, =1 We may and do assume that
u¢du —A. Since B(4) = con(4 u-—4), there exist v, xe 4 and te(0, 1) such
that y=tv—(1—f)x. Note that J(u)e V**(4) is o(V* (4), V(4))-continuous
and as such it attains its norm on the o(V*(4), V(4))-compact unit ball
of V*(4), say at fe[—e,(1), e,(1)]. Then 1=J()(f)= f(ﬂ) tf (v)—

(1—1) f(); thus f(v) = f(—%) =1, since —1 < f(v), f() < .

Now (f+e4(1))/26[0, e4s(1)], hence there exist p, qeL with a,(p)
=((f +es())2)* (1)~ 4 and a,(g) = ((f +€4(1))/2) 1 (0) » 4. Then we have
a5 (Pl sy a2(q), thus pLlg or g<p. ‘

" Next, observe that ((f+es(1))/2)() =1 ((f+es(1))2)() =0 and,
therefore, vea,(p), xca,(g), showing that (tv)(p) = 0 = ((1—1) %)(p).

4, -CLOSED SETS OF PROBABILITY MEASURES

The following two results generalize [4], thm. 3 and thm. 7. They w1ll be
used in the sequel.

Tueorem 4.1. Let (L, <, be an orthomodular poset and A a convex
subset of (L). '

If A is t-closed and has the Jordan Hahn property, then (V(4), ]| |lg) is a
reflexive Banach space.

Proof Since 4 is 7-closed, it also is t-compact and, therefore,
con(Au A) = {tu—(1—1t)vip, ve 4, te[0, 17}

is 7-compact; so, in particular, B(4) —con(A u —4). By the theorem of
Dixmier-Ng (e.g. [71, p. 211),

Vy(d):={feV'(4)| f|B(4) is 7| V(4)-continuous}




Facial sets of probability measures 199

is a norm-closed subspace of V*(4), and (V(4), || |l is isometric to the
Banachi dual of (¥, (4), || || 41V, (4)). Note that P(4) < V, (4) and that 2P(4)
—e, (1) is a subset of the unit ball of V,(4). :

Let ue V(4). Then there exist v, xe 4, s, t > 0 and pe Lsuch that sv(p’)
=tx(p) =0 and p = sv—tx. Now

s+t 3 [l > (ea(p) — €4 () () = (ea(P)—e, () (5v—1) = s-+1.

This shows that every element of (V, (4))* ~ V(4) attains its supremum
(= norm) on the closed unit ball of V, (4). By the theorem of James [8] (also
see e.g. [7]), the closed unit ball of V¥, (4) is (¥, (4), V(4))-compact, showing
that V,(4) and finally V(4) are reflexive normed linear spaces in their
respective norms. .

Tueorem 4.2. Let (L, <,’) be an orthomodular poset w;th a t-closed,
unital set A of probability measures. .

Then 4 < Q. (L) if and only if every countable maximal orthogonal subset v
of L is finite.

Proof. Clearly, if *D <N, for all De(O (L), then d(D) = 0 hence, by
theorem 2.2,

o,L= kerd(D)r\Q(L) Q).

De0y4(L)

. Suppose now that there exists a De(,(L) with *D =¥N,. Let ieN
— p;e D be a distinct enumeration of D. Then

\V <1
i=1
thus
/\ pi#o for all neN.

The subset 4 is unital and tIV(L)-closed also, eq( /\ p:) is er(L)

continuous and therefore
(eal A 2D DO A2y

is a decreasing sequence of non-empty, t-closed subsets of the z-compact set
Q(L). Consequently, the intersection of all the members of this sequence is
not empty, i.e. there exists ue 4 with

(A p)=1 : \"/ ; for all neN.
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Then

d(D)(p) =1 -lim(eg (V OW)ceps = 1-lim (t’fg(_\:/1 P (When = 1.

Hence,

g ) kerd(DynQ(L) = Q,(L),
~ Delg(L)

ie. 4 £ Q. (L).
' We now combine several of the prevmus results in the following

THEOREM 4.3. If an orthomodular poset (L, <,') -admits a t-closed
orthofacial subset A of probability measures, then

() (L, <) is a lattice;

(ii) every orthogonal subset in L is finite;

(i) if p(p) = p(q) = 1, then pu(p A g) =1 for all ued

~ (iv) 4 has the Jordan-Hahn property;
) s = gy for all peV(d);

(vi) (V(4), Il ll,) is a reflexive Banach space.

Proof. (i) and (iii) follow from theorem 3.2.

(ii) Let Ce @(L) and suppose that C is not finite. Then C contains a
countably infinite subset D. If D¢ (0,(L), then, since (L, <) is a complete
lattice, by theorem 3.2, {D,(\/D)}e O,(L). In this case and also when
De 0 (L) it follows that A ¢ Q,(L), by theorem 4.2. This contradicts the
assertion in theorem 3.1.

iv) Since 4 is t-compact, we conclude that con{4 U —4) is n(4)-closed.
The assertion now follows by virtue of theorem 3.6.

(v) follows from (iv), lemma 2.5, lemma 24 (ii) and theorem 1.1.

(vi) is a consequence of (iv) and theorem 4.1. \

Let us now discuss faciality in the context of Boolean lattices. First
notice that if (L, <, ‘) is an orthomodular lattice and if 4 is a convex, unital
subset of Q(L), then a,(Pllugyas@=as(P)na,ig@=P=pArg=o.
Therefore, if (L, <,’) is a Boolean lattice together with its unique
orthocomplementatlon and 4 a convex unital subset of Q(L), then A is

orthostable.
' Tueorem 44. Let (L, <,’) be an orthomodular poset. Any two of the
following three conditions imply the third:

() Lis finite;

(ii) (L, <) is a Boolean lattice;

(1) (L, <,") admits a t-closed facial subset A of probability measures.

Proof. (i); (iii) = (ii). Since L is finite, we conclude that '

V*(4) = 6 (V*(4), V(4))—cl lin P(4) = lin P(4).
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Hence V*(4) and, finally, V(4) are finite dimensional; also 7|V (4)
= n(4) and, therefore, 4 is n(4)-compact. By [9], theorem 2.1,

4 = n(4)—cl con(n(4)—exp 4).

Since A4 is also facial, we get *n(d)—exp4 < #n(4)=&(4) <R, and,
therefore, 4 = con(n(4)—exp4), showing that 4 is a polytope [5]. Hence
n(4)— &(4) = F(4). Since the map a,: L— % (4) is an order-isomorphism,
the map Fe % (4)— F':=ay(a;' (F))e #(4) is an orthocomplementation
that makes (#(4), <, ') into an orthomodular lattice. This in turn proves
that 4 is a simplex, by a theorem of the author ([12], theorem 3.5). Therefore
(L, <) is a Boolean lattice. .

(i); (ii) = (iii). Again, since L is finite, V(L) is finite-dimensional.
Moreover,

QL) = ﬂLeQ(L)(p)_l [0, 0) N eqq, (1) [1, @) Negqe,(1)™" (— 0, 1],

hence the n(Q)-bounded set Q(L) is the intersection of finitely many n(<2)-
closed half-spaces, i.c. (L) is a polytope. Again, & (Q(L)) = n(Q)— &(Q(L)).
Now let G be a proper face of Q(L) and F,, F,, ..., F, the facets containing
G. Since Q(L) is a polytope, we have

F.

i«
1.

G =

1=

By [12], theorem 4.2, there exist py, P2, ---» p,,e.L such that F;

=agn(p) i=1,2,...,n It is easily verified that a probability measure on
a Boolean lattlce satlsﬁes p@)=p@=1l=puprqg=1 Therefore

G= _Dl aguy (P) = aguy ('i Z\l p:)-

This shows that the map Ao, 18 surjective. It is a basic fact that for such
an orthomodular poset Q(L) is strong. Also, as remarked earlier, Q(L) is -
closed. Thus (L) is the desired set.

(ii); (iii) = (i). By theorem 4.3 (ii), every orthogonal set in L is finite.
Therefore, using orthomodularity, every nonzero element in L covers an atom
of L. Also, every non-zero element is the supremum of the atoms it covers.
Since (L, <) is a Boolean lattice, it follows that the collection of atoms is an
orthogonal set. This proves the claim. C

5. EXAMPLES

5.1. Let .« be a von Neumann algebra [3, 14] The real vector space 7,
= {aesf|a = a*} of sclf-adjoint elements, ordered by the positive cone
{ae of|a = bb* for some be o/} and with the identity 1€ .o/ as order unit is a

8 — Prob. Math. Statist. 6 (2)
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complete order unit normed space. The (unique) pre-dual Banach space of &/
is denoted by «/,. We consider .7, to be canonically embedded into «/*; i.e.
.o/, consists of the normal linear functionals on /. A linear functional ¢ on
of is said to be self-adjoint provided ¢(a*)= ¢@(a) for all aes/. Let
(o *)sas (4 4)sa bE the real vector spaces of self-adjoint elements of /*, o/,
respectively. Notice that these are closed subspaces of .«#*. The convex set S
of positive linear functionals on &/ which map the identity to 1eR is a
subset of (/*),, and the pairs ((&£*),, S), (Z4)s> Sy), Where S, = o, NS,
are base normed spaces. Then con(Su —S8), con(S, U —S,) are the base
norm unit balls, respectively. Moreover, |||, = |||} for (pe(&i*)s,, and ||ol|l,
= ||g||, for pe(sf,),- The order unit normed space (#,,, <, 1) is norm an

order isomorphic to the order unit normed space (5, <, e), where
-ee( )5 1s such that e(S,) = 1. This isomorphism is established through the
map y: g — ()5 defined by y(a)(¢) = ¢(a), pe(H -

In the order inherited from ./ , the set of self-adjoint idempotents
(projections), 2(#) = {pe o|p = pp* = p*} forms a complete lattice with o
as the smallest and 1 as the largest element. The map p— p':=1—p is an
orthocomplementation which makes (#(#), <,’) into an orthomodular
poset. One can show that to each projection p # o there exists an. element
peS, with ¢(p)=1.

Let ¢ be a positive normal linear functional on /. There is a largest
projection p such that ¢(p) =0. The projection s(¢):=1-p is called
support of ¢. Notice that for ae ./, ¢(a*a) = 0 if and only if a = b(1—s(¢p))
for some be.o/. We claim that for any non-zero projection p, g:=
\/{s(q))]qo(p) =1, ¢eS,} = p holds true. Suppose g < p. Then there exists a-
WeS, such that y(p—gq) =1, thus y(p) = 1. Therefore s(¥) < g, but also
s() < p—q. This shows that s(}) = o, hence ¥ (1 —s(¥)) = 1, a contradiction.

For any ae o/ the set {pe 2#(/)|pa = a}, resp. {pe P(f)|ap = a}, has a
smallest element denoted by I(a), resp. r(a). Notice, if ae dsa, then s(a):=
r(a) = l(a); s(a) is called the support of aec.,.

"For o< a, ¢(a)=0 if and only if ¢(s(a) =0. To see this let ¢(a)
= (p(\/E\/E) = 0; thus we get f= b(1—s(¢)) for some be o/, hence a =
(b(1—s(@))*. Then clearly a(l—s(p))=a, thus o <s(a) < 1—s(¢p). Since
0 < ¢ and ¢(1—5(9)) = 0, we conclude that ¢ (s(a)) = 0. Conversely, suppose
that ¢(s(a)) =0; then 6 < s(a) < 1—s(p). Now a(l—s(¢)) = as(a)(1—s(p))

=as(@@=a=(1-s(p))a and O=(p{\/a (1—s(q))* \/a (1-s(e) )}=
o((1-s(¢))a) = ¢(a).

Let peS, and aefo, 1]. Then ¢(a) =1 implies that ¢(s(a)) = 1. The
proof goes as follows: if ¢(a) =1, then ¢(1—a) =0, thus ¢(s(1—a)}=0.
From this we get s(1—a) < 1—s(p). Then (1—a)(1 —s(¢)) = 1 —a, thus as(¢p)
=s(p) and, therefore, s(a)s(p)=s(a)as(p)=as(p)=s(p), hence
s(p) < s(a) < 1. The assertion now follows since P(s(p) =1.
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We define a map a: (&%), » R”* through (@)= ¢|2?(). Notice
that for p, ge (/) with p L g we have p v g = p+q. For gpe(o/*),, we then
get 2(9)(p v ) = 2(9) (D)+a(¢)(g), thus a(p)e W(P().' This map a is
clearly linear and, by the spectral theorem, « is also-injective. Moreover,
for gpe(#*),, @eS if and only if oc((p)eQ(g’(&f)) Hence o ((/*),,)
-=lna(S) < V(Q(@(d))) Since &(S), resp. a(S,), is convex, 'the pair
(@ (A *)gq, 2 (S)), TESP. (2(Hy)s> 2(S,)), is a base normed space and for the
corresponding base norm we have ||a (@)l xp) < [12(@)llys) for all pe(of*),,
resp. | (@)llus) < [l (@las, for all pe(e,)s,. Obviously, the maps o and
o|(/ )5 are norm and order isomorphisms between the corresponding base
normed spaces. The adjoint map of «|(+,),, defined by (x{(Z,)s.)* (/) ()
- =f(x(9) @l D fe(@(Fys,)* is a norm and order isomorphism
between the order unit normed spaces ((a(#,).)*, <,es (1)) and
(£ )%, <, e). Notice that y(p) = (x|( 4)ea)* (es_(p)) for all projections p.

We are going to show that «(S,) = Q(#(«)) is orthofacial. Let
Fen(x(S,))— &(x(S,)). Then there exists an ae[0, 1] such that

2" (F) =7(@ ' (0) NS, = {peS,le(a) =0}.
Thus _
o« H(F) = {peS,lo(s(a)) =1} = {peS,]y(s(@)) (e —1}

as previously remarked. Therefore F = a,,(s(a)), showing that the map
ays, 1s surjective. If a,s5,(p) S ays,(g), then

{peSle) =1} c{peS,lo(g =1},

hence p < q, by a remark made above, and faciality of a(S,) follows.
Next suppose that for F, Gen(a(S,))—&(@(S,), Fllsas,y G holds true.
Then there exists an ae[o, 1] such that o !(F) = y(a)~ l(l)mS* and
" 1(G) =y(0)"*(0)n S,. However,

7@~ (DN S, ={peS,lo@ =1} c{peS,lo(s(a) =1}

and

7@ 1 (0) S, = {peS,|¢(s(@) =0}
Thus

F S eys,y(s(@)” (1) na(S,)

and

G < ey, )(s (@) 1 (1) na(S,).

Let p,qe (<) be such that a,s,(p) =F and a,s5,(9) =G. Then
< s(a), g < s(a), hence p L q. This proves orthofaciality of a(S,).
One final remark. Since con(a(S,)uU —a(S,)) equals the unit ball in




204 . G. T. Riittimann

V(x(S,)), it follows from theorem 3.6 that «(S,) has the Jordan-Hahn
property. Hence, by lemma 24(ii)) and lemma 2.5, it follows that [|¢||
= [lot(@Mlugs,) = Nt (@llegsy = llot (@Ml xmiary fOr all pe(t ).

5.2. We give an example of an orthomodular poset with an orthofacial
subset which does not have the Jordan-Hahn property. Let (L, <,’) be
given through the Hasse-diagram in Fig. 1.

Fig. 1

Let {4, Tesp. v;, be the unique probability measures such that g (p,) = 1
and y;(p)) = 1/2 (i # ), resp. v;(p) =0 and vi(p) =1/2 (i #)), for i=1,2.
Then :

4:={peQU)I0< u(p) < 1,i=1, 2} Ui, pp, v1, v2}
is a convex subset of Q(L), _
n(d)— &(4) = {0, 4, {11}, {12}, {V1}=_{"2}1’
a,(p;) = {Mi}» as(p) = {vi} fori=1,2

and clearly a,(1) =4, a,(0) = @. It follows that the map a, is surjective.

As for parallelity, we only have {g}ll, 4 {vi}, i=1,2, and @ is n(4)-
parallel to all the elements of n(4)— &(4). Therefore, A is orthostable.

Let now g:= %(u; +u,)—3(v; +v;)e V(4) and suppose that there exist
rel, x, wed, s, t = 0 such that ¢ = sx—tw and (sx)(*') = (tw)(r) = 0. Then,
clearly, s, t > 0, hence %(r) =1 and w(r) =0, also r # o, 1. If r = p,, then
% = y; and @ = v;. Furthermore, s =t since ;(1) =v;(1) =x(1) = w(1) =1,
i=1,2 Hence, ¢=s(u;—v,). Since 3u,—3v,econ(du —4), we have
ity —v4ll4 < 2; on the other hand ‘

2= (eA (pl)_eA(p,l))(ﬂl —vy) ‘
<sup {f (u—v))l fe[—e (1), _+eA(1)]} = {lug —v1ll4-

Consequently, ||u, —Vill4 = 2. Next, we are going to show that llall, = 1.
One verifies that for 0 <t <4, § (u; +p,)+1t0 and $(v, +v,) —p belong to 4.
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Therefore
3 %(u1+uz)+te} —3{4(v; +vy)—ie) —Q( +t)econ(du —4).

This proves that |jg||, < 1. However, (e4(p1)— eA(pl))(Q) =1.

Now, 1 =loll,=sllgs—vill4= 2s.” Substituting 1 for s above, yields
1> —v, =0, a contradiction. The remaining p0531b111t1es for r are treated in a
similar manner.

53. Let (L, <,') be as above. Denote with y,, resp. y,, v;, v;, the
unique probability measure with g, (p;) =1 and y, (p,) = %, resp. u,(p,) =1
and 1, (py) = 1, vi(py) =3 and v{(p) = 0, v,(p;) =0 and v, (p,) = 3. Define

= {He (D)0 < u(py), u(p <1 and —3up)+3 < u(py) < —3u(p)) +3}
U {#t1, Ha, vy, v3}; clearly, 4 is a convex subset of Q(L). Also

n(d)—&(4) = {Q), a4, {ﬂl}, {I-‘z}, {V1}: {Vz}'},
as(p) = {/J'i}, a,(py) = {Vi}, Ci=1,2,

and a,(1) = 4, a,(0) = @. Therefore 4 is facial. Now, 4 is 2-dimensional,
thus V(4) is a 3-dimensional vector space. One verifies that {v,, v,, y;} is a
linear basis for V(4) and that aff 4 = aff {v;, v,, #;}. We define a linear
functional f on V(4) as follows: f (v;) =%, f (v2) =0, f(i;) = 3. A simple but
lengthy computation shows that 0< f(u) <1 for all ped, hence
felo, e, (1)]. Since pu, = —2vi+v,+2u,, we get f(u)=1. Then
as(p2) =f71(1) and a,(p}) =f ' (0), hence a,(p)llua @4(pi) but p, non L pj.

Therefore A is facial but not orthostable.

54. Let (L, <, ') be as above. By similar methods one shows that Q(L)
is orthostable but not facial (see thm. 4.4).

6. A SPECTRAL THEOREM

Let (L, <, ') be an orthomodular poset. With % (R) we denote the class
.of Borel sets of R. By a Varadarajan observable [16] we mean a map
x: #(R)— L satisfying:

(i) x(@) =0, x(R) =1;
(i) if w; Nuy = @, uy, ue B(R), then x(uy) L x(uy);
(iii) for every sequence (u;)2; of pairwise disjoint elements in % (R),

(U u;) is the supremum of {x(w)|i=1,2,...} in (L, <).
i=1

With S(L) we denote the collection of Varadarajan observables. Notice,

if (u)2, is a sequence in Z(R), then for all xeS(L), x({J u) is the

i=1
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supremurm, resp. x( ) u) is the infimum, of {x(w)li=1,2,...} in (L, <).
i=1

For a Borel function y: R— R and a Varadarajan observable xe S(L),

the map ue #(R) - x(x~ ! (u))e L, denoted by yx(x), is an element of S(L). By

" the spectrum of a Varadarajan observable we mean the set
s(x): = ({4 < R|4 closed, x(d) = 1.

~ One verfies that x(s(x)) =1, s(x) # @ and s(x(x)) Scly(s(x)). A Vara-
darajan observable x is said to be bounded provided the spectrum of x is
bounded; S”(L) denotes the collection of bounded Varadarajan observables.
Let A4 be a non-empty convex subset of Q(L), xe$*(L) and ue 4. Then
teR—rp(x(—oo, t])eR is a bounded and isotonic function. The map

max s(x)

ped— | idgdp(x(— o0, t])e R
. . i mins(x)—¢& :

where the integral is taken in the sense of Stieltjes and & > 0, is affine and
bounded by the interval [min s(x), maxs(x)]. Therefore, this map admits a
unique extension to an (n(d4)-continuous) linear functional on V(4), called
the expectation functional of x on A and denoted by E ,(x).

Here, as it turns out, we are concerned with Varadarajan observables
having finite spectrum. If, for xeS(L), s(x) = {t;, t3, ..., t,,} - then, clearly,
seS’(L) and, as is easily shown,

Ea) = ¥ eafx((n})

Also x({t;})) # 0, i=1, 2, ..., n. Thus, whenever 4 is unital, then there
exist u,ved such that E,(x)(u) =max{;} and E (x)(v) min {;}.
Therefore,

E ()4 = SUSIEA(X)(#)I max {max {t;}, —min {t;}}.
ue

In particular, E ,(x) attains its norm on B(A) Also, x({t}) # o implies
tes(t)

From [6], theorem 3.19, it follows that E,(x) = E,(y) if and only if
x = y provided that 4 is strong and x, y have finite spectra. Using standard
techniques one shows that an orthomodular poset, in which orthogonal
subsets are finite, admits only Varadarajan observables with finite spectrum.

Examples show that in general an n(4)-continuous linear functional is
not the expectation functional of some Varadarajan observable.
Orthofaciality is now being used to give a necessary and sufficient condition
for this to be true for a certain class of orthomodular posets.

We shall make use of the following ‘technical lemmata.

Lemma 6.1. Let (L, <, ') be an orthomodular poset with a strong convex

/o
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set. A of probability measures. Furthermore, suppose that
P(4) 2 ext[0, e (1)].

If a,(p) = f~1(1), pe L and fe [o, 64(1)] then e,(p) < f.
Proof. Consider
= {ge[0, eA(l)]laA(p) cg (1)},
which is a non-empty o(V*(4), V(d4))compact face of [0, e,(1)]. Then
@ # extF < P(4). Thus for any geconextF there exist gy, gz, ---» m€ L

and t, t;, ..., t,e(0, 1] with Y t; =1, such that

i=1
' 9 = i t;e4(q)-
Then
¢ W= fe@ T Wnd= () aa,

'~ hence ad(p)sa‘z(q,-) or p<gq; for i=1,2,...,m This shows that
e,4(p) < e,(q;), hence t;e,(p) < t;e,(q) and, finally,

e4(p) = _;1 tie (p) < 1Z='ti e q) =g

By the theorem of Krein-Milman, F = a(V* (4), V(4))—cl conextF. If
feF, then there exists a net (gs;); in con extF converging to f in the
o (V*(4), V(4))-topology. Since e,(p)(1) < g5(u) for all ped, we conclude

that e,(p) < f.
In the sequel we assume that (L, <, ’) is an orthomodular poset with a
t-closed orthofacial set A4 of probability measures and that

ext [0, e4(1)] = o(V*(4), V(4))—exp[0, e,(1)].

Then, by theorem 4.3, 4 has the Jordan-Hahn property, also con(4 u
— A) = B(4). Together with theorem 2.7 we then conclude that ext[0, e,(1)]
= P(4).

We define mappings «, B, ¥ from [0, e A(l)] into [0, e A(l)] as follows: for
fel0, e ,(1)] let

~a(f) =0, if f=20;f/Ifll4 otherwise;
B(f) = eslaz’ (f (1) N A));
y(f) = f—B(f) (see lemma 6.1)

We set (ya)°:=ido, (1, Notice that ()" '()nd=f"'(1)n4 and
that ‘B(f)e P(4).
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Lemma 6.2. Let ge[0, e, (1)] and ped. Then
(1) g(W) =0=a(g)(p) =

(i) g(w) = 0=y(g9)(W) =

(i) g () = 1=y(g)(w) =

Proof. (i) is obvious.

(i) "If g(u) =0, then ueg~'(0) N 4. Since

g~ (0 m-4”»(4)971(1) N4,
we conclude, by orthostabiljty, that
a;' (@ (0)nd) Laz (g™ (1) n4).

Now p(ay (g~ " (0) n4)) = 1, thus u(agl(g‘l(l) N 4)) = 0. Showing that
B(@(w) = 0. Now y(g)(1) = g(1)—B(@) (1) =

(iii) If g(u) =1, then pueg (1) 4, hence ulazt (g (1)n4)) =1 and
thus e4(a;*(g l(l)mA))(u)—l Showing that B(g)(x) = 1. Now 7(g)(y)
=g(W-B@W=

LEmMA 6.3. For i,keNy, i #k, and ge[0, e, (1)] we have

Bo(yar) (g)+ o (ya) (9) < e4(1).

Proof. It suffices to show that Bu(ya) (g)+ Ba(ya)®(g) < e, (1) for i > 1
and ge[0, e,(1)]. Let ue4 and Bx(yx)°(g)(w) = 1; then

pelBa(@l () nd =[2(@] ' (1) n4,

i.e...‘oz(g)(u) = 1. Then ya(g)(n) = 0, by lemma 6.2(iii), thus aym(g)() = 0, by
(1), hence yaya(g)(p) =0, by (ii). Repeated use of (i) and (ii) yields
() "1 (9) () = 2 (ya) (9) (1) = O, hence

B (ya) (g) (1) = ot (va) (g) (1) — (yory (g) () =

To this end we have shown that ﬂa (%)°(g) (,u) =1 implies
(Ba(ra)y (@) (W =1 for ped, but A being strong, we conclude that
B (ya)° (g) < (Bt (o) (g))'-

LeEmMMA 64 Let ge[0, eA(l)]. Then

(i) Pa(g) =0<«g=0;

(ii) there exists an ie Ny such that Bo(ya) (g) = 0

Proof. (i) If g=0, then a(g) =0 and, therefore, a(g) ' (1)n4d = Q.
Conversely, suppose that g 0. Then |«(g)l,=1. Since a(g) is
a(V(4), V*(4))continuous and B(4) is o (V(4), V*(4))}compact by
reflexivity of V(4) (theorem 4.3), a(g) attains its norm at an extreme point of
B(4). But ext B(4) = 4 U — 4, since B(4) = con(4d u —4), and we conclude
that a(g)" (1) n4 # @, thus Bu(g) # 0.
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(i) By lemma 6.3, the set

{es! (Ba(yf)(g)lieNo} = L

is orthogonal and, therefore; by theorem 4.3 (ii), has finitely many elements.
Hence there exist i, ke Ny, i# k, with

e3 (Ba(r2))(@) = €3 (B (72¥) (9).

Having an orthogonal pair, we now get Ba(ya)*(g) =0
Let ge[0, e,(1)] and define

" m(g): = min{ie No|Bo(ya) (g) 0}.

Note that m(g) = 1 if and only if ge(0, eA(l)], by lemma 64 (i).
Tueorem 6.5. Let (L, <, ') be an orthomodular poset with a t-closed
orthofacial set A of probability measures and suppose that

ext[0, e,(1)] S o (V*(4), V(4))—exp[0, e, (V]
Then, for every ge(0, e (1)],

mig)—1 k
= ) H lICyee) (g 4 Bex (y)* (9)
k=0 i=
holds true.
* Moreover,

0<”('ya)l(g)“4<1 for l=0: 19 2’ ’m(g)_l
Proof. For gel0, e A(l)], we show by induction that

m—1 k

® g= hZO .H Iy (g)I] 4 Bt (v} (g) + H vy ()] 4 (yo)™ (g)
holds true for all meN. |
Certainly, yax(g) = a(g)— Pa(g), thus a(g) = Pa(g)+ya(g). Then
gl s2(g) = g = (y2)° (@)ILs Bex (¥)° (g) + /| (y)° (GH]s (v) (9).
Suppose that (x) holds true for me N. Also
()™ 1 (g) = yu(y2)"(g) = a(ya)™(g) — Box (y2)" (g).
Then ) : _
a ()" (g) = fo )™ @+ (g)
and thus
()™ (g) = (7)™ (@I} 4 Bt (y2)™ (@) + I (v2)™ (@)l s (o)™ * 2 (g).
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Then

m-1

g= > H lI(yo) (g)l] 4 B (y2)* (g) +
k=0i=
+ ]_:I vy (@I 4 {HiCyo)™ (g Bex (y)™ (g) +11(y)™ ()]s (W)"'_+ Y(9)}

Z H ll(ve) () Haﬁa(va)"(g)ﬂ—[ Ii( voz)'(g)llA(va)’”“(g)

k=0i=

Now Bu(yx)™@ (g) = 0; we conclude, by lemma 6.4(i), that (yoc)""‘”(g).
Choosing g # 0, we may set m =m(g) and get the desired representatlon
for g.

Clearly, if ge[0, e,(1)], then ||(ya) (g)ll, <1 for all ie N,. If ll(yac)'(g)ll 4
= 0, then Boc(ycx)‘(q) 0, by lemma 6.4(i). Hencem(g) < i.

THEOREM 6.6. Let (L, <,’) be an orthomodular poset with a t-closed
orthofacial set A of probability measures and suppose that
ext[0, e,(V] So(V*(d), V(4)-exp[0, e,(D].
Then every Varadarajan observable has finite spectrum and the mapping
.xeS(L)— E,(x)e V*(A)
is bijective.
Proof. Since every orthogonal subset of Lis finite, by theorem 43(11),

- we conclude that every observable has finite spectrum. This implies that

S*(L) = S(L).

Suppose that feV*(4) and that f +te,(1), teR. One is easily -
convinced that g:=3(f/|Iflls+e4(1)) belongs to (0, e,(1)]. By virtue of
theorem 6.5 and lemma 6.3, there exist pairwise orthogonal elements
P1, P2, .-, Py in L—{0} and t,, t,,...,t,> 0 such that

9‘= z": tie (py)-

i=1
We may assume that ¢; <¢; for i <j and set'
to:=0, po:= (\_/1 p).

Denote with x the unique Varadérajan observable such that x({t,}) = p;

fori=0,1,2,..., n Then clearly g = E,(x). Let x(t) = 2||fll,t—=IIfll 4 teR;

then
E,(x(x)= _Z ti) e (ps)

=2[111l4 Z tre () — IS4 Z es(p) = ZHf”Ag —Ilflsea(D) = 1.
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The case where f is a multiple of e,(1) is easily dealt with.
This proves surjectivity of the map; injectivity follows by [6] the-. :
orem 3.19. )
The following result gives us a converse to the aforementloned theorem'

THEOREM 6.7. Let (L, <,’) be an orthomodular poset with a- strong :
convex set A of probability measures.
-Suppose that each Varadarajan observable has ﬁmte spectrum and that the

mapping
' xeS(L)—» E (x)eV*(4)
is surjective. . - ' , :
Theri A and A: =1-c14 < R* both are orthofacial, (V(4), |} ||z) is the
Banach space completion of (V(4), || |l,) and =~ ; -
ext [0, e,(1)] = a(V*(4), V(4))—exp[0, e, (1)1,
ext[0, e;(1)] < o(V*(A), V(A)—exp[0, ez(1)].
Proof. (i) We define a map R: V**(4) > RL as follows:
" RO)p): =V(eq(p)) for all pel, ve V**(4).

Since V*(4) = lin P(4), this map is injective, cle_érly it is linear. Recall
from the general theory of base normed and order unit normed spaces, that
(V**(4), 4), where _

A = [FeVH(A)F(f) =0 for all >0, (e, (1) =1},
is a base normed space with unit ball equals to ‘con(4 u__—-Z). Then
R(J) = Q(L), thus R(V**(4)) = V(Q(L)). Now (R(V**(4)), R(4)) is a base
normed space and ( (V**()), | lirc 4)) becomes a Banach space isometric to
(V**(4), | ll;) under the map R.

Denote with J the canonical embedding map from V(4) into V**(4), an
isometry. Then for ve V(4) we get '

R{I 0)p) =T (M) (e4(p) = es(M)() =v(p)  for all peL,

. showmg that RoJ =idy,,, hence V(4) < R(V**(4)). Also (V(4), || ll,) is a

subspace of (R(V**(A)), | llres) since, for ve V4).

[Mils = ITW)ilz= ||R J(V) ”R(A) = |[Vlir¢-

‘We set V:=n(R(4))—clV(4). Then (¥, || |ly) is the Banach space
completion of (V(4),]l ll,). Clearly, T: V*—V*(4) defined by T(f)
= f|V(4) is an isometry from V* onto V*(4). We set

| P = {ex3(p)|V| peL} = V*.
Then o(V, P) = z|V; also note that T(P)= P(4).
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Let fe V*; then

()= ¥ tea(n)

for some maximal orthogonal set p,, p;,...,p, in L—{o} and scalars

tista, .oy by, 1> 0. As is easily seen, T(f) attains its norm on B(4) and,
_since the unit ball B of V contains B(4) and ||T(f)|l, = ||fllz, we conclude
that f attains its norm on B. This implies that B is o (¥, V*)-compact, by the
theorem of James. ‘ '

Notice that o (¥, V*)|V(A) = a'(V(A), V*(4)). Since V*(4) = lin P(4), we
get V* =1linP, hence o(V, V*) = z|V. This has the following consequence:
A <B, hence o(V,V*¥)—cld is 1|V<compact, thus also t-compact.
Furthermore, 4 < o(V, V¥)—cld = 1|V—cl4 <t—cl4, hence 4 —a(V V*)
—cl4.

Now

B(4) = o(V(4), V*(4))—cl con(d U —4) = a(V, V¥)|V(4)—cl con(d U —4)
co(V, V¥*)—clcon(du —4) = con(du —4) € B,

Y] bemg convex and o(V, V*)-compact. Since B =|| ||r—cl B(4), we get
B =con(4du —4). :

Clearly 4 is a convex subset of 2(L). It now follows that 7= V(J) and
I llg =1l ll5. Also T: V*(4)— V*(4) is an order-isomorphism, since

4 =o(V(4), V*(4))—clA.
(i) We show that 4 and A are orthofacial. First note that now Te;(p)
= e,(p). Again, for fe V*(4), there exists an xeS(L) such that

T(f)=E (x) = Z e x({t}), where s(x) = {t, t3, ..., t,}.

Then
=Y T e x({t;}) = ¥ tiez(x({t:})) = Ez(x).
i=1 i=1 .
Let xeS(L), s(x) = {t1, ta, .. b}y L <Y for i <j, and suppose that

Ej;(x)e [0, e5(1)]. Then , _
0<t; KEzx)(W<t,<1 for all ped.
We claim that _ | _ » _
Ez()"'()nd =az(x({1})) and Ez(x)"'(0)nd =az(x({0})).
Let ped with u(x{1})=1; then x{1} # 0, hence les(x) and ¢, = 1.
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Now

n

E;(x)(W = ) tiplxit) =1
i=1
Conversely, suppose that, for yeA E;(x) (,u) =1, Thent, =1 and clearly
p(x f1}))~1 since s(x) =[0, 1] and '

L wlx({n)) =

The second claim is proved in a similar manner.

Let Fen(d)— &(A); then there exists an xe S{L) with Ez(x)e[0, e;(1)]
such that F = E;(x)”'(1) n 4. Therefore F = ad(x(l 1)), showing that the
map aj is surjectlve

Next, let E|l,5 F, E, Fen(d)— c"’(A) Then there exists an xe S(L) with
E;(x)e[0, e5(1)] such that E<Ejz(x) '(1)nd=az(x({1}))- and
F cE;(x)~1(0)nd = az(x({0})). Now if E =az(p) and F = as(q), p, 9e L,
then p < x({1}) and g < x({0}), hence p L g since {1} n {0} = @. This proves
orthostability of 4. The proof that A is orthofacial is quite analogous.

(iii) We show that ext[0, e,(1)] = P(4) holds true. Let fe[O0, e (1)],
SEPA). If [Ifll,# 1, then also f/Ifll,€(0, e,(1] and 7 = AL (fNSI)+
(L—=ifllp0, thus féext[0,e,(1)]. Now suppose. that {|f]|,=1. There
exist pairwise orthogonal elements p,, p,,..., p, in L—{o} and scalars
0<t;<ty...<t,_;<t,=1 such that

f Z t eA(pl

Notice that n> 1. We set

to:'=0,po:=(\/'pj)’ and q,-:=\/pjfori=0,1,:2,...,n
j=1 =0

Then
f = Zo tie (p) = toey(qo)+ Z tj(eA(qj)__eA(qf—l))
i= j=1
- -io“ —tyen)eal@)Ftaea(a) = e, (1)~ z (t11 1) €4()
i
= Z ( eA(q])
Since

n—1 ) . . .
Z(t.l+1_t.l)=1’ _0<tj+1—tj<1,j=1,2,...,n>1,
i=0 .

we conclude that f¢ext[0, e,(1)].




214 _ G. T. Rilttimann

(iv) We claim that
P(4) ca(V*(4), V(A)) —exp[0, e (1)].

First notice that every orthogonal subset in L is finite since 4 is t-closed
and orthofacial. Therefore the poset (L, <) is atomistic. Suppose now that
peL—{0, 1} and let q,, q,, ..., q,, T€Sp. ¥y, Fs, ..., F,y, be a maximal set of
pairwise orthogonal atoms majorized by p, resp. p’. Then

p=\/4 and PF=\r,.
i=1 j=1

Select peaylg), i=1,2,...,n resp. vieayur), j=1,2,..,m and"
define

One verifies that [0, e,(1)] = (x) 1( 0, 17 and that J(x)(e,(p)) = 1.
Suppose that, for ge[0, e,(1)], J(#)(g) =1 hoIds true. Then g(u) =1, i
=1,2,...,n and g(v)=0, j=1,2,...,m. Thus geg '(1)nd and
v;eg 1(0)n 4. By faciality of 4 and ‘theorem 4.3(iii), we conclude that
a,(q) Sg (D nden(d)-&(4) and  a,(r) Sg *(0)nden(d)— &)
Hence a,(p) =g~ '(1)n4 and ad(p) cg 1(O)r\A But g = E(x) for some
xeS(L). By a previous remark in (i), we then get a,(p) < a,(x({1})) and
a,(p ’)CaA(x(fO})) thus p<x({1}) and p’ <x({0}) This shows that p
= x({1}) and p' = x({0}), hence, since o <p, p' <1, 0, 1es(x) and finally
{0, 1} = 5(x). Then

g=0-e4(x {01))“‘1 e4(x({1})) = e4(p).

If p = 1, select a maximal orthogonal subset of atoms P1s P2s ---» Py i L
and ,u,eaA(p,), i=1,2,...,n Set

§l'—~

IIM; ’

1
®=—
n;

P

Then J(x)(e,(1)) = 1 and [0, e,(1)] Q.I(x)_1 (— o0, 1]. Now proceed as
above to show that e, (1) is an n(4)-exposed point of [0, e,(1)]. If p = 0, then
J(=)(0)=0. and [0,e,1)]<sJ(—%)"(—0,0]. If J(—%x)(g)=0,
gel0, e,(1)], then J(x)(e,(1)—g) = 1, hence e, (1)~g = e,(1), thus g = 0.

(v) Notice that T~! is a norm- and order-isomorphism from V*(4) to
V*(4). Then, with (iii) and the previous remarks, it follows that
ext[0, e;(1)] < P(4). As a straightforward excercise one shows that if
fea(V*(4), V(4))—exp[O0, e (1)], then T 1f is a a(V*(4), V(4))-exposed
point of [0, e;(1)]. Therefore, using (iv), we conclude that

ext[0, e;(1)] < P(A_) ca(V*(d), V(d))—exp[0, e;(1)].

:Ir—-
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It can be shown that, in theorem 6.6, the condition concerning the
exposed points is not redundant for the assertion to hold true.
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