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THE SECOND ORDER OPTIMALITY OF TESTS AND ESTIMATORS

FOR MINIMUM CONTRAST FUNCTIONALS. I

BY

J. PFANZAGL (KOLN) ~

Abstract. The concept of minimum contrast functionals is intro-
duced: It is shown that certain statistical procedures (asymptotically.
similar tests, asymptotically similar confidence procedures and
asymptotically median unbiased estimators) derived from the
minimum contrast estimators are 2nd order efficient, provided the
family of probability measures is rich enough to contain, together
with each probability measure, contiguous probability measures
which are asymptotically “least favorable”. The 2nd order efficiency

" of statistical procedures based on the maximum likelihood estimator
follows by ‘application ‘of ‘these results to parametric families of
probability measures. The results are valid only for “continuous”
probability measures.

1. Introduction. Let (X', o/) be a measurable space and P a family of
p-measures (probability measures) P|«/. Let x: B — R* be a functional
defined on . The underlying intuitive idea is that the’ features of P,
relevant for the solution of a certain practical problem, can be summarized!
by a k-dimensional vector »(P). Examples of such functionals are the mean,
the mode, a quantile, a measure of variance, a measure--of concentration
(like the Lorenz-measure), a measure of correlation in case of X = R?, etc.
For ‘many situations this approach is more natural than the assumption
that P is a parametrized family. At least, it is more general (see Example 3).

Our aim is to make assertions about x(P), based on a sample
(X15aees )EX " which is governed by P A successful theory requires certain
restrictions on the functional. For an asymptotic theory at the level o(n°

(leading, for instance, to a normal approximation for estimators), it suffices -

to assume Ist order “differentiability” of the functional. For an asymptotic
theory of higher order, more restrictive assumptions are needed. . ‘
As a first step we shall deal here with a special type of functionals

to be called m.c. (minimum contrast) functionals: Let f: X x T, T < R*, be .
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such that x-» f{(x,?) is o/-measurable and P-integrable for every PeB,
teT. Assume that for every Pe®P the function ¢ — P(f(-,t)) has a unique
minimum in T, say x(P). Then P—»x(P) defines a functional on ‘B,
assuming its values in R*.

The following examples illustrate the conccpt of an m.c. functional.

Example 1. If P is the family of all p-measures over the Borel algebra
of R with finite 1st moment, and f(x, t) = f,(x—t), where
—(1- q)x, x < 0, : »
qx, x =0, 7€, 1,

fm—{

then the m.c. functional is the g-quantile.
Example 2. If B is the family of all p-measures over the Borel algebra
of R* with symmetric and unimodal Lebesgue density and f(x, t) = fo (x—t),

~ where f,: R*— R is neg-unimodal (i.e. bowl-shaped), symmetric about 0, and

bounded, then the m.c. estimator is the center of symmetry This follows
casily from Theorem 1 in [1]. '

Example 3. If B ={P,: teT}, Tc RY, is a parametrlzed famlly with
densities p (-, ¢) and f (-, t) = —log p(:, t), then the m.c. functional is x%(P,) = t.

Further ‘exa‘mples can be found in [7] and [4], p. 724-725.

Let QF  denote the emp1r1cal p-measure pertamlng to ‘the sample
x = (Xq,..0, %) If t > QF(f(,1) has a unique minimum in T for every
x€ X", this defines an estimator x(") the so- called m.c. (mzmmum contrast)
estimator. : :

The purpose of this paper is to show that, under natural conditions,
statistical procedures based on the m.c. estimator are 2nd order efficient.

Organization of the paper. In Section 2 we introduce some basic
notions: Section 3 contains the notation. In Section 4 it is shown how

‘asymptotically similar tests of level a+o(n~'/2) can be obtained by asymptotic
~ studentization applied to the m.c. estimator. In Section 5 the 2nd order

efficiency  of these tests is established. Sections 6 and -7 establish the
corresponding -optimum properties for confidence procedures and median
unbiased-estimators: Section -8 lists the regularity conditions.

Part II of this paper (see [8]) contains lemmas and the proofs.

2. Basic motions. It will be convenient in this and the following sections
to write (%o (P), %; (P), ..., ®,(P)), where x,(P) is the parameter under
investigation, whereas x; (P), i=1,...,p, are nuisance parameters. We first
consider the problem of testing the hypothe51s %o (P) = t, against alternatives
%o (P) > to, using a cf. (critical function) @,(, t): X" - [0, 1].

Let T C o

@y Ki={x(P): Pe).
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Let B, = B, neN, denote a sequence of families of p-measures, usually
“shrinking” sequence of neighborhoods of a fixed p-measure P,.

(2 2) Definition. A sequence of c.f. @,: X"xK - [o, 1], neN, is asymptotically

[similar] of level a+o0(n™) for B,, neN, if

P (. (-, xO(P))) [——]oc+0(n_s)
uniformly for PeB,. S :

" Sequences of hypotheses. In asymptotic theory it is usual to think of .
a fixed hypothesis and ~of -a sequence of alternatives converging — as the
sample Size increases — to this- hypothesis in such a way that the power -
under this sequence of alternatives converges to some positive number
smaller than 1.-If the hypothesis is simple, this appears most natural. If
we have a structural parameter 0 and a nuisance parameter n (hypothesis:

{(6o,m): neH}), it is natural to consider the sequence of alternatives

(6o+n~1%t,n,) for some fixed value n, of the nuisance parameter.

But how should we choose the sequence of alternatives in a non-parametric
set. up? Assume ‘that we are given some functional x, defined on a large
class of p-measures, say 9B, and consider the hypothesis {Q": QeP, %o (Q) = to}.
We are interested in the power 'against alternatives P with xg(P,)
= to+n" 12 A. But what are reasonable criteria for the choice of the sequence
P, in this case, considering that no p-measure of the hypothesis is distinguished ?

This, perhaps, is the right place to remember that, in reality, neither
the hypothesis nor the alternatives “move”. We have a fixed hypothesis
{Q": QeP, #0(Q) = to} and we are interested in the rejection probability
of a certain alternative P" with x,(P) = t,. Properly understood, our
asymptotic formulas render approximations to the rejection probability which
hopefully will be sufficiently accurate if the sample size is adjusted to the
interesting alternatives in such a way that the rejection probability is high, -
but not too close to 1. For the purpose of obtaining such approximations
we may as well keep the alternative P" fixed and consider the rejec-
tion power under this alternative for the hypothes1s {Q" Qe B, %o (Q)
= %o (P)—n" 12 4}. .

As far as the approx1mat10n of the re]ectlon power is concerned this
approach serves the same purpose, and it saves us choosing a sequence
of alternatives, thereby introducing an arbitrary ingredient into our con-
siderations. Moreover, this modified concept of an asymptotic power function
is exactly what we need for the evaluation of confidence procedures and -
median unblased estimators. '

3. Notation. Let (X, o) be a measurable space.

For A c X let A := X \A.

Let (X", o/™) be the n-fold Cartesian product of (X d) For a p-measure
Pl let P"[/" denote the n-fold product of P.
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Let R™ denote ‘the m-dlmensmnal Euchdean space, #™ its Borel algebra
and | -| the Euclidean norm. ‘
Points ueR?*'.will be denoted by (uo, Ups oo, Uy).
The P-integral of an .o/-measurable function h X ->R" will be written
as P (h) or | h(x) P (dx), where integration is to be understood componentwise.
For any ./-measurable function h: X » R™ and any p-measure P|o/
the induced measure P+h|#™ is defined by P#=h(B):= P(h ‘1(8)) Bea™.
- The sup-metric on the space of all p-measures over .- is deﬁned by
the dlstance function-- - A . .
‘ d(P,Q) = sup IP(A) Q(A)I
[ o Aed 2
The topology 1nduced by thls metnc is the strong topology '
Finally, _ _ - -
(u)-=(2n)*'if2 exp[—%ulj d>(u) j(p(r)dr, Nyi= oo l(u)
Qs denotes the Lebesgue dens1ty of the multlvanate normal dlstrlbutlon
with mean vector zero and covariance matrix 2. : :
Let T< RP*'. For a function h: T->R and a multl-mdex o« = (azo, cens 0p)
which belongs to (Nu {0})”+1 let -
lof := ;. and  K(t) i= ———h(2).
I+ Z ) oty ... Ot P
“For notational convemence we also use
) ' S+ 1
h(io...ik) fi= _____h t
() ) atiu...at,k ()

. :quther.rﬁore" : ) N - T .
k() = ( ‘“(t))- ..... T (t) = (" ®))ij=0..

For PE‘B and a contrast functlon f, qu and 0= k0 < kl < k,

<. <kq 1< k, we deﬁne

: - o T - (Ik + 1"‘ik ) ’
1—1 1
.F,-l_..:k..l,..:,ikq._l+1..‘.:k ( 1=_I J S O %(P)))
and for xe X"
id (ik + 1"'ik
( S | -1 1
Flrll) lkl ..... ikq_l'l'l“'iqu(x) '_ n Z Hf ] Xy s

Furthermore,
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, denote the inverse of the matrix F_ and (4{ (x)); ;-0
whenever deﬁned and (6;;); j-o,.

- Let(4;(P))j=o...
the inverse of the matrlx (F® (x)),, i=0
elsewhere.

Convention.-If an mdex occurs in a product more than once, thlS
means summation over all possible values ‘of thls 1ndex '

For PE‘B and]—O ,plet )
fi P = — A (PYFO, %(P)),
0y(P) i= PG PGP, 0y(P) 1= (P2

We remark that o;; = A,kA Fy..
Given h( P) X—»R"‘ we deﬁne H( P): X"—»R’” by

.....

.....

----- r

F(x,P):=n"'7? Z (h(xv,P)—.P(h(-,P))).

For neN let D be. famlhes of p-measures over o, let h, ( 0): X"—»R
and g,(,0): X" >R, QGQ be measurable functions.
We write for r >0

(3.1) - hy(-, Q) = 0,(r) with- respect to Q,
if : _.
¢sup P*{|h,(-, Q)| > ¢} = o(n") for évery c>0. -

P.QeQ,

We remark that h,(, Q) = o,(r) implies the existence of a sequence
¢, |0, neN, such that .

sup P* ([, Q) > e} = 0(a7)-

. PQeR,
We write for r,s = 0

= A j;l(i Q) = gn(':v Q)+n._sO"(T)

. 7 (fuls Q)= gu( Q) = 0, (1),

We .deﬁne | _
(D U(Pi= {Qe®: d(PL,0) < 1-6} for 6¢(0, 1),
where d ié the sup-distancé. v

4. Critical regions for x,. The results of this and the following sections
are obtained under a number of regularity conditions which will be listed in
Section’ 8. Among these we have the mutual absolute continuity of the
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measures in B, the continuity of P — x»(P) and various moment conditions
on f and its derivatives, etc.

Moreover, we require that a variant of Cramér’s Condition C is fulﬁlled
for the joint distribution induced by certain derivatives of f.-In fact, this
restricts the applicability of our results to families f with Lebesgue densities.
It is, however, to be expected that the corresponding 2nd order optimum
- properties can be obtained for certain randomized estlmators without
a-restriction like Cramér’s Condition.

In this section .we-shall show how c.r. (critical regions) for %y can be
obtained by applying an asymptotic studentization procedure to the m.c.
estimator. -

Under suitable regularity conditions (see Lemma (9.70) in [8]), the m.c.
estimator %™ admits a stochastic expansion of type

(A1) n ("~ (P)) .
- —j'+n-1f2M(j’f Py+n"'20,(3), i=0,1,..,p,

with polynomials M;(-, -, P) deﬁned by (9. 74) in [8] v
Let 0 (P) := 0qo(P)"/2. Then (4.1) implies, in particular, that

(4.2) P {n*2 (% —ty) > —N,0,(P)} = a+0(n

for every PeP with »,(P) = ¢, : :
Assume that there exists an estimator-sequence for ¢, say ¢, neN,
which admits a stochastic expansion

(4.3) o n (e 6o (P) = (-, P)+0,(3).
By Lemma (9.63) in [8], “
P {n'2 (" —t)) > —N, a""} = a+o(n°

for every Pe B with x,(P) =
Under suitable conditions there exists ¢,(P)eR such that

@4 P"{n”z(x("’—to) > —N oP+n" 12, (P)} = a+o(n 3.

Using the stochastic expansmns (4.1) and (4.3) we obtain
P"{n”z(x("’ t)) > —N,o+n ¢, (P)}

= P {fo+N,0o(P)+n~ 1/2(M0(j’f’ P)+N,k) > n“”zc,(P)}+0(n vz,

whence

(4_.5)‘_ ¢ = (1— Nz)agol Ao; Aoy Ao GF i ju+ Ay J‘,(%A,,,FJ,“F,,,I Fu))+
o + Aok Aji (Fiji— %F;ktAtuFiu) oo ' N2 P(fok).




The second order optimalitjz. I 61

Replacing c,(P) by an estimator ¢’ for which
(4.6) | e = c,(P)+o,(3)

we obtain a sequence of cr. of level a+o(n~1?).

Theorem (4.16) below specifies regularity conditions under which this
asymptotic studentization procedure is feasible.

The cr. obtained by asymptotic studentization are particular instances
of a.more general class of cr. {F,(,t)> 0} based on test statistics
F.(-, to). . N

For s1mp11c1ty, we say that a sequence of test statistics F,, neN is
" asymptotically [similar] of level a+o0(n™°) if the sequence of cr. {F, > 0}
has this property (see Definition (2.2)).

Let P, eB. For 4€(0,1) let U, ;(P,) be defined by (3.2).

4.7 Definition. A sequence of test statistics F,|X"xK, neN (for de-
finition of K see (2.1)), is of type S if it admlts an asymptotic expansion
of the following kind:

(48) Fn('a %(P)) = C(P)+ﬂ)(! P)+n—:”2M(.ﬂ)(" P)s g(: P)3-P)+n_1/'2 0,,(%)

with respect to U, ;(P,) for every d€(0, 1) (see (3.1)), where M(., -, P) are
polynomials and g(-, P): X —» R™ are measurable functlons, fulﬁllmg the
regularity conditions specified in the sequel.

We consider only test statistics with leading term because test statistics
with a different leading term are inefficient, and we investigate the 2nd order
eﬁic:lency of Ist order efficient test statlstlcs '

(4.9) Remark. Note that under suitable moment condltlons on f; and ¢
the sequence F,, neN, is asymptotlcally similar of level cx+o(n°) for U, s(P,)
iff ¢(P)= N,00(P) (as a consequence of Lemma . 63) m [8] and the
Central Limit Theorem). :

Regularity conditions required for test statistics of type S:

(4.10) The coeﬂiments of M(,-,P), cons1dered as functions of P, are
contlnuous at P,. .

4.11) P-g(x, P) is continuous at P, for P,-aa xeX. :

4.12)  fo(-, P,) and g;(-, P,) are bP*-uncorrelated fori=1,...,m
Ti]ére exists a strong ncighborhobd U, of P, in P such that

@.13) P(g(, P) =0 for PeU,, o

(.14)  MY({P,=g(, P): PeU,}),

@15)  C({Py#(fo( P)g(, P)): PeU,}).
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(4.16) THEOREM. Assume that ¢ and c® are estimator-sequences for ¢, and
c., fulfilling (4.3) and (4.6), where the remainders 0,(%) hold with respect to
U,s(P,) for every 6€(0,1). '
Then the sequence of test statistics F,, neN, obtained from the m.c.
estimator by asymptotic studentization, namely '

(4.17) Folx, to) 1= n'/ () (x)— ta)+N o (x) —n~ 12 (x),

is of type S and for every 5¢(0, 1) asymptotically s1mzlar of level tx+o(n 1/2) :
for U, 5(P).

In addition to General Assumptwns (8 1)(8.5) we need the followmg regularity
conditions: :

(4.18) P—>k(x P) is continuous at P, for P, -a.a. xeX L
There exists a strong neighborhood U, of P, in ‘B such that
(4.19)  Kj;5(%(Py), Uy)) for f: Xx TR, .
(420) - MF({P+f*(, %(Q): P,QeU,)) for ol = 1,2,3,
@21) 45 (x(Py), Uy) for £ XxTRif ol =3, "
422)  M;({P*k(, Q)I'QeUg) '
(423 C*({Pox(fil, P)i=0,.., 5, S0, P} j=0,..., p, k(-, P): PeU,}).

4.24) Remark. By repeated apphcatlons of the asymptotic studentization
procedure one can obtain cr. which are asymptotically similar of arbitrarily
high order. For the case of a I1-dimensional m.c. function, a cr. which
is asymptotically similar of level a+o(n~!) was given in [7] (Theorem 3.1,
p. 119). This paper also contains numerlcal computations showmg that,
for ‘the particular - case of the ‘expectation, these critical reglons keep the
prescribed error type one w1th ‘sufficient accuracy

The following propos1t10n gives conditions under Wthh estlmator-sequences
for o, and ¢, fulfilling (4.3) and (4.6) exist:

{(4.25) PROPOSITION. (1) The estzmator-sequence
(4.26) - - 0‘(") c= A(n) A(H)F(u)
fulfills (4.3) with | | o _
(427) k(. P):= g, (P)™ [Ao;(P) Aoy (P)F,:(P) (Fyr (P) Ay (P, (-, P)—
f(k)( P))+1fo( P) ( ijk(P)+F‘ik(P))fk(' P)]
(i) The estlmator-sequence cm obtamed from Ca (P) (see (4. 5)) by replacing
11 lql ..... qk 1+1 il(P) by F("] .‘11 ..... ‘lk 1+1 ll and AIJ(P) by A(’l) fulﬁ”s (4 6)

The remainders o0,(3) in (1) and (ii) hold with respect to U,,,,(P*) for every
0€(0,1). . : :
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In .addition to General -Assumptions (8.1)-(8.3) and (8.5) we need the
Sollowing regularity conditions:

Regularity conditions for (i). There exists a strong nelghborhood
U, of P, in B such that

(4.28) K;,(x(P,), Uy) for f: XxT—R;

429 ME({P+f*(,%(Q): P,QeU,}) for |a = 1,2,
T ME({Prf( x(Q)) P QeU,}) for | =3; S

430) Ls(x(P,),U,) for f" XxT—R if o] = 2,
Lz(x(P*) U,) for f: XxT—>R if |of = 3.

Regularlty condltlons for (11) There exists a strong nelghborhood U,
“of P, in B such that :

@31) K, (x(P,),U,) for f: XxT—R;

432)  M%,({P>f*(-, »(Q): P,QeU,}) for |of _1
M3/4({P*f“(,%(Q))- P,QeU,}) for |u| = 2, .
M3, ({Ps f*(, 2(Q)): P,QeU,)}) for lof = 3;

(4.33)  Lgs(x(Py), Uy) for f*: XxT—R.if lo| = 1,
Loy (%(Py), U,) for £ XxT—R if o] = 2,
L, (x(P,), U,) for f* XxT—R if lo| = 3.

5. Second -order efficiency of the cr. for x,. In this section we shall
show that all cr. of type S (in particular; the cr. obtained from the m.c.
estimator by asymptotic studentization; see Theorem (4.16)) are 2nd order
efficient. ' " ' . L
(5.1) THEOREM. Let ¢,, neN, be a sequence of cf which is asymptotically
of level a=o0(m~'?) for U, ,(P,) for every 6€(0,1), and let F,,neN, be
a sequence of .test statistics for x, of type S (see (4.7)) which.is asymptotically
simitar of level a+o(m="?) for U, ;(P,) for every 6€(0,1). _

Assume that for every A > 0 there exists a sequence P,,€'B, neN

Sulfilling _ . »
52 #o(Pua) = o (P) - nt24,

and admi,ttmg a P, denslty

(5.3) P, := l—n‘”onO‘o‘fo(-, P*)+n'lzlzh+n'3/2_r,,‘d,
such that |
(5:4) L MIPh),
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cf. @, ne N is asymptotically of level oc+o(n°) for U, ;(P,) for every d € (0 1),
we obtain
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and for every 4o > 0

(55) M {P,srs:neN,0< A< 4y} and sup P, (%) = o(n).

G<d<dy

Then for every A, > 0

(5.6)  Pi(@n(, % (P)—n"124)) -
< PL{F, (-, %o (Py)—n~ 12 4) > 0}+o(n‘”2) = m,(4, cz)+o(n'”2)

uniformly for 0 < A < Ay, where

(5.7) - m(d,0) = B(N,+405 )—n"Y2 Aoyl qo(N +Adog 1) x

X [ABFAOSAUI(AG(;l (3 'rst+Aquv r(%FptA quu_ tsq))_lN Frst)]

In addition to General Assumptions (8.1)-(8.5) we need the following regularity
conditions: :

(58) M, (Py+f*(-, x(P,) for |of =
© My(Pyxf*(, % (P)) for fa| = 2,
Mz(P**f"‘(-,x(P*))) for |o} = 3;
(59)  Lq((Py), P,) for f*: XxT—>R if |u| = 2,
L, ((P,),P,) for f: XxT>R if |o| = 3.

The basic idea of the proof is as follows. Let P4, neN, 0 < 4 < Ao,
be sequences of p-measures-fulfilling (5.2) and admitting a P,-density

(5.10) g:= 14072 Ag4n17,,.

* “According to Lemma (9.35) in [8] the sequence of most powerful level
a-tests for P;,: P has power ®(N,+A4P,(g»)"*)+o0(n°). If a sequence of

P2 (0n (> %o (Py) = n-”ZA)) inf &(N, +4P, (¢7)"12)+0(r),

where the infimum 'is taken over all g for wh1ch p-measures P,,A, neNlN, !
0 < 4 < Ay, with (5.2) and (5.10) belong to P. From (5.2) and (5.10) we
obtain P, (gfy) = —1.

To obtam a small upper bound for P} ((p,,( %o (P,)—n"1/? A)) we have
to minimize P, (g?), subject to the condltlon P.(gf,) = —1. By Holder’s
inequality this minimum is attained for g, = —ag fu, provided P,,,
neN, belong to P for this function. (These p-measures are asymptotically
least favorable in the sense that they are asymptotically most difficult to
discriminate from P,)

Thus we obtain the upper bound

P2 (@n(- %o (Py)—n~12 4) < @& (N,+ 465 1) +0(nY.
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Since this upper bound is attained for every sequence of test functions
of type S, this bound is sharp and-the test functions are asymptotically
optimal up to an error term o(n°). Theorem (5.1) asserts that this optlmallty
even holds true with an efror term o(n™'/3).

The purpose of Corollaries (5.11) and (5.15) is to exhlblt natural

conditions under which the famiily contains p-measures P, ,, neN, 0<4< Aqg,
~ fulfilling (5.2)«(5.5). Corollary (5.15) shows that this -always is the case if
B is a parametrized famlly and P,e®P an “inner” point.

Another condition — _most natural within -a non-parametric 'set up - .
is that: contains all- p-measures in a certain neighborhood of P Thls.

is the situation considered in Corollary (5.11).

To make the nature of this assumption more transparent let ys first
consider two eXamples where it is not fulfilled.

Assume first that P = {Ny: 0eR} and let f(x,1) = f,(x—t), where

fi is any sufficiently regular N, -integrable function which is symmetric
~ about the origin. Then x(P,) = 0, but the 'test based on .the contrast

function f, -is not- optimal unless f,(x) = cx?, because. for other contrast
functions f, the least favorable p-measures Wlth an 1-densities. :

Pra(x) = 1—n 1/ZL'N(O 1)(f*(x)2) 112f*(x 6*)+n" lTn.A_(x)

do not belong to {Ny,: 6eR}.

As another example consider the ciise where ‘.B is a family with symmetrlc
ummodal densities and f(x, £) := f, (x—1), f, being bounded, neg-unimodal,
and symmetrlc about 0. The pertaining m.c. functlonal is the center of
symmetry (see Example 3). Corollary (5.11) requires that the family P
contains together with P, certain p-measures with P,-density p,, =1+
+n"Y2 4Aq; fO+n7'F, . This, however, is not the case, since such p-measures -
are not ‘symmetric any more. Hence Corollary (5.11) is not applicable. In
fact, it is well known that for 1-dimensional symmetnc distributions with
unknown shape the center of symmetry can be estimated with the same
asymptotic efficiency as in the case of known shape (see, e.g., [9]).

(5.11) COROLLARY. Assume that there exists a constant ¢ >0 such that any
p-measure P admlttmg a P -denszty p with
sup |p (x)— 1|

xeX
belongs to ‘B S :
Then the c.r. obtained from the m.c. estimator by asymptotlc studentization
(see (4.17)) is 2nd order efficient in the sense of (5.6). :
In addition to the assumptwns of Theorem (4.16) we need the followmg
regularity conditions:

(512) M3, (Pysf?(-, x( *))) for |o) = 1
M (P, £f*(-s%(P,)) for |o| = %
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(5.13)  La(x(Py), Py) for f*: XxT— R if |a| = 2,
L,(%(P,), P,) for f* XxT— R if | = 3.
(5.14) Remark. For the special case of quantiles, a related r‘esult‘ was

obtained in [6] (Theorem 3, p. 114) proving the Ist order efficiency of
statlstlcal procedures based on the sample quantlle

. The followmg corollary -concerns .the ccase of a parametrlzed famﬂy of
p-measures, say P = {P,: 0@} with @ — R**'. With  the. likelihood
contrast function f(x,6) = —logp(x,#), we obtain the m.c. functional

.#(Pg) = 0. The. pertaining m.c. estimator is the m.l (maximum likelihood)

estimator.

(5.15) COROLLARY. Assume that ‘B = {Pg Be@} wzth (0] c--"R”“, and 6% is
an inner point of @.
“Then the c.r. obtained from the m.l. estimator by asymptotic studentzzatlon

‘is 2nd order efficient in the sense of (5.6).

In addition to the assumptions of Theorem (4.16) and conditions (5.12)
and (5.13) for P, = Py and f ( 0) —log p(-, 0) we need the following
regularity condltlons . : ' o

(5.16)  M%(Py *p*(-, 6*)/p (-, 0%) for lo| = 2,
Ly(6*, Py) for p*(, 0%/p(, 0%): X x@ >R if la] = 2.

‘This Tesult 1s of course, well known (see [2], p. 40, Theorem 91 “and
p. 38, Theorem 8.1, and [5], p. 260, Proposition). It is mentioned here
because it is of some interest that Theorem (5.1), almlng at non-parametric
apphcatlons y1e1ds this parametric result as a by-product (of course under
somewhat different regularity conditions). :

Moreover, we infer from Theorem (5.1) that the 2nd order eﬂimency is
not diminished if the estimator for Go used in the asymptotic studentization

. procedure is inefficient.

- Let

A(D) —L(O)" ’

In the case of the likelihood contrast function we have F_(Pg) = L(©
and F, (P,,) = —L(6), whence A(P;) = —A(0), and therefore ~'

Aot (Pg) Ao; (P Fi (o) = Aoo ©).

Hence an estimator for o,, more natural than the estimator ¢ 'given
in Proposition (4.25), is Ago (#®)*/2, where 6™ is the ml. estimator. If Ay
is difficult to obtain (as, for instance, in ‘the case of mixtures), one could.
as well use (A$Y)!/?, where A§}(x) is the (0, 0)-element of the matrix
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obtained by inversion of . -

( -1 Z 19(x,, g(m(x))zw(x B‘"’(x))) 1,i=0,...,

Using o“”’ as given by (4.26) rather than (A(’")”Z or (Aoo (9‘"’))1"2 leads
to a c.r. which is asymptotically similar also for p-measures in the neighborhood
of {P,: #e®}, without diminishing the power by more than o(n‘”z) if
the model {P,: 0e®} is correct. _ s T

6 Optlmal conﬁdence procedures In Section 4, critical reglons
| | na(tO) = {nllz(%(") tO) N G(")+n—‘1/2C(") > 0}

have been obtained Wthh are asymptotically similar of level a+o(n 1/2) for
the hypothesis %, (P) = to. Assume this holds true for any hypothesis t,eK
(for K see (2.1)). In view of their special structure, these cr. can be
inverted immediately to confidence procedures for %0

Let

(6.1) ’ xQ = x{;” '”"N a'"')+n c("’
Then_f”'(C,,,,,(xO (P))) = a+o(n Y?) for all Pe‘,B 1mp11es
P, < no(P)) = 1<a+o(n~ YY) for all PeP.

(6.2) Definition. A sequence of confidence procedures K,,; neN, assigning
to each xeX" a set K,(x) = K is asymptotically [similar] with conﬁdence
coeﬁ“ icient 1—a+o(n~") if for every P, e‘B and every 0e(0,1)

Pt{xe X" xo(P)eK (x)} [ ]1~—oc+o(n 5)
uniformly for Pe Uns(Py).

Hence the confidence procedure x— [%‘"’1 (x), 00 ) is asymptotlcally similar
with confidence coefficient 1— a+o(n~%), and the confidence sets, being rays,
are of a particularly useful structure. Moreover, the 2nd order efficiency,
proved for.the cr. C,,(t;) in Section 5,carries over to. the conﬁdence
procedure derlved thereof. : o :

(6.3) TuEQREM. (i) The sequence -of confidence procedures x — [x§,(x), ),
neN, is asymptotzcally similar with confidence coefficient 1 —a+o(n~1?).
(i) It is optimal .in the. following sense provided for every A > O there
exists a sequence P, € B, ne N, fulfilling (5.2)-(5.5):
If K,, neN, is any sequence of confidence procedures with asymptotic
confidence coeffi ctenr 1—a+o(n~12), then for-every P,e%P and every Ay > 0

(64) P" {xeX" %o (Py)— n“l/zA %80, (x)} _
_ <P n {xe X" o (Py)— n“”erK (x)}+o(n 1/2)
umformly for 0 < A A
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Assertions (i) and (ii) are true if the assumptions of Theorem (4.16) and
(5.12) and (5.13) hold true for every P,eB.
Natural conditions on P under which sequences P,,A, neN fulfilling
(5.2)-(5.5) exist are given in Corollaries (5.11) and (5.15).

‘Theorem (6.3) follows 1mmed1ately from Theorems 4. 16) and (5. 1) apphed
for @,(, to) = Dpexnaggx i) - .

7. Optimal median unbiased estimators. In this section we shall show that

' %0.1 /2> the lower confidence bound with confidence coefficient. 4, if considered
as an estimator for x, (P), is asymptotically median unbiased up to an error
term o(n 172y, and is 2nd order efficient within this class of estimators.

(7.1) Definition. An estimator-sequence t§°, neN, for x, is asymptotically
median unbiased o(n~®) if for every P, eP and every 6€(0, 1)

P {x € X" %o (P) < t‘"’ (x)} = 3+0(™),
- pm {x eX" g (P) > tP(x)} = 3+o0(n™)
uniformly for Pe Upns (P*)

(7.2) THEOREM. (i) The sequence ’,,2, neN, is asymptot_ically median
unbiased o(n~'?). «

(i) It is optimal in the followmg sense provided for every A4 # 0 there
exists a sequence P,,€P, neN, fulﬁlhng (5.2)-(5.5) (the supremum in (5.5)
is taken over 0 < |4] < Ag):

If t§ is any estimator-sequence. for x, whtch is asymptotzcally median
unbiased o(n~'/?), then for every P,e® and every 4o >0

PR {xe X" #o(P)—n A < 1§ (x) < o(P)+n 124}
. SPL{xeX™ %y (P)—n ' A < %), (x) < xo(P*)+n—1/2A”}+o(n_1’2)

uniformly for 0 < A', 4" < Aq.-
. Assertions (i) and (i) are true .if the assumptions of Theorem (4. 16) and
(5 12) and (5.13) hold true for every P,eB. :

Froin ‘this theorem one: can easﬂy derlve corollarles correspondmg to
Corollaries (5.11) and (5.15). '

- With o(n~!/?) replaced by o(n°) the non—paramctric optimality assertion
occurs in [6] (Corollary 2; p. 116) for the particular case of the sample
quantile. For general m.c. estimators a somewhat different but intuitively
related 1st order Optlmahty assertion occurs in [4] (p. 738, Theorem 4.4).
See also [3]. .

Theorem (7. 2) follows from Theorem (6. 3) and Remarks (9 34) and (9. 56)
in [8] applied to the confidence procedures K, (x) = [t (x), o) and K, (x)
= (— o0, ¥ (x)], respectively. -
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8. Regularity conditions. In this section we list the regularity condmons
which are needed somewhere for the proofs. At the end of this section
we specify some “general assumptions”, which are made throughout the
paper.

Conditions M,, M*, C, and C* refer to a family of p-measures Q
over #°*1L. : SRR :

CONDITION M, (Q). sup |. Ix["Q (dx) < 0.
Qe
CONDITION M*(Q). Condmon M,H(Q) is fulﬁlled for some 6 > 0.

.CONDITIDN C(®). lim sup |f exp [iu t,]Q(du)| < 1.

it =+ 0

CONDITION C*(Q). Every QED is concentrated on a k- dimensional affine
subspace and there exists a subindex (i, ..., ) of (0,.... p) with i; = 0 such
" that Condition C({Q*(n ”u) Qeﬁ}) is fulﬁlled

Let now Q be a family of p-measures over «f. |

CONDITION " h: XxT-R fulfills Cond1t1on L, (t Q). if for some
neighborhood V(t) of t o

_ lh(x, t)—h(x, t")l g(x) e —¢”
for ', t"e V(t), where g fulfills M,({Q=*g: QEQ}).

CONDITION L*,; L..,is fulfilled for some & > 0.

g2 e

Let Tdenote the closure of T in the one-point corupactiﬁcation of RP*1,

‘ConDITION K,. h: X xT — R fulfills K, (¢, Q) if

. (a) M*({Q*h( 1): QeRQ}),
- (b) for each se T\{t} there exists a ne1ghb0rhood V(s) of sin T such that

) M ({Q + linf {h(-, u): ueV(s)n T}: QeQ_}) L
is fulfilled. ' ‘ o

We mtroduce the following General Assumptions
~(8.1) The measures in B are mutually absolutely continuous.

8.2)" t=f(-,t) is three times differentiable on T, and’ t— P(f(-,?) can .
-+ be extended to a continuous function on T for every PeP.

®3) fi XxT-R fulﬁlls Ly (t P)

(84) For each Pe P there ex1st a strong nelghborhood U(P) of P and
a neighborhood V(x(P)) of »(P) such that

inf inf 1(Q,t) > 0,

QeU(P) teV (=P
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(8.5) . For every Pe P and 6€(0, 1),
“sup sup ni2|x(Q)—x(P)| <
neN Qely 4(P)
where U,I 5 is defined by (3.2). _
We remark that assumption (8.3) guaraﬁtees that the order of differentiation

and integration can be interchanged for ¢t — P(f (-, 1)).
It will be shown elsewhere ‘that (8.5) holds under certam regulanty ,

assumptlons . o . U _
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