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. ON SEQUENTIAL ESTIMATION OF PARAMETERS
OF CONTINUOUS GAUSSIAN MARKOY PROCESSES

BY

MAREK MUSIELA (WROCLAW)

Abstract. Assuming that the mean function of a continuous
Gaussian Markov process y is of the form m(r) = fp(t)+y (), we
give admissible, minimax and minimum variance unbiased sequential
plans for estimation of #. For a parameter of the covariance function
of y, parallel results are presented.

1. Introduction. Recently a number of authors have studied various
estimators of parameters of stochastic processes and nonasymptotic optimal
properties of such estimators. In particular, Araté [1] and Hajek [7] have
investigated nonsequential. minimum variance unbiased estimators for para-
"meters of Gaussian processes. Novikov [18] has compared sequential and
nonsequential methods of estimation for a shift parameter of a diffusion
Gaussian process. Dvoretzky et al. [5] have shown that, for the Poisson
process, the negative-binomial process, the gamma process and the Wiener
process, fixed-time sequential plans are minimax if the weighted quadratic
loss function is used. Magiera- [14] has extended these results of Dvoretzky
et al. to a class of processes which contains all- the processes considered
in [5]. .

In this paper we consider a continuous Gaussian Markov process
y = (v(?), t > 0) with fnean m(t) and covariance K (t, s) and we assume that

m(t) = 0o (t)+y (t), where @(t) and ¥ (t) are known, while 6 is unknown.

If K(t,s) is known, we COIlSldeI‘ the problem of sequent1a1 estimation of 0,

and if

K(t,s) = exp { {(ap ) +q (W) du} K (s, s),

where p(t) and q(t) are known, we estimate o. Com};aring the sequential
plans, the usual quadratic loss function and the quadratic loss function
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plus the cost function will be used. -Admissible, minimax and minimum
variance unbiased sequential plans for estimation’ of 6 and « will be given.

2. Absolute continuity of measures. Throughout the paper we assume that
the derivatives m'(t) and K'(¢, t) exist for all t (0 < t < o0). Moreover, we
assume that

K({+h,t)—K(t, ¢t
K, (f) = lim (t+h,0) ( )_
i h

ex1sts for all t (0 <t < o0).
Let

A@t) = Ky@K* (t,1), B(t) = K'(t;1)—2K (1),
a(t) = m'(t)— A(t)m(t),
where K* = K~ Lfor K#0 and K* =0 for K = - 0. Assume that

t

g (la @)l +14 @)l + B ) du < o0

for all t (0 <t < ). Let {F,} be the family of the o-fields generated by
random variables {y(s): § < t}. Under the assumptions above there exists
a Wiener process w = (w(t), F,) such that

(2.1) y() = y(0)+ j' (a(u)+A(u)y(u))du+ IB”Z u)dw(u)

(see [17]). Consequently, the process y is a semimartingale with a Gaussmn
martingale component. This fact will be useful when considering the absolute
continuity. : 3

Let C-be the space of all continuous functions c¢: [0, o) = R, where
R is the set of real numbers, and let # denote the o-field of Borel

-subsets of C relative to the topology of uniform convergence on compact

subsets. Moreover, let C, be the subspace of the space C of continuous
functions “which are constant on the interval: (¢, o) and let &, = #nC,.
A function t: C - [0, o] is said to be a stopping time if {c: 1(c) < t}e A,
for every t > 0.
Now we define a new Gaussian process

V-"(t) = X+ -_[tBl/z(u)dw(u), xeR.
: : 0

Let u, and u',,, be the measures induced by y and V*, respectively.
Moreover, let v be a measure defined by '

1 «© 1 '
v() = _\/2——1: _fw ﬂ‘./x () exp {‘"?xz}dx .
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and let p = %(u,+v). Denote by #(u) the completion of # with respect
to u, and by 4, (u) the o-field generated by %, and all A from #(u) such
that u(A4) = 0. Finally, denote by u, ,, p.yx and v, the restrictions of p,, py«
and v to the o-field 4 (u). With this notation we have u, , = pu,,
Vo = Vv and & (u) = #(u). In the sequel, u € v, 4 ~v and u | v mean
that the measures-u and v are absolutely continuous, mutually absolutely
continuous (equivalent) and singular, respectively.

THEOREM 2.1. (i) If
T [(m @)* + A2 () K.(u, W] B* )du < oo,
0 .

then p., <v, for every stopping time . o ' B ‘ -
@) If for all t (0 £t < ©0)

Oty oy

[(m' @)* + A2 (@) K (u, u)] B* (W)du < o

and .
°f [(m ))*+ A% @) K (u, u)] B* (il)du = o,
1]
then
(t < 0)=1 iff p,<v,
and

pir=0)=1 if pu,1v.

(iii) If Hey < V., then the density function is given by

Ay 1 1 . (©)-m©) ]}
dv, (},’)f JK©,0) exP{Z [(y(o)) K(0,0) *

Xexp{(’f(“(”)“(“)y(u))B*(u 1y @) - (@) + 4@y W) B* (u)du} o

We give a proof of this theorem in the Appendix. The usefulness of
Theorem 2.1 in our considerations is illustrated in the following

Example 1. Assume, in addition, that y is stationary. Then m(t) = m
and K (t,s) = o exp {—f|t—s|}, where 6> > 0 and § > 0. In this particular
case we have a(t) = fm, A(t) = —B, B(t) = 202 and, consequently,

YO = y(0)+ i(ﬁm—ﬁytundw\/- 2B wit),
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where w(f) is a Wiener process. Theorem 2.1 implies that Byt < 00) =
iff p,, < v, and that

d y(0)—m)?
%%”(y) 1 exp { ; [(y ©)* %J} X

x exp {ﬁ [ § (Bm—By @)y @)= | (Br=By @)? du]}

0
is the density function:

-3. Estimation of 0. Recall that the mean function is of the form m(f)
= f¢ (t)+n,b() We assume that the derlvatlves ¢’ and ¥’ exist and that
for 0 €<t <

[l @)+ @) +4° @K @, )] B du < 0.

We consider the family: {u): 6e® = R} of Gaussian Markov measures
with the mean function m(t) and the covariance operator K (t,s). For each
fe@® let /,c be the restriction of the measure uy to the o-field #,. The
-index 6 1nd1cates that the distribution uy ‘of y depends upon fe@, ‘where
@ is an open interval on the real line.

Theorem 2.1 asserts that if u)(c < oo) =1 for all Be@ then uf, < v
for all 0e® and the density function is given by

T

. 0 "
(3.1) M(y) = 8(z,¥) exp{—lﬂzu(1)+92(t,y)},
_ dv, 2
where
"(3.2) u(r). = @*(0)K*(0,0)+ f((p’ (u)—A(u)(p(u))zB+ (u)du,

63 260 = (O~ O)pOK 0,0+
+£(¢ ()~ A1) 9 (W) B* () [dy )~ (w'(u)+A(u)(y(u) ./,(u))du]

B4 Sy = *(00—) Xp{ [(. (0))_2__’(—(@_]})(

" Xexp { g (W @+ AWy w)—y @) B* @)dyw)—

5 Va0 -ve) 5 .

-~
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Having an explicit formula for the density function we may use the
maximum likelihood method. to study sequential plans for estimation of 6.

Let 7 be a stopping time with respect to {#,}. A function f: [0, 0] xC—R
is called an estimator of 0 if f(z(),) is #,-measurable for every 7. A pair
6 = (1,f), where 7 is a stopping time and f is an estimator, is called
a sequential plan. :

We restrict our considerations to a loss function L(8, 8) = (f—6)*+H (),
where H is a cost function. We assume that H(f) is nonnegatlve lower
semicontinuous and such that

lim H(t) = oo.

t—o0

Let 2 denote the set of all sequential plans 6 = (z,f) which have
a finite risk function -

(3.5) R(0,9) = E, [(f~02+H(x)] for all fe®,

where the expectation is taken with respect to po.
A sequential plan é* = (z*, f*) is said to be minimax if

sup R(8, 6%) = inf sup R(0, J).
0@ 0eZ 6

Suppose that a prior probabxht v dlstnbutlon I1(0)d0 of 8 is given.
The integral

r(I1,8) = | R(8, 5)H(9)d9

is called the Bayesian risk of &, provided it exists.
A sequential plan §* = (7%, f*) is sald to be Bayes with respect to IT if
r{ll, 6*) = ;nfr(H, 0).
=17 .

First we consider the case @ = R. In view of (3.1) _the maximum
likelihood estimator of 8 is given by .

_ AE,y)
T (I

[J)

\

In' latter considerations we use the fact that 8, is a limit of Bayes
estimators. To prove this we introduce a sequence of normal prior dlstrlbutlons

with densities
. u . 02
H,,(B) = \/ § exp{_un_}.
2n 2




s
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According to (3.1) the density function of the posterior probability
distribution is given by
exp {—(6%/2) (u(z)+u,)+ 04 (z, )}

II,(0)y) = )
§ exp {=(0%/2)(u(7)+ un)+ 0A(z, y)} dO

Using simple calculations we obtain

1,01y = \/“(; " exp{— SUAL (a_ u(i’)’ji ) }

Since

P 1) = § (F~0F Hy(61)do

attains its minimum value at

0= | o1, (0ly)de,

the Bayes estimator with respect to II, is given by

6‘,. — ) A’(Ts y)
* o ou(@+u,
Clearly, if lim u, = 0, then
lim 8" = §,.

n-*aw

A simple calculation shows that the posterior risk of the estimator
6" is equal to ~ o

(I, 0n)y) = Py

Now we proceed to sequential estimation of 6.
Since ‘

infr(I1,, 8) = i{lf E, (le-ku_+H(1)>’

573

the problem of finding the Bayes sequential plan reduces to the problém
of minimizing

: 1
Eo(u(t)+u,, +H(T))



Sequential estimation 43

, with respect to 7. It is clear that a fixed-time sequential plan 4, = (T, 9’;"),

where T, is determined by

1 : 1
———+H(T) = inf| ———+H(T) ),
u(T)+u, (%, T (u(T)+un ( ))
is Bayes with respect to IT,. .

Now let 6, = (T, 07,) be a fixed-time sequential plan with

AMTo, y)
- u(Ty)

et .TO B

and with T, determined by

1
+H(Ty) = 1nf(m+H(T))
u(T) —° (T)

THEOREM 3.1. The pian 65 = (T, QTO) is minimax. Moreover, 910 is normally
distributed with mean value 0 -and variance 1/u(T,).

Proof. Using (2.1), (3.2) and (3.3) we get
MTy, »)—0u(Ty) = (y(0) =60 (0)— ¥ (0) @ ) K™ (0, 0)+.

To

+ I (rp U)— AW ¢ W)(B* )" dW(u)

It is clear that
: To

Eo(Y(d)—9¢(0)—¢(0)) 0K (0, 0)§ (0" )~ 4. @ () (B @))* dw () = 0.

Thus the assertion concerning the distribution of 9TO holds.
A simple calculation shows that

supR(B 60) = inf r(IT,, &)+ ——~ 1 +H(Ty)— —H(T)

0cO u(Ty) u(T,)+u,

mfsupR(B 5)+ 1 +H( Ts)—

o W (Ty) Ty T

Moreover if lim u, = 0, then

. 1 1 ‘
Jim (u(]j,)+u,, +H(7;')) =y T

sup R(H 50) mf sup R(G 5)

te® e le®

Hence

and §, is minimax.
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Example 2. Let y be defined as in Example 1. The following results

may be easily deduced from Theorems 2.1 and 3.1.
For all 0e® we have pfi(t < o) =1 iff p , < v,.
The density function is given by (3.1), where

. | y(0)+y(r)+ﬂfy(u)du
u(t) = 2+ﬁr and  A(c,y) = 5

 The makimum l'i'liélihood estimator of @ is given by

y(0)+y(r)+ﬂ§y(u)du
8. 2+ 87

The fixed-time sequential plan 6y = (Tg, QTO), where T is determined by
, o

2+ T

202
2+ BT,

+H(T,) = 1nf[ +H(T):|,
is minimax.

The problem of estimation of #, for a stationary Gaussian Markov
© process, has been also considered by Roézanski [20].

All the results-above have been derived under the assumption that the
risk of & is given by formula (3.5). Now we consider sequential estimation
of 0 assuming that the cost H of observations is not taken into account
ie. that the risk of 0 is given by '

R, 5) = E,(f—0).

Clearly, in this case it is necessary to impose additional restrictions on
the stopping times considered. Otherwise, the optimal stoppmg time 7 would
be equal to +oo with probability 1.

Let 2(T) denote the set of all sequentlal plans 5 = (1,f) for which
R(#,-6) is finite and E,u(t) < u(T) holds for all fe®. :

If the function (¢’ (u)— A (u) @ ))*> B* (u) is nonmcreasmg and if E,7 <
then Eyu(r) < u(T).

A sequential plan §, = (11, f1) is said to be better than 62 = (1:2, fo) if

R(G 51) R(8,6,)

for all 6 and a strict inequality holds for at least one f € @.
A sequential plan ée % (T) is said to be admissible in 2(T) if there is
no other plan in 2(T) which is better than &

v
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A sequentialvplan o* is said to be minimax if

- sup R(0, 6%*) = inf sup R(9, 9).
0cO® o€z (T) 0e®

We say that b(0) = E,(f—0) is the bias function of 6 = (z,f). If b(8) = 0,
then 8 = (1,f) is said to be unbiased. ‘

A sequential plan & = (t,f) is said to be best unbiased if it is unbiased
and if R(0, 8") = R(0, d) for all e ® and for all unbiased sequential plans
& in 9(T). e -

We prove that 8, = (T, §;)e 2 (T) is admissible and minimax. To establish
this we need the following lemma which can be considered as an analogue
to the classical Cramér-Rao inequality:

LEMMA 3.1. If & = (t,f) is a sequential plan and if

0

sze(f2+u(t))d0 <o for 6, < 6,,0,,0,€0,

. F .

then 1

(5] . .

(3.6) Eg, f—Ey f= 65 Eo f {(y(0)— 00 (0) ¥ (0) 9 0) K™ (0,0)+

. _ 4 -

o+ (I) (' (—A@®) @) (B ()" dw (1)} db.

Moreover, if

62
{ Byu(r)do > 0,
01

then - .
. e 0
o g j E, u(z)do
H o

Proof Note that

EOzf Eolf
it d (x—0p O~y O) | dily . .
If( )I 7 \/K(O—O { 2K©.0) }duw (") dbdv. (x, ¢,

where

dv_(x,c*) =

1 | x?
du . (cF)exp< ——> dx.
e ey ( .) p{ 2 }
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By (3.1) we have

S 1 (x=0p O =y @) dplys
Hj|re ﬁme"l’{ 2K (0,0) }dﬂr,v" “

dv (x, c*)df

i3] ' .
= BJ"Eolf{(y(O)-pr(O)—l//(O))qJ(O)K*(0,0)+.

+j§(¢ =A@ @) (B> @) dw(®)}|dd

82

< (gj1 Eof 2 d6)*>( of E,u(7)d6)1? < wo.
1 - -

Now Fubini’s theorem yields (3.6). To complete the proof note that
5] .

(Eo, f—Ep, f)* < IEa(f—E f)deI Eyu(z)db

02 92

= { IEo(f—e)z do— J(E (f—6))* a6} 5 Eyu(c)do.

THEOREM 3.2. If @ = R, then 8; = (T, ;) is an admissible and minimax
estimator of 0.

Proof. Suppose that J, is not adm1s51ble Then there exists a sequential
plan 6 = (z,f) such that

1
u(T)

with a strict inequality for at least one . Since

R(6,9) < R, 8,) =

sup Eou(t) < u(T) < o0,

01<0<0,

the assumption of Lemma 3.1, is fulfilled. Hence, according to (3.7),

1 1
3.8 —_— > R a,06) > R 9, 8)do
oY 2,802 5 f .9
_ 2
. (1 +,b(9;)' z(el))
> b%(0)do 21 .
5,—0, )0 O+ u(T)

Now we show that b(f) = 0 is the only function satisfying this 1nequa11ty
The function b(6) is nonincreasing because. .

b(62)—b(,) \?
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Moreover, b(f) is bounded. To prove thls we consider first the case
b(6) = 0. Then

i .
2 <
62 0. 0I1 b (B)dﬂ o) for every 6, < 0,.
Similarly, b#@) is bounded when b(0) < 0. Since b(f) is nonincreasing,
there exists at most one value 8, such that b(f) > 0 for § < 6, and b(6) < 0
for 6> 0,. Considering these two intervals separately, we establlsh easily
that b(0) is bounded. __ .. -
Note that there exists a sequence {f,} such that

limf,=c and lim M

n—wo n—co 6 Gn 1

b%(8,) <

=0. -

Suppose, on the contrary, that there exist ¢ > 0 and 6* such that for
every 0, > 0, > 0*
b(0)=b©) _ _
92_01

Then for every 6 > 6, wé have b(8) < —8(0—01)+b(9:);, which shows
that b(6) cannot be bounded. B
- Substituting {0,} into (3.8) we have

1 O 1 b(6,-,)—b(6,) b(0,)—b(6,-,)
0, 0,;19"'[ b*(O)db < u(T) 0,—0,-4 <2+ 0,—6,_ )

1

Moreover, for sufﬁciéntly‘ large n (such that ‘0,,_1 > 0%)

min (b2 (6, ), b*(6,)) < j b2(0)do,

] 0,— 0,1 6,_,
so that
imb@®)=0. -—
Similarly we can prove that there exists a sequence {.5,,} such that

limf, = —0 and lim b(,) = 0.
Since b(f) is nonmcreasmg and b(0)—>0 as 60— +oo we infer that
b(6) = 0.
In view of (3.8) it is clear that

sup R(&,é).= L for every 6, < 0,.

81<6<6; u(T)
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This implies that R(6,8) = 1/u(T) for all #. Thus é, is admissible.

To prove that d; is minimax we use the fact that &, has a constant
risk. Indeed, suppose that é; is not minimax. Then there exists a sequential
plan 6 = (7,f) such that

1
u(T)’
whlch implies that R(G 3) < R(0, ;) for all 6. This" shows that 6T is not
admissible: . o
It is interesting to note that in case where the parameter space is truncated
0 is minimax but not admissible. For example r is worse than &%
= (T, max (69, 8;)) when ® = (6,, ).
THEOREM 3.3. If ©® = (6, ©), then 64 = (T, ;) is minimax.
Proof. Suppose that 4, is not minimax. Then there exists a plan
d = (1,f) such that

sup R(0,0) < sup R@©,6;) =

1
R@,8) < ——
b K69 < Ty

Hence R(0,8) < 1/u(T)—e for all @ > 6, and some ¢ > 0. It is easy
to see that b(6) is bounded. :
Since

(1 _bw) < l—au(T),.

after simple calculations we 1nfer that the inequality
b(6;)—b(8,) u(T)
< &

. 0,—0, B 1+/1—eu(T)

“holds for every 6, > 0, > 60,. This implies that b(B) is unbounded, which
is a contradiction. Thus ; is minimax.

Now we assume that the parameter space @ is an open interval on the
real line and consider best unbiased sequentlal plans for 6. As mentioned
earlier; 51 is unbiased.

THEOREM 3.4. The plan 67 = (T, 9T) is best among all unbiased plans in
2(T).
This assertion follows in a straightforward way from (3.8).

Example 3. From Theorem 3.1 it follows that the plan 5T = (T, 8,),
where

y(0)+y(T)+ﬁ(j;y(u)du
9T> 2+ﬂT 3
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is admissible and minimax in the class of plans é = (z, f) which satisfy
the following two conditions: E, f2 < oo, E,7 < T, #cR. If the parameter
space is truncated, §, is minimax but not admissible. Finally, Theorem 3.4
~shows that é; is a best unbiased plan.

4. Estimation of « Note that the covariance operator K(t,s) of the
stochastic process y defined in Section 1 is equal to

t
K(t,s) = exp {  Am)du} K (s, s),
where M 7
K(s,s) = exp {2 [ A(u)du}{K(0,0)+ [exp {-2] A(v),dv}B(u)du} .
o o 0 0 :
In this section we assume that A (t). = ap(t)+¢(¢) and consider the problem

of estimation of the parameter a. We assume that o ranges over an open
interval Q on the real line. Functions p and g are known and such that

Oty =

[(m (u))_2+(192 .(u)-+ q* W) K (u, W] B* (Wdu < o0 for t <
and ‘ .

' J?Pz,(u)vK»(u, u)B* (u)du = oo.
)

Since we use here the same methods as in the case of estimation of 0,
we omit the proofs. o '
Consider the stopping time

tr = 100) = inf {£: Z(t,y) > T},

w]_Je{e , .
26,9 = [ * @)y @-m@)* B* @)du.
It is easy to see that 7, is nondecreasing with respect to T,
' Wit < ) =1, ae®, |
for all T < oo, and

u;(%imrT =ow)=1, ael.

Consider the sequential plan .

1 .
er = (Trs?fl("-'r,)/)),
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where

1(r,3) = [ p@)(y@)—m@)B* () [dy (1) = (' @)+ ) ( (W)~ m (w)) du].

The estimator T~ '#(zy, y) has a normal distribution with expectation o
and variance 1/T. The risk function including the cost term is now of
the form - '

R, 9) = B[(f-2P +H (2, )],

whére H is defined as in Section 3. Assuming that ©Q = R, the following
theorem can be established:

THEOREM 4.1. The plan o, where T is determined by T

. -1 o1
is minimax. '

If the risk function R(x,8) = E,(f—«)* does not take into account the
cost of observations, one can establish, using arguments similar to those in
Section 3, the following results.

Let 9(T) denote the set. of all sequential plans & = (1,f) for which
R(a, 6) is finite and E,Z(z, y) < T holds for all aeQ.

TueoreM 4.2. (i) If Q = R, then @; is admissible, minimax and best
unbiased in 9 (T). : S

(ii) If the parameter space is truncated, say Q= (oco, oo) then gp is
minimax and best unbiased in Z(T).

(i) If Q is an open interval, then @1 is best among all unblased plans
in 2(T). : .

As already mentioned, the optimal stopping time 7 is finite. The following
result can be established by usmg some ideas of Wognlk (Theorem 17.7
in [12]) and Musiela T15]."

THEOREM 4.3. If

PO p@)

v0<11t1f B() —‘a, snfp B() =b<-oo,
t v
0<infB@®=c, su ';13((2)' —d< o,

then for every n = 1,2, ... there exist constants a,, b, and c, depending only
upon a,b,c and d such that

E, 1% < (a,|o"+b,) T"+c, T"2.
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Appendix. The proof of Theorem 2.1 is divided into 5 steps.
1. First define a new process

V() _ cxp{jéA(u)du} {x+ j:;exp {- iA(u)dv}a(u)da+

o + i'exp {- iz;l(v)dv}Bllz(u.)dw(u)}, xeR.
Aééérding to (2.1) the Ito formula yields
-y ® = y)-ox | A du}(0)-

—exp { jé A (u)du} (IZ exp {— _:f A(v)dv}a(u)du.

Therefore, it is obvious that

E(y*()—Ey* (1) (v (0)-—@(0)) = K(t_, 0)—§xp { £ Al(u)du}.K(O, 0).

Moreover, since y is a Gaussian Markov process, we have
- K'(t,0)= A)K (¢, 0).

"Thus y*(t) and y(0) are independent for all x and. t.

2. Tt is known that g, ~ u, ., te[0, o], if and only if

. ,VP(jf-(a(ﬁ)+A(u)y"(u))zB+(u)du'< o) - ‘1.: R

The zero-one law for the Gaussian measures and some calculations show
that the measures g . and u ., are equivalent if and only if

.t’Vx
Tt
|
0

(m )+(x -m() 4 (u) exp { f A(v) du})i BY @.@.4;
L - : (v : . .

+ jt A* () (K (u, u)—Kz(u,O)K;(0,0))Bf (ujdu < .
0 Do T e
3. Let L be defined by
,.—Lv(t)A = f ((m'll(u)l)2+A~2.(u)K(u,u))B.*.‘(u)du, .  lte[04, ooj,-

and let [(x) = m(0)+xK ©, 0). Taking into account Step 2 we easily infer
that p i ~ I, i for every x if and only if L(f) < co. o
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4. It is not difficult to prove that if L(oo) < co, then p, e < H, pieo
for all 7. Moreover, if L(t) < oo for all t < co and if L(o) = o0, then
I-‘y:(x) (t<o)=1 iff :“,,yl(x)lé ”,',y((x)’
Mo (t=o0)=1 |iff #;,,,z(x) 1 H i .

5. Finally, according to Step 1, we have

_ (x—m(0)?
Py () = \/m f ﬂ.,,y( [c(0) = x) cxp{ W}dx

[0 mOR L,
3 2nK(0,0) Jg Fer 2K (0, 0)
V3 _

j‘? . { x2 d
— o () exp { ~——tdx.
\/E ijut‘yl( )() p 2 }

This combined with Step 4 provides the- result.
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