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Abstract. Assuming that the mean function of a continuous 
Gaussian Markov process y is of the form m(t) = Bp(t)+@(t), we 
give admissible, minimax and minimum variance unbiased sequential 
plans for estimation of 0 .  For a parameter of the covariance function 
of y, parallel results are presented. 

1. Introduction. Recently a number of authors have studied various 
estimators of parameters of stochastic processes and nonasymptotic optimal 
properties of such estimators. In particular, Arat6 [lj and Hajek [7] have 
investigated nonsequential minimum variance unbiased estimators for para- 
meters of Gaussian processes. Novikov [IS] has compared sequential and 
nonsequential methods of estimation for a shift parameter of a diffusion 
Gaussian process. Dvoretzky et al. [ 5 ]  have shown that, for the Poisson 

. process, the negative-binomial process, the gamma process and the Wiener- 
process, fixed-time sequential plans are minimax if the weighted quadratic 
loss function is used. Magiera. [14] has extended these' results of Dvoretzky 
et al. to a class of processes which contains all the processes considered 
in [53. 

In this paper we consider a conthuous Gaussian Markov process 
y = (y (t), t 2 0) with mean m(t) and covariance K (t, s) and we assume that 
rn ( t )  = 8rp (t) +I) (t), where ip (t) and $ (t) are known, while 8 is unknown. 
If K(t,  s) is known, we consider the problem of sequential estimation of 13, 
and if 

I 

K(t ,s)  = exp {j(ap(u)+q(u))du)K(s,s), 
S 

where p ( t )  and q ( t )  are known, we estimate a. Comparing the sequential 
plans, the usual quadratic loss function and the quadratic loss function 
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plus the cost function will be used. Admissible, minimax and minimum 
variance unbiased sequential plans for estimation' of 8 and cr will be given. 

2. Absolute continuity of measures. Throughout the paper we assume that 
the derivatives m'(t) and K f ( t ,  t )  exist for all t (0 < t < co). Moreover, we 
assume that 

Kj t+h ,  t ) - K ( t ,  t) 
K, (t) = lim 

h h l Q  

exists for all t (0 5 t - < co). 
.Let 

? - 
a (t)  = mf ( t )  - A ( t )  rn ( t ) ,  

where K +  = K - I  for K # 0 and Kf = 0 for K = 0 .  Assume that 

for all t (0 < t < co). Let {F,} be the family of the a-fields generated by 
rapdom variables (y(s): Q 6 t}. Under the assumptions above there exists 
a Wiener process w = (w(f), F,) such that 

t t 

y ( t)  = y (0) + j (a (u) + A (4 Y (u)) du + j B112 (4 dw (4 
0 0 

(see [17]).  Consequently, the process y is a semimartingale with a Gaussian 
martingale component. This fact will be useful when considering the absolute 
continuity. 

Let C be the space of all continuous functions c: [0,  co) + R ,  where 
R is the set of real numbers, and let L$? denote the a-eeld of Bore1 
subsets of C relative to the topology of uniform convergence on compact 
subsets. Moreover, let C, be the subspace of the space C of continuous 
functions -which are constant on the interval. ( t ,  oo) and let = 93 n C,.! 

A function T: C + [0, co j  is said to be a stopping time if {c:  z(c) c)  t} €9, 
for every t 2 0. 

Now we define a new Gaussian process 

Let p, and pyx be the measures induced by y and Vx, respectively. 
Moreover, let v be a measure defined by 
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and let p  = + ( p , + v ) .  Denote by @ ( p )  the completion of with respect 
to p ,  and by &',(y) the g-field generated by B', and all A from g ( p )  such 
that p ( A )  = 0. Finally, denote by kVy, P, ,~X and v, the restrictions of p,, p,, 
and v to the a-field J,(p). With this notation we have ,u,,,=p,>. 
v, = v and i#,(p) = L%(P). In the sequel, p 4 v, p - v and p l  v mean 
that the measures-p and v are absolutely continuous, mutually absolutely 
continuous (equivalent) and singular, respectively. 
THEOREM 2.1. (i) If 

-. - . 
m 

j [ ( m ' ( ~ ) ) ~  + A ~  ( u ) K . ( ~ ,  M)] B+ @)du < CC, 
0 

then prVy + vrefor euery stopping time T. 

(ii) If for all t (0 < t < co) 

j [(m' (u))~  + A2 (u) K (u , u)] B + (u) du < 
0 

and 

then 

and 

m 

j [(m' 04)' + A2 (u) K (u , u)] B+ (u) du = co , 
0 

(iii) If prBy < v,, .then the density function is given by 

We give a proof of this theorem in the Appendix. ,The usefulness of 
Theorem 2.1 in our considerations is illustrated in the following 

Example 1. Assume, in addition, that y is stationary. Then m(t)  = m 
and K ( t ,  s) = a2 exp (-Pit-sl), where cr2 > 0 and > 0. In this particular 
case we have a ( t )  = Prn, A(t )  = - b ,  B(t) = 2a2 fl  and, consequently, 



where w ( t )  is a Wiener process. Theorem 2.1 implies that pY(t < m) = 1 
iff pz,, 4 v, and that 

x exp - 
I t  - { ,Oi [ (81 -BY ( 4 )  dy (4 - j. l3 (Bm - BY ( ~ 1 ) ~  du 

- .  

is the density function. 

3. Estimation of 8. Recall that the mean function is of the form m(t) 
= Brp ( t )+  $ (t). We assume that the derivatives rp' and I,&' exist and that 
f o r O G t c  cg 

We consider the family (p; : 8 E O c R )  of Gaussian Markov measures 
with the mean function m(t )  and the covariance operator K(t,  s). For each 
B E  8 let p,",, be the restriction of the measure p; to the a-field 3,. The 
index 13 indicates that the distribution p; of y depends upon 9 ~ 8 ,  where 
O is an open interval on the real line. 

Theorem 2.1 asserts that if p;(z < oo) = I for all 9~ 8 ,  then pt,, < vr 
for all 9~ 63 and the density function is given by 

where 
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Having an explicit formula for the density function we may use the 
maximum likelihood method to study sequential plans for estimation of 6. 

Let z be a stopping time with respect to (B,).  A function f : [ O ,  co] x C -, W 
is called an estimator of 8 i f f  (T(.), -) is &,-measurable for every z. A pair 
6 = (T, f ) ,  where 2' is a stopping time and f is an estimator, is called 
a sequential plan. 

We restrict our considerations to a loss function L(8, 6) = (f -6)'+H(r) ,  
where .H is a cost function. We assume that H ( t )  is nonnegative, lower 

- - 
semicontinuous and such -. that - 

lim H (t) = oo . 
t+  m 

Let 9 denote the set of all sequential plans 6 = ( r ,  f )  which have 
a finite risk function 

(3.5) R(B,6 )=&[( f -8 )2+~( t ) ]  for all 0 ~ 8 ,  

where the expectation is taken with respect to p!. 
A sequential plan 6* = IT*, f *) is said to be minimax if 

sup R (8, S*) = inf sup R (B,6).. 
68 . s ~ 9  9.LkB i 

! 
. Suppose that a prior probabiIity distribution II(8)de of 8 is given. 

The integral 

is called the Bayesian risk of 6, provided it exists. 
A sequential plan 6* = (z*, f *) is said to be Bayes with respect to I7 if 

r ( n ,  a*) = inf r(ny 6). 
6~5' 

First we consider the case 8 = R. In view of (3.1) the maximum 
likelihood estimator of 0 is given by 

In latter considerations we use the fact that 0, is a limit of Bayes 
estimators. To prove this we introduce a sequence of normal prior distributions 
with densities 



According to (3.1) the density function of the posterior probability 
distribution is given by 

. . Using simple calculations we obtain 

Since - - 
Q 

r@',,f I Y )  = j ( f - @ 2 K ( ~ l ~ ) d e  

attains its minimum value at 

the Bayes estimator with respect to 17, is given by 

Clearly, if lim un = 0, then 
n - t m  

lim @ = 9,. 
n-+m 

A simple calculation shows that the posterior risk of the estimator 
@ is equal to 

1 
r ( K ,  RIY) = 

u(z)+un ' 

Now we proceed to sequential estimation of 6. 
Since 

inf r (IT,, 6) = inf E, 
1 

- 

the problem of finding the Bayes sequential plan reduces to the problem 
of minimizing 



Sequential estimation 4 3 

with respect to T. It is clear that a ked-time sequential plan S, = (T,, P",n)y 
where T, is determined by ' 

1 + H (T,) = inf 
u(T,)+un 

is Bayes with respect to II,. 
Now let 60 = {To, d,,) be a fixed-time sequential plan with 

and with To determined by 

1 1 

u (To) 
+ H (To) = inf ( + H ( T ) )  . 

T u ( T )  

THEOREM 3.1. The pian 60 = (To, a,,) is minimax. Moreover, g,, is normally 
distributed with mean value d and variance l/u(To). 

Proof.  Using (2.11, (3.2) and (3.3) we get 
I 

AtT0Y Y ) - - ~ ~ ( T o )  = (~10)-erp~o)-@(0))rp(O)K+10,Q)f 
T o  

+ 5 ( c p ' ( u ) - A ( u ) ~ ( u ) ) ( ~ ~ ' ~ ( ~ ) ) +  d w ( 4 .  
0 

It is clear that 
T o  

(Y (O)- 8~ (O) -  $ (O))  9 (O) + (OY O)  (v' (u) - A (u) (u)) (B112 (er))' dw (u) = 
0 

Thus the assertion concerning the distribution of 8,, holds. 
A simple calculation shows that % 

1 1 
sup R ( @ ,  So)  = inf r(17,, 6)+- 
&B 6 ~ 9  u ( T n ) + u m  

-H(T,) 

. 1 1 < inf sup R ( 0 , d ) f -  
S E ~  8 b s  u(To) u(Tn)+un -H(T,)- 

Moreover, if lim u, = 0 ,  then 
n-+ m 

Hence 
sup R(8 ,60)  < inf sup R ( 0 , 6 ) ,  
IkB 6 ~ 9  HE@ 

and 6, is minimax. 
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Example 2. Let y be defined as in Example 1. The following results , 
may be easily deduced from Theorems 2.1 'and 3.1. 

For all B E @  we have < a) = 1 iff p,, + v, .  
The density function is given by (3.11, where 

Y @)+Y b ) + B  1 Y (u)du 
2+8T and i ; r , y ) =  o u (2) = --- 
2a2 2a2 

The maximum likelihood estimator of 0 is given by 
r 

The fixed-time sequential plan 6, = (To, o,,), where To is determined by 

is minimax. 
The problem of estimation of 8 ,  for a stationary Gaussian Markov 

process, has been also considered by Rbiariski [20]. 
All the results above have been derived under the assumption that the 

risk of S is given by formula (3.5). Now we consider sequential estirhation 
of 8 assuming that the cost H of observations is not taken into account, 
i.e. that the risk of 6 is given by 

Clearly, in this case it is necessary to impose additional restrictions on 
the stopping times considered. Otherwise, the optimal stopping time 2 would 
be equal to +a with probability 1. --. 

Let B ( T )  denote the set of all sequential plans S = ( z ,  f )  for which 
R ( 0 , 6 )  is finite and E, u (z) < u ( T )  holds for a11 8 E 8. 

If the function (rp' (u) - A(u) tp (u))'B+ (u) is nonincreasing and if E, z < T, 
then E,u(z) 6 u(T) .  

A sequential plan 6 ,  = (z,, f,) is said to be better than 6, = (z , ,  f,) if 

R(836,) 6 R(fl ,S,)  

for all 8 and a strict inequality holds for at least one B E  0. 
A sequential plan S E ~ ( T )  is said to be adpissible in 9 ( T )  if there is 

no other plan in 9 (T) which is better than 6.  
V 
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A sequential plan 6' is said to be minimax if 

s u p ~ ( 0 , S 1 )  = inf supa(8,6) .  
&8 d€v(T) BE63 

We say that .b (0)  = E,( f - 0) is the bias function of 6 = ( z ,  f 1. If b(0) = 0 ,  
then 6 = (z, f )  is said to be unbiased. 

A sequential plan 6 = (z, f) is said to be best unbiased if it is unbiased 
and if R(8, 8') 3 ( 0 , 6 )  for all B E  O and for all unbiased sequential plans 
6' in 9 (T). -. .- 

We prove that 6 ,  = (T, 8 , ) ~  9 (T) is admissible and minimax. To establish 
this we need the following lemma which can be considered as an analogue 

. . to the classical Cramkr-Rao inequality: 
LEMMA 3.1. If 8 = (z, f )  is a sequendaI plan and if ' 

0 2  

1 E , ( ~ ~ + U ( . E ) ) ~ O  < 03 for O1 < 0 2 , 0 1 ,  B Z ~ @ ,  
81 

then 

+ ('PI (0 - A (t) ( t ) )  ( ~ ~ ~ 2  (t))+ dw ( t ) )  do. 
0 

Moreover, if 
02 

1 E0u(z)d8 > 0 ,  
81 

then 

Proof. Note that 
-. 

Ee, f - E,, f 
I 

where 8 
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By (3.1) we have 

Now Fubini's theorem yields (3.6). To complete the proof note that 
62 02 

(Eo2 f-Eel f I2 G 1 EB ( f - E e f ) 2  do 1 EB 16 (7)dQ 
01 8 1 

0 2  92 82 

= { J Ee(f -  8)' dB- J (E', (f- d9)  EB u ( ~ ) d 0 .  
8 1  01 01 . 

THEOREM 3.2. If @ = R ,  then 5,  = (T, 8,) i s  an admissible and minimax 
estimator o$ 6 .  

P r  o of. Suppose that 6 ,  is not admissible, Then- there exists a sequential 
plan 6 = (z, f )  such that 

with a strict inequality for at least one 9.  Since 

sup E,u(r) <u(T) < oo, 
I 91<86tJ2 
I the assumption of Lemma 3.1. is fulfilled. Hence, according to (3.71, 

1  1 92 > sup R ( O , d ) > -  
u ( T f  el<eso2 

J m, 
02-01  9 ,  

Now we show that b ( 8 )  = 0 is the only function satisfying this inequality. 
The function b (9)  is nonincreasing because 
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Moreover, b(8) is bounded. To prove this we consider first the case 
b(8) 2 0. Then 

b2(B2) G b2(f?)dS < for every 81 < 8,. 
0,-81 a, u (TI 

Similarly, b 0)  is bounded when b (9) d 0. Since b (0) is nonincreasing, 
there exists at most one value do such that b(8) 2 0 for 6 < 0, and b(0) < 0 
for B 3 8,. Considering these two intervals separately, we establish easily 
that b(0) is bounded. .. _ - 

Note that there exists a sequence {On] such that 

. l imt? ,=oo  and lim b(On)-b(em-d - - 0 ..- 

11- 41 ~ + m  8 , -dnL1 

Suppose, on the contrary, that there exist E > 0 and B* such that for 
I every 8, 2 8,  3 8* 

b (02) - b (61) < - 8 .  
02 - 81 

Then for every 8 > 0, we' have b(8) )< -c(B-8,)+ b(O1), which shows 
that b(0) cannot be bounded. 

Substituting (0,) into (3.8) we have 

Moreover, for sufficiently large n (such that 0 , - ,  > 0*) 

I en 
r 

min (bZ (8, - ,) , b2 (8,)) < 1 b2(e)de,  
O n - o n - 1  0 , - 1  

so that 

Iim b (8,) = 0. 
n+m 

Similarly we can prove that there exists a sequence ($,,I such that 
- 

lim 8, = - co and lim b (6,) = 0. 
n-+m n + m  

Since b(8) is nonincreasing and b(8) + 0 as 8 +. f co, we infer that 
b(8) = 0. 

In view of (3.8) it is clear that 

1 
sup ~ ( 8 , 6 ) = -  for every 8,  < 8,. 

0 1 ~ o ~ e 2  u (T3 
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This implies that a(@,  6) = l / u ( T )  for all 8 .  ~ h u s  6, is admissible. 
To prove that 6 ,  is minimax we use the fact that 6 ,  has a constant 

risk. Indeed, suppose that ST is not minimax. Then there exists a sequential 
plan S = (2, f) such that 

1 
sup R ( 0 , 6 )  < sup R(B,d,)  = - 

0 a uTT) ' 
which implies that I? (8, S )  < R (8,5,) for all 8. Thisfi shows that a, is not 
admissible. -. - 

-It is interesting to note that in case where the parameter space is truncated 
6 ,  is minimax but not admissible. For example, 6, is worse than 6: 

. = (T, max ( d o ,  8,)) when O = (0,,  a). - . 

THEOREM 3.3. If 8 = (8,3, a), then ST = (T, 0,) is minimax. 

Proof. Suppose that 6 ,  is not minimax. Then there exists a plan 
6 = (z, f )  such that 

1 
sup a (0,S) < - 

8 3  eo uIT) ' 

Hence ( @ , a )  < l/u (T )  - E for all 0 2 0, and some E > 0. It is easy 
to see that b(0) is bounded. 

Since 

after simple calculations we infer that the inequality 

b (02) - b (8,) 16 (TI 
02 - 01 < -& I+,,/- 

holds for every 8, > 0 ,  > 8,.  This implies that b(8)  is unbounded, which 
is a contradiction. Thus ST is minimax. 

Now we assume that the parameter space 0 is an open interval on the 
real line and consider best unbiased sequential plans for 8 .  As mentioned 
earlier, 6, is unbiased. 

THEOREM 3.4. The plan 6, = (T, 6,) is best a m n g  dl unbiased p l m  in 

9 ( T ) .  
This assertion folIows in a straightforward way from (3.8). 
Example 3. From Theorem 3.1 it follows that the plan ST = (T, a,), 

where 
T 

Y ( O ) + Y  (T)+B j Y (u)du 
PT = 0 

2 + b T  
3 
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is admissible and minimax in the class of plans S = ( 2 ,  f )  which satisfy 
the following two conditions: E, f < m, E,5 < T,  ~ E R .  If the parameter 
space is truncated, 6, is h i m a x  but not admissible. Finally, Theorem 3.4 
shows that 8, is a best unbiased plan. 

4. ~itimation of a. Note that' the covariance operator Kit, s) of the 
stochastic process y defined in Section 1 is equal to 

where - 

t 

K ( t , s )  = exp ( j A ( u ) d u ) ~ ( s ,  s), 
.. . . S 

S s u 

K ( S ,  s) = exp { 2 j  A(u)~u){K(o ,o)+  j exp { - 2 j  ~ ( o ) d u ) ~ ( u ) d u ) .  
0 0 0 

In this section we assume that A(t)  = up ( t )  + y (t) and consider the problem 
of estimation of the parameter a.  We assume that a ranges over an open 
interval D on the real line. Functions p and q are known and such that 

t 

I I [(m' (u))' + (p2 (u) + qZ  (u)) K (u , u)] 3' (u) du < m for t < rn 
0 

I 

I 
and 

m 

Since we use here the same methods as in the case of estimation of 8, 
we omit the proofs. 

Consider the stopping time 

2 ,  = r,Cy) = inf {t: Z ( t ,  y) > T ) ,  
where 

It is easy to see that z, is nondecreasing with respect to T, 

g(z ,  < a) = 1, E E Q ,  

for ail T < oo, and 

( m T  = = I ,  ~ E O .  
T + m  

Consider the sequential plan -- 
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where 

IT 

11 (T,, Y )  = 1 P (u) (Y (u) - m (4) B + (u) [ d y  (4 - (A' (u) + q (4 (Y (uj - m (ul)) du] . 
0 

The estimator T-I q(z,, y) has a normal distribution with expectation a 
and variance 1/T. The risk function including the cost term is now of 
the form 

where H is ddned as in Section 3. Assuming that 61 = R ,  the following 
theorem can be established: 

.-- - 
THEOREM 4.1. The plan Q,, where T is determined by 

is minimax. 
If the risk function R(a,  6) = Em( f- does not take into account the 

cost of observations, one can establish, using arguments similar to those in 
Section 3, the following results. 

Let 9 ( T )  denote the set. of all sequential plans 6 = ( T ,  f )  for which 
B (ol, S) is finite and E, Z ( T ,  y) < T holds for all OLE 62. 

THEOREM 4.2. (i) If 61 = R ,  then Q, is admissible, minimax and best 
unbiased in g ( T ) .  . . 

(ii) If the parameter space is truncated, say D = (a,, a), then Q, is 
minimax and best unbiased in 9 ( T ) .  

(iii) If D is an open interval, then q ,  is best among all unbiased plans 
in $3 (3"). 

As already mentioned, the optimal stopping time z,  is finite. The following 
result can be established by using some ideas of Wognik (Theorem 17.7 
in [12]) and Musiela [15]. .' 

THEOREM 4.3. If 

I P  (t)l 0 < inf- = a, 
I P  (tll 

SyP - = b < c o ,  (0 B ( t )  

then for every n = 1 , 2 ,  . . . there exist constants a,, bn and c, depending only 
upon a ,  b ,  c and d such that 

Em z", (a,, lml" + b,) T n  + c, T I 2 .  
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Appendix. The proof of Theorem 2.1 is divided into 5 steps. 
1. First define a new process 

-. 

According to (2.1) the - t o  formuIa yields 

-exp { 1 A(u)du) J exp I- 1 A(v)dv)a(u)du. 
0 0 0 

Therefore, it is obvious that 
1 

E ( y X ( t ) - E y X ( t ) ) ( y ( O ) - m @ ) )  = K(t ,  0)-exp { f A(u)du)K(O, 0). 
a 

Moreover, since y is a Gaussian Markov process, we have 

Thus y" (t) and y (0) are independent for all x and t .  

2. It is known that pt,yx - ,u t,,,, t E [0, a], if and only if 

f 

~ ( J ( a ( u ) + ~ ( u ) y ~ ( u ) j ~  ~ + ( u ) d u  < co) = 1. 
0 

The zero-one law for the Gaussian measures and some calculations show 
that the measures h,yx and pt,,, are equivalent if and only if 

t U -- -. 

j (m' (u) + (X - m (0)) A (u) exp ( j A (v) d ~ ) ) ~  B+ (u) du + 
0 -- 0 

i 

+ J A 2 ( u ) ( ~ ( u ,  u ) -K~(u ,O)K+ (0, O))B+(U)~U < a. 
0 

3. Let L be defined by 
1 

L ( t ) =  ~ ( ( ~ ' ( u ) ) ~ + A ~ ( u ) K ( u , u ) ) B + ( u ) ~ u ,  ~E[O,CDI, 
0 

and let l(x) = m(O)+xK(O, 0). Taking into account Step 2 we easily infer 
that pf.yl(X) pt.yl(X, for every x if and only if L(t) < co. 
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4. It is not difficult to prove that if L(co) c co, then pT,yt(x) 4 pT,vl(x) 
for all z. Moreover, if L (t)  < co for all t < co and if L (a) = co, then 

5.  Ftnally, according to Step 1, we have 

1 : .. r x " .  

This combined with Step 4 provides the result. 

Acknowledgment. I wish to thank A. Kozek and the referees for useful 
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