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PSEUDO-MARTINGALES * 

b 

B. JAJTE AND A. PASZKIEWICZ (LODZ} 

Abstract. For a probability space (n, F, P) and a filtration (a,,) 
in R, we consider the sequences (X,) of random variables satisfying the 
condition 

( X + - X  1 ) 0 n =  1, 2, ... 
In general, the process (X,) is not required to be (Ed adapted 

and it is called a pseudo-mmtingale. We indicate simple and natural 
conditions implying a good asymptotic behaviour of pseudo-martin- 
gales. For example: let (X,, XJ be a uniformly integrable pseudo-mar- 
tingale with 91, r F. Then X ,  + X weakly in L,,  where 

X = lim E (X, I %,). 
n-m 

Some approximation results for r-fields are obtained with implications 
to pseudo-martingales. A number of examples is collected. 

1. The main goal of this paper is to enlarge the area of applications of 
martingale methods. Description of a 'fair' game is the most classical inter- 
pretation of martingale so let us begin with a gambling situation. 

- 1.1. Let us assume that the game is described by a martingale (Y,, %A, 
that is we think of Y, as total winnings of a player after n successive trials and 
%, contains o(Yl, ..., Y,), the a-field generated by the random variables 
Yl, . . ., Y,. The winnings Y, may be 'invested' (bank, stocks, inflation) and then 
the player receives the amount Xn = 9, Y,, according to a random interest 
rate cp,. It is commonly adapted that a11 values are 'discounted' in a way that 
the simplest formulas are obtained, so we can require that Pnq, = 1 
(n = 1, 2, . ..). In particular, cp, may be independent of the 'gambling infor- 
mation' 'U, and normalized. The sequence (X,, 'ill,,) satisfies the condition 

(*) [X, = SX,,, for A€%,, 
A A 

but X, may be not a,-measurable. 
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1.2. For a martingale (X,, S,), we may consider a sequence (X,, '$I,) with 
2 3 , ~  N, P . Then, as a rule, (X,) is not (an)  adapted, but formula (*) still holds. 

13. Let (XI, X,, . . .)be a sequence of random variables sabsfymg the condition 

E(Xn+2-Xn+11X1 ,..., X,J=0,  n > l .  

Then, for A E  21n = @(XI, . . ., X,J (with a, = (0, a}) formula (*) holds. Obvi- 
ously, (X,) is not a martingale if, for example, X,-Xn-l = Y,,-, + Y, for 
a non-trivial independent (5) with EYj = 0. 

1.4.-For a martingale (K, NJ, let us consider a sequence (A,) of random 
variibles. bAssume that A's are %,-centered, i.e. Fn A, = 0 (n = 1, 2,  . . .). Then 
the random variables Xn = Y, + d, are not N,-measurable in general, but for- 
mula (*) still holds. 

2. The above simple examples suggest the following definition. 
Let (a, 9, P) be a probability space. 

2.1. DEFINITION. Let (X,) c L, (a, 9 ,  P) and let (NJ be an increasing 
sequence of sub-s-fields of F. We say that (X,, %,J is a pseudo-martingale (or 
that (XJ is (a3 pseudo-martingale) if 

(1) J X , = J X , , ,  for AEN*, n = l , 2  ,... 
A A 

It  should be stressed here that X, are not required to be N,-measurable. Short- 
ly, we shall often write 'p.m.' instead of 'pseudo-martingale'. 

2.2. Remarks.  (a) It is easy to show that (X,, a , )  is a p.m. if and only if 
(P X,, %,) is a martingale. Indeed, for AE 'ill,,, we have 

(b) Observe that the general form of a p.m. for a filtration (a,,) is given by 
the formula 

(2) x, = (Y,-PnYJ+Z, 

with an arbitrary ( x )  c L, and (Z,, a,) being a martingale. In other words, any 
p.m. (X,) is a perturbed martingale (Z,) with a perturbation A, = x-Pn K. 

In spite of generality of the notion of pseudo-martingale, for important 
types of convergence one can formulate natural sufficient conditions for p.m.'s 
to be convergent. Let us start with the weak convergence. 

2.3. THEOREM. IftX,, %,J is a uniformly integrable pseudo-martingale with 
an r F, then X, + Y weakly in L,, where Y =  limn,, p n X n .  

Proof .  Let us remark that the limit Y exists almost everywhere and be- 
longs to L, since pn X, is an A,-bounded martingale. Let us take an arbitrary 
g E L ,  (a, 9, P) and let E > 0. We can find 

N " 

9 = C IZ,  lA, with llg-811, < 4, 
k =  1 3M 



where M = supnjQ lX,- YI < a. Put A = maxlshsN lAnl. Since 111, r F, we 
find in the field Us,, a, and, consequently, in some an, the sets B, such that 
P(A,AB,)  < 6,6 being a number such that P (Z) < 6 implies 

Let us put = x:= =, Ak 1.. and write 

S x n g - j  yi = J {x,- ~ ) b - g ) + l  (x,-r)(g-a+J (x,- vg=  A + B + C .  

Then we have - -. . 

Finally, since g is %!&,,-measurable, for n 2 n, we get 

so we have ICI < &/3 for n large enough. H 

In Theorem 2.3 we assume that ZI, r F. Obviously, if %, r YI, # F, then 
the limit Y = limn,, I?'- Xn is a,-measurable, and instead of the weak con- 
vergence in L, we should deal with the integrals 

Assuming that ( X n )  is L,-bounded (g > 1) one can obtain the weak conver- 
gence in L,, evidently stronger than the weak one in L,. 

2.4. PROPOSITION. Let (X, ,  'ill,) be a pseudo-martingale with an r F, 
IIXnl[p < C < co, p > 1 .  Then X, + Y weakly in L,. 

Proof,  For p > I, L,-boundedness implies uniform integrability, so the 
argument used in the proof of Theorem 2.3 can be repeated with slight modifi- 
cations. 

3. One of the ways to obtain some pointwise and mean convergence re- 
sults for p.m.'s is to estimate in some sense the degree of non-measurability of 
XnYs with respect to an's. To this end we adopt the following elementary 
definitions. 

3.1. For two cr-fields 23 and %, let us introduce (non-symmetric) functions 
e (23, %) and e (B,2l) by putting 

e(B, '$I) = sup i d  P ( A A B )  
BE% Ae9I 

and 
@ (23, W) = sup inf P (A\B). 

B a  Am 
A I B  

We shall say that 23 is E-approximated by 2l (or that 'i!l &-approximates 23) if 

e(s, < E .  
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We say that B is &-surrounded by (or that % s-surrounds 23) if 

QlB, q < E. 

3.2. It turns out that the functions g and @just introduced are very useful 
in the analysis leading us to some pointwise and mean convergence theorems 
for p.m.'s. It is obvious that adding a random perturbation A to a random 
variable Y we can completely change a a-field Q (Y) even when A is close to zero 
uniformly. Since we shaII deal mostly with a-fields, we would like to stress that, 
fortunately, some important and commonly appearing perturbations vanish 
outside the sets of small probability (for example, like errors in transmission of 
digit.al Gtes). Looking at a p.m. (X,) as a perturbation of a martingale (Y,), i.e. 
writing X, = q+ A, with fi A, = 0 (which is always the case, compare Re- 
marks 2-21, it is natural to assume that the perturbations A, have small sup- 
ports in probability, say P(A ,  # 0) < E, with s,'~ small enough. The assump- 
tions of such kind imply that for p.m. (X,, a,) the conditions like 
e (c (X,), a,) = 0 (6,) or Q(LT (X,), %,) = 0 (E,) are satisfied. 

Thus the irregular situation coming from the lack of a,,-measurability for 
terms X, can be still under control via &-surrounding or &-approximation of a (XJ 
by '$I,. Consequently, it makes it possible to prove several limit theorems for p.m.'s. 

4. In this section we prove some auxiliary results before formulating limit 
theorems. 

4.1. PROPOSITION. For sub-a$elds % and !B of 9 and a set Z E  9, assume 
that e(B, a) < E and that P ( Z A A )  < E for some A € % .  Then 

P r o  of. Note that a (8 u (2)) is a family of all sets of the form B,u B,, 
where 3, = C ,  Z and B, = C ,  Zc for some C j €  %. Let A ,  A,, A, E X satisfy the 
inequalities P (AiACi) < E ,  i = 1, 2, and P (A AZ) < E. Then, clearly, 

P [(B, u B,)A(AA; u A"&] < 4 ~ .  rn 

The foIlowing lemma will be crucial in the sequel. 

4.2. LEMMA. Let B and % be two a-felds. Assume that P(23, Ql) < E .  i f  
B, ,  . . . , B, €23 and Bj are pairwise disjoint, then there exist A,, . . ., A, E % such that 

n 

B, c A, and P ( U (A,\B,)) < 7 ~ .  
i= 1 

This means that the last estimation does not depend on the number n of sets Bj .  

Proof.  We can assume (and do it) that the number n is even, say n = 2k 
(otherwise, we add the empty set 0 = BZk).  In the whole proof the letter k has 
always the same meaning: n = 2k. In the sequel, I always denotes a subset of 
(1,  . . ., 2k). For every I c (1, .. ., 2k), let us fix A,€%, such that A, 2 U, Bi 
and P(A, \~ ,B , )  < E .  For i = 1, ..., 2k, let us put 

A, = n A,€%. 
id 



Step  I. We have the estimation 

by the definition of Ai. 
Step  11. Let us fix an arbitrary well-ordering < in the set of pairs 

{(i, j ) ;  i, j = 1, .. ., 2k). Let us write 

P i  = ( A  j  U (Ar\BrI Bs) - 
~ r , s ) < ( i , j )  

It is enough to -show that 

(3) pij < 6 ~ .  
;# j  

Taking, if necessary, a permutation a: {I, . . ., 2k) + (1, . . ., 2 k } ,  a se- 
quence (B,,I,, A , ( , , ) ,  . . -, ( B o , 2 k ) ,  A0 ,2 , , )  instead of PI, A,), . . ., ( B z ~ ,  A,,), and 
a matrix (PoIO,bti,) instead of biPj), we can assume that 

for every 1 with k elements. Moreover, we have 

( 5 )  C Pi j  G P ( U  ( A i \ B i > n  U Bj) G P ( A ~ I  ,..., k)\ 'J B i )  < 
i S k , j > k + l  i C k  j a k + l  i 4 k  

Now, we shall show that 

Assume the contrary, i.e. 

(7) C p i j > 2 ~ .  
i , j < k , i # j  

Then, by (7) and (3, we woufd have 

Inequalities (8) and (5) imply that there exist indices i, 6 k and jo 2 k + 1 such that 

(since the suitable sums have the same length). But then we would have, for 

C P i j -  C P i j  
i < k , j > k +  1 id ,  j$I 

- - - 0 1 - p i ~ j ~ -  C ( P j o j - ~ j o i c )  < 09 
j > k + l , j #  jo 

which contradicts (4), and (6) is proved. 
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In a similar way we prove that 

Finally, we have (3) by (51, (6) and (9). Namely, 

C Pi, = C Pij+ C Pij+ C Pij+ C pij < 6 ~ .  
i , j < 2 k , i # j  j 3 k + l , i S k  i a k + l , j S k  i , j S k , i # k  i . j > k + l . i # J  

The proof is completed. 

Clearly, the inequality Q(B, U) < E implies tlie following condition: 

(10)' fdr any Bs23 there exists a set ZEZ~ such that 

Indeed, it is enough to put Z = A,  n A, for A,, A, E a, A, 3 By A, 2 Bc, 
P (A,\@ < E ,  and P (A,\Bc) )< E. 

Using Lemma 4.2 we can prove a result much more general than (10). 

4.3. LEMMA. If @(By 2lJ < E, then for a sequence B , ,  B, ,  . .. of sets in 
B there exists a set ZE ZI satigying the conditions 

Proof.  Let A;E%, i = 1, 2, ...., n, be such that 

(cf. Lemma 4.2). Then A: = fin, A! E % satisfy 

Similarly, there exist A; E ( U  such that 

B F C A ; ,  P ( ~ ( A ; \ B ; ) ) < ~ E .  
i 3  1 

It  is enough to put Z = Ui, ,(A+ nA;). H - 

4.4. THEOREM. IfQ(B, 'B) < E, and 8 denotes the completion of the a-Jield 
U, then there exists a set Z E  a such that 

Proof.  Let us write B = (B,, ~ E I ) .  We put 

Taking Ci = n,, , Cik, where Cik, Bi u Cik, Bi\Cik E ZI, P (Cik) < zi + I l k ,  we 
have 



Let < denote a well-ordering of I. We are going to define a family 
( D j ,  j E I )  c a such that 

hold true. - -  . 

~ s s u m ~ t h a t - '  $e conditions (12H14) are fulflled for Dj with j 2 i (for 
a fixed i). Let us remark that 

We set 

Di = Ci when P (Ci\ U Dj) > 0, 
j<i 

115) 
D i = C i n U D j  when P(C,\UD~)=O. 

j<i j<i 

Thus the whole family (Dj, j~ I) satisfying (12H14) has been defined by the 
induction principle. 

We are in a position to define Z by putting 

By Lemma 4.3 there exists a set Z, E 2€ such that Bj v Z, E 2€ and Bj\Z, E '$I for 
a countable set of indices ~ E I  satisfying D~\U,,~D, # 0, P(Z,) < 1 4 ~ .  

For any j E I satisfying D~\U, ,~  D, # O,  by the rninirnality of P (Cj) (accord- 
ing to (ll)), we have P(Cj) = P (Cj n Z J  and, by (19, P (Dj) = P ( D .  J- nZ,). 
Consequently, by (16), P(Z) = P ( Z  nZ,) < 148. s 

Remark. In the last theorem the completion of 'ill is necessary, in 
general. Indeed, let us consider 

(n, 9, PI = (LO, 11 x ro, 11, BOA (LO, 11 x LO, I]), R ~ ) ,  

28 = {Z x [O, 11; Z - countable or [0, l]\Z - countable), 

B = {Z c [O ,  11 x [0, 11; Z-countable or [0, 11 x LO, l]\Z-countable). 

ThenQ(B, %) = 0 and for a n y Z ~ 2 . l  satisfying B u Z ,  B\Z€Nfor all B E B  we 
have Z = 10, I] x [0, 11. 
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5. Now, we pass to prove several pointwise and mean convergence theo- 
rems for p.m.'s. 

We start with the following result which is interesting in itself and also 
important as a tool in the proofs of limit theorems for p.m.'s. 

5.1. PROPOSITION. Let X E  L,(a ,  9, P) with I(X((, 4 1 .  Let 93 be 
a sub-g-field of F. Then Q (a (X), a) < E implies IIX - EwXJI ,  < 88. 

P r o  of. S tep  I. Let X = 1,. Then there exists an A E % such that 
P ( A A 3 )  < E and we have the estimation 

- -. . . - 
- S 1.1,-EP[lBI G j ( I - E g l B ) +  1 ~ ~ l ~ + S ( l ~ + ~ ~ l ~ )  

R AnB A\B AC 

Step 11, Let O < X  $ 1. For b z O  we write x = ~ ~ = , A i l , , + Y  with 
A i > O ,  C Aid 1 ,  and llYlll < 6 .  Then we have 

Step  111. For 1x1 < 1,  we write X = X + - X - .  

5.2. COROLLARY. (a) If (X,, '%J is a p.m., sup,((X,((, < K < m and 
Q (~(x , ) ,  a,) -, 0, then Xn + X ,  in L,,  where X, = limn,, EunXn. 

(b) If, additionally, zr=l p(c(X,), Nn) < GO, then X ,  + X, a.e. 

Proof.  (a) is evident. For (b) it is enough to apply the BeppwLevy theo- 
rem. rn 

53. THEOREM. Let (X,, (U,) be a p.m. Assume that IX,I < YEL, and that 

z Q(.(XJ> a,) < 
n - 

Then Xn + X ,  with probability one, where X ,  = limn,, EmnXn. 

P r o  of. The proof of our theorem is simpler when we assume additionally 
that 

That is why we present two independent arguments. The first one for Wn r 9, 
the second one for '%, r a, (# 9, in general). 

Case  %,, r 8. Let us remark that 

(17) C Q ( g  ( X ,  1 (/xnl < c)), an) < co for any c > 0, 



For a given E > 0, let us take Z = (Y< c), 2, = (lX,l < c) with c large 
enough to have P (2) > 1 - 6 .  

By (17) and Proposition 5.1, we have 

with probability one, so almost uniformly. 
By the martingale convergence theorem, 

Emn (YIZc) 4 YlZC a.e. 
Consequently, -- .. 

b lz FIm (X: lzL) 0 a.e. 

as 
p n ( X i  1,:) 6 Pn YIz.. 

Similarly, 
lz I!?- (Xn- lzJ -+ 0 amen 

Finally, we have 

(x,-pnX,) 1, = [X, lzn-pn(Xn lz,)1 lZ-(EarnXfi 'zi) +' a'em 

Thus X, - Pn X, -, 0 almost uniformly by the arbitrariness of e > 0, which 
concludes the proof. 

Case 21n r a, ( #  9, in general). Take once more Z = (Y  < c), 
Zn = (IX,I < c), P (Z) > 1 -E, and assume that jzc Y < E ~ .  Then the almost sure 
convergence in (18) holds. Moreover, 

(19) P-(Yl,,) -, Pm (Ylzc) a.e., J Emm (YlZC) = 1 Y < E'. 
Z C  

Then 
P ( P m  (Ylz.) > E) < E 

and, for no large enough, we have 

P (SUP E9[" IX, IzBI 2 2.5) < P (SUP Efi-"'(Ylzc) 2 2E) 
n>no n>ng - 

< P ( F - ( Y ~ ~ ~ )  a&)+& <2&.  
That means that 

(20) P (SUP IX, lZi - pn (X, lZdI > 2 E )  < 3 ~ .  
n > n o  

Summing up, for e > 0, we choose Z = ( Y  > c)  with P(Z) > I -E, and no 
such that (20) holds. Then we fix an n, 2 no in such a way that 

(21) P (sup IX, lzn - Pn X, lZnl > E )  < e 
n > n i  

by (18). Combining (20) and (21) we get the desired result. rn 
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5.4 THEOREM. If (X,, a,) is a p.m., (X,) i s  uniformly integrable and 
e (a (XJ, N$ -P 0, then Xn + X, in L,,  where X, = lim,,, P n X , .  

Proof. For E > 0 let us fix c such that 

J IX,I < E for all n. 
(IXnl' c) 

We have, by Proposition 5.1, 

On the other hand, for all n, 

which completes the proof by the arbitrariness of E. -a 

The theorems that have just been proved described completely the con- 
sequences of &-approximation of u (X,) by a, for pseudo-martingales (X,, %,) 
in the context of limit theorems. 

In the sequel the consequences of &-surrounding being the subject of Lem- 
mas 4.2, 4.3 and Theorem 4.4 will be discussed. 

5.5. THEOREM. Let (XJ c el (a, F, P) and let (a,) be an arbitrary se- 
quence of a-fields. Then 

2 Q(G (X,,), '$Id < oo implies X, -Pn X, + 0 a.e. 
n 

In particular, as an immediate consequence of the above theorem we have 
the following result: 

5.6. THEQREM. Let (X,, W,,) be an L,-bounded p.m. if z, @(a (X,), an) 
< m , then Xn + Y (= l i m , P  X,) with probability one. 

We present two different proofs of Theorem 5.5. The first one, based only 
on Lemma 4.2, is in the spirit of discrete mathematics. The second proof is an 

- immediate application of Theorem 4.4. However, it should be stressed here that 
Theorem 4.4 is a consequence of Lemma 4.2 via transfinite induction. 

Elementary proof of Theorem 5.5. Let us put E ,  = @(a(X,), Bn) and 
fix a sequence k, with P(IX,I 2 k,) < E, (n = 1 ,  2, .. .). For a fixed n we take 
a partition 

-k,<A,< ... <A,= k, with Ai-Ai-l  < l/n. 
Here and in the sequel, to avoid excessive accumulation of indices, we often 
omit n when the dependence on n is clear. 

Let 
Bi={Ai1 X n i  i 1 , .  , B,= {X,< -k,vXn2kn).  

By Lemma 4.2, there exist A,€%, such that Ai 3 Bi, i = 0, . . ., r ,  and 

P( i) (Ai\Bi)) < 7 ~ " .  
i = O  



Let Ci = B~\U ,,, Aj.  Since Ul=, B, = 8, we have Ci = A,\() ,,, Aj ,  and, 
consequently, CI E a,. 

Put D, = Via, Ci. Since Ci c Bi, for any fixed i, 2 1 we have 

Moreover, for i # j, - ; . . - 
- 4 Aj = [(Ai\BJ u Bi] [(Aj\Bj)u Bj] c (Ai\Bi)u (Aj\Bj). 

Thus 

Consequently, we have 
r 

Clearly, we have 

so X,-PnX, tend uniformly to zero outside the set U,,, D'. for arbitrary 
N21. 

Since 

this means that X,, - e x n  + 0 a.e. ifzn E. < m , which proves our theorem. rn 

Shor t  proof of Theorem 5.5. Completing 2I if necessary and using 
the notation of Theorem 4.4 we infer that Xn and P n X ,  coincide on the sets Z, 
with z,P(Zi) < m. 

Theorems 5.3, 5.4 and 5.6 imply immediately the following result: 

5.7. COROLLARY. Let (X,, 2ld be a, pseudo-martingale with '?I, 7 9 .  Then: 
(a) If.(Xn) is uniformly integrable, then 

Q (9, 2l,) + 0 implies X, + X, in L, . 

(b) If (X,) is L,-bounded, then 

c(9, a n )  < oo implies X, + X, a.e. 
n 
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(c) If IX,I 6 Y with YEA,, then 

Q (9, a,,) < co implies X, X, a.e. 
n 

We always have X, = limn,, Pn X, a.e. 

We close this section discussing the role of "boundedness-type" conditions 
in limit theorems for pseudo-martingales. 

Obviously, for the conditions 
(0- IX,I G K, KER; 

- (ii) hlXnl < YE Li; 
(iii) (X,) is uniformly integrable; 
(iv) ( X J  is bounded in I,,; 

we have the implications 

(i) 5 (ii) = (iii) = (iv). 

In our theorems one cannot use weaker assumptions. 
We construct suitable elementary examples. 
The probability space (O, 9, P) always equals ([O, l), Bore1 [0, l), A), and 

for any w E [0, 1) we keep the notation w = c1/2' + ~ , / 2 ~  + . . ., E ~ ,  . . . are 
equal to 0 or 1 with infinite number of 0's. 

5.8. EXAMPLE. There exists a pseudo-martingale (X,, a , )  such that (XJ is 
uniformly integrable, Q (a (X,), 21n) < co and, with probability one, X, does 
not converge (cf. Theorem 5.3). 

It is enough to put - i Y J 

2 limes 2k times 

.. w I 

2 terms 

Zk terms 

Then Pn X, = 1, and lim sup,, , X, = 1, lim inf,,, X, = 0 for each 
non-dyadic w. Moreover, for any ZE 9 and for X,, from the k-th row, we have 
lZ X, < 2-k+ l (Z), and (X,) is uniformly integrable. 

5.9. EXAMPLE. Taking the same sequence (Sn), we can define (XJ in such 
awaythatIIXnII1 < 2 , P n X n  =O,Ce(g(Xn), a,) < a,G(g(X,), a , )+O,md 
limn,, IIX,-Xn+ , I l l  = 4 (cf. Theorems 5.4 and 5.3). 



Namely, define 

. - 2k terms 

~ h e n ' l l ~ ~ ' ~ ~ + ~ l l ~  = IIXnIIi+IIXn+III1 + 4 .  The rest is obvious. 

5.10. EXAMPLE. The martingale X,=nlko,lln) is an example of 
a well-known possibility IIXn[ll < I ,  1IX,-limn,, X,,II, = 1 (cf. Theorem 5.6). 

In the next sections we discuss several examples of pseudo-martingales. 

6. A large class of p.m.'s (X , ,  a n )  is given by the formula 

where (Y,, %,,) is a martingale and (rp,) a sequence of positive functions satis- 
fying the condition 

(23) E P L n q , = l ,  n > l  
(as usual, +illn 7 ). 

Putting 

(24) z n f = q n p n f ,  f ~ L 1 ,  

we have, for (&) in (22) 

(x,) being a sequence of positive contractive projections in L,  satisfying the 
condition 

(26) x , , ~ , + ~  = .n,, n 2 1;- - 

Obviously, the projections x, play here a similar role to conditional expec- 
tations in the classical theory of martingales. The sequence (X,) in (25) (with 
(U, r ,  and cp, satisfying (23)) will be called a (%)-martingale. It is worth noting 
here that, for fixed ('Un) and (q,), the class of a1  Inn)-martingales coincides with 
the class of sequences (X,) satisfying (22). Indeed, it is enough to put 
Y, = l?nXn+l, n 2 1. 

Formula (24) turns out to be quite general. Using well known Ando's 
formula for contractive projections one can prove that any positive contractive 
projection in L, (1 < p # 2) is of the form (24) with f EL,  (6. [I], [4], [5 ] ) .  
Consequently, for any sequence (z,) of positive contractive projections in L, 
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(1 < p # 2), satisfying (26), and any f E L,, the sequence (n,J) is a p.m. with 
respect to a-fields %, appearing in the description of x,. 

It should be stressed here that formula (26) means that ker n,+ G ker z,, 
but the sequence of projections (n,) is not increasing in general, i.e. 
~ , + l q ,  f n,. 

For monotone sequences of contractive projections (n,) in L,-spaces we 
have the following result analogous to the well-known theorem in the classical 
theory of martingales. 

6.1. THEOREM. LW p > 1. If (R,)  is Q monotone (decreasing or increasing) 
sequence o$positive contractive projections in L,, then x, f converges ax. for aII 
f~ L~ ( ~ f .  ~41). 

In contradistinction to the classical theory of martingales, there exists 
a decreasing sequence of positive contractive projections (P,) in L, such that 
P, 1 does not converge a.e. Indeed, we have the following example (cf. [4]). 

6.2. EXAMPLE. Denote by o ( x )  a 0-field generated by a Bore1 function x on 
-LO, 1). We put 

for 0 4 x < (n + i - 1)/(2n), 

+ i + 1)/2 for (n + i - 1)/(2n) < x < (n + w(%I, 

I ' for (n + i)/(2n) < x < 1, 

(x) = max (x , (n + i)/(2n)). 

Obviously, we have Yy 2 3 on CO, 11 and 

(27) ~ " ( x B ) y ; = l  for 1 < i < j < n ,  

max (Y:, Pl P2, . .., !Fy .. . ?P:) > n/2 on [i, 11 
Let us write c, = 1, n(1) = 4 and, assuming that c,, .. ., ck- 

n(l), . .., n(k) have already been fixed, take c, = min ,,,, , (Y"lkl . .. Y:{k{)(x) 
and n(k+l) satisfying +n(k+l)c, - ... - c, > 2. - 

Let XI ,  X,, . . . be a sequence of independent identically distributed ran- 
dom variables uniformly distributed on [0, 11. It is enough to take 

(Pi) = (Pi, - * ., p:(l), p:, - .  - 3  E(2), . * -1 
with 

pf = n ( n yj) .x,. (y ;  . . . 'pf) p ( ~ ~ ~ ' ~ x k ~ x k +  I , . . . ) .  

l c k  j<n( l )  

As usual, 0 (X,, Xk+ , , . . .) denotes the a-field generated by X,, Xk+, , . . . It can 
be easily observed, by (27), that (Pi) is a decreasing sequence of projec- 
tions (positive and contractive in L,) but, for the function 1 (a) = 1 ,  



max (Pi  I ,  . . ., I) > 2 on the set (4 < X k  < 1 ) .  Thus P,, 1 do not converge 
on a set of probability 1, by the Borel-Cantelli lemma. 

6.3. Remark. Let us observe that if (P,) is an increasing sequence of 
positive, contractive projections in L, ,  then P, f converges a.e. for all f E L ,  
(cf. C43)- 

7. Indexing by stopping times is an important way of producing new 
martingales from a given one (cf. [6]). We have the following analogue for 
pseudo-martingales. 

-- 
7.1. -OREM. Let (X, ,  Q[,J be a pseudo-martingale and let z , ,  T,, :. . be an 

increasing sequence offinite stopping rimes relative to (8,) (i.e. (zl = k)  E N, for 
all k a d  j ) .  Let Y, = Xtn, n 2 1.  Assume that 

(b) Iiminf I IXkI=O for n = 1 , 2 ,  ... 
k + m  (r,>k) 

Then (Y,, B,) is a pseudo-martingale, where 

!B, = (AELF: A n ( r ,  = k)€21k  for all k = 1, 2, . ..). 
Proof, Clearly, the sequence of 0-fields (B,) is increasing. We have to 

show that 

j (Y,+,-Y,) = 0 for B E B , .  
B 

Let BE%,. Since B = Usw=, B(r,  = s),  it is enough to show (28) for 
Cs = B n  (T, = s ) ~ % ,  (instead of B). Let us iix k > s .  Since (z ,  = s) c (z,+ I 2 s), 
we have 

k 

j K + 1 =  C j X I + , +  J Y,+l 
CS i = s  C , n ( z n + l = i )  Csn(zn+ I > k )  

k 

- . -  . - 

But 

since (rn+ 2 k) E Nk- l ,  which together with s < k gives D, n(z,+ 2 k) 
E 'ak- 1 .  

Combining now the integrals 

J X k - ,  and ! Xk-1, 
C . n [ r , + l z k - 1 )  C . n ( r n + i = k - 1 )  
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we get ~ c , ~ ( T , + ~ > R - a )  I,-,. Continuing this procedure, we finally get 

The integralS !c= n(m + I > k )  Xktendtozeroask-rco .S ince (~ , , ,>k )+O,  
we have Scsn(r,+ r >R) Y , + , + O  as k + m .  Observing that X , = x  on 
D, = D , ~ ( T , , ~  3 s), we get (18) for B = C,, which completes the proof. RI 

8. Natural examples of pseudo-martingales appear when martingales are 
perturbed in7 some way. In Section 6 we discussed a large class of pseudo- 
-martiniqles of such a type closely related to the theory of projections in 
k,-spaces (1 < p # 2). 

8.1. The simplest but rather natural example is given by a random linear 
transformation of a martingale (Y,, U,) of the form (X,, a,) with 

where u,, v,, and are independent for each n, with Eu, = 1 and Ev, .= 0 
{mostly (u,) and (v,) are i.i.d. (noise) and independent of (5)). 

8.2. Disturbance of a martingale on some sets often leads to a p.m. Let 
(X,, a,) be a martingale with EX, = 0, and let (X,) be a centered sequence 
in L,.  We fix a sequence (D,) of events independent of (1,) and (F,), and set 
B, = D,nD,+,n ... Let us put 

and 

Then (Z,, 47,J is a pseudo-martingale. Indeed, clearly, (a,,) is an increasing 
sequence of o-fields. Moreover, for A€%,, k < n, we have 

Since (X,, X, , n 2 1) are centered and independent of (D,), n 2 I ,  we have 

Now, we specify the sets D, by putting 

(32) Dn={f(yl)...f(YJ2g(Yl)...g(Y,))Y 

where (Yl, Y,, . ..) is a sequence of i.i.d. random variables, f is a density of 
distribution of Yj, and g is another density of distribution on the real line. 

Keeping the previous notation we assume that (YJ are independent of (X,) 
and (X,,). Let us assume that the random variables f (5) and g(Yj) have finite 



variances. Then, for ti = In f (YJ-lng(Yd, standard calculations lead us to the 
following estimations : 

n 

P(D:) = PCf(Y,) .-. f (Y,) G g ( K )  ... g(Y,)) = P I C  Si < 0) 
t = l  

where ( is a Gaussian N(U, 1) random variable. Let us note that E[,  < 0 by the 
well-known inequality: j f I'Y) In f ( y ) d y  < J f (y) In g (y) dy . It is clear that for the 
u-fields Vl, and 23, we have 

Q ( N n , B n ) < ~ ( ~ 3 < e x p { - p o n )  for some 8 ,>0 .  

The interpretation of the above example is the following. We observe the 
process (5) (of independent measurements) and then (following the likelihood 
ratio test) we choose between two hypotheses: the density equals f or g. Accord- 
ing to our decision we put Zn = X, or Zn = Z,,. 

8.3. Let (X,, a,,) be a martingale. For D,sZl,, we put 

where (X,) is an arbitrary sequence independent of (a,) with EFn = 0. Then 
(Z, ,  a,) is a p.m. 

8.4. Other examples of pseudo-martingales being simple transformations 
of martingales can be obtained as "moving averages" as follows. 

For a martingale (X,, a,), let us put 

a, being real numbers satisfying the condition: an+ = a,-, for n > N. Then 
(Zn, n > N, is a p.m. 

- - Similarly, putting 
N 

= bn+kXn+k, n 2 l, 
k = O  

with the coefficients satisfjing bn+N+l = b,, n 2 1 , we obtain a p.m. (K, an). 
More generally, let (an,k)k=o,l,...,kn,nB be a matrix satisfying the condition 

(for example: a,,, = l/(n + I), 0 < k < n, or a,,, = 2-", 0 < k < n, and zero 
elsewhere). 
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Let us put 
n 

Zn = ~ n . k ~ n + k .  
k = O  

Then (Z, ,  2lJ is a p.m. 

9. In this section we discuss a class of pseudo-martingales which seems to 
be quite important. It is closely related to Markov chains and r-independent 
sequences. We adopt the following definition. . . 

 DEFINITION.--A sequence (X , ) ' c  L1 is said to be a pseudo-martinga/e of 
type-(r) 8 the following condition holds: 

(34) E(X,-Xn-lIX1 ,..., Xn-,)=O for n > r .  

Obviously, a p.m. of type (1) is simply a martingale. 
To indicate a close relation of the notion just defined with r-independence, 

we introduce even a little weaker condition than r-independence. Namely, we 
say that a. sequence (X,) of random variables is successively r-independent if, for 
any n, X,+, is independent of (XI . . . X,). Let (X,) c E l .  Assume that EX, = 0 
and (X,) is successively r-independent. Then, clearly, the sequence 
S, = El[=, X, is a .p.m. of type (r). 

For a sequence (X,) of random variables, let A, = X,- Xk - , . For 
1 < s < r, we define the sequences XtS) by putting 

9.2. DEFINITION. We shall say that (X,) is r-uniformly integrable (r-bounded 
in L,, respectively) if all sequences x(*, 1 < s < r, are uniformly integrable 
(L,-bounded, respectively). 

9.3. THEOREM. Let (X,) be a pseudo-martingab of type (r). If (X,) is 
r-uniformly integrable, then X, + X, as. and in L,, where 

X, = lim E ( X ,  I XI, ..., Xn-,). 
n+ cc 

Proof. The last limit exists since E(X, I XI, . . ., Xn-,) is a - uniformly 
integrable martingale. To prove that X, + X, we put A, = Xk-Xk-, and 
consider the sequences X("), 1 < s < r, defined by formula (35). If rn = nr + k 
with 1 < k < r, then 

k r 

Moreover, for any s = 1, . . ., r, the sequence 

(with 'illL[, = a(X,, .. ., X,)) is a uniformly integrable martingale, so Xt)  con- 
verges (as n + a) with probability one and in L, to some y ( ' ) ~  L, (s = 1, . . ., r). 



By Theorem 2.3, X, + X, weakly, which implies that x:=, = X, and, 
consequently, X, + X, a.e. and in E l .  H 

We have the following strong law of large numbers. 

9.4. THEOREM, Let (XJ c L, be a: zero-mean pseudo-martingale of type (r). 
Let us assume that, putting A, = Xk - X k -  we have 

Then Xn/n-+ 0 ' ax  and- in L,. 
b 

Proof.  Keeping the notation of Sections 9.1-9.3, we have (36). For 
s = 1, . . ., r, the sequence (Xt), n 2 1) is a martingale. Setting Zk,+ = As+kr,  we 
have 

so the sequence Y,,, = Zk_Jk, n 2 1 ,  is an L,-bounded martingale. Con- 
sequently, Y,,, + Y, a.s. and in L, for s = 1, . .., r. By Kronecker's lemma, 

which together with (36) gives a- I X, + 0 a.s. and in L,.  rn 

9.5. Natural examples of pseudo-martingales of type (r )  can be provided 
by taking some functions of Markov chains. More exactly, let Y = (Y,) be 
a homogeneous Markov chain with states labelled by positive integers. Let 
B = (Pij) be the transition probability matrix of E Let f be a function defined 
on the states of Y and satisfying the equality 

Then the sequence (3) = (f (3)) is a p.m. of type (r). Indeed, putting in-, = i, we 
have 

for a11 states i. 
Taking on both sides of equality (38) the conditional expectation 

E ( -  I XI, . . ., Xn-,), we get 

E(X,-X,-l I XI ... X,-,)=0, 

which means that (X,) is a p.m. of type (r) .  
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Let us pass to some examples connected with a random walk. We shall 
confine our attention to a symmetric random walk Y = (Y,) on the lattice Z of 
integers. This means that a homogeneous Markov chain (I.',) is governed by the 
transition probability matrix P = ( P i j )  with Pi,;+ = Pi,i-  I = 1/2 for i E Z, and 
Pij= 0 elsewhere. We want to describe all trajectories of a p.m. of type (r) 
related to the Markov chain Y= (YJ. We consider a process X, = f (X,), 
where f is a function defined on Z and satisfying the equality 

Writing7!9) ;d the form ( P - I ) P  f = 0, we get 

.l 
for some a, ~ E R .  

Consequently, 

Let us put 

x ( l ) = f ( 2 1 ) - a - b . 2 1 ,  p ( I ) = f ( 2 I + l ) - a - b ( 2 1 + 1 ) .  

Then. we obtain, after standard calculations, 

The inverse of the generating function for (41) is of the form 

so it has one root (- 1) of multiplicity r .  Thus (cf. [3]), 

Formula (42) gives a complete description of trajectories of the p.m. of 
type (r) related to a symmetric random walk on 2. This makes it possible to 
describe the asymptotic behaviour of trajectories of (X,). Clearly, an essential 
exercise is to rewrite the law of the iterated logarithm for a process (- 1)'(Y2,)" 
(and (- 1)' (Y,, + J), for some fixed exponent s < r .  

Namely, we have the following proposition, 

9.6. PROPOSITION. For a symmetric random walk (Y,) on Z,  a process 
2, = (- 1)' (Yzl)", with a $xed exponent SEZ', satisfies the condition 

with probability one, for E = 1 and r = -1  as well. 



Proof. Randdm walk must go from one level to another passing through 
all intermediate levels. Thus the proposition is a consequence of the law of the 
iterated logarithm. ra 

9.7. COROLLARY. Assume that a pseudo-martingale (X, )  is given by  the fol- 
lowing conditions: 

- (*) Xn = f (Y,), Y, being the symmetric random walk on Z,  and 
($4 E(X,+,+1-X,+, I XI, .,, X,) = 0. 

Then, for some constants b ,  b ,  E R  and some integer 1 6 s G r-1, we have 

- 7 .  
-- .. 

E (X, - mb) 
b lim sup = 1 --- b , ( J z G ) "  

with probability one, for r = 1 and E = - 1. 
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