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Abstract. In this paper* it is shown that the equilibrium 
measure v for a compact K in potential theory can be related 
with a unique invariant measure n for a discrete time Markov 
process by the formula .rr [dy) = cp (yj v(dy) .  The chain has the 
transition function L ( x ,  A), where L is the last-exit kernel in [I]. 
For a general non-symmetric potential density u the modified 
energy I(h)  = d (dx)u (x, y) rpb) - 'R(dy)  and the Gauss quadratic 
G(1)  = I ( A ) - 2 L  (K) are introduced. Then G is minimized by n 
among all signed measures 1 on K of finite modified energy, 
provided I is positive. This includes the classical symmetric case 
of Newtonian and M. Riesz potentials as a special case. The 
~~odification corresponds to a time change for the underlying 
Markov process. The positivity of I is established for a class of 
signed measures associated with continuous additive functionals 
in the sense of Revuz. 

Introdwtio~ In electrostatics, the equilibrium charge on a conductor 
minimizes the potential energy. Gauss showed this but assumed the existence 

I 
of a minimum, which assumption became known as the DiricBalet principle. 
The method was extended by Frostman to ha. Riesz potentials. More generally, 
a theory of energy has been developed for symmetric potential kernels 
(see, eg.; [6]). From quite another direction the existence of the equilibrium 
measure was established in [I] by modern methods of Markov processes, 
together with its probabilistic signiticance in terms of a last-exit distribution. 
The question arises whether such a measure minimizes the corresponding 
energy. For a symmetric kernel this was answered in the afimative in [2] 
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under further superfluous conditions, but a simpler proof due to  J. R. Baxter 
is contained in Section 3. Here we prove a general minimization result for 
a modijied energy which corresponds to a time.change of the process. The 
significance of this is not clear yet, but it contains the classical symmetric 
case without modijication. Since energy concepts in the non-symmetric case 
have been little studied, we hope the results presented in the sequel may 
spur on further research in this direction. Let us add that although the 
term "equilibrium" is often used to connote a "steady state" in physics, 
namely a stationary or invariant distribution, the association of the electro- 
static equilibrium measure with the invariant distribution of a simple Markov 
chain described in Sectiw 1 is apparently new. What is its physical 
significance'? 

1. Let U be the potentiaI kernel of a Markov process and let u be its 
. density with respect to some reference measure m such that 

i. for each Borel set A. Let' K be a corripact set and suppose there exists 
a measure v with support in K such that 

. . 

(1.1) 1 = j u ( x ,  y)v(dy) for all X E K .  
K 

Then v is called the equilibrium measure for K (it is unique under 
genera1 conditions). We introduce the'kernel L as ; 

(1.2) L ( x ,  A) = j u(x, yjv(dy), x E K7 A E B(K),  
A 

where B(K) is the Borel field of K. Then (1.1) takes the form 

(1.3) L ( x , K ) =  1 for all X E K .  

Thus L is strictly Markovian and (discrete time) Markovian chain 
with state space K may be constructed from L. 
' Under the basic assumptions of [I] and [3], the measure v exists for 
each compact K provided a11 points of K are regular for K. In general, 
the constant 1 in (1.1) is to be replaced by PK 1, the hitting probability of K. . 
Furthermore, the method shows that L is the "last-exit kernel". Although we 
are particularly iliterested in the setting of [I] and C31, we shall here simply 
assume the validity of (1.1) without reference to the specific conditions'under 
which it is derived. Other conditions on the function u needed for further 
development will be added as we proceed. 

The following proposition is due to Mamoru Kanda, who improved an 
easier, less satisfactory condition : 
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d PRDPOSITION 1. I f  for each jixed y the function u ( . ,  y )  is lower semi- 
continuous, then the set of func,trons {u(x, .), x EK) is uniformly integrable 
with respect to v. 

Proof .  Let 0 < f < 1 and let f be Borelian. Then by (1.3) we have 

Both terms on the left-hand side are lower semi-continuous, hence both 
are continuous in x. Let A, c K and v(A,)LQ. Then, by Dini's theorem, 

.. - 7- 

. 1- J u(x, YV)V(~Y)JO 
An 

uniformly for x_ C K. This together with (1.3) establishes the asserted uniform 
integrability. 

PROPO~IT~QN 2. Under the condition of Proposition 1 there exists cr unique 
probability measure n on K such that n = aL, namely, 

K is ubsoIuteIy continuous with respect to v. 

Proof. The existence follows at once from an old theorem due to Doblin 
since uniform integrability is much stronger than his hypothesis (D) (see 151, 
p. 192). Alternatively, we can apply Schauder's fixed point theorem as follows. 
Consider the class M(K) of probability measures on K. This is convex and 
compact with respect to the vague topology. The kernel L in (1.2) induces 
a mapping d -, RL of K into K, where 

If A,, -, R vaguely, then for each f E C (K) we have 

AnUf) = jLn(dx>L(x, f )  + j W x ) L ( x , f )  

because x -t L (x, f )  is continuous, as shown in the proof of Proposition 1 
(even for a bounded Borelian f). Thus there exists a fixed point under the 
mapping which is ihe n: in (1.4). 

If we put 

(6.6) V(Y) = j x(dx)u(x, Y). 

then 

Substituting back in (1.6), we obtain 

(1.8) V(Y) = j ~ t d x ) V ( x ) 4 ~ ,  Y). 
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To prove the uniqueness, suppose that n1 is another probability measure 
such that n l  = n1 L, and put ,u = x-K,. Using (1.71, (1.8) and their analogues 
for xi, we have 

cp I~ ) - r~1 (~ )  = j vTdx) Ccp(x)-cp1(xllutx, Y ) ,  
and so 

But the integrals with respect to v of the two members of (1.9) are equal 
by (1.3). Together with (1.9) this forces q-ql to be of a constant sign v-a.e. 
Since j-rpdv = 1 = j rpldv, it follows that q = rp, v-a.e. and, therefore, n = nl. 

\ This completes the proof, 
Under the assumptions of [l], u is strictly positive, hence the function cp 

defined by (1.6) is also strictly positive. We shall assume this from now on 
in the general context. Put 

Then (1.6) may be written as 

whereas, in view of (1.7), (1.3) may be written in the form 

(1.12) ju,(x, y)x(dy) = 1, X E K .  

We call la the rnodged potential density (relative to K) and record the 
next result as follows: 

PROPOS~TION 3. There are a BoreI function cp > 0 and a probability 
measure K on K satisfying (1.11) and (1.12). 

- Let us tell the probabiIistic origin of the symmetry exhibited in (1.1 1) 
and (1.12). Since n is an invariant probability measure for the Markovian 
kernel L, a reverse kernel in the most elementary (and classical) sense is 
given by 

Thus (1.11) states that &, .) is a probability measure for each y. Now 
it is trivial that K is also an invariant measure for the Markovian kernel 2, 
namely, n e  = n. Written out this is just (1.12). 

As an immediate application of (1.1 11, we mention the foIlowing extension 
of a familiar result in potential theory: 
COROLLARY. If p is any measure such that 

then p(K) < 1. 



Equilibrium and energy 

Proof. Fubini's theorem yields 

1 = n(K) 2 j Rld~)  5 %(x> Y ) P ( ~ Y )  > S I P ( ~ Y )  = P(K). 
K K K 

Thus x fulfills the physicist's concept of the equilibrium distribution on K 
with respect to the modified potential la,, as well as the probabiIist9s one 
which is (1.12). We proceed to strengthen this anaIogy by considerations of 
energy. 

2.- Let L be a signed finite measure on K ;  namely, I = 1' -Aw, where A' 
and 1: are measures on K such that 111 = A + + A -  is a finite measure. We 
denote this class of signed measures by S (K). For A, E S (K) and I, E S(K), 
we define the mutual energy of 1, and A, relative to u, by . .. 

with the stipulation that {~A,1,1A2~), < a; otherwise, the quantity in (2.1) is 
not defined and will not be written. For I E S ( K )  we write 

If L E S (K) and I, (1121) < m, we call 1, (1) the energy of 1 and write 11 E &@. 
The subclass of probability measures in b, will be denoted by 8;. Next, 
for R E gq we put 

where, of course, L(1) may also be denoted by R(K). Then G, is the Gauss 
quadratic. It follows from (1.11) and (1.12) that 

I ,  (R) = 1 and G, (K) = - 1. 

From here on the subscript g, will be omitted from these symbols except 
in h, when there is no risk of confusion. 

PROPOSITION 4. If I E 8, then I + K E C and 

(2.2) G(A+n) = I(A)+G(n) = I@)-1. ' 

Proof. We have c .  

I(1I + XI) G I(l4 + 4 = I (lLl)+ I(n) + (ILI, x )  + <K, 14) 
Now, by (1.12) and Fubini's theorem 

I 

(14, x> = S I4 (ax) S u, (x, Y )  n: (dy) = IJ-I (1) < 03 ; 
e 

similarly, by (1.1 I), 

<., IAI> = j [I n:(dx)u,(x, Y)]  Ill (dl4 = Ill (1) < El. 



Thus the same calculations yield 

and (2.2) follows at once. ! 
COROLLARY 1. I f e  A is u probability measure 'on  K such that A - 7~ E 8, 

then I(A) = I(n)+l(A-n). 
We say that I satisfies the positivity principle iff 

(2;3) I(A)BO for every 1~8,; 
. . . .. 

we say that I satisfies the energy principle iff (2.3) is true and, moreover, I 
I (A) = 0 implies IZf = 1- e 0. 

COROLLARY 2. If I satisfies the positivity principle, then we have 

(2.4) G(n)  < G ( I )  , for every A E ~ , ,  1 

(2-5) I (n) < J (A) for every A E 6':. 
'I 

If I satisfies the energy principle, then x is the unique member of 8, for 
which (2.4) is true; and it is also the unique member of 8; jbr which (2.5) 
is true. 

When zd is symmetric, v is invariant for L because 

and we may normalize v by putting 

In this case 9 1, and if we use 1 as the subscript to indicate this case, I 
we have 

with the original potential density u. This is the classical situation and 
Corollary 2 contains the theorems on the minimization of energy by the 
equilibrium measure as given in the literature. For the Newtonian and I 
Marcel Riesz potentials the energy principle is satisfied (see, e.g., 161). 
Indeed, in the general symmetric case satisfying the energy principle it 
can be shown that the two ways of minimizatidn in (2.4) and (2.5), re- 
spectively, are equivalent. We have not b k h  able to trace the source of this 
fact, but the proof is standard. 

A true symmetrization of uq may be considered by putting 
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Then (1.11) and (1.12) continue to hold when u, is replaced there by i&. 
Since ii, is symmetric, the well-known methods of potential theory apply. 
It will be seen in Section 4 that not only u, but also its transpose u ( y .  x ) / q  (x) 
is the potential density of a process, namely the dual process (see, e.g., [4]). 
But the operation of addition or averaging in (2,6) may not have a useful 
interpretation for probability theory, so we shall let it pass here. 

3. Recall that the kernel L in (1.2) may be defined by 

Its dual is defined by . 

Lfty)=Sn(dx)f(x)u , (x ,y) .  f f B + .  
Note that 

f@f)sdn  = Jf(Ls)dn = ( f ' - n , s . n > ,  

where f - n  is the measure j(y)x(dy) and the notation above omits the 
subscript q~ as before. Both L and are contractions on YP(n )  for 1 < p < m. 
To see this let j 1 f lPdn < m; then, since lLf l P  < L(l f lP) and rrL = n, we 
obtain 

13-11 jILflPdn 6 S ~ l f l ~ d 7 ~  = j IflPdz. 

Note that it is sufficient that L be submarkovian and n subinvariant, 
nL < n, for .(3.1) to hold. similarly for 2. 

Let 3, be 'any probability measure on K, and put . . 
4 ( ~ )  = 1 W x ) 2 6 , ( x 5  Y). 

The measure I1L is given by 

A L ( d y ) = j a ( d x ) L ( x , d y ) = g ( ~ ) n ( d ~ ' ) .  

.An induction shows that, for n 2 1, 

We can now calculate, for n 2 1 and rn 2 I, 

{ A L ~ , ~ ~ )  = j ~ ~ - l g ( x ) n ( d ~ ) ~ q , ( ~ ,  Y)2m-1g(J~)n(dy) = j 2 " g - i m - l g d z .  

T& is also valid. for n = 0 and rn 2 1 with? of course, Log = g. 
In particular, 

(3-2) {A, AL) = j g2 dz, 

(3.3j {AL,IL) = j L ~ . ~ d n : ,  

(3.4) {AL , aL2) = f (LJ)~ an, 

(3.5) { L L 2 , U )  = Jh.!,2ggdn: = S ~ L J - L ~ ~ ~ .  
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PROPOSITION 5. The three quantities in (3.3)-(3.5) are all dominated by that 
in 13.2). In particular, {ALn, ALn+ l )  decreases as n increases. 

Pr   of. We have 

Eg . gdn 5 [ j  @g)2 dn; f q2dn] ' I 2  G J g2 dn 

by the Cauchy-Schwarz inequality followed by (3 .1)  for 2 with p = 2. 
The rest is simiiar. Having shown that (AL, RL2) G {A, RL) for any A, 
an iteration establishes the last assertion in Proposition 5. 

In the symmetry-case, it is trivial that the positivity principle implies 
th t  Cauchy-Schwarz inequality for mutual energy as follows: . 

13.6) - (A,, A2)2 G < R 1 , J 1 )  (A2, A d .  . ' 

In general it is not clear when this is valid. 
COROLLARY. If d satisfies the Cauchy-Schwarz inequality (3.6), then 
(Q) (AC, ALn) decreases as n increases for n 2 0. 
Pro  on', We have (A,  RL)' < {A, A) (AL, AL). Together with (AL, AL) 

G (1, LA), as given in Proposition 5, we obtain (AL, AL) < (A, A). This 
implies upon iteration. 

For a symmetric u (i.e., rp -= l), Proposition 5 is due to J. R. Baxter 
and the Coro89ary answers a conjecture by J. B. Walsh. Under stronger 
~onditions on u (see, e.g., [5j), so that LLn -+ n as n + m, it appears 
that (*I should imply the limiting relation (x, TC) < ( A ,  A). But this implication 
i s  actually faise in general because u is not bounded. On the other hand, 
the last written inequality has been proved directly in Corollary 2 to 
Proposition 4. 

4, It is common knowledge that if u is the potential density of the 
Maskov process (X,, t 2 O), then the modified 16, defined in (1.11) is that 
of another Markov process ( Y , ,  t 2 0) obtained from X by a random time 
change. More precisely, let 

dcfiwed for each sample path. Under the assumptions of- [ l ] ,  (X,} is 
w transient Hunt process and cp is lower semi-continuous and rp > 0. 
T h ~ s ,  for each t, q (X,) is bounded away from zero for 0 < s < t .  It 
follows that 2 (t) < m for each t, almost surely. Thus ~ ( t )  is continuous 
nsn-decreasing in t, and so has a right continuous, strictly increasing 
inverse 2 - l .  Define Y by 



Equilibrium rmd energy 107 

Then Y is a right continuous strong Markov process in [0, m). For 
every positive measurable f we have 

Hence, if we write Ux and Uy for the potential kernel of X and Y, 
respectively, we obtain . 

u ~ f  = J r c , h  Y ) S ( Y ) ~ ~ ~ Y ) .  
Thus Y has the po&tial density (x, y)  rn(dy). 
We now discuss the positivity principle for I, in the context of additive 

functionds. Consider a natural increasing additive functional {A,,s > 0). 
Its potential U A l  has a ,representation Up,, by Theorem 2, Corollary 2. 
of [3]. This measure can be shown to be the Revuz measure associated 
with A (see [?I). For positive measurable f we write fK = f lx; then we have 

00 

(4.1) E x { ~ ' f ( X s - ) 1 K ~ x s - ) d A s ) = U ~ f ~ ( ~ ) = ~ ~ ~ ~ , ~ ) f ( ~ ~ ~ ~ ( d ~ ) -  
0 R 

Taking f = l / q ,  where rp is the function in (1.7), and the difference 
of two such functionals, we obtain in obvious notation the formula 

where A = A+ - A-. Putting 

dB, = 
1~ (Xs-1 

dA, , 
- vws-1 

we have 

h(x)Z EX(3,) = jup(x, yIp*(dy). 
K 

It folIows by a familiar calculation that 
m m 

EX {B: .= Ex { [ j dBs + j dB,] dBt) = EX { 1 Ck (xi) - + h (Xtll dB,), 
0 -[t.m) $.m) 0 

where 

h (Xi)- = !* h (XS) 

Since h is the difference of two excessive functions, the limit exists and 
is equal to h(X,)'except for a countable set of t (depending on the path). 
Hence, if 3 is a continuous additive functional, then the above is equal to 
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Thus we obtain 

which shows that.the iterated integral above has a value greater than or 
equal to 0. Now, if we integrate it with respect to n and use (1.12), the 
result 'is 

& ( P A ) =  1 [ ~ ~ ( d ~ ) u ~ ( y , z ) p A ( d z )  20. ' 
. K K  

We have proved the following 
-PROPOSITION 6. For every rneasuk p ~  associated with a c o n t ~ u o u s  additive 

functional A .of the process X as in (4.1), we haue I q ( p ~ J ~ ) .  >, 0, where pAJK 
is the kstriction of p~ to the compact K .  

The minimization results of (2.4) and (2.5) therefore hold true for this 
class of measures. The question whether Ip(pA)  = 0 implies pA 0 seems 
more difficult and remains to be investigated. 

Added in proof. S. Orey informed us of the following complement to 
Proposition 2 : 

If an invariant probability measure n exists as in (1.41, then the 
Markou chain associated with the kerneI L is v-recurrent and, for each x, 
lim L'"' (x, A) = K (A). 
n 

The proof is simple. 
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