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Abstrdct. In this paper* it is shown that the equilibrium
measure v for a compact K in potential theory can be related
vw1th a umque invariant measure n for a discrete time Markov
" process by the formula ‘n(dy) = @(y)v(dy). The chain has the
transition function L(x, 4), where L is the last-exit kernel in [1].
For a general non-symmetric potential density u the modified
energy I(A) = [[A(@x)u(x,y)@(»)"''A(dy) and the Gauss quadratic
G =1 ())—24(K) are introduced. Then G is minimized by =
among all signed measures A on K of finite modified energy,
provided T is positive. This includes the classical symmetric case
of Newtonian and ‘M. Riesz poteéntials as’ a special case. The
modification corresponds to a time change for the underlying
Markov process. The positivity. of I is established for a .class of
signed measures associated with contmuous addltlve functionals
in the sense of Revuz.

Introduction. In electrostatics, the equilibrium charge on a conductor
minimizes the potential energy. Gauss showed this but assumed the existence
of a.minimum, which assumption became known as the Dirichlet principle.

The method was extended by Frostman to M. Riesz potentials. More generally,

a- theory of ‘energy has been developed for symmetric potential kernels
(see, eg “[6]): From qulte another direction the existence of the equlhbrlum
measure was established in [1] by modern methods of Markov processes,
together with its probabilistic significance in terms of a last-exit dlstrlbutlon
The question arises whether such a measure minimizes the correspondmg

energy F or a symmetrlc kernel th1s was answered in the aﬁ‘irmatlve in [2]
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under further superfluous conditions, but a simpler proof due to J. R. Baxter

-is contained in Section 3. Here we prove a general minimization result for

a modified energy which corresponds to a time.change of the process. The
significance of this is not clear yet, but it contains the classical symmetric
case without modification. Since energy concepts in the non-symmetric case
have been little studied, we hope the results presented in the sequel may
spur on further research in this direction. Let us add that although the
term “equilibrium” is often used to connote a “steady state” in physics,
namely a stationary or invariant distribution, the association of the electro-

‘static equilibrium measure with the invariant distribution of a simple Markov

chain described in Sectiop. 1 is ‘apparently new. What is its physical
significance?

1. Let U be the pote,ntialv kernel of a Markov process and let u be its
density with respect to some reference measure m such that

U(x, A) = 'Iu(x, y)m(dy)

)

for each Borel set A. Let K be a compact set and suppose there exists
a measure v w1th support in K such that . :

(1.1) ) = Jutx, ))v(dy) for all xeK.

Then v is called the. equzhbrmm measure for K (it is umque under
general conditions). We introduce the kernel L as ’

(1.2) L(x,A) = [u(x,y)v(dy), xeKkK, AGQS(K)
A .

where B (K) is the Borel field of K. Then (1.1) takes the form

(13). o Lx,K)= 1 for all xeK:

Thus L is strlctly Markov1an and a (dlscrete tlme) Markov1an cham
with state space K may be constructed from L. _

Under the basic assumptions of [1] and [3], 'the measure v exists for
each compact K provided all points of K are regular for K. In general,
the constant 1 in (1.1) is to be replaced by Py 1, the hitting probability of K. -
Furthermore, the method shows that L is the “last-exit kernel”. Although we

" are particularly ifiterested in the setting of [1] and [3], we shall here simply

assume the validity of (1.1) without reference to the specific conditions under
which it is derived. Other conditions on the functlon u needed for further
development will be added as we proceed. Co

‘The following proposition is due to Mamoru Kanda, who 1mproved an
easier, less satlsfactory condltlon
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. PrROPOSITION 1. If for each fixed y the function u(-,y) is lower semi-
continuous, then the set of functions {u(x, ), xeK} is umformly mtegrable
with respect to v.

Proof Let 0 <f<1 and let f be Borelian. Then by (1 3) we have
I u(x, y) f (y)V(dy)+ I u(x, y) [1 f (M]v(dy) = for all x.

Both terms on the left- hand side are Iower semi- contmuous hence both
are contmuous in x. Let A c K and v(A,,)lO Then by Dmls theorem

[ u(x, y)v(dy)|0

n

uniformly for x € K. This together with (1 3) establlshes the asserted unlform
integrability.

ProrosiTiON 2. Under the condition of Proposztlon 1 there exists a umque-

probability measure . on K such that n = L, namely,
(14) . z) = [n@d)L(x, 4), AeBK).
K

7 is absolutely continuous with respect to v.

Proof. The existence follows at once from an old theorem due to Doblin
since uniform integrability is much stronger than his hypothe51s (D) (see [5],
p. 192). Alternatively, we can apply Schauder’s fixed point theorem as follows.
Consider the class M (K) of probability measures on K. This is convex and
compact with respect to the vague topology. The kernel L in (1. 2) induces
a mapping A —» AL of K into K, where '

5 ‘ %ﬁamuu)
It Ay = /1 vaguely, then for each fe C(K) we have
A L(f) = H (@x) L(x, f) = [4dx)L(x, f)

because x — L(x, f) is continuous, as shown in the proof of Proposition 1
(even for a bounded Borelian ). Thus there ex1sts a fixed pomt under the
mapping which is the 7 in (1.4). -

If we put .
(1L6) | :p(y)':jn(dx)u(x,y). |
then. ' ' . L
n - , 7(dy) = ¢ (y)v(dy).

Subctltutmg back in (1.6), we obtam '
18 @(y) = [v(dx) o (x)u(x, y)
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" To prove the uniqueness, suppose that 7, is another probability measure
such that my = =, L, and put p = n~m;. Using (1.7), (1.8) and their analogues
for m;, we have

P(N)—0:1(9) = [v(dx) [9(x)— @1 () u(x, ),
and so

(9 lo (=1 < [vdx)lex)— o, x)ulx, y).

—

in the general context. Put

" 'But the integralsv with respect to v of the two members of (1.9) are equal
by (1.3). Together with (1.9) this forces ¢ — ¢, to be of a constant sign v-a.e.

- Since [@dv = 1 = [ @,dv, it follows that @ = @ v-ae. and, therefore T =7y

This completes the proof.

Under the assumptions of [1], u is strictly positive, hence the function ¢
defined by (1.6) is also strictly positive. We shall assume this from now' on

utx, )

(1.10$) Up(x,y) = 00)

Then (1.6) may be written as
(1.11) _ [ m@x)uy(x, y) =1, yeKk,
whereas, in view of (1.7), (1.3) may be written in the form
(1.12) fu, (x Yrdy) =1, xekK.

We call u the modified potential denszty (relatlve to K) and record the
next result as follows: -

ProposITION 3. There are a Borel functwn Q> 0 and a probabzlzty
measure 7 on K satisfying (1.11) and (1.12).

Let us tell the probabilistic origin of the symmetry exhibited in (1.11)

“and (1.12). Since = is an-invariant probability measure for the Markovian

kernel L, a reverse kernel in the most elementary (and classrcal) sense is

given by

n(dx)L(x dy)
n(dy)

Thus (1. 11) states that L(y,")is a probablhty measure for each y." Now
it is tr1v1al that 7 is also an invariant measure for the Markovian kernel L,
namely, zl. = m. Written out this is just (1.12). ,
As an immediate application of (1. 11), we mention the following extension

L(y,dx) = 7 (dx)uy (x, ¥).

. of a familiar result in potential theory:

COROLLARY. If p is any measure such that
§u,(x, yudy) <1 for all xeK,
K
then u(K) < 1
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Proof. Fubini’s theorem yields
L= n(K) > [n(@dx) [ux, @) > [1u@y) = p(K).

Thus = fulfills the physicist’s concept of the equilibriuni distribution on K -
-with’ respect to the modified potential u,, as well as the probabilist’s one
+ which is (1.12). We proceed to strengthen this analogy by con51derat10ns of
energy. : :

2. Let Lbea signed finite measure on K ; namely, 4 = A* —4~, where A*
and A~ are measures on K such that |A] = A*+A" is a finite measure. We
" denote this class of signed measures by S(K). For A;€S(K) and 4, € S(K),
we define the mutual energy of A, and A, relative to u, by

@y iy, Ao = [§ 4@y (x, ) 4, (@)

with the sﬁpulation that {|4,}, |42]> < oo; otherwise, the quantity in (2.1) is
not defined and will not be written. For 1€ S(K) we write

l(p ('l) =_ </1: /1>¢ .

If Ae S(K) and I, (|4]) < oo, we call I,(4) the energy of A and write Aeé&,.
The subclass of probablllty measures m &, W111 be denoted by &9. Next
for Ae &, we put e

Gy () = I,(N—24(D),

where, of course, 1(1) may also be denoted by A(K). Then G, is the Gauss
quadratlc It follows from (1.11) and (1.12) that

I =1 ‘and G,(m) = —1.

From here on the subscript ¢ will be omitted from these 'symbols except
in u,, when there is no risk of confusion.

“PROP;}OSITI?N 4.If Aeé&, then A+ne& and
(2.2) - G(A+m) = IA)+G@) = I()—-1.
‘I“’rnc;bf.‘ We have | , . _
T I(A+a) < I(Al+m) = I(Il|)+1(n)4-<lil,,n>+<n, 41>
Now, by (1.12). and Fubini’s theorem ;
I, my = [IA1dx) § uy (x, Y)m(dy) = (1) <003 -
similarly, by (1.11),

{m, A = I[Iﬂ(dx)uq,(x »]IAl@dy) = 1AI(1) < .
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Thus the same calculations yield

I(+m) = I+ + <A, m)+(m, 2y = T()+1(m)+24(1)

cand (2.2) follows at once.

COROLLARY 1. If-A is a probabzlzty measure,’ on K such that A—meé,
then I1(1) = I(n)-i—I(/l ). :

We say that I satisfies the positivity prmczple iff
(2.3) _ I(l') 0 for every 1eé,;

we .say that I satlsﬁes the energy principle 1ff (2 3) 1s true and moreover 7
I(A) =0 implies A* =1~ =0. :
COROLLARY 2. If I satzsﬁes the positivity principle, then we have
(2.4) ‘ G < G() - for every Aeé&,,
(2.5) . I(n) < I(/l) for every )Leé”o
If I sattsjzes the energy principle, then m is the. umque member of é" for

which (2.4) is true; and it is also the unique member of &9 for whlch (2.5)
is true.

When u is symmetrlc v is invariant for L because

_[v(dx)u(x =1 yek;

- and we may normalize v by putting -

.
| o |

In this case ¢ = 1, and if we use 1 as the subscrlpt to lndlcate this case,
we have o :

T =

(A 420y = (1) §T 24 (@x)ux, ¥) 42 (dy)

with the original potential density u. This is the classical situation and
Corollary 2 contains the theorems on the minimization of energy by the

]

‘equilibrium measure as given in the literature. For the Newtonian and

Marcel Riesz potentials the energy principle is satisfied  (see, e.g., [61).
Indeed, in the general symmetric case satlsfymg the energy . principle it
can be shown that the two ways of minimization in (24) and (2. 5), re-
spectively, are equivalent. We have not been able to trace the source of this
fact, but the proof is standard. '

" A true symmetrizdtion of U, may be considered by putting

26) (5, 9) = - [ ulx, y)+”(y’x)].

e - elx)
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- Then (1.11) and (1.12) continue to hold when u, is replaced there by iI,.
Since #, is symmetric, the well-known methods of potential theory apply.
It will be seen in Section 4 that not only u, but also its transpose u(y, x)/¢ (x)
is the potential density of a process, namely the dual process (see, e.8., [4]).
‘But the operation of addition or averaging in (2.6) may not have a useful
interpretgtion for probability theory, so we shall let it pass here.

3.7‘Recall thét the kerﬁel L in (1.2) may be defined by
L) = fu,le, )OI nly), . feB,.
Its dual is defined by - : o

. Lf(yy == dx)f(x)u x,y), .feB,.
Note that

I(Lf)gdn = If(Lg)dvt = <f .9 7r>

where f m is the measure f(y)n(dy) and the notation above omits the
subscript ¢ as before. Both L and L are contractions on .7 (1) for 1 < p < 0.
To see this let j'lfl"dﬂ: < ; then, since |Lf|P < L(|f*) and =nL = =, we
obtain

(3.1) o VILfPdr < [ LIf|Pdr = Ilfl”dn
" " Note that it is sufﬁc1ent that L be submarkovian and n subinvariant,
nL <=, for (3 1) to tiold. Slmllarly for L.
- Let 4 be’ any probability measure on K, and put
g(y) = [ A@x)u,(x, y).
The measure AL is glven by
lL(dy) | l(dX)L(x dy) = g(y)ﬂ(dy)-
An 1nduct10n shows that, for n > 1,_
N ALMdy) = I~ lg(y)n(dy)
We can »no{v calculate, for n > 1 and m > 1,
QAL = [[ It g () m(@x)uy (x, ) I g (y)m(dy) = [L'g-L" " gdn.

Th\% is “also valid- for n = 0 and m > 1 with, of course, I°g —g
In particular, . C .

G2 . Ly ={gdm,
33)-. . o AL ALy = {Lg-gdn,
(3.4) QLAY = [(Lg)dn,

(35 (A2, ALy = [ B g-gdn = [ Lg-Lgdn.
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PROPOSITION 5. The three quantities in (3.3)-(3.5). are all dominated by that.

in (3.2). In particular, {AL", AL"*') decreases as n increases.

Proof. We have
[Lg-gdn < [[(LgYdn | g*dn]'? < [g*dn

by the Cauchy-Schwarz inequality followed by (3.1)- for L with p = 2.
The rest is similar. Having shown that (AL, AL?) < (A,iL) for any 4,
an iteration establishes the last assertion in Proposition S.

In the symmetry—case, it is trivial that the positivity principle implies
the Cauchy-Schwarz inequality for mutual energy as follows: -

JILER) - (g, A20? < Ay Ag) Koy Aad v

In general it is not clear when this is valid.

CoROLLARY. If I satzsﬁes the Cauchy—Schwarz mequalzty (3.6), then

(=) AL, ALY decreases as n increases for n = 0. _

Proof. We have {4, L)% < {4, 4D (AL, AL). Together with {AL, AL)
< (4, AL), as given in Proposition 5, we obtain (AL, AL)> < {1, 4). This
implies (x) upon iteration.

For -a symmetric u- (ie., ¢ = 1), Proposition 5 is due to J. R. Baxter
and the Corollary answers a conjecture by J. B. Walsh. Under stronger
conditions on u (see, e.g, [5]), so that AL" - n as n— oo, it appears
that (+) should imply the limiting relation <z, #) < {4, A). But this implication
is actually false in general because u is not bounded. On the other hand,
the last written mequahty has been proved directly in Corollary 2 to
Proposnlcn 4.

4 It is common knowledge that if u is the potential density of the

. Markov process {X,,t > 0}, then the modified u, defined in (1.11) is that_

of another Markov process {Y,, ¢ > 0} obtained from X by a random' time
change More precisely, let -

t

() = I

i
@ (X,)
defined for each sample path. Under the assumptions of [1], {X,} is

a transient Hunt process and ¢ is lower semi-continuous and ¢ > 0.
Thus, for each t, ¢(X,) is bounded away from zero for 0 <s <t It

. follows that t(t) < oo for each t, almost surely. Thus 7(f) is continuous -

non- decreasmg in t, and so has a right contmuous strictly increasing
inverse t~!. Define Y by

Y! = Xtﬁl(!), t > 0,
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Then Y is a right continuous strong Markov process in [0, oo) F or
every positive measurable f we have

If(Y:)dt

(X)

Hence, if we write Ux and Uy for the potent1al kernel of X and Y,
respectively, we obtaln )

Urf = [ u,(x, y)f(y)rh(dy)

Thus Y has the potentlal density u,(x, y)m(dy)

We now discuss the positivity pnnc1p1e for I, in the context of additive
functionals. Consider a natural increasing addltlve functional . {4,,¢ > 0}.
Its potential U,1 has a representation Up,, by Theorem 2, Corollary 2.
of [3]. This measure can bé shown to be the Revuz measure associated
with A (see [7]). For positive m‘easurable f we write fx = f1g; then we have

(41) E"{Jf(X )lx(X )dA}—U,afx(X) Iu(x Y)f(y)ﬂA(dy)

Takmg f = 1/, where ¢ -is the function in (1.7), and the dlﬂ‘erence
of two such functionals, we obtain in obvious notation the formula

0 ‘p(Xs-)
where 4 = A" — A~. Putting

E_"{f —15(—""—"—d(A:—A;)} = [l Py,

1)
dB, = ———dA,,

e M
we have. . , ' _
' h(x) BB} - ;u,,,(x Dhady).

It'foilows by a familiar calculatlon that

where}
h(X)- = lim h(X).
Since h is the diﬂ'érence of two excessive functions, the limit exists and

is equal to h(X,) except for a countable set of ¢ (depending on the path).
Hence, if B is a continuous additive functional, then the above is equal to

2B°{[ h(X)dB} = 2Uph(x) = 2 [ty (x, Y)h () (dy).
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Thus we obtain

E*{B%} =2 I thy (X, ) I to (y, 2) pa (dZ)uA (dy),

which shows that-the iterated mtegral above has a value greater than or
equal to 0. Now if we 1ntegrate it with respect to = and ‘use (1.12), the
result”is

I, (na) = I‘ I Ha@y)ugly, 2) paldz) > 0

We have proved the folIowmg

_ "PROPOSITION 6. For every measure Ma assoc:ated w:th a cantznuous additive
functlonal A of the process X as in (4.1), we have I, (uA|K) = 0 where 4|k
is the restriction of M4 to the compact K. : . -

The minimization results of (2.4) and (2 5 therefore hold true for this
class of measures. The question whether I,(u4) = O implies u, = O seems
more difficult and remains to be 1nvest1gated

Added in preof. S. Orey informed us of the following complement to
Proposmon 2:

“If an invariant probablhty measure T exists as in (1. 4j then _the
Markov chain associated with the kernel 'L ‘is v- recurrent and, for each x,
lim L™ (x, A) = n(A).

" The proof is simple.
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