\displaystyle\sum_{n=1}^\infty\frac{(-1)^{n+1}}{2n-1},
\displaystyle\sum_{n=1}^\infty\frac{(-1)^{n+1}}{n^23^n},
\displaystyle\sum_{n=1}^\infty\frac{(-1)^{n+1}}{(2n-1)^3},
\displaystyle\sum_{n=1}^\infty\frac{(-1)^{n+1}n+1}{n},
\displaystyle\sum_{n=1}^\infty\frac{1}{\sqrt{(n+4)(n+9)}},
\displaystyle\sum_{n=1}^\infty\frac{(-1)^n\cdot2^{10^n}}{3^{2^n}},
\displaystyle\sum_{n=1}^\infty\frac{n!\cdot(-5)^n}{n^n\cdot2^n},
\displaystyle\sum_{n=1}^\infty\frac{(-1)^{n+1}n^3}{2^n},
1-1+1-\frac12-\frac12+1-\frac13-\frac13-\frac13+\dots+1-\stackrel{k\text{ razy}}{\overbrace{\frac1k-\frac1k-\dots-\frac1k}}+\dots,
1-1+\frac12-\frac14-\frac14+\frac13-\frac19-\frac19-\frac19+\dots+\frac1k-\stackrel{k\text{razy}}{\overbrace{\frac1{k^2}-\frac1{k^2}-\dots-\frac1{k^2}}}+\dots,
\displaystyle\sum_{n=2}^\infty\frac{(-1)^n}{n-\sqrt{n}},
\displaystyle\sum_{n=1}^\infty\frac{(-1)^{n+1}2^{n^2}}{n!},
\displaystyle\sum_{n=1}^\infty\frac{\sin 77n}{n^2},
\displaystyle\sum_{n=1}^\infty\frac{2^n+17}{3^n},
\displaystyle\sum_{n=1}^\infty\frac{\sqrt{n!+1}}{n!},
\displaystyle\sum_{n=1}^\infty\frac{(-1)^{n^2}}{(n+3)^{1/4}},
\displaystyle\sum_{n=1}^\infty\frac{n+2}{n(n+1)}(-1)^n,
\displaystyle\sum_{n=1}^\infty\frac{(-1)^n}{\sqrt{n}} \left(1+\frac{(-1)^n}{\sqrt{n}}\right),
\displaystyle\sum_{n=1}^\infty\frac{2^n}{n\sqrt{4^n+3^n}},
\displaystyle\sum_{n=1}^\infty\frac{1}{n+5\sqrt{n}+27},
\displaystyle\sum_{n=1}^\infty\frac{\binom{2n}{n}}{n!},
\displaystyle\sum_{n=1}^\infty\frac{2^{n^2}}{4^{\binom{n}{2}}},
\displaystyle\sum_{n=1}^\infty\frac{(-1)^n}{n^{1/n}},
\displaystyle\sum_{n=1}^\infty\frac{(\frac{n+1}{n})^{n^2}}{2^n},
\displaystyle\sum_{n=1}^\infty\frac{(-1)^n(\frac{n+1}{n})^{n^2}}{3^n},
\displaystyle\sum_{n=3}^\infty\frac{(\log n)^{\log n}(-1)^n}{n^{\log\log n}},
ż. \displaystyle\sum_{n=1}^\infty\frac{(-1)^n}{\arctan
n},
ź. \displaystyle\sum_{n=1}^\infty\big(\sqrt{n+2}-\sqrt{n}\big)(-1)^n.