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This PhD thesis is concerned with the geometry and model theory of fields
with operators. By that, one means a field (or more generally, a commutative
ring) endowed with a fixed number and type of additive endomorphisms,
satisfying additional relations. Classical examples include differential and
difference fields (i.e., fields endowed with a derivation or an endomorphism,
respectively), which are amply and actively studied, both algebraically and
model theoretically. These examples, along with additional ones share a
number of common features, and it is clearly profitable to provide a general
framework that generalises them.

One appealing such framework was suggested by Moosa and Scanlon in a
series of papers, where they produced a geometric theory of fields with oper-
ators, and applied it (in the “free” case) to study the basic model theoretic
properties of such fields. Their approach can be described as follows: the
operators and the relations among them are described by a suitably defined
“monoid” M , and the action of these operators on a field K is given by an
action M × X −→ X of the monoid on X = spec(K). In the case of usual
(“discrete”) monoids, one obtains as usual (upon choosing generators) an
action by endomorphisms, satisfying some relations. The “free” case corre-
sponds to a free monoid, where one can then work with a (pointed) map
M0 ×X −→ X for M0 ⊆ M corresponding to the generators.

The generalised setup of the thesis is obtained, in these terms, by replac-
ing the functor X 7→ M0 ×X be a more general functor X 7→ F (X) along
with a (functorial, faithfully-flat) map F (X) −→ X, and a “base-point” map
X −→ F (X) over X. It seems a bit surprising (to me) that one can ob-
tain new interesting examples in this way, and indeed it is shown in §2.1
that in characteristic 0 there are no new examples. But in positive char-
acteristic there are, and in fact the formalism includes the “derivation of
the Frobenius map” previously studied by Kowalski. The point is that in
positive characteristic the additive group structure does not determine the
scalar multiplication, which can be twisted by the Frobenius. The situation
is explained very nicely in Remark 2.8.

The thesis is structured very simply: after recalling some preliminaries,
there is a section (§2) dedicated to algebra and geometry in this setup, and
then a second section (§3) concerned with the model theory. The algebraic
part mostly deals with the free case. The first subsection, which appears
to be the most novel, contains a classification result for algebra schemes
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(i.e., functors as above). The next subsection defines the action of such
operators, and (in the local case) studies extension properties for such op-
erators, which are needed later for the study of existentially closed models
and model companions. This part is mostly a direct generalisation of the
special case given by actions. The next subsection studies the right adjoint
of F , i.e., prolongations. Their application here and in the model theoretic
treatment is standard, but the construction of the prolongation does not
follow directly from Weil restriction in this case, so is done directly. Finally,
there is a subsection about the general (non-free) case, which is approached
differently than in the monoid description above (or in Moosa–Scanlon):
instead of having a general monoid, relations are given by a universal first
order formula (of a particular shape). This appears to correspond to the
case of finitely presented monoids.

The section on model theory studies some basic model theoretic proper-
ties: definability of existential-closedness and existence of model compan-
ions, quantifier elimination, algebraic and definable closure, stability and
description of forking, restriction to PAC structures (most of the results are
in the “strongly local” case, i.e., when Frobenius is 0 on the kernel of the base
point; this is not surprising, since these conditions are required even in the
special case of actions). While most of the methods here are standard, the
author is able to isolate and formalise the necessary conditions very nicely.
As a result, he obtains very clean axiomatisation, and simplified proofs (e.g.,
Theorem 3.13 and Theorem 3.18). The results are formulated in terms of ex-
istential closedness in a suitable class of fields, and can therefore be applied
in several variants: PAC (corresponding to regular extensions), separably
closed and large (the definition of largeness in this context is also new).

To summarise, I find the thesis to be very interesting, containing new and
interesting ideas, and very elegant in its presentation. The author managed
to clarify and unify scattered ideas in a clear manner, deal with new cases
and solve some open questions. I believe the dissertation substantially pro-
motes the state of knowledge in the subject, and the author clearly admits
a good understanding of the ideas involved. I therefore strongly recom-
mend that the thesis is accepted, and Jakub Gogolok is awarded a
PhD. I further recommend awarding the degree with distinction.

Detailed comments. The following are some comments and minor correc-
tions I would like suggest. There were some typos in addition to the ones I
mention, that neglected to note. None of these issues contradict my positive
assessment, but some of them would hopefully be addressed.

p6, 3para: The setup of [2] is only equivalent to [34] in the free case
§1.5: Is k a field here? Previously it was a general ring, and in this

case, one probably needs some flatness (and for Fact 1.3 one defi-
nitely needs a field)

p17: “Can not” on line 10 should be “cannot”. Line -3 “definite” should
be “define” (I omit most other typos)
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Prop. 2.6: It might be helpful to point out explicitly, somewhere
around here, that though both sides are “vector space schemes”,
the isomorphism need not preserve this structure (i.e., the group
structure does not determine the vector space structure)

Def. 2.7: Since an isomorphism with Ge
a is fixed (as per the paragraph

before it), it will be clearer to say that the data is just the k-algebra
structure on Ge

a, and denote the first projection by π (one could ask,
in this case, how much of the sequel depends on this identification,
but the it is rather clear that not much).

Rem. 2.8.3: I’m not sure what is meant by the last sentence, the ring
scheme is just the ring of functions on the resulting product.

Def. 2.37: This is rather imprecise. For general m > n, there are
several maps B(m) −→ B(n), depending on the choice of coordinates.
Is it meant that one chooses the first n, or all of them?

Def. 2.39: The composition here appears to be reversed (unless I’m
misunderstanding the previous definition; in any case, it is better to
elaborate a bit)

p40,l-5: It took me some time to understand how X̄ is viewed as
an element of B(K[X̄]), there are many options, and it is better
to say Xi in the i-th factor, or something similar. Also, this is
one place where it was not completely clear that the construction is
independent of the identification (though this is clear a posteriori,
once the universal property is deduced).

Def. 2.63.1: Generated by A over what? What is the quantification
on A here? Why can’t we take A = K?

p52,para 2: Seems like there should be something else in place of
“Proposition 2.29”.

p53,para 2: In what theory should being of type K be definable?
Ex. 3.2.3: A instance of the previous question, why are we allowed to

change the theory to SCF?
p53, 1st line after Def 3.3: “see” is missing.
Notation 3.8: I don’t see why Kfin is definable.
p56,l1: Should be f(a) 6= 0.
p58: Why are partial differential fields in characteristic 0 covered by 3.14?

It seems B is nice in this case.
Rem. 3.19: I don’t agree that E looks strange and unnatural ☺. In

the simplest case when B = kS for some pointed finite set 0 ∈ S, The
prolongation of V is simply V S , so the prolongation WS of W ⊆ V S

naturally sits inside (V S)
S
= V S×S . The equaliser condition then

states that we should be looking only at those f ∈ V S×S satisfying
f(0, s) = f(s, 0) for all s ∈ S. This is an obvious necessary condition.

Lemma 3.23: I assume that λ0 is the partial inverse of Frobenius.
Lemma 3.30 (proof): It seems that dcl is the more interesting case,

since that is where there is a difference in the non-local case.
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Rem. 3.34: While this is true, the approach here also provides the
description of independence, which is of course interesting on its
own.

Def. 3.40: A condition is missing on the second line.
Rem. 3.48: What is DCFp,m? I thought that m is the number of

derivations, but then what is the case m = 0?
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