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Abstract

The goal of the dissertation is to investigate various kinds of Riesz transforms on R? with
focus on obtaining dimension-free estimates of their L? norms.

In the first part we handle classical Riesz transforms and maximal operators associated
with them. We begin by using Fourier transform techniques to obtain a dimension-free es-
timate of the L? norm of the maximal Riesz transform in terms of the corresponding Riesz
transform with an explicit constant. In order to accomplish this we factorize the maximal
Riesz transform, following Mateu and Verdera, into the 'maximal part’ and the 'Riesz part’,
namely

R; = M™Rj,
and estimate the Fourier multiplier associated with M™* in a dimension-free way.

Next, we use the real method of rotations and the complex method of rotations of Iwaniec
and Martin to generalize this result to Riesz transforms of higher orders and to LP norms
for 1 < p < co. We express the operator M* as an integral of the Hilbert transform, thus
obtaining a dimension-free estimate which is additionally explicit in terms of dependency on
p.

In the second part we turn our attention to Riesz transforms related to Schrodinger oper-

ators, i.e. operators of the form
U =V'L™  L=-iA+YV,

where A is the Laplacian, V is a non-negative potential, and L is called the Schrodinger
operator. First we use complex interpolation to prove some general results on LP-boundedness
(1 < p < 00) of the operators R{, for locally integrable potentials. Then, using the Feynman—
Kac formula and probabilistic methods we give conditions for the potential under which the
operators R, are bounded on L' and L. In particular our results apply to potentials with
power or exponential growth.

Finally, using similar methods, we show that if the potential V is of the form
V(z)=Vi(z) + -+ Vy(z),

where each V; acts only on the ¢-th coordinate of the argument z and has polynomial growth
with the exponent not greater than 2, then the L' and L norms of Ry, can be estimated
independently of the dimension. We achieve this by factorizing the semigroup associated with
L into one-dimensional factors, estimating them separately and then combining the results.
Chapters 2 and 4 are based on joint works with Btazej Wrobel and Chapter 3 is based on

joint work with Blazej Wrobel and Jacek Zienkiewicz.
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Chapter 1

Introduction

1.1 Riesz transforms — overview

Harmonic analysis is a branch of mathematics concerned with investing functions via their
decomposition into some kind of simpler 'basic’ parts, in particular via their decomposition

using the Fourier transform defined for a function f : R* — C by

~

FIO =1 = | J@emd.

Problems posed in the field of harmonic analysis often involve operators, i.e. functions
taking functions as arguments and returning other functions as values, among which the most

investigated are singular integral operators. These are operators of the form

Tf(z)= y K(x,y)f(y) dy,

where the function K : R? x R? — R, called the kernel, behaves as |z — y| ™% as |z — y| tends

to 0. Usually we also assume that the kernel K satisfies some regularity conditions, e.g.
vxK(xv y) + VyK(xa y) < C|J} - y|_d_1

for some constant C' > 0.
The simplest multivariate singular integral operators are the Riesz transforms R; defined

by

r (ﬁ) o
Rif(z) = lim 2/ L f(y)d 1.1.1
i f(x) 10+ I o—yl>t [ — y‘d—l—l f(y) dy ( )
for j =1,...,d. Equivalently, they can be defined via the Fourier transform as
_ & o
R;f(§) = —@,éf(é)- (1.1.2)

The Riesz transforms have been studied for several dozens years now. It is well known
that they are bounded on LP(RY) spaces for 1 < p < oo due to the theory of Calderén and
Zygmund initiated in [8]. Moreover, Stein showed in [47] that the vector of Riesz transforms
has its LP(R%) norm bounded independently of the dimension d. More precisely, he proved

the following theorem.
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Theorem (Stein, [47]). For 1 < p < oo there is a constant C,, independent of the dimension

d such that
p 1/2

Z\Rjﬂz < Gpllfll o (ray-
o Lr(RY)

In the course of investigating the Riesz transforms, several questions arise. One of them
is: what will happen if we replace the limit in the definition (1.1.1]) with the supremum? This
leads to the definition of the maximal Riesz transform R} and an auxiliary operator R; called

the truncated Riesz transform

] ¢ : (5 Tj—Yj
R} f(z) = sup |ij(:v)‘ and Rif(r) = —z5 7d+1f(y) dy.
>0 7z Ja—y>t |z —yl
Probably one of the best known theorems providing estimates of maximal operators is the
Cotlar’s inequality. It says that if T" is a singular integral operator with kernel satisfying some

regularity conditions, then the following estimate holds
T*f(z) < Ca (M(T(f)) + M(f)),

where Cy is a positive constant depending on the dimension, M is the Hardy-Littlewood
maximal operator, and 1™ is the maximal operator associated with 1" defined analogously to
the maximal Riesz transform.

In regards to our work, another important results concerning the maximal Riesz transforms
due to Mateu and Verdera [37] states that for 1 < p < oo the LP(RY) norm of R} f can be
controlled by the LP(R?) norm of R;f, namely

Theorem (Mateu, Verdera, [37]). For 1 < p < oo there is a constant C), q depending on p
and d such that

HR;fHLP(Rd) < Gyl ijHL”(Rd)'

Chapter [2] is devoted to improving the above result, albeit only in the case p = 2, to one
with the constant C), 4 independent of the dimension d.

Another question one may ask is whether there are any natural generalizations of the
classical Riesz transforms. Let P be a homogeneous, harmonic polynomial of degree k. The

k-th order Riesz transform Rp associated with the polynomial P is then defined as

- r(*49) P(z —y)
Rpf(z) = i Rpf(x),  where  Rpf(z)= 7#1/271“2(5) /:v—y|>t mf(y) dy,
(1.1.3)
or, equivalently, via the Fourier transform as
_ P€) ~
Rof() = (T (114

Higher order Riesz transforms were studied by Duoandikoetxea and Rubio de Francia, who
proved in [I7] a result analogous to the aforementioned theorem of Stein, namely that the
vector of higher order Riesz transforms of a fixed degree has its LP(R?) norm bounded inde-

pendently of the dimension.
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Having defined the higher order Riesz transforms, wa may also define the maximal Riesz

transform of order k as
Rp f(x) = sup |Rp f(z)|.
t>0

Similarly to the first-order case, Mateu, Orobitg, Pérez and Verdera proved in |35} [36] that for
1 < p < oo the LP(RY) norm of R% f can be controlled by the LP(R?) norm of Rpf, namely

Theorem (Mateu, Orobitg, Pérez, Verdera, [35, B36]). For 1 < p < oo there is a constant
Cp k,a depending on p, k and d such that

HR}'SfHLp(Rd) < Cp,k,dHRPfHLP(Rd)'

Chapter |3|is devoted to improving the above result to one with the constant Cp ;¢ inde-

pendent of the dimension d.

1.2 Riesz transforms associated with Schrodinger operators

In the second part of the dissertation we slightly change the object of investigation. In

order to define it, we first need to introduce the Schrédinger operator
1

where A is the Laplacian and V is a non-negative function in L%OC(Rd) called the potential.

For a > 0 we define the Riesz transform associated with the Schréodinger operator L by the

formula Vo) ~
a a —a z —_ a—
Vi) = Vo) L) = ) [ e
I'(a) 0
where e~ is the semigroup generated by L. Rigorous definitions of the Schrédinger operator

L, the associated semigroup e~

L and the Riesz transform Ry, are more complicated than in
the case of the classical Riesz transforms; the relevant details can be found in Section
Unlike in the case of the classical Riesz transforms, here it is not straightforward to give
one ’canonical’ result regarding the LP(R?) boundedness of the operators R{,. Nonetheless,
there exist numerous partial results with varying assumptions on V and a, which we present
in Section In Chapter 4] we provide a general result on LP(R?) boundedness of RY, for
1 < p < 2 and locally integrable potentials V' and another result on L'(R?) and L*(R%)
boundedness for a certain class of potentials, including potentials with power and exponential
growth. As for the dimension-free estimates of the LP(R?) norms of the operators R, not
much is known. Chapter [5]is devoted to proving dimension-free results for a certain class of

potentials.

1.3 Summary of known results

1.3.1 Classical Riesz transforms

Classical Riesz transforms have been studied by numerous authors. First, it follows from
the theory of Calderén and Zygmund, see [9, 8], that they are bounded on the LP(R%) space
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for 1 < p < oo. Then, Iwaniec and Martin [26] calculated the LP(RY) norm of the first-order

Riesz transform to be the same as the LP(R) norm of the Hilbert transform, i.e.

Theorem (Iwaniec, Martin, [26, Theorem 1.1]). For each 1 < p < oo and j = 1,...,d we

have
tan(%r—p) if T<p<2

COt(%) if 2<p<

HRj”Lp(Rd) =

Their result is based on [41, Theorem 4.1]|, where Pichorides calculated the norm of the
Hilbert transform.
As for the vector-valued estimates, Stein proved in [47] that the vector of Riesz transforms

has LP(R?) bounds which are independent of the dimension. More precisely,

Theorem (Stein, [47]). For 1 < p < oo there is a constant C,, independent of the dimension

d such that
1/2

d
2

Z ‘ij| < CprHLp(Rd)- (1.3.1)

=1

! Lr(R4)

Unlike in the case of a single Riesz transform, the optimal constant in ((1.3.1]) is not known.

The best results to date are C'(p — 1)~! for small values of p given by Bafuelos and Wang in
[3] (see also [15]) and CCO’E(%) for large values of p, which follows from [26].

It is also worth noting that Duoandikoetxea and Rubio de Francia proved in [I7] a coun-

terpart of the above Stein’s theorem for higher order Riesz transforms, namely

Theorem (Duoandikoetxea, Rubio de Francia, [I7, Théoréme 2|). For 1 < p < oo there is a
constant Cp 1, independent of the dimension d such that
1/2
2
Z [Rpf] < CPJCHfHLP(Rd),
PePy
Lr(R4)

where Py is the orthogonal basis of the space of spherical harmonics of degree k. Moreover,
for fixed odd k we have

Cpr=0O((p — 1)7R2) as p— 1 and Cpr=0(p) as p— o0
and for even k we have
Cpr=0((p— 1)727’6/2) as p—1 and Cpr = O(p*) as p— oo.

Moving on to the maximal Riesz transforms, the main estimates regarding them are due
to Mateu, Orobitg, Pérez and Verdera in a series of three papers: [37] (first order Riesz
transforms), [36, Section 2| (even order higher Riesz transforms) and [35, Section 4| (odd
order higher Riesz transforms). The estimates for the Riesz transforms following from this

series of papers are summarized in the following theorem.
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Theorem (Mateu, Orobitg, Pérez, Verdera, |35, [36]). For 1 < p < oo there is a constant
Cp k,a depending on p, k and d such that

|’R73f||Lp(Rd) < Cp,k,d”RPfHLP(Rd)'

Recently Liu, Melentijevi¢ and Zhu in [33] partially improved the results of Mateu, Oro-
bitg, Pérez and Verdera to a dimension-free estimate in the case of first-order Riesz transforms

and p € [2,00). Their theorem reads

Theorem 1.3.1 (Liu, Melentijevi¢, Zhu, [33]). For every f € LP(RY) with p > 2 we have
1 \2/P
[R5 F ] oy < <2 + ﬁ> 1 f 1l o ey -

1.3.2 Riesz transforms associated with Schrédinger operators

As mentioned before, since the class of Riesz transforms associated with Schrédinger
operators is more diverse than the in the case of classical Riesz transforms, it is harder to
provide a general result on their LP(R?) boundedness. The topic has been investigated by
many authors, see for example [I], 2] (4, [12], T3], 18], 19} [44], [54]. However, we present a wide
array of partial results with varying assumptions on V and a. The cases of a = % and a =1
attracted the most attention.

The first, well known, result dates back to 1970s and concerns the case a = 1. It states
that for a locally integrable non-negative potential V' the operator R‘l/ is bounded on L'(R%)
and, in fact, that it is a contraction, see for example [21], [27, Lemma 6] and |2, Theorem 4.3].
Then Shen proved two related theorems for the potentials belonging to the reverse Holder
class By for ¢ > %: [43, Theorem 3.1] asserts the LP(RY) boundedness of Rl if 1 < p < ¢
and in [43, Theorem 5.10] it is shown that the LP(R?) norm of R‘l// ? is bounded whenever
1 < p < 2¢q. Both results were later improved by Auscher and Ben Ali to 1 < ¢ < oo, see [2
Theorem 1.1 and Theorem 1.2].

The next two results address polynomial potentials. In [I8, Theorem 4.5| Dziubanski
proved that for such potentials the operator R{, with any a > 0 is bounded on the L (RY)
space for 1 < p < co. Then Urban and Zienkiewicz showed in |54, Theorem 1.1] that if the
potential is a polynomial satisfying a certain C. Fefferman condition, then R%/ is bounded on
the L>°(R?) space and, by interpolation with the first presented result, on all LP(R?) spaces
for 1 < p < co. Moreover, its norm is estimated independently of the dimension d.

The last two results concern the harmonic oscillator, i.e. the case when V(z) = |z|*. The
first result [5, Lemma 3| gives LP(R?) boundedness, 1 < p < oo, of R¢ for all values of a > 0.
On the other hand, the second one addresses only the case of a = %, however the achieved
bound on the LP(R?) norm of the operator does not depend on the dimension d, see [24], [34]
and |28, Theorem 8|. This, together with [54], Theorem 1.1|, are the only dimension-free norm
estimates for the Riesz transforms associated with Schrodinger operators that we are aware
of.
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1.4 Outline of the thesis and overview of the methods

The dissertation consists of two parts: the first part, containing Chapters [2| and [3] is
devoted to estimates of first order and higher order classical maximal Riesz transforms. In
the second part, consisting of Chapters [4] and [5] we handle Riesz transforms associated with
Schrédinger operators.

In Chapter [2] we investigate first order Riesz transforms. The main result is a dimension-
free estimate for the L2(R%) norm of the maximal truncated Riesz transform in terms of the

L?(R%) norm of the Riesz transform, specifically we prove

Theorem 1.4.1. For every f € L?>(R%) we have

* 8
HijHLQ(Rd) <2-10 HR]fHLQ(Rd)
As a consequence, we also derive

Corollary 1.4.2. For every f € L*(R?) we have

1/2
d /

% 12
IR < 2-10%| £l 2 (gay-
j=1

L2(Rd)

The first ingredient in the proof of Theorem [1.4.1]is a factorization of the truncated Riesz
transform R; = M'(R;), where M', ¢t > 0, is a family of multiplier operators, see Section
[2.1] This reduces the task of proving Theorem to estimating the norm of the operator
M* f(x) = supysq | M f(z)].

The second ingredient is based on the technique initiated by Bourgain in [7]. It consists
of estimating the Fourier multiplier associated with the family M? in a dimension-free way

and then applying this estimate to the square function inequality

1/2
M*f =sup |M'f| <sup |M*" f| + (Z sup |M'f— M2"f\2) (1.4.1)
>0 nez nez tE[2m27 1]

in order to deduce the desired estimate of the maximal operator M*. The Fourier multiplier
estimates may be found in Section while their application to are contained in
Section

Chapter [2| is based on [30].

In Chapter |3| we generalize the results of Chapter [2| to higher order Riesz transforms and
LP(R%) spaces for 1 < p < co. The main results are the following two theorems. By H; we

denote the space of spherical harmonics of degree k.

Theorem 1.4.3. Take p € (1,00) and let k be a non-negative integer. Let Py be a subset of
Hy. Then there is a constant A(p, k) independent of the dimension d and such that

1/2 1/2

> IRpfI <A R | D IRpfP :

PePs Lr(RY) PeP Lr(R?)
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where f € LP(RY). Moreover, for fized k we have
Ap, k) = O(p*/**/2)  4s p— o and Alp,k) = O((p—1)"2/>7F2) a5 p—1.
In particular, if P contains one element P, then Theorem [I.4.3] immediately gives

IR Lo gty < Ay B) [ R fll oy
In this case however, we can slightly improve the constant A(p, k).

Theorem 1.4.4. Take p € (1,00) and let k be a non-negative integer. Let P be a spherical
harmonic of degree k. Then there is a constant B(p, k) independent of the dimension d and
such that

IREf| Lo may < B, K RPfl 1o (rety
where f € LP(RY). Moreover, for fized k we have

B(p, k) = O(p**/?)  as p— o and B(p, k) =0((p—1)"2%?) 4s p—1.

Combination of Theorem and a result of Duoandikoetxea and Rubio de Francia [17,
Théoréme 2| yields a generalization of Corollary|1.4.2] Denote by a(d, k) the dimension of Hj,
and let {Y;};—1 . 4@k be an orthogonal basis of H; normalized by the condition

Lo WP de = s (1.4.2)

here dw denotes the probabilistic spherical measure. Then we have

Corollary 1.4.5. Take p € (1,00) and let k be a non-negative integer. Then there is a
constant G(p, k) independent of the dimension d and such that

a(d;k) 2\
> |R| <GP, R) 7] oy
= Lp(RY)

where f € LP(RY). Moreover, for fized and odd k we have

Gp, k) = O(p"**/?) as p— o0 and Glp, k) =0((p—1)"7?%) as p—1
and for even k we have

Gp, k) = O@”* /2y as p— oo and  G(p,k)=0((p—1)"2%) as p—1.

Theorem [I.4.3]and Theorem [I.4.4)are first proved only in the case of odd &k which is simpler
as it employs the real method of rotations. Then we use the complex method of rotations to
generalize the argument to all natural k. In both proofs the first step is to use the same kind
of factorization as in Chapter 2| i.e. R}, = M[(Rp), where M{, t > 0, is a family of multiplier
operators. This step is described in detail in Section [3.]

Then we need to find a useful expression for the operator M}, and this is the place where

the proofs of odd case and general case split. In the odd case we express M ,i in terms of the
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Riesz transforms associated with the orthogonal basis {Y;};—i . (k) of Hi normalized by
the condition (1.4.2]), which yields

a(d,k)
M}, =(=1)* > R} Ry,
j=1

Finally we use the real method of rotations to express the operators Rﬁ,j in terms of the
Hilbert transform, which gives us a dimension-free estimate of their norm. The application of
the real method of rotations is found in Section [3.2]

The real method of rotations works only for odd kernels, so in the general case we have to
use the complex method of rotations of Iwaniec and Martin [26] and this requires extending
the operators from LP(R?) to LP(C?). Because of that we need to obtain a different expression
for the operator M} better suited to extension to C? and restriction back to R%. Instead of
taking the orthogonal basis {Yj};_1 . q@k) of Hg, for each multi-index j = (j1,..., ) with
pairwise distinct elements we take the monomial Pj(x) := zj, - - - ;.. The reason behind this
change is that the basis {Y}}j:17..,’a(d7,€) may not be orthogonal after extension to C?, while
the monomials P; are orthogonal both on R? and on C¢. We also average the resulting sum

over the special orthogonal group SO(d). Then we obtain

Mif(@) = C@.k) [ S (B Ry fu(e) dulU),
SO(d) 7
where Ty is the conjugation of an operator 7' by U € SO(d) and I denotes the set of multi-
indices j = (j1, ..., jx) with pairwise distinct elements. The details of the averaging procedure
can be found in Section
The third step is similar to the odd case: we use the complex method of rotations, preceded

by extension of the operator R on R? to the operator R! on C?, to express the operator

R'=> " Rp Rp,
jeI

in terms of the Hilbert transform. The application of the method of rotations is described in
Section 3.4

Lastly, we need to deduce the estimates for R' from the estimates for R'. The complex
method of rotations of Iwaniec and Martin includes a restriction procedure, see [26], Section
4], however the resulting restricted operator is not the same as the initial operator R!, hence
we need to estimate the difference between the two of them, which is done in Section

Chapter |3 is based on [31].

In Chapter ] we turn our attention to Schrodinger operators, i.e. operators of the form
1

where A is the Laplacian and V' is a non-negative function in L%OC(Rd) called the potential.
Specifically, we investigate Riesz transforms associated with them, which for a > 0 are given
by

9 f(z) = V(z) LOf(z) = VF(S;) : /0 T et () ot (1.4.3)
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where et is the semigroup generated by L.
There are two main results in this chapter. Firstly, we prove LP(R?), 1 < p < 2, bound-

edness for a wide class of potentials.

Theorem 1.4.6. Let V € LL (R%) and take p € (1,2]. Then for all 0 < a < 1/p the Riesz
transform R, is bounded on LP(R?).

Theorem is derived as a consequence of the endpoint bounds for R‘l// 2 on L2 (Rd), see
Proposition and for R, on LY(RY) (|2, Theorem 4.3], see also [21} 27]) together with

the interpolation result given below.

Theorem 1.4.7. Let 0 < ag < ai. Assume that V € L} _(RY) is such that R{} is bounded
on LP1(RY) for some p1 € [1,00) and R{® is bounded on L'(RY). Then, R{, is bounded on
LP(R?) for every p and a such that % =0+ 1]3;19 and a = Oag + (1 — 0)a; with some 6 € (0,1).

The above theorem is proved via Stein’s complex interpolation theorem.

The other main result concerns L>°(R?) and L!(R?) boundedness of R¢. for specific classes
of non-negative potentials V', for which we assume a certain condition relating the value V()
and the speed at which V' (y) decreases for y in a ball around z. The main classes of potentials
to which our results may be applied are given in the following theorem. We will say that some
property holds globally if there is a compact set F' C R? such that the property holds for
almost all x € R%\ F.

Theorem 1.4.8. Let V: R? — [0,00) be a function in L (RY). Then in all the three cases

loc

1. V(z) =~ 1 globally
2. For some a > 0 globally
3. For some B > 1 globally

each of the Riesz transforms R%, a > 0, is bounded on L™(R?) and on L'(RY).

tL

To prove the theorem, we first notice that the semigroup e, and in consequence the

operator R{,, are positivity preserving. Hence in order to obtain a bound on the L>®(RY)
norm of R{, it suffices to bound the quantity R{,(1)(x) by a constant that does not depend

on x. Thus we only need to handle the following integral

V() - /O T et (1) (@) 1 dt,

where 1 is the constant 1 function. This is where the main ingredient of the proof comes in,

which is the Feynman—Kac formula
et f(z) = E, [e* Jo V(Xs) ds f(Xt)] . (1.4.4)

Here X; = (X}, ..., X{) is the standard d-dimensional Brownian motion starting at x. In our

case we need this formula only for f = 1, i.e.

etL(1)(z) = B, [e* Jo V(X3) dﬁ} . (1.4.5)
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Then, for k = 0,1,2,... and some fixed z € R? we divide the underlying probability space

into events 'up to time t the value of the potential V(X;) was always at least V;,f )>. More

formally for fixed z € R? and k = 0,1,2, ... we introduce the sets

V@<V@}

Ak:{yGRd: 5

and
O ={w e Q: Xs(w) € Ay, for almost all s € [0,¢]}.

Using them we split the expected value in ([1.4.5)) in the following manner

e (1)(x) =
K
E, [e— Jivixs)ds 190] i ZEZ [e— Jiv(xs)ds lﬂkﬂﬂz_l} +E, [e— Jivi(xs)ds l%}
k=1

K
<eVE L3 TP (0N 0p ) + P (%)
k=1
with K = |logy V(z)]. Lastly, we estimate the probabilities appearing in the expression above
using bounds for the normal distribution and the complementary error function. A detailed
description is found in Section .3}

The case of Ll(]R{d) estimates is similar, but more complex. First we use duality between
the spaces L'(R%) and L*(R?) in order to reduce the task of estimating the L'(R?) norm of
the operator R{, = V*L™% to estimating the L*(R?) norm of the operator L™V, Similarly
to the previous case, we use the positivity-preserving property of L=% and we remain with

the goal of bounding the quantity

Lo(V) (z) = F(la) /0 e () () o

by a constant independent of . The main part of the proof is again the Feynman—Kac formula

used to estimate the semigroup e~*Y, however now the semigroup is applied to the function
V@ instead of 1. For this reason the calculations, although similar to the L>(RY) case, are
more complex, see Section [£.4] for more details.

Chapter {4 is based on [29].

In Chapter 5] we aim at improving the result of the previous chapter to a bound that does
not depend on the dimension d. However, this comes at a price of narrowing down the class

of permissible potentials to ones of the form
V(z)=Vi(x) + -+ Vy(z), (1.4.6)

where each V; acts only on the ¢-th coordinate of the argument z and has polynomial growth

with the exponent not greater than 2, i.e. there are absolute constants m and M such that
mlz|* < Vi(x) < Mlxg|® (1.4.7)

for some 0 < o < 2. The main theorem of the chapter is
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Theorem 1.4.9. Fiza > 0 and let V given by (1.4.6|) satisfy (1.4.7). Then there is a constant
C > 0 depending on m, M, o and independent of the dimension d such that

1R fl| oo (rty < Cllflpoo(rays | € L®(RY).

As a by-product of our considerations we also obtain L!(RY) estimates for R¢, but only
for a limited range of a. The reason for this is that we need to use concavity of the function

2.

Theorem 1.4.10. Fiz o > 0 and let V' given by (1.4.6) satisfy (1.4.7). For a <1 there is a
constant C' > 0 depending on m, M, « and independent of the dimension d such that

IRV fllyzay < Cllflrzay, | € L'RY).

The methods used to prove the above results are similar to the ones in Chapter [, although
we have to be more careful as we want to obtain a dimension-free estimate.

It is interesting to note that we do not need any explicit formulas for the potential V' or
for the semigroup e *£. This is in contrast to previous dimension-free result, which addressed
only the case of V() = |z|* and of polynomial V.

The particular structure of V' lets us write

d

1 9
L:ZlLi, where L; = _58733?_'_%’ (1.4.8)
1=
and, as a consequence, factorize the semigroup e ** in the following way
d d
e b= He_tLi and hence e F(1) = He_tLi(]l). (1.4.9)
i=1 i=1

This is the key property allowing us reduce the problem to one-dimensional estimates of the

semigroups e tF

i and as a result to get estimates that does not depend on the dimension d.
In Section we prove that the one-dimensional semigroups e~*%¢ decay exponentially in ¢

and V' (z) for small values of ¢, i.e. we have
e (1) (z) < e Y@ for t < N, z € R

It is noteworthy that the constant in front of the exponential in the above estimate is 1,
which means that we can multiply one-dimensional bounds to estimate the full semigroup
e L without constants growing with the dimension. The proof is divided into three cases
depending on the value of |z;| and tV;(x) but in all of them the main ingredient is the
Feynman—Kac formula .

In Section [5.3| we use results from Section [5.2| and a similar result [29, Lemma 3.1] giving

an exponential decay of the semigroup for large values of ¢, namely
e tli(1)(x) < e fort> N, z e R%

to estimate the L°° norm of RY;.
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Finally in Section we estimate the L'(R%) norm of the Riesz transform Ry,. We use
duality between L (R?) and L' (R%) spaces which reduces estimating the L'(R%) norm of the
operator R, = VL™ to estimating the L>(R%) norm of the adjoint operator

Vi) = s [ TtV ) () o e

T(a) Jo

Again, using the positivity-preserving property of the semigroup e *’ reduces the task to
estimating e~**(V?). In this case, although the factorization (T.4.9) of the semigroup as an
operator still applies, it does not behave well when the semigroup is applied to V¢ instead of

the constant function 1, hence we use the following formula

d d
e—tL(v) — Z €_tL(‘/7;) — Z e—tLZ(]l) e_tLi(‘/i), Where Lz I — Li,
=1 =1

which again allow us to use the one-dimensional estimates to obtain the desired dimension-free

result.

1.5 Notation

We finish the introduction with a description of the notation and conventions used in the

dissertation.

1. We abbreviate LP(R?) to LP and |||, to [[[|,- For a sublinear operator 1" acting on L”

we denote its operator norm by ||7'|| We let S be the space of Schwartz functions

p—p
on R?. Slightly abusing the notation we say that a sublinear operator T is bounded on

LP if it is bounded on S in the LP norm.

2. For a Banach space E the symbol LP (Rd; E) stands for the space of weakly measurable
functions f: R? — E with the norm 1l o@a.my = (Jpa £ ()5 dz)Y/?. Similarly, for
a finite set F' by ¢P(F'; E) we denote the Banach space of E-valued sequences { fs}scr

with the norm || £l () = (Ceer I fsllE)'/.

3. For an exponent p € [1,00] we let ¢ be its conjugate exponent satisfying

For 1 < p < oo we also set

p* =max(p,(p—1)7).

4. The Fourier transform is defined for f € L' and ¢ € R? by the formula

~

Fie) = fe) = [ rwemeaa,
5. The gamma function is defined for s > 0 by the formula

F(s):/ t5tet dt.
0
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We will use Stirling’s formula [40, 5.6.1]
V2ra® ie ™" < T(z) < V2ra® 2e *t i, z > 0. (1.5.1)

and its asymptotic form

I'(s) ~ \/ﬁss_%e_s, s — 00. (1.5.2)
We will also need estimates for the ratio of two gamma functions:

I(s 4+ a) ~ s?T(s), 5 — 00, (1.5.3)
see [40] 5.11.12], and Gautschi’s inequality [40, 5.6.4]

1-s _ LT(@+1)

S 1)1=s 0 0,1). 1.5.4
T <F(:c—|—s)<(x+) , x>0, s€(0,1) ( )

6. The symbol S?~! stands for the (d — 1)-dimensional unit sphere in R%. We also write

Sq_1 = (1.5.5)

to denote the unnormalized surface area of S4—1.

7. For a set A by 14 we denote its characteristic function. The symbol 1 stands for the

constant function 1.
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Classical Riesz transforms
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Chapter 2

L? estimates for the maximal Riesz

transform

In this chapter we investigate the Riesz transforms, the maximal Riesz transforms, and
their relations, in particular we ask whether it is possible to control the LP norm of the
maximal Riesz transform by the norm of the Riesz transform in a dimension-free manner.

To be more specific, for a Schwartz function f on R? let us define the Riesz transform R;,

j=1,....d, by

(45 T — i
Rif(z) = lim 2 / — T f(y)dy. (2.0.1)
/ t—0+ TF% lo—y|>t ‘x _ y‘d-&-l
It is well known that R; may be defined equivalently by the Fourier transform as
B &
R;f(§) = _Zé f(&), ¢eRr% (2.0.2)

as it will turn out, both definitions are useful in our case. We define also the maximal Riesz

transform

R} f(z) = sup |R§f(m)‘,
>0
where Rg., called the truncated Riesz transform, is given by
+
d+1 T
R!f(x) = (f)/ LY ) dy
2 Ja—yl>t [z =yl

In [37] Mateu and Verdera proved that for 1 < p < oo the L” norm of Rjf can be
controlled by the LP norm of R;f, namely

Theorem (Mateu, Verdera, [37]). For 1 < p < oo there is a constant Cp, q depending on p
and d such that

1B S|, < Cpall Rif1l,- (2.0.3)

The main purpose of this chapter is to improve this estimate in the case of p = 2 to a

dimension-free bound with an explicit constant.

Theorem 2.0.1. For every f € L? we have
[R5 f]l, < 2 10°(|R; £

15
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Remark. There is nothing special in 2 - 10® and clearly, optimizing our method, one may get
a better constant instead. We wrote down an explicit constant in order to get an impression

of its magnitude.
Remark. The theorem is true for all dimensions d, however we restrict our proof to the case

d > 4 due to technical reasons and from now on we assume that d > 4. The case 1 < d <3

follows from [37, Theorem 1].

Note that Theorem combined with Plancherel’s theorem and (2.0.2)) easily implies a

dimension-free bound for the norm of the vector of maximal Riesz transforms on L2.

Corollary 2.0.2. For every f € L? we have

1/2
d /

SR I <2108 £,

Jj=1
2

As described in Section [I.4] the proof of Theorem [2.0.1] consist of factorization of the
truncated Riesz transform R; = M'(R;) and then estimating the Fourier multiplier associated
with the operator M?.

Before we move on to the proof, we establish some notation and facts used in this chapter.

1. The symbol K stands for the kernel of the operator R} which is

oy
Ki(z)=~- ]l|x\>t(x>‘x’7]+17 z €RY,
and v denotes the constant
r (%)
Y= = FESE
T 2

2. In the proof of Theorem we shall need a numerical inequality (see e.g. [38, Lemma
2.5]) which says that for any n € Z and continuous function g: [27,2"!] — C we have

sup [g(t) —g(2")]
te[2n,2n+1]

o (21 ) 1/2 (2.0.4)
<V2Y | Y o+ 2 m 4 1) — g2 + 2 m)
=0 m=0

3. Lastly, we will need the Poisson semigroup defined for f € L? by

[

N —t

BfE) =p()f(€)  with p(&)=e

9

(2.0.5)

We denote by P.(f) and g(f) the maximal function and the square function associated

9 1/2
dt) _

with this semigroup, i.e.

P.f(@) =sup|Pif (@) and guxx»—<ﬂf¥(iafw>

t>0
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From [45], pp. 47-51] and [16, Theorem VIIL.7.7] we know that for f € L? we have

1
[P flly < 4l fll; and [lg(f)ll; < EHJCHZ (2.0.6)

We will also need the so-called Poisson projections given by
Sn:Panl—PQn, n € 7.
The sequence (S, )nez is then a resolution of the identity on L? which means that

f=> Suf, fel’ (2.0.7)

neL

Moreover, S,, satisfies
27L
d
Sn = — P,
f@) == | GRi@a

so by the Cauchy—Schwartz inequality we have

2 on
dt <
An 1

Now summing over n € Z and using (2.0.6)) leads us to the conclusion that

1/2
(jiz\ShfWZ> ;7:HfH2 (2.0.8)

ne”Z

n 2
¥ d

dt

d

2< nl/
Snf ()P <2 | =

— P f(x) — P f(x)

n—1

2.1 Factorization

The goal of this section is to prove the factorization R; f = M'(R;f) of the truncated
Riesz transform. Hence, we begin with the definition of the function which will be a part of

the Fourier multiplier associated with the operator M*. Let m : [0, +00) — C be the function

2T () >
m(z) = NG /QMT Jg(r) dr. (2.1.1)

For Rev > —% the symbol J,, denotes the Bessel function of the first kind defined by

1

¥ ot 2\V—3

1- 2 ds,  t>0, 9.1.2

zvr(u+§)\/7r/1e (1= 2 ds (2.12)
see e.g. [22, B.1]. It is known that for v > 0 the Bessel function satisfies |J,, ()| < 1 (see |40,
10.14.1]) and |J,(t)| < C(v)t” (see [40, 10.14.4]). Using the assumption that d > 4 we thus

see that (2.1.1]) defines a bounded continuous function on [0, 00).

Ju(t) =

Lemma 2.1.1. For each t > 0 the multiplier associated with the j-th truncated Riesz trans-

form defined in (2.0.1) equals

ey — S

where £ € R, € # 0.



2.1. FACTORIZATION 18

Proof. First observe that K}(x) = K]l (%) ¢t~ which means that I/(\;(f) = I/(;l(tf) and we can
focus on K = K} Then we write

1 : !
Kj(x) = ’ijX\x|>1(x)W =uz;K(x) with K(z) = ’YX\x|>1($)W

so that f(\] = —ﬁajl? . Since K is radial, its Fourier transform K is also radial and has the
form K (&) = h(|¢|), where

h(z) =27T7x3“/ r2 VL, (2mrx) dr, (2.1.3)
1 2

see e.g. [22, B.5]. Recalling the estimate |Jd/2_1(l‘)‘ < 1 we see that for z > 0 the integral
in (2.1.3) is convergent and the function h is well defined. Since by [40, 10.6.6] the Bessel

function satisfies
1 i Joe ($) _ Ja+1

cdr zo  zotl
differentiating (2.1.3]) for x > 0 we obtain

(2.1.4)

B (z) = —y(2m)2T! /OO r2Jy (r)dr.

2rx

Passing with the derivative under the integral sign in (2.1.3]) can be easily justified with the

aid of the Leibniz integral rule. In summary we have proved that

T - 1 5 / - _-i _i /
R6) =~ 5y it e = —is2 (~5-4(e) )
and noticing that —h/(|¢]) = 2nm(|£|) completes the reasoning. O
Let M, t > 0, be defined by
MUJ() = m(le) (), fe L (2.1.5)
and set
M* f(z) = sup |M" f(z)|. (2.1.6)
>0

Since m is a bounded function, Plancherel’s theorem implies that M? defines a bounded
operator on L2. Moreover, since m is continuous, we see that if f € S, then for each z € R?
the mapping ¢t — M!f(x) is continuous. In particular for such f the supremum in the
definition of M* f(x) may be restricted to rational numbers, which shows that the function
M* f(z) is Borel measurable.

As a corollary of Lemma we shall obtain a factorization of R;- in terms of M which
is crucial for our purposes, see Corollary For its proof we need a lemma on the density
of R;j(LP) in LP. For p = 2 this is an easy consequence of Plancherel’s theorem and .

Lemma 2.1.2. Let 1 <p <oo and j=1,...,d. Then the space R;(L”) NS is dense in LP.

In particular R;(LP) is dense in LP.
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Proof. Throughout the proof we fix 1 < p < oo and j =1,...,d. It is sufficient to prove that
(Rj)*(LP)N S is dense in LP and this is our goal. Here the symbol (R;)? denotes the two-fold
composition (R;)? = R;j o R;.

For t > 0 and f € L' + L™ denote

Tt]f(x) = (47rt)_1/2/Rexp<—]xj — yj]2/4t)f(ac1, e T, Y Tl - - 5 Td) AY;

Then {th}t>0 is the heat semigroup on R applied to the j-th coordinate of R%. It is a
symmetric diffusion semigroup in the sense of Stein [45, Chapter 3]. Applying the Fourier

transform for f € S we obtain

—
~

T} f(€) = exp(—4n2t€2) F(€), £ e R (2.1.7)

In particular if f € S, then also th fes.
Take f € S. It is easy to show (see [22, Proposition 5.1.17]) that

(R)*(Af) = =03 f, (2.1.8)

where A denotes the Laplacian on R?. Using the Fourier inversion formula together with
(2.1.7) and (2.1.8) we obtain for each t > 0

15— = [ TG nas=— [ T s = -wy ([ wands). @

The integrals in ([2.1.9) are Bochner integrals on L?. Since f € S, we see that lim; o thf =0
both a.e. and in the L? norm. Now invoking the LP boundedness of the maximal operator

[ supssg ‘th f’ (see |45, Chapter III, Section 3|) and the dominated convergence theorem

we deduce that also limy . HTtJ f H = 0. Thus, denoting g; = fot T! (Af)ds and coming back
p

to (2.1.9) we see that (R;)%(g:) € S and

lim ||(R;)*(g:) — pr = 0.

t—o00

Noticing that g; € S we conclude that any f € S may be approximated arbitrarily close in
the LP norm by an element of (R;)*(S) N'S. At this point the density of S in LP completes
the proof. O

Having proved Lemma[2.1.2|we now have all the ingredients for justifying the factorization.

Recall that the operators M! and M* are defined by (2.1.5) and (2.1.6)), respectively.

Corollary 2.1.3. Let j = 1,...,d. Then for each t > 0 the truncated Riesz transform
factorizes as
Rif = MY(R;f),  felL” (2.1.10)

Moreover the mazimal operator M* is bounded on all LP spaces, 1 < p < oo, and the optimal

| < GRSl equals L]

constant C), in the inequality HR;‘f pop-
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Proof. Recalling the decomposition follows immediately from Lemma
When studying the LP boundedness of M* by Lemma [2.1.2] it suffices to consider M*g

with g € R;j(LP) N'S. Note that for such g the function M*g is measurable. Clearly, (2.1.10)

implies Cp < [|[M*[|,_,,- Applying (2 we see that M* is bounded on R;(LP) NS, which is

a dense subset of LP by Lemma Thus, using again (2.1.10) we see that [|M*||,_,, < C).
This completes the proof of the corollary. O

By Corollary 2.1.3] Theorem [2.0.1]is equivalent to the following result.

Theorem 2.1.4. Let M* be defined as in ([2.1.6). Then for every f € L? we have

1M £l < 2 10% £l

2.2 Multiplier estimates

Now we focus on proving Theorem and on the operator M*.

First we prove estimates for the multiplier m. We start with small arguments.

Lemma 2.2.1. For 0 < z < Vd we have

|m(z) — 1] <20

Sk

Proof. By |40}, 10.22.43] we know that m(0) = 1, so

d
25T d+1 2w
m(z) — 1 =m(xz) —m(0) = _2\(f7r2)/0 r_%J% (r)dr. (2.2.1)
Now [22], B.6] gives
xl/

with S, satisfying

2—V$V+1

1Sy (z)] <

v+ DI+ 3)vr
Hence, using (1.5.4]) we estimate (2.2.1)) as follows (recall that % <1)

2 T d+1 27X
Im(z) — 1] < mel (5 ) y ! / rdr
TE+D)vr (+)rh
<2 27Tl‘+47'&’33‘2 <20i
X \/& d X \/g

O]

Our estimate for m(xz) when x is large will be based on an inequality for the Bessel function
Jy,. This is essentially a restatement of [39, Lemma 4.1]. We present the proof in order to

keep track of the constants.

Lemma 2.2.2. For eacht > 0 and v > 0 we have

2100t (6_
2T (v + 3) Vum

| 7,(1)] < vz +e—%).
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Proof. Define for t > 0 and v > 0
T 1 Y 2\ V"3
)= ﬁ/ eitsvv (1- SQ)V 2 ds = / el (1 - 8) ds. (2.2.2)

-1 RN v

Then, using the definition of the Bessel function (2.1.2]) we see that
tv t
T M| —].

2vT (V—|-§) Jvm Vv

Therefore in order to prove the lemma it suffices to show that

Ju(t) =

IM(8)] < 2100 (e_t + e—%) ) (2.2.3)

and till the end of the proof we focus on justifying (2.2.3]).
We begin by splitting the second integral in (2.2.2)) into two parts

1
sl
its 82 2
e 1—— ds|.
sl v

<2Vv (2) < 6e 1

|M(t)] <

2\ V3
()\/ em(l—S) ds| +
Y Lsl<vw v

Then we observe that

1
2\ V72
: S
/ ets <1 — ) ds
Y Lsl<vv v

. 2 . o
since 1 — 2~ < % for |s| > g This means that we can move on to estimating the second

(2.2.4)

[N

integral in (2.2.4). To do this we will change the contour of integration. However this will

work only if v > %, so we take care of v < ﬁrst In this case we use ((1.5.4)) to write

1
2\ V73
/ 1 — 8> ds
Is|< v

Now assume that v > % and let C = Cy U C; U Cy U Cy be the rectangle with the

parametrization

1 L1 o 1
<ﬁ/ (1-sH)"2ds=vro——2- <
~1

Co(s) = s for € [—%, Q ,
Ci(s) :=1is+ \f for se€[0,1],
Cy(s) :=—s+1 for se [ g, %} ,
Cs(s) :==i(1 —s) — \f for se|0,1].

y_1
The function z - ei* (1 - %) * is holomorphic in the disk {z € C : |z| < \/}, which for

V> % contains the rectangle C, hence the Cauchy integral theorem gives

1 1
2\ V3 1 . 2\ V72
/ 1 _ S) ds| < Z / RUCIC) <1 _ CJ(S)) ds
‘ ‘ 14 0 v

je{1,3}
1
o N2\ V3
ezt(z—s) (1 o (5 Z) > ds!.
1%

]

+

S

1<%
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The first term can be estimated as

1 04(5)2 v=3
> | [ o <1_J) ds| <
0 v

J€{1,3}
t

s now it suffices to show that

1
' A2\ VY3
/ e*’LtS <1 o (S Z) ) dS
|s|< v

Recall that v > % and observe that

Since €t(i=5) = ¢~te—

< 2100.

_32—1+M< 1+8  if[s|<3

v 2 g5 Vv
l-g5 iy <lsl<y

and thus

/.

1
' A2\ VY3
e—zts <1 _ (S Z) ) ds
v v

[

2

< 5eb + 5/ < 2100.

This completes the proof of (2.2.3)) and thus also the proof of Lemma m

Applying Lemma [2.2.2] we now justify an estimate of m for large arguments.

Lemma 2.2.3. Forx > Vd we have
im(z)

|<6-1O4ﬁ.
X

Proof. We consider two cases. First we take z > d. Recalling that |J,(z)| < 1 and d > 4 we
can estimate the integral in (2.1.1)) by

o0 [e'e) ]_—é 1_4
/ re gy (r)dr| < / r7%dr < 2(27ra;) - < 4(27Td) -
27z 2 2 d—2 Z

T

Including the constant in (2.1.1)) and using (1.5.1)) for d > 4 gives

(wd)"~

T

[SI[oH

d+1 1 Va
r ( * ) < 8 Vamnd(zne)-terdm < L < YO (2.2.5)
xr T

<
m(@)] <8 ; .

The second case is when v/d < = < d. Then the integral in (2.1.1)) can be split into two

parts: from 27z to 2md and from 27d to infinity; namely

m(z) = 2”\/7?) (/;:dr—iJ (r)dr+/2:r— J (r)dr) — L(2)+ .

[Sl[oH

[SlI=H
NI
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The second integral can be estimated as in (2.2.5))

[Io| = [m(d)] < == <

~5
s

To handle I, we use Lemma [2.2.2] which gives

2100+/2 2md B 2md

[L1(2)] < vz </ e Vi dr—l—/ e~ 10 dr)
ﬂ\/& 2mx 2mx

04ﬁ

s

5

2100 _2vans
< STV 4 4200v/2de 10 < 6- 1
™

for x > 0. O

In the last inequality we used the fact that e ™% < %
We will also need an estimate of the derivative of m.

Lemma 2.2.4. For all x > 0 we have
|lzm! (z)] < 104,

Proof. Differentiating (2.1.1) gives

m'(x) = —M:}g (2mz).

(mz) ’

> i 0.
If x > d, then we can estimate J% by 1 and use (|1.5.1]) to get

[SIIcH

or (4L 1
|zm/(z)| < % < 2\/§7rd(27re)_%eﬁ<d+1> < 3.
2

d—l

w2

Otherwise, when x < d, we use Lemma [2.2.2] which yields
d+1 d
x2\/77F (d%) 2i00ﬂ(27m)2 (62@m N 6_1%)
(mz)2 220 (4H) Vdn

r [ _2vnz g 2100  4200v/10
= 4200V2—= <e Vi + e_10> < + < 10%
Vd s Ve

’zm/(az)’ <

2.3 Square function estimates

Having established the technical results regarding the multiplier m, we move on to the
proof of Theorem [2.1.4. We estimate M* as follows

1/2
M*f:sup’Mtf‘gsup’M2nf‘+(Z sup \MthQ"fF) . (2.3.1)
t>0 neZ

oz telzn 2an ]

To bound the first part, we compare it with the maximal function of the Poisson semigroup
Sup‘Mznf‘ gsup‘M2nf—P2nf‘+\P*f\. (2.3.2)
nez neZ

Since by (2.0.6)) the norm of P, is bounded on L? by 4, to estimate the first term in (2.3.1)) it
is enough to take care of the first term in (2.3.2)).
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Theorem 2.3.1. For every f € L? we have

sup ‘MQ
neL

< 1.3 107 £l

Proof. As noted above in order to prove the theorem it is enough to show that

sup ‘Mznf — Pon
nez

<12-10°| 1]l
2

Estimating the supremum by the sum and using Plancherel’s theorem we arrive at

Recall that the multiplier symbol associated with M?* is m(t|£]) by (2.1.10)) and the one of the
_ 18l
Poisson semigroup P is e Vi by its definition (2.0.5). Combining these facts leads to

I g\fHZ = H (m(2”\g|) - e_anE> f‘
neZ neL

Now we need to estimate the expression inside the norm. We split the analysis into two cases
in order to use Lemma and Lemma [2.2.3] First assume that 27|¢| < v/d. Then by
Lemma and the fact that 1 — e % < = we have

sug‘Man—Pgnf‘H <3| f — Pyt = ZHMQ”f o]
ne

nel

2

(2.3.3)
2

2"[¢]
N

If, on the other hand, 2"[¢| > V/d, then we use Lemma and the fact that e™® < % for
x > 0 to get

_on l&l ’
va — 1] <21

() = | < el - 11+ | (2:3.4)

‘m(2”|§|) P (2.3.5)

Combining (2.3.4) and (2.3.5)) gives
pil 271\
vd '\ Vd
Squaring, summing over n € Z, and using the fact that for any x > 0 we have

Zmln(éln (4"z)~ ) 4

neL

]m<2"|s|> e

leads to

_onlel |2
m(2ME)) — e F Vil <4-(6-1012,  £eRL

D

nez
Plugging the inequality above into (2.3.3]) finally gives

> | (mezien - )

nez
This completes the proof of Theorem [2.3.1] O

(1.2-10%) Hf” (1.2-10%)2|| £|12.
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Now we estimate the norm of the second term in (2.3.1)).

Theorem 2.3.2. For every f € S we have

1/2
(Z sup !Mtf—M2"f|2> < L7-10% ]l

ez, tel2n,2n+1] )

Proof. Since f € S, we see that for each x € R? the function t — M?f(z) is continuous.
Hence, an application of the numerical inequality (2.0.4)) is legitimate. Using this inequality,
the resolution of identity (2.0.7) given by S, and the triangle inequality on the space L?(£2)

we obtain

1/2
Z sup }M'ff—Mgnf‘2
neZt€[2n’2n+1]
2l—1

SIS S| ) s

=0 keZ n€Z m=0

2
1/2

(2.3.6)
2

Then we estimate the norm in the above expression in two ways.

Similarly to the previous proof, by Plancherel’s theorem we have

2
ol 1 1/2
2" 42"~ (m+1 2nyon=lpy,
S [(are o ey g
neZ m=0
2
2l—1 2

=22

neZ m=0

(@ 2tom e 916) - 2 () 5

We estimate the first factor in the norm using Lemmas [2.2.1] and [2:23]

m (@ 2%+ 1)el) = m (2" +2 )] )| <310 min (2%" (2;9) _1>

and the second one by
< 3min 2n+k‘£| <2n+kz|€|>_1
vd '\ Vd '

The product of the right-hand sides of the two inequalities above can be further estimated by
108 - 2= Ikl which gives

2
1/2
2l—1 /

Z Z ‘<M2”+2" m+1) _ pp2n+2""'m >5k+nf‘

neZ m=0
2

12 o—|klol [ 2"¢] <2n‘§’>_1 PNk 106 20— k|0l || £/12
<10'2.2 Q/Rd,;zmm<\/67’ N ’f({)’ de < (2-10%)22- M2l 72, (2.3.7)
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For the second way of estimating (2.3.6) note that Lemma implies
m (@ + 22 m+ D)el) = m (@ + 2] )|
27427 (m+1) dt
< tlelm’ (1€ % < 10727
2n+2n—lm t

We use the above inequality, Plancherel’s theorem and ([2.0.8) to continue (2.3.6) as follows

! 1/2]|?
26—1 9
2 30 (e - A S
neZ m=0
2
<10% 270> " [I1Sepn f115 < 105 27 £15. (2.3.8)
nez

Putting (2.3.7) and (2.3.8) together we reach

1/2 0
(Z sup |[M'f— M2nf‘2> <2- 106\/5222_é min (LQl_LSl) 11l
nez tel

2m,2n ] ) 1=0 keZ

< 17108 £,
The proof of Theorem is completed. O

In the light of (2.3.1]), Theorem and Theorem the proof of Theorem is

concluded.



Chapter 3

LP estimates for the higher order

maximal Riesz transform

In this chapter we employ the method of rotations in order to generalize the results of
Chapter [2] to higher order Riesz transforms and to LP spaces for 1 < p < co. First, we use the
real method of rotations to establish the estimates for odd order Riesz transforms and then
we use complex method of rotations, which is more involved and requires some additional
steps in the proof, to include also the case of even order Riesz transforms.

Fix a positive integer k£ and denote by Hp = Hz the space of spherical harmonics of
degree k on the Euclidean unit sphere S~!. Throughout the chapter we identify P € H;,
with the corresponding solid spherical harmonic. Via this identification P € H}, is a harmonic
polynomial on R? which is homogeneous of degree k, i.e. satisfies P(z) = |z|*P(z/|]), z € R%

For P € Hj the Riesz transform R = Rp is defined by the kernel

Ko@) = K(z) = 5 2@ r (%)

o T+ /2T (3)

more precisely,

Pz —vy)

Ref(o) = lim Rpf(a),  where  Rpf(e) = [ D ryydy. (302)

le—y|>t |2 =y

The operator R%, is called the truncated Riesz transform. In the particular case of k =1
and Pj(xz) = z; the operators Rp;, j =1,...,d, coincide with the classical first order Riesz
transforms studied in Chapter [2| It is well known, see [46] p. 73|, that the Fourier multiplier

associated with the Riesz transform Rp equals

mp(€) = (—if P& e pa (3.0.3)

j€*

By the above formula mp is bounded and Plancherel’s theorem implies the L? boundedness
of Rp. The LP boundedness of the single Riesz transforms Rp for 1 < p < oo follows from
the Calderon-Zygmund method of rotations [§].

Similarly to the previous chapter, the main object of investigation is the maximal Riesz

transform defined by
Rpf(x) = sup |Rp f(x)].
>0

27
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The research was inspired by results of Mateu, Orobitg, Pérez and Verdera [35], [36], who

proved the following result.

Theorem (Mateu, Orobitg, Pérez, Verdera, |35, [36]). For 1 < p < oo there is a constant
Cp k.a depending on p, k and d such that

1B fIl, < Cpral BpfIl,-

In this chapter we improve the above theorem by estimating the constant C, 1, 4 indepen-

dently of the dimension d. Our results are summarized in the following two theorems.

Theorem 3.0.1. Take p € (1,00) and let k be a non-negative integer. Let Py be a subset of
Hy.. Then there is a constant A(p, k) independent of the dimension d and such that

1/2 1/2

> IRpfP <A@ R Y [RefP ,

PePy PePy
P
where f € LP. Moreover, for fived k we have
Alp, k) = O(@° /) as p— and  A(p,k) = O((p—1)"27F2) a5 p— 1.

This theorem is a generalization of Theorem from Chapter [2] to higher order Riesz
transforms and to LP spaces for 1 < p < co. In particular, if P, contains one element P, then

Theorem |3.0.1] immediately gives

IRpfIl, < Alp, K)|RPf]],-
In this case however, we can slightly improve the constant A(p, k).

Theorem 3.0.2. Take p € (1,00) and let k be a non-negative integer. Let P be a spherical
harmonic of degree k. Then there is a constant B(p, k) independent of the dimension d and
such that

IRpfIl, < B(p, K)IIRp ],

where f € LP. Moreover, for fived k we have
B(p, k) = O(p***/?)  as p— oo and  B(p,k)=0((p—1)">""%) as p— 1

Combination of Theorem and a result of Duoandikoetxea and Rubio de Francia [17,
Théoréme 2| yields a generalization of Corollary Denote by a(d, k) the dimension of Hy,
and let {Y}} j=1,....a(d,k) be an orthogonal basis of H; normalized by the condition

1
Y (w)]? dw =
| W = s,

where dw is the uniform probabilistic measure on S¢~!. Then we have
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Corollary 3.0.3. Take p € (1,00) and let k be a non-negative integer. Then there is a

constant G(p, k) independent of the dimension d and such that
a(d,k) ) 1/2

Ry, 1] <G R)f1,
=1

P

J
where f € LP. Moreover, for fived and odd k we have
Glp, k) = O0@"*™*?) s p— oo and Gp,k)=0((p—1)""*"%) s p—1
and for even k we have
G(p,k) = 0@ /%) as p—voo  and  G(p,k)=0((p—1)""*"*) as p—1.

Interestingly, we are not aware of any way of proving Corollary which does not use
Theorem [3.0.1]

In the case of odd k the proof is simpler and consists of three steps
1. We factorize the operator R}, into RY, = M} (Rp).

2. We express the operator M} in terms of Riesz transforms as

a(d,k)
Mf.=(=1)* > R} Ry,
j=1

3. We use the real method of rotations to express M,i in terms of the Hilbert transform
and we estimate the LP(R?) norm of M.

In the case of general integer k we use the complex method of rotations, which requires
an additional step of extending the operators from R? to C% and then restricting them back

to R?. The steps of the proof are as follows.
1. We factorize the operator R%, into R, = M}(Rp).

2. We express the operator M} in terms of Riesz transforms as

Mif(@) = CR) [ S (B R fu(e) (). (3.0
SO(d) 7
Note that in the even case we use P; instead of Y}, since it is not clear to us whether

the functions Y; remain orthogonal after extension to ce.

3. We extend the operator R! = Zjel prj Rp; on R? to the operator R! on C4 and aPply
the complex method of rotations of Iwaniec and Martin [26] in order to express R' in

terms of the complex Hilbert transform. Then we estimate the LP(C?) norm of operator

R'.

4. We deduce the estimates for R from the estimates for R.
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Before we move on to the proof, we establish some notation specific to this chapter.

1. The letters d and k stand for the dimension and for the order of the Riesz transforms,

respectively.

2. For k € N we let D(k) be the linear span of {Rp(f) : P € Hy, f € S}. Since Rp is
bounded on LP for 1 < p < oo, the space D(k) is then a subspace of each of the LP

spaces.

3. The symbol Ca stands for a constant that possibly depends on A > 0. We write C
without a subscript when the constant is universal in the sense that it may depend only

on k but not on the dimension d nor on any other quantity.

4. For two quantities X and Y we write X <A Y if X < CAY for some constant Ca > 0
that depends only on A. We abbreviate X <Y when C is a universal constant. We also
write X ~ Y if both X <Y and Y < X hold simultancously. By X <? Y we mean
that X < C2Y with a universal constant C. Note that in this case X/& < YVA,

5. By w we denote the uniform measure on S%~! normalized by the condition w(S%~1) = 1.

By o we denote the uniform measure on S9! normalized by the condition o(S4~ 1) =
Sd—1-

We write ¢ for the uniform measure on $?¢~! normalized by the condition ¢(S?¢~1) = 1.

We write 6 for the uniform measure on S?¢~! normalized by the condition §(S??~1) = Syy_;.

6. We let (k+d) ( k)
I (5 I'(d+ £

_ — 2 and A, — =~ 2/ 3.0.5

Ve = Vhd = (& Ve = Th2d = ) (3.0.5)

7. We will also need the following formula
oo T‘d_l d d F(d)r‘(d + a)
2 —————dr=B| =, = =272 7 0.
/0 (1 + r2)dta (2’2*“) Td+a) (3.0.6)

valid for a > 0. This follows from change of variables 2 — r followed by formulas for
Euler’s Beta function B(a,b) from [40, 5.12.1, 5.12.3].

3.1 Factorization

The goal of this section is to show that a factorization formula similar to the one used in
Chapter [2| exists also for higher order Riesz transforms RY,. Proposition below is implicit in
[35, Section 4] and [36, pp. 1435-1436].

Proposition 3.1.1. Let k € N. Then there exists a family of operators M!, t > 0, which are
bounded on LP, 1 < p < oo, and such that for all P € Hj, we have
Riof = MU(Rpf), (3.1.1)

where f € LP. Each M} is a convolution operator with a radial convolution kernel b,.. More-
over, when P € My and f € S, then for a.e. x € R? the function t — M}(Rpf)(z) is

continuous on (0,00).
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Proof. We consider separately the cases of k odd or even starting with k odd.
Let N = % and denote by B the open Euclidean ball of radius 1 in R%. Similarly to the
proof in [35], pp. 3674-3675|, we want to show that the function

d

b(z) = bra(x) = Y R;(y; - h(y)) (), (3.1.2)

j=1
where
. 1 2 2N—2
h(y) = CdMTHﬂBC(y) + (B1+ Balyl” + -+ + Bulyl™ ) Ls(y)

satisfies the formula
Rp(b)(z) = Kp(z)Llpe(x). (3.1.3)

Here (1, ..., By and ¢4 are constants which depend only on k& and d and whose exact values are
irrelevant for our considerations, and Kp, Rp are defined in , , respectively, and
R;j is the j-th first-order Riesz transform. The important point is that remains true
for any P € Hi. We provide a sketch of the proof of contained in [35, pp. 3674-3675]
for the reader’s convenience.

Throughout the proof C' stands for any constant depending only on k£ and d. Consider
the fundamental solution of (—A)Y2AN | that is, a function F such that

(—A)2ANE =,

where ¢ is the Dirac delta at the origin. One can take E as a solution of

ANp— S
|.Z"d_l ’
where the constant C' is chosen so that Ix\%(g )= i' Consider the function

p(2) = E(@)Lpe(z) + (Ao + Aufol + - + Aonlal™) Lp(a),

where the constants Ag, A1, ..., Asn are chosen so that the derivatives of ¢ up to order 2NV
extend continuously to the boundary of B. Then, in computing the distributional derivatives
of ¢, one can apply 2N + 1 times the Green—Stokes’ theorem and the boundary terms will
vanish. This yields

(~) 28N p(z) = (~A)2 (wfj Lge(2) + (a0 + anfof? + -+ e ) ﬂB<x>>

d
=D R (Cuﬁﬁlhc@) + 25 (By+ Balal® + - + Al 2) nB<x>> = b(z),
=1

J

where the last identity is the definition of b. Since
p=Ex(-1)2ANp,
taking derivatives of both sides we obtain

P(d)p = P(O)E  (—A)/2AN .
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To compute P(9)E we take the Fourier transform

—— ~ P
POB(E) = PErie)B(e) = cgf,).
On the other hand, it is well known, see [46, p. 73|, that
P(z) P(¢)
=C—=.
7 ) = g
We conclude that we have ()
x
PO)E@) = Cir
Thus
P(x)

s« (—A)Y2AN o = CRp(b).

32

The only thing left is the computation of P(0)¢. We have, by [30, Corollary 2|, that

P(3)p = CKp(2)1pe(x) + P(d) (Ao b AP+ Ak,l\xy%—Q) 15(x)

To finish the proof, we need to show that
P@)(|z]¥) =0, for1<j<k-—1,
which will let us write
CRp(b) = P(0)p = CKplpe.
Taking the Fourier transform of both sides of gives

—

P(9)(J[¥) = ¢; P(§) A8,

where ¢; is a constant depending on j and d. Let 1) be a test function.

harmonic, we get

(PAI§, ) = (AT§, Pyp) = (AI715,2V P - Vip + PAY).

Iterating this computation we obtain

(PA75,9) = (5,D) = D(0),

(3.1.4)

Then, since P is

where D is a linear combination of products of the form 0% - 9°P with multi-indices §

of length |3| < j < d — 1. Therefore 3°P is a homogeneous polynomial of degree at least
d—j > 1, and so °P(0) = 0. This yields D(0) = 0 and completes the proof of ([3.1.4) and

B-1.3).

Denote by H the radial profile of the Fourier transform of h, i.e. H(|{|) = E({) for £ € RY.
By taking the Fourier transform of (3.1.2)) it is straightforward to see that b is a radial function.

This follows since the multiplier symbol of R; is —i% and

WA = =5

H'([¢]),
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so that

Ao =S -5 e = Large)
= 2ml¢f? 2m

is indeed radial and so is b.
Let b'(z) = bl (x) := t~¥b(%) be the L' dilation of b; clearly b’ is still radial. The dilation
invariance of Rp together with (3.1.3)) leads us to the expression

Kp(z)lpe(%) = Rp(b')(z). (3.1.5)
Let M }é be the convolution operator

M f(a) = b« f(2).

It follows from [35, Section 4] that M} is bounded on LP spaces whenever 1 < p < oc.
Moreover, in view of (3.1.5)) we see that

RLf = Rp(b') * f = b+ Rp(f) = M{(Rpf).

Finally, for f € S, P € My, and 2 € RY the mapping t — RL, f(z) is continuous on (0, 00).
Thus, also M} (Rpf)(z) is a continuous function of ¢ > 0 for a.e. . This completes the proof
of the proposition in the case when k is odd.

It remains to consider k even. Denote N = £. Then, as in the odd case, we show that

2
that the function
b(x) = bk’d(m) = (ao + 041|$’2 + -+ OzN_ﬂx‘Q(N_l))]lB(:L')

satisfies the formula

Rp(b)(z) = Kp(x)lpe(x). (3.1.6)
Here aq,...,any_1 are constants which depend only on k& and d and whose exact value is
irrelevant for our considerations. As in the case of odd k, the important point is that
remains true for any P € Hy.

The proof of is similar to the proof of except that we start with the fun-
damental solution of AN instead of (—A)Y/2AN. The result is that the function b does not
feature Riesz transforms R;. Details can be found in |36, pp. 1435-1436].

Using we proceed as in the proof in the case when k is odd. Let b'(z) = bl (z) :=
t*db(%) be the L' dilation of b. Since b is clearly radial the same is true of b'. Let M} be the
convolution operator

M f(a) =b"* f(x).
It follows from [36], Section 2| that M}ce is bounded on LP spaces whenever 1 < p < o0.
Moreover, in view of we see that

Rpf = Rp(b') * f ="« Rp(f) = My(Rpf).

Moreover, for f € S, P € Hy, and z € R? the mapping t — R% f(z) is continuous on (0, 00)
and therefore so is t — M}.(Rpf)(z). This completes the proof of the proposition. O
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As a corollary of Proposition [3.1.1] we see that in order to justify Theorems[3.0.1]and [3.0.2]it
suffices to control vector- and scalar-valued maximal functions corresponding to the operators
M. Note that by Proposition for f € D(k) we have

SUP}Mkf }— SUP ‘Mkf )‘

In particular sup;-q }M rf (x)| is measurable for such f, although possibly being infinite for

some z. Define

M*f(z) = sup |Mjf(z)|. (3.1.7)
teQ+

Proposition reduces our task to proving the following two theorems.

Theorem 3.1.2. Fix k € N. For each p € (1,00) there is a constant A(p, k) independent of
the dimension d and such that for any S € N we have

1/2 g 1/2
ZIM*fs < A(p, k) (Zmﬁ’) :

s=1
P P
where fi,...,fs € LP. Furthermore A(p, k) satisfies A(p, k) Sp (p*)%/2++/2.

Theorem 3.1.3. Fiz k € N. For each p € (1,00) there is a constant B(p, k) independent of

the dimension d and such that

M= fl,, < B(p, K)ILf1,,
whenever f € LP. Moreover B(p, k) satisfies B(p, k) <p (p*)*+F/2.

At this point the proof splits into the odd k case and the general case. We first deal with
odd k, however the proofs are independent and the reader may wish to skip directly to Section
[3:3] where the general case begins.

Until the end of Section k is a fixed odd integer. In proving the above theorems we
shall need a useful expression for M}. The next two propositions let us express M/ in terms
of the Riesz transforms and truncated Riesz transforms.

In what follows we denote by a(d, k) the dimension of Hy. For further reference we recall

1 _
dim?—[k:a(d,k:):<d+ll: >—<d—]:ﬁz3>%dk.

We will also need an orthogonal basis {Yj}jzl,...,a(d,k) of the space Hjy normalized by the

1
/Sdl Vi do = s (3.1.8)

Lemma 3.1.4. Let {Yj};—1 k) be as above. Then we have

the formula

condition

f=(-1F (Ry,)*f, fel? (3.1.9)
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- 1/2 -
Proof. Let Y; = (w) Y; so that [gu 1 |Yj(0)|*do = 1, where do denotes the uniform

-1

measure on S9! normalized by the condition o(S%1) = S; ;. Using [48, Corollary 2.9 b),
p. 144] we see that for all # € S?~1 it holds

a(d,k) (d, ) a(d,k)
Y Y0)° = “Sd’ = 5o that 3 v0? =1 (3.1.10)
j=1 - =1

Taking the Fourier transform of both sides of (3.1.9)) and using the formula (3.0.3|) we are left
with showing that

a(d,k)
SV =g, cer?
j=1

The above equality follows from (3.1.10) and the homogeneity Y;(§) = i Y;(&/1€]). This

completes the proof of the lemma. O

Proposition 3.1.5. Let k € Nygq and t > 0 and take the basis {Y]}?(:dl’k) normalized as in
(3.1.8)). Then, for all f € LP, 1 < p < oo, we have

a(d,k)
Mif=(-1)" > Ry Ry,f. (3.1.11)
7j=1
Proof. We apply Proposition to the functions Ry, f, f € LP, and then sum over j =
,a(d, k). This gives

a(d,k) a(d,k)
M Y0 (Ry)*f= > Ry, By, f,
o =1
and together with Lemma [3.1.4] completes the proof of the proposition. O

3.2 The real method of rotations

In this section we apply the method of rotations to the Riesz transforms Rg/j in order to
express them in terms of the Hilbert transform, which is a one-dimensional operator, hence
giving us a dimension-free estimate for the Riesz transforms.

We apply the method of rotations, specifically [22, 5.2.20|, to the operator Rg/j with
the kernel Ky, 1 ;>4 Since the kernel is odd, the application of the method of rotations is
legitimate. It yields

Ry f(z)="1 / Y;(o)H: f () do, (3.2.1)

where H! is the truncated directional Hilbert transform given by

L[ Sy
H! =— — = < dy.
O .

In terms of the normalized surface measure dw equality (3.2.1)) becomes

7D (ktd
Tg) /S | Yi(w)HLf () d (32.2)

B/ = 5y )
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and the limiting case of (3.2.2)) is then

N CE o Ry R ARVRIEY. (323
v, f(z) = ——=~4— (w)H, f(x) dw, 2.
’ L(5)T(5) Jsar
where H,, is the directional Hilbert transform given by

Hyf(x) = lim H;f(z).

t—0+

For further reference we note that when k& is fixed then
al (ker)

L(3)T(3)

Proposition and identity let us express the operator M} in terms of the

directional Hilbert transform and the Riesz transform in the following way

~ dF/2. (3.2.4)

a(d k) al (k) a(d,k)
My f(x Z Ry Ry, f(z) = (-1) F(S)lf(g)/sd—lHi > Yj(w)Ry, f| (x) dw
j=1

(3.2.5)
From (3.2.5)) we can see that in order to estimate the operator M} we need to estimate
the maximal directional Hilbert transform Hj and the Riesz transforms Ry,. The estimates

are summarized in the two following propositions.
Proposition 3.2.1. For each 1 <p < oo and f1,..., fs € LP we have

S 1/2 g 1/2
(Z !Hjjfs|2> < (Z |fs\2> (3.2.6)
s=1 s=1
p

p

uniformly in w € S%1 and the dimension d.

Proposition 3.2.2. Fiz k € Nygq. Then for each 1 < p < oo and f, f1,..., fs € LP we have
5 a(dk) 1/2 S 1/2
SN Ry £ <k pp' g <Z Ifs\Q) : (3.2.7)
s=1 j=1 s=1
p p
1/2
2 .
> By f] Sk 0" "1 £l (3.2.8)
i=1
p

uniformly in the dimension d.
We begin with the proof of Proposition [3.2.1]

Proof of Proposition [3.2.1] First we will reduce the inequality to its one-dimensional case.

Assume that we have proved the following inequality

s 1/2 g 1/2
(Z !H*fs|2> (Z |fs|2> , (3.2.9)

s=1 LP(R) s=1 LP(R)
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where H* is the one-dimensional maximal Hilbert transform, i.e.

1 flz—y)
- 22y,
@ /y|>t Y ’

and f1,..., fs € LP(R). We want to show that (3.2.9) implies (3.2.6).
Observe that for any A € SO(d) and F € LP(R?) we have

H* f(z) = sup
t>0

fe LP(R), (3.2.10)

. 1 Flr—y-Aey
H. F(x) =sup |- Qd@/

>0 | T J|y|>t Y

1 FoA) (A g —
—sup |2 [ AR T o) o) e (po sy,
€1

t>0 | T J|y|>t Y

where e; = (1,0,...,0) € R?. This means that in order to prove (3.2.6) we only need to show

the following inequality

S 1/2
(Z F8|2> : (3.2.11)
s=1

Lp(R?)

>1/2

where Fi,...,F, € LP(R%). Indeed, assume that m holds and take any w € S9! and
A € SO(d) such that w = Ae;. Then

Lp(R?)

1/2 p s p/2
Z|H*F| :/Rd (Z|H:161Fs(x)|2> dz
s=1

Lr(R%)
p/2
/( (Fy 0 A)( )\2> dz
p/2
/( (Fy 0 A)( )|> dx
s=1

1/2||P
( |Fs oA‘)

LP(R%)

Mca IIMOJ

1/2||P

S
o (Zw?) |
s=1

Lr(R4)

Mo;

which is exactly (3.2.6). Now we need to prove (3.2.11). For x = (21,2, ...,24) € R? denote

rh = (x2,...,14) € R Then
S p/2
" 2
g (Z}HelFS(m)\ ) dx
s=1

(L) |
o\ P/2

F —
_/ / Zsu / S(xl Y, T2, ,l‘d) dy dl'l dl'/l
RI-1JR \ TZ7 t>0 | T J]y|>t

P(R7)

Y

S p/2 1/2|P
Sp* /Rd I/I‘R <Z|Fs(x1,---,$d)‘2> dxldxll :p* <Z|FS‘2>
- s=1

Lr(R4)
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In the inequality we used (3.2.9) with fs(z) = Fs(z,x2,...,24). Thus, we have shown that

(3.2.9) implies (3.2.6) and hence we can focus on proving (3.2.6)).
We split the operator H* defined in (3.2.10)) into two parts. To this end let ¢: R — R

be a smooth even function satisfying ¢(z) = 1 for |z| < 2, p(z) = 0 for |z| > 4. Define

ot(r) = p(x/t) and let )

xt(z) = E]l\xbt(x)

be the kernel of Ht. Then

H*f(z) < Sup [(exe * f)(x)] + Sup [((1 = @e)xe * f) ()]

= Hy f(x) + Hi_of(x)
S Mf(z) + Hi_, [ (2),

where M denotes the Hardy—Littlewood maximal operator on R. Since [22] Theorem 5.6.6]

gives us vector-valued estimates for M we get

g 1/2 g 1/2
<Z}H:;f82> <p* <Z|fs\2>
s=1 s=1

LP(R) LP(R)
The remaining ingredient is to prove
s 1/2 g 1/2
* 2 *
(Z | Hi_, f] > Sp (Z Ifs|2> : (3.2.12)
s=1 LP(R) s=1 LP(R)

We will apply |22, Theorem 5.6.1] with
By = (2 ({1755}) and 82262 ({1575}7L00(Q+))

and

—

K(z)(u) = (1= @o)xe(x) -u, ..., (1= p)xe(x) - us) € B (3.2.13)

for any sequence u = (us)5_, € Bi. Then, taking e; = (0,...,1,...,0), with 1 on the s-th
coordinate, we see that the operator T' defined in [22] 5.6.4| satisfies

S
f (Z fseS) (Z) = (H{—cpfl(m)’ cee 7H{—¢f5($)) (3.2.14)
s=1

and

g 1/2
= (Z \Hufsw)
Ba

s=1

. S
T (Z f) ()
s=1

for any sequence ( fs)sszl of smooth functions that vanish at infinity. In order to use [22
Theorem 5.6.1] we need to verify conditions (5.6.1), (5.6.2) and (5.6.3) from [22] and check
that T is bounded from L2(R, B;) to L%(R, By).

Condition (5.6.1) is a straightforward consequence of (3.2.13). It is also not hard to verify
that f6<|$|<1 K (z)dz =0, so that condition (5.6.3) is satisfied with Ko = 0.




3.2. THE REAL METHOD OF ROTATIONS 39

We shall now justify (5.6.2). Denote ¢ :=1 — ¢ and gy = @) so that

or(x
() = 242
T
Since
Rla—y) = K@), =suwplg(e—y) - gl
B1—B2 t>0
we have
. , 1 Gy (z — G
Riz—y) - K@), =520 20
B1—B2 T >0 r—vy xT
1 Golx—y) — & 1 ~ 1 1
<L |PlE =y =&@] Lol 0 ( _ ) ‘ (3.2.15)
T t>0 -y T >0 r—-y

Hence, the proof of (5.6.2) boils down to estimating the two terms in ((3.2.15) under
the assumption |z| > 2|y|. We begin with the first term. Since |z| > 2|y| we have |z| ~
|z — y|. Hence, in order for the expression inside the absolute value to be nonzero, ¢ has to

be comparable to |x| and |z — y|. In that case, using the smoothness of ¢ we obtain

B S R ]
~otle—yl o zllz—yl |z

‘@(l’ —y) — P(x)
z—y

In the second term of (3.2.15) we omit @; and get

1 1

1 bl vl
r—y

alle =yl e

This means that we have proved that

—

|fe-n-R@| <4

B1—B2 ~ |1}|2

for |x| > 2|y|. Integrating this yields

/|90>2|y|

so that condition (5.6.2) is satisfied.
It remains to justify the boundedness of T from L2(R,B;) to L%(R,Bs). We have the

pointwise bound

. . 1
Rz —y) - K(m)‘ dz < |y| e~

B1—By jel>2ly| |2

Hi_,f(x) S Mf(z) + H" f(x).

Therefore the desired L? boundedness of T is a consequence of ([3.2.14)) and the L?(R) bound-
edness of H*. This allows us to use [22, Theorem 5.6.1] and completes the proof of (3.2.12)
and hence also the proof of Proposition [3.2.1] O

Before we move on to the estimates for the Riesz transforms Ry, it will be convenient to

state explicitly [17, Lemme, p. 195| for later reference.

Lemma 3.2.3. For P € Hy, and q € [1,00) we have

( L. \p(w)!%) Ve < [ |P(w)‘2dw>1/2.



3.2. THE REAL METHOD OF ROTATIONS 40

Recall the the functions Y; form an orthogonal basis of the space H; normalized by the

1
Yi(w))? dw = ~d 7k,
Lo W = s
We justify (3.2.7) and (3.2.8)) separately, starting with the latter.

condition

Proof of (3.2.8)). Take numbers \;(z, f) = A\j(z), j =1,...,a(d, k), such that

1/2 a(dp)

a(d,k)
S | Ry, f(@)]? Z A;j(x) Ry, f(2), Z N (@
j=1

Using (3.2.3)) and (3.2.4) followed by Holder’s inequality we obtain

a(d,k) 1/2(|P a(dR) ,
2
Z [ ] :/ Z Aj(z)Ry, f(x)| dz
Jj=1 R4 =
p
a(dk P
<P kp/2
[ ]S N @Y @ @) d| da
7=1
a(d,k) q p/q
< dkp/2/ / Z Aj( dw / \H,, f(z)|F dw dz. (3.2.16)
Rd gd—1 i

Now we deal with the first inner integral in . Since Y; € Hg forj=1,...,a(d, k),
for fixed = the function w Z?(Zdl’k) Yj(w)A;(x) also belongs to H{. Using Lemma [3.2.3
orthogonality of the functions Yj, j = 1,...,a(d, k), condition , and the formula
Z?(:dl’k) )\?(x) =1 we get

a(d,k) a 1/q a(dk) 2 1/2
lek aw) sa?| [ vy a
= (3.2.17)
a(d,k) 1/2 a(d,k) 1/2
)\2 < k/2 d—k‘ )\2 < k/2d—k‘/2'
e > do|  <q > %@ | <q
7=1
Applying (3.2.17) and coming back to (3.2.16) we obtain
a(d,k) 1/2 1/p
2
S (wet) | e ([ i)
- gd—1
7j=1
P
Now Proposition completes the proof of (3.2.8]). O

We are now ready to prove ( . This is similar to the proof of - with an addition
of Khintchine’s inequalities. For s = 1, 2,...welet {rs} be the Rademacher functions, see [22]
Appendix C]. These form an orthonormal set in L?([0,1]). Moreover we have Khintchine’s
inequalities (|22, Appendix C.2]|)
~ o 1/2
Z a;r; < p% Z ]aj]2 (3.2.18)
Jj=1 Jj=1

Lr([0,1])
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and
1/2

oo )
dolal? ] SDo e (3.2.19)
=t R ZI((RY)

for any complex sequence (a5)2; and 1 < p < co. The explicit bounds on constants in (3.2.18)

and follow from explicit values of the optimal constants established by Haagerup [23]

together with Stirling’s formula (1.5.2]).

Proof of (3.2.7). Take numbers \;q(z,{fs}) = N\js(z), 5 =1,...,a(d, k), s =1,...,5, such
that
1/2

a(d,k) S S a(dk) S a(d,k)
ID LAY D 3D DB SARIED 95 DR U RS NCERt
j=1 s=1 s=1 j=1 s=1 j=1
Using (3.2.20)), (3.2.3), and (3.2.4)) we obtain
a(dk) S 1/2||P s a(dk) p
> Slrgil) | =] S A )| o
7j=1 s=1 s=1 j=1
P
S a(dk) p
<P d’fp/Z/ / DY Ns@)Y(w)Hofo(x) dw| da. (3.2.21)
R |Jgd-1 = =
Orthogonality of the Rademacher functions {rs} and Hoélder’s inequality imply
S a(dk) p
drv/? / / Aj.s(2)Yj(w) Hy, fs dx
R4 Sd— 1; ]Zl g ( )
S a(dk) p
dk’p/?/ / / Z /rs<f))\]7 (Z’I“S wfs ) d{dw dx
R4 s=1 j=1
s a(dk) q p/q
gd’fp/z‘/ / / r(€ (w)| dE dw
o\ s o 12 Z Aj.s()Y;(w)
P
/ / Z H, fs(x)| dédwdz.
Sd—1 —1
(3.2.22)
Denote
S a(dk) q 1/q
Qsq(x /Sdl/ ZZ’I“S Njs(2)Yj(w)| d€dw
s=1 j=1

Then, coming back to (3.2.21)) and using Khintchine’s inequality (3.2.18)) to the second factor
in the last inequality in (3.2.22)) we reach

a(d,k 1/2||P /2

) S s p

S i) | wrreios [ [ (Simsor)
J=1 s=1 Sa=LIRE \ o5y

p
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Thus, Proposition [3.2.1] implies

a(dk) § 1/2 s 1/2

S S i) | <o e (zw)

j=1 s=1 s=1 »
p

Therefore, the proof of (3.2.7) will be completed if we justify that
|Qsalloe S a7+ a2 (3.2.23)

The proof of (3.2.23)) splits into two cases.
Ifg > 2, we apply Khintchine’s inequality m Minkowski’s inequality and Lemma,

obtaining

2\ 4/2
S |a(d,k)
q <9 ,4/2 A d
@mquLME:st ¥

a(d,k) 1 2/q\ 9/

< qqﬂ / Nis(2)Y;(w)| dw

;}ylzjwuu
s a(d.F) 2 a/2
<4 q@/2gka/2 Z/Sdl Z \js( dw ,
s=1

uniformly in € R? Here an application of Lemma is justified since Y; € Hg for
j=1,...,a(d, k) and thus also the sum Za(d ®) ;.s(7)Y; belongs to H{ for each fixed z € RY.
Now, using the orthogonality of Yj, j = 1,..., a(d, k), condition and the formula
ZS 12 dk))\2 s(z) =1 we see that

a(d,k) a/2
<9 q/2 kQ/2 2
(Qs4(x)) ZLIEN 2
S a(dk) 9/2
— qq/2qu/2 d_kz Z )\?s(fﬁ) < qQ/quQ/Zd—kQ/Q‘

Therefore, (3.2.23)) is justified in the case g > 2.
If on the other hand 1 < ¢ < 2, an application of Holder’s inequality together with (3.2.23))

in the case ¢ = 2 shows that
Qsq(x) < Qsalx) S a2

This completes the proof of (3.2.23)) and thus also the proof of (3.2.7)) from Proposition
U

We are now ready to prove Theorem [3.1.2] and Theorem [3.1.3] for odd k and we start with
the proof of Theorem [3.1.3]
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Proof of Theorem [3.1.3. Using (3.2.5)) and (3.2.4) we see that

a(d,k)

M*f(2)] < d/2 / 1| S YRy f| () do, xR
gd—1

=1

Hence, Minkowski’s integral inequality followed by Proposition [3.2.1] show that

a(d,k)
* * 1k /2
gl St [ S iRy | de.
Jj=1 P
Using Hélder’s inequality and Fubini’s theorem we obtain
a(d,k) 1/p
S ik / / S Vi(w) Ry, f( ) dwdz | . (3.2.24)
Ggd—1 s
Since for fixed z the function w — Za(d ") Yj(w) Ry, f(x) belongs to H{, applying Lemma 3.2.3
we obtain
a(d,k) p 1/p a(d,k) 2 12
Lo vrniw| as) <o [ 1S viemy f@)]
Sd—l " Sdfl "
Jj=1 j=1
Using orthogonality and (3.1.8) we thus see that
a(d,k) p 1/p a(dF) 1/2
_ 2
/S“ S YRy f(@)| do| SR NT|Ry f@)]T] . (3.2.25)
j=1 j=1

which, together with (3.2.24]) leads to

a(d.k) 1/2

1M £l < p*p? Z |Ry, f|*
P
Thus, (3.2.8) from Proposition completes the proof of Theorem if £ is odd.

We finish this section with the proof of Theorem [3.1.2]

Proof of Theorem [3.1.2] Using (3.2.5), (3.2.4), and Minkowski’s integral inequality on the
space £2({1 ,...,S},L (Q4)) we see that

a(d,k) 1/2

5 1/2 9
<Z|M*fs(x)\2> sat [ Z(H*[ZY h|@) | ae wem

s=1

Thus, another application of Minkowski’s integral inequality followed by Proposition
gives

1/2

S | a(dk)

g 1/2
Siap) | s 3] X v

s=1 s=1"' j=1
p P

2
dw.
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Using Khintchine’s inequality (3.2.19) followed by Hélder’s inequality on S9! we see that

1/2
Z IM*fs
P
LS a(d,k) 1/p
S p*dk/z/ / / 7s(§ Y (w)Ry; fs( d§ dx dw
wor \ ey 12570 2 "
1 a(d,k) s p 1/p
< prdkr? / / / Z Y;j(w)Ry;, [er(f)fs(:c)} dw d¢ dx
REJO S T s=1
Finally, (3.2.25) followed by (3.2.§)) from Proposition [3.2.2]and Khintchine’s inequality ([3.2.18)
give
1/2 dk) s 2\ 72 v
Z|M*fs <p*pk/2 / / Ryj [er(g)fs(x)] d§ dx
R4 s=1
11 S p 1/p S p/2 1/p
<o / 9| deds) SR [ (SIE] s
R J0 s=1 R¢ s=1
The proof of Theorem in the odd k case is thus completed. O

3.3 Averaging

From now until the end of the chapter k is a fixed positive integer. In this section we
describe the averaging procedure. The averaging procedure will allow us to pass from M*
to another maximal operator that is better suited for applications in Sections [3.4] and [3.5]

Before moving on, we establish some notation. For a multi-index
3=, dk) €{1,...,d}* wewrite Pj(z)=wx;:=1j, - j,

and denote by R; the Riesz transform Rp, associated with the monomial P;. The truncated
transform R; and the maximal transform R} are defined analogously. We also abbreviate
Kj(r) = Kp;(x) and K]t(:r) = Kf;j (). As we will be mainly interested in multi-indices with

different components, we define

IT={je{l,....d}": jnm # ji for m #1}.

Note that the set I is non-empty only when d > k. Thus in the rest of the proof we assume
that this is the case. The result for d < k follows from [35], [36].

The averaging procedure will provide an expression for M ,i in terms of the Riesz transforms
R; and R; postulated in (3.0.4). For f € LP, 1 < p < oo, denote

R'f ::ZRg.ij and let  R*f:= sup |R'f].
jel teQy
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Note that both R! and R* are well defined on all LP spaces for 1 < p < co. Indeed, R; and
R; are bounded on LP and the supremum in the definition of R* runs over a countable set
thus defining a measurable function.

Let SO(d) be the special orthogonal group in dimension d. Since it is compact, it has
a bi-invariant Haar measure p such that p(SO(d)) = 1. For U € SO(d) and a sublinear
operator T' on L? we denote by Ty the conjugation by U, i.e. the operator acting via

Ty f(x) =T(f o U M) (Uxz). (3.3.1)

Proposition 3.3.1. Fiz k € N. Then there is a constant C(d, k) € R such that
My f(x) = C(d, k)/ (R f](z) du(U) (3.3.2)
S0(d)

for allt >0 and f € LP. Moreover, |C(d, k)| has an estimate from above by a constant that

depends only on k but not on the dimension d, so that

S 1/2 1/2
“f(z)]? 3.
<;!M fo(@)] ) /5 o) (Zr Yo f( ) du(U), (3.3.3)

s=1
for Se N and fi,..., fs € LP.

Proof. Let A be the operator

A=) "R} (3.3.4)

jel
which by (3.0.3) means that its multiplier symbol equals
iy &
- Z ok Z %
gl gl
Let A be the operator with the multiplier symbol
A6 = [ aUdu(v) = (-0 Y / WO 4w, (3.3.5)
SO(d) ‘1 /50w

Then a being radial and homogeneous of order 0 is constant.

The first step in the proof of the proposition is to show that
la| = 1 (3.3.6)
uniformly in the dimension d. Note that each of the integrals on the right hand side of (3.3.5|)

has the same value independently of j € I, so that

U 2
wo = o[ E ﬂ);z’;;”“)) (V)

here |I| stands for the number of elements in I. Since @ is constant, we can integrate it over

591 with respect to the probabilistic measure dw and change the order of integration to get

_1)k‘1|/5d 1/50 (Uw)y . gy du(U) dw
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Now notice that the inner integral does not depend on U, which means that

a=(—1)"1| W wi dw. (3.3.7)
Sd—1
Since k is fixed, by an elementary argument we get |I| = (d%'k)' ~ d*. Thus it remains to
show that
/ wiowidwrdk (3.3.8)
Sd—1

Formula ({3.3.8)) is given in [51), (10)]. It can be also easily computed by the method from
[25, Chapter 3.4]; for the sake of completeness we provide a brief argument.

Consider the integral J = fIRd x?. . azze"“z dx. Since J is a product of one-dimensional

integrals we see that J =T (%)k T (%)dik, while using polar coordinates gives

o0
2
J =541 Wi widw p2Rd=le=r dr,
Sd—1 0

where S;_1 is defined by (|1.5.5]). Altogether we have justified that
T 1 d—k
/ wf‘--wzdw%%.
Sd—1 Sd,ll“ (k + 5)

Since k is fixed and d is arbitrarily large, using (1.5.5)), Stirling’s formula for the I" function
(15:2) and the known identity I'(3) = /7 we obtain

d/2
Jr (L)

2 2
/ wy e wp dw &2
B k+d/2
Sd—1 d k+%
2 e

_et (T
T e k=d/2 | g2 T3

~dF

This gives (3.3.8]) and concludes the proof of (3.3.6]).
Let now m! be the multiplier symbol of Mf. Then, from Proposition we see that

mt = bt is radial, so that
mi(e) =atam(© =a ! [ m'(€)a(UE) du(v)
S0(d)
—at [ (U a(Ue) du(v).
S0(d)
Using properties of the Fourier transform the above equality implies that
M) =a [ (O ) du®).
50(d)

Recalling (3.3.4) we apply (3.1.1) from Proposition and obtain

M{A=> M{R;R; =) RiR; =R
jeI jeI
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here an application of (3.1.1)) is allowed since each R; corresponds to the monomial x; which

is in Hy when j € I. In summary, we justified that

My f(x) =a" /So(d) [(RO)0)(F)(@)duU), € D(k), (3.3.9)

which is with C'(d, k) =a~".
It remains to justify (3.3.3). This follows from (3.1.7), (3-3.9), and (3.3.6), together with

the norm inequality
‘ | R duv)
SO(d)

on the Banach space X = 2({1,...,S};£>(Qy)), with Fs+(U) = (R)y(fs)(z) and = being
fixed.
The proof of Proposition [3.3.1] is thus completed. O

< / | Ese(U) dp(0):
SO(d)

X

Since conjugation by U € SO(d) is an isometry on all L spaces, in view of pu(SO(d)) =1
and Minkowski’s integral inequality Proposition eq. (3.3.3) allows us to deduce Theorems
B.1.2 and B.1.3] from the two theorems below.

Theorem 3.3.2. Fiz k € N. For each p € (1,00) there is a constant A(p, k) independent of
the dimension d and such that for any S € N we have

1/2 g 1/2
ZIR*fs < Alp, k) <Z|f5\2) :
s=1
p

p

where f1,..., fs € LP. Moreover, A(p, k) satisfies A(p, k) <p (p*)>/2T/2.

Theorem 3.3.3. Fiz k € N. For each p € (1,00) there is a constant B(p, k) independent of

the dimension d and such that

1= £, S B, ) fIl,-

whenever f € LP. Moreover, B(p, k) satisfies B(p, k) <j, (p*)>+*/2.

3.4 Extension to C? and the complex method of rotations

Here we extend the operators R’ acting on LP(R?) to the operators R acting on LP(C%)
Then we apply the complex method of rotations of Iwaniec and Martin [26] to R
Let P € Hy. For z = (x1 +iy1, ..., xq +iyq), T € R?, y € R? we denote

~ _ P(2) _ _ rd+%
and define, for f € S(C%),
~ .= ~ ~ P(z—w
Rpf() =l Rpf(:),  where  Rpf(:) =7 [ LPEZ0) 1) du,
t—=0 weCd:|z—w|>t ‘Z — w[

(3.4.2)
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In [26] the authors considered the extension on the multiplier level whereas we need to
write it on the kernel level. This makes no difference for the operator Ep. However, the
multiplier symbol corresponding to ﬁ,’}) does not have a simple formula, thus writing the

extension on a kernel level seems the only reasonable option here.
Formulas ([3.4.1) and (3.4.2)) lead us to define the extension of R by

R' =R, :=) RiR;. (3.4.3)
JjeI

Using the complex method of rotations [26, Section 6] we will prove LP(C?) estimates for

R*f(z) = sup ﬁtf(z)‘

teQ4

Theorem 3.4.1. Fiz k € N. For each p € (1,00) there is a constant A(p, k) independent of
the dimension d and such that for any S € N we have

s ) 1/2 g 1/2
(Z\R*fs ) < A(p, k) (Zrm?) :
s=1 s=1

- Lp(C%)

Lr(C4)
whenever fi, ..., fs € LP(C%). Moreover, A(p,k) satisfies A(p, k) <j (p*)?/>+k/2,

Theorem 3.4.2. Fiz k € N. For each p € (1,00) there is a constant B(p, k) independent of

the dimension d and such that

|71

LP((Cd) < B(p’ k)”fHLP((Cd))

whenever f € LP(CY). Moreover, B(p, k) satisfies B(p, k) <i (p*)***/2.

The reminder of this section will be devoted to the proofs of Theorem [3.4.1] and Theo-
rem [3.4.2] From these results we shall obtain Theorem and Theorem provided we
develop a restriction procedure from C? to R?. As we already remarked this is not straightfor-
ward, since the restriction of the complex truncated Riesz transform is not the real truncated
Riesz transform. Details of the restriction and estimates for the resulting operators are given
in Section 3.5

We now focus on the proofs of Theorem and Theorem Let P € Hy. We will
show that for ' € S(C?%) we have

271'/ F(w) dw:/ /F(A@)W“dma,
cd S2d-1 JC

where df stands for the spherical measure on $2?~! normalized by the condition #(S%¢~1) =

S2d—1-
We begin by identifying C¢ with R?¢ and using spherical coordinates to get

/ F(z)dx = / / F(ro)r?d=1 do dr.
R2d 0 S2d—1

Then we integrate both sides from 0 to 27 with respect to a new variable ¢ which gives

2w poo
27r/ F(x)dx = / / / F(r0)r*=1 do dr dep.
R2d 0 0 S2d—1
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At this point we interpret § as en element of C? so that we can introduce a new variable

0’ = e~%@ and use integration by substitution to obtain

2 poo
271/ F(z)dx = / / / F(re0)r?=1 do dr de.
R2d 0 0 S2d—1

We recognize A\ = re'# as an arbitrary element of C which lets us write

or [ F(w)dw = / / FO)A*2dxdb
Cd SQd—l C

thus proving the claim.

Take f € S(C%). Applying the above identity with F(w) = %ﬁgﬁk Ljy|se(w) f(z — w)

gives

RLf(2) = /(Cd |P(QZU+),€]1w>t(w) f(z —w) dw

_ 2d—2
/Szd 1/@ |)\‘2d+k 1x>e(A) f(z = A9)|A| d)\ db

_ Tk AN f(z = 20)
=9 Jos P(Q)/@QM) Tﬂubt(/\)d)\de,

where in the last equality above we used the k-homogeneity of P. This means that we got

Rpf)= 25 [ PO, (3.9
where
k
Ayt ) =Fsfo) = [ (1) Wlmum

is the truncated directional k-th power of the complex Hilbert transform. Identity (3.4.4) can

be written in terms of the probabilistic spherical measure d¢ on S?*~1 in the following way
~ I'(d+%) -
R f(2 :2/ P(Q)Hf(z) dC. 3.4.5
Pf( ) TrF(d)F(%) g2d-1 (C) (f( ) C ( )

The limiting case of (3.4.5) is then

~ k .
Rrf(z) = (R%) o PO dc, (3.4.6)

where .
et ()= Heat ) = [ (1) o an
c \IA| By
is the directional k-th power of the complex Hilbert transform. Identities and
were initially established for f € S(C%). However, a density argument based on the LP(C?)
boundedness of ﬁé and E’C allows us to write these identities for all f € LP(C?). For further

reference we note that when k is fixed then

~ dF/?. (3.4.7)
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In the proofs of Theorem and Theorem similarly to the odd case, we shall need

boundedness properties of the maximal operator

ﬁgf(z) = ﬁgkf(z) = sup
teQ4

HLf ()

assoclated with I:fé and of the Riesz transforms Ej.

Proposition 3.4.3. For each 1 < p < oo we have

/2 g 1/2
(Sfme) | ()
s=1

Lp(C%)

Lr(C4)
uniformly in ¢ € 8?1 and the dimension d.

Proposition 3.4.4. Fiz k € N. Then for each 1 < p < oo we have

s )\ 72 s 1/2
SN R <k (Z !fﬁ) , (3.4.8)
s=1

s=1 jeI LP((Cd)

Z ‘R f‘ Sk p*qk/QHf”Lp((cd), (3.4.9)

Jel

1/2

Lr(C4)

uniformly in the dimension d.

The proofs of Propositions [3.4.3] and [3.4.4] are analogous to the proofs of Propositions
[3:2.3) and [3:2:2) for the most part, however we include them for completeness. We begin with
Proposition

Proof of Proposition[3.4.3] A (complex) rotational invariance argument analogous to the one

used in the proof of Proposition reduces the inequality to its two-dimensional case

) 1/2 g 1/2
) (Z \fﬁ) :
s=1

Lr(C) Lr(C)
where H & is k-th power of the two-dimensional maximal complex Hilbert transform, i.e.

L) e
|w|>t |U)| |’UJ|
and f1,..., fs € LP(C).

We split the operator H & into two parts. To this end let ¢: C — R be a smooth radial
function satisfying ¢(z) =1 for |z| < 2, ¢(z) = 0 for |z| > 4. Define ¢:(2) = p(z/t) and let

xalz) = (H)k 1)

S
> |Hif:
1

S=

Hj: f(2) = sup
t>0

f € LP(C),
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be the kernel of I;T}i Then

Hf(2) < sup |(ieexe * f)(2)] +sup (1= @0)xe x f) (=)
= H}f(2) + Hi_,f(2)
S MFf(2) + Hi_,f(2),

where M denotes the Hardy-Littlewood maximal operator on R?. Since [22, Theorem 5.6.6|

gives us vector-valued estimates for M we get

s , 1/2 S 1/2
(Z |31, ) <y (Z Ifs\2>
s=1 s=1

LP(C) Lr(C)

The remaining ingredient is to prove

s ) 1/2 g 1/2
<Z’Hik—sofs > <P <Z|fs|2> . (3.4.10)
s=1 s—=1

Lr(C) = Lr(C)

We will apply [22, Theorem 5.6.1] with
Bi=02({1,...,8}) and  By=/¢*({1,...,8};L>(Q,))

and
K(2)(w) = (1 — @) xe(z) - ut, ..., (1= o)xe(2) - ug) € Ba (3.4.11)

for any sequence u = (us)5_, € Bi. Then, taking es = (0,...,1,...,0), with 1 on the s-th
coordinate, we see that the operator T defined in [22, 5.6.4] satisfies

S
T; (Z fs€s> (Z) = (ﬁf_‘pfl(z), ... ,ﬁ{_@fs(z)) (3412)
s=1

and /s s 2 1/2
T (Z fses> &) = <Z ‘H{‘,g) fs(z)‘ )
s=1 s=1

for any sequence (fs)9_; of smooth functions that vanish at infinity. In order to use [22]
Theorem 5.6.1] we need to verify conditions (5.6.1), (5.6.2) and (5.6.3) from [22] and check
that T is bounded from L2(C, B;) to L%(C, By).

Condition (5.6.1) is a straightforward consequence of ([3.4.11]). It is also not hard to verify
that f€<|Z|<1 K(z)dz =0, so that condition (5.6.3) is satisfied with Ko = 0.

We shall now justify (5.6.2). Denote ¢y :=1 — ¢ and gy = @ so that

Ba

Sk

g1(z) = @(Z)W.

Since
|REe-w) - K@) =swlalz —w) - @),
B1—B2 t>0
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we have
= = . (z—w)k P
R(z—w)— K ‘ _ _
(e mw) =BG, L, =500 (P mw) e — )
. ~ (z —w)* ~ (z —w)k P
< sup z—w) — Q2 + sup z — . 3.4.13
(e )~ B e e A (e - i || ()

Hence, the proof of (5.6.2) reduces to estimating the two terms in (3.4.13) under the
assumption |z| > 2|w|. We begin with the first term. Since |z| > 2|w| we have |z| =~
|z — w|. Hence, in order for the expression inside the absolute value to be nonzero, t has to

be comparable to |z| and |z — w|. In that case, using the smoothness of ¢ we obtain

Z—wk
<@@—mﬂ—@@»é_wgw

] S I B (]

~ 4 2 ™ 5 3"
Ele—wl® Jzllz —w[” [

In the second term of (3.4.13]) we omit @; and get

(z —w)¥ B P (z —w)k (2 —w)F (z —w)k B 2¥
k+2 k+2 k+2 kt2 k+2 kt2
|z — w2 |2 —w|*" Elh El El
. ‘Z|k+2 _ |Z_w|k+2‘ . . |w‘
= |z —w| W2 ke T k+2‘(2—w) -z ‘%73
|| 2| 2|

|2 — wl

This means that we have proved that

K(z —w) —I?(z)‘

for |z| > 2|w|. Integrating this yields

/ HK@—M—K@ﬁ
212l

so that condition (5.6.2) is satisfied.
It remains to justify the boundedness of T from L2(C,B;) to L%(C,Bs). We have the

pointwise bound

1
dz < |w —dz =~ 1
B1—Ba |2[>2w| |2]

Hi_,f(2) S Mf(2) + H f (2).

Therefore the desired L? boundedness of T is a consequence of ([3.4.12)) and the L?(C) bound-
edness of H +. This allows us to use [22, Theorem 5.6.1] and completes the proof of (3.4.10)
hence also the proof of Proposition |3.4.3 O

Proposition can be proved by an iterative application of its k = 1 case together with

Khintchine’s inequalities. However, such an approach produces worse constants than those in

(3.4.8) and (3.4.9). An important ingredient in the proof are properties of the functions

G = (:Ujl + iy]i) T (xjk + Zy]k)

Recall that in the proof of the odd case we used functions Y; which form an orthogonal basis

of Hg. However it is not clear whether their extensions to C? are still orthogonal on S2¢~1,
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which is why we need to introduce new functions (; orthogonal both on S9=1 and on §2¢-1.

Moreover, we have
/ &2 d¢ < d*. (3.4.14)
SZd—l
Indeed, all the integrals on the left hand side of (3.4.14)) are equal for 7 € I and thus

1 2 1 2
RS B ST STl D DI S
S2d*1 |I| SQdfl jEI |I| SZd—l je{l,...,d}k
1 _
= 7] J o [ d¢ S d*,

since |I| ~ d".
We justify (3.4.8) and (3.4.9) separately, starting with the latter.
Proof of (3.4.9). Take numbers \;(z, f) = A\j(z), j € I, such that
1/2

SR =S Nk, YR =1

jel jel jeI

‘ 2

Using (3.4.6)) and (3.4.7) followed by Holder’s inequality we obtain

1/2]|P P
~ 2 ~
S | =[S vere)
jel Cler
p
P
<P gkr/? / / D> N(2)GHf(2)dC¢| dz
cd | Jg2d—1 el
q p/q

~ P
< dhel? / / SN ()G de / A, f(z)’ d¢ dz. (3.4.15)
(Cd SQd—l ]EI SQd—l
Now we deal with the first inner integral in (3.4.15]). Since (; € Hid for j € I, for fixed z
the function ¢ — >, (jAj(2) also belongs to H2?. Using Lemma orthogonality of the
functions (;, j € I, inequality (3.4.14}), and the formula Zjel Aj(2)% =1 we get

q 1/q 2 1/2
/52d1 Z)\j(Z)Cj dq qu/Q /Sle ZAJ(Z)CJ‘ d¢
jel jel
s s (3.4.16)
_ k)2 / A()216 12 d < k2 | gk 2 o k2 -k/2
q 2)“|¢5]7 d¢ <q d Ai(z < ¢"*d .
SZ i@ Z i(2)

Applying (3.4.16)) and coming back to ([3.4.15)) we obtain

2

1/ y
~ 2 p p
. < k72
Z)R’f‘ ~ 4 </52d1 LP(«:d)dC> '
jel
p

Now Proposition completes the proof of (3.4.9). O

f[cf‘
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We are now ready to prove ( . This is similar to the proof of (3.4.9 - ) with an addition
of Khintchine’s inequalities lb and (3.2.19).

Proof of (3.4.8). Take numbers \;(z,{fs}) = Ajs(2), s €I, s=1,...,85, such that

s 1/2 s
(ZZéjfs(z)Q) ZZ)\N Bif(x), LY A =1 (3417)

j€eI s=1 s=1 jeIl s=1 jel

Using (3.4.17)), (3.4.6)), and (3.4.7) we obtain

1/2(|P P

S| /ZZM | az

jeI s=1 s=1 jel
P
P
<P dkp/2/ / ZZA]S 2)CHe fs(2) d¢| dz. (3.4.18)
Cd S2d—-1 s—1 jel
Orthogonality of the Rademacher functions {rs} and Hélder’s inequality imply
P
dkp/2/ / ZZ)\” 2)GHfs(2) d¢| dz
cd S2d—1 s—1 jel
P
_dkp/z/ / / Zer Ao er )V He fo(2) | dedc| dz
cd |.Jg2d-1 iy
3.4.19
q p/a ( )
dkp/Q/ / / r s(2)¢| dede
P
<[ / (O Hcfu(2)| de dc d-.
SQd 1
Denote
q 1/q

s =[] S @A s

s=1 jeIl
Then, coming back to (3.4.18) and using Khintchine’s inequality (3.2.18]) to the second factor
in the last inequality in (3.4.19) we reach

p/2
2
<P pPRdP|Qs ,qllpmcd/ /C< Hef(z \) dz d.
p

Thus, Proposition implies

1/2(|P

S ~ 2
>3 | Rt

jeI s=1

1/2

P 1/2
Sp pl/Qdk/z”QSqHLw (Cd) (Z ’f8’2>
s=1

p

s ~ 2
> ‘ijs

jeI s=1

Lp(C4)
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Therefore, the proof of (3.4.8) will be completed if we justify that
k+1
1Qsqll poocay S a2 A2, (3.4.20)

The proof of (3.4.20) splits into two cases.
If ¢ > 2, we apply Khintchine’s inequality (3.2.18)), Minkowski’s inequality and Lemma
obtaining

s 2\ /2
2
CRNEERESY I D31 DEVRE I [ I
s=1|jel
s q 2/q\ /2
<a [ S [ XN d
gt §2d—1 el
s 2 q/2
SEU 2/ D NG| A |,
=1 S2d—1 Jel

uniformly in z € C%. Here an application of Lemma is justified since (; € ”Hid forjel
and thus also the sum ZJEI Aj,s(2)(; belongs to ’sz for each fixed z € C?. Now, using the

orthogonality of ¢;, j € I, inequality (3.4.14) and the formula Zle ng )\?78(2’) =1 we see
that

s q/2
@sa()? a2 | S0 [ S PG de
1 Js2a1 el
s q/2
= q1/2gka/2 [ gk Z Z Njs(2)? < q1/2gkal2q—ka/?,

s=1 jeI

Therefore, (3.4.20)) is justified in the case g > 2.

If on the other hand 1 < ¢ < 2, an application of Holder’s inequality together with (3.4.20))
in the case ¢ = 2 shows that

Qs.4(2) < Qs2(2) S d7H2

This completes the proof of (3.4.20]) and thus also the proof of (3.4.8) from Proposition m
[

We are now ready to prove Theorem [3.4.1]and Theorem [3.4.2] In both the proofs we shall
need the formula

R'f(z) =

— Nl
|7 [ ~—

F(L 7t 5
T (d)T )/Szd_lHC ;CJRJJ” (2) dc, (3.4.21)

which follows from (3.4.3) and (3.4.5). We start with the proof of Theorem
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Proof of Theorem [3.4.2 Using (3.4.21)) and ( we see that
’R* ‘ < dk/2/ H > GRif| (2)d¢,  zeC?
§2d—1 Iy
Hence, Minkowski’s integral inequality followed by Proposition show that

|71

< *dk/Q/ R dc.
Locay ~ P g2d-1 %C]ij ¢

Lr(C?)
Using Holder’s inequality and Fubini’s theorem we obtain
p 1/p

e <yl -
HR f Lp(Cd) Spid /(Cd /SZdl ;CJRJf(Z) d¢ dz . (3.4.22)

Since for fixed z the function ¢ — >, Cjﬁjf(z) belongs to H2?, applying Lemma we
obtain

P 1/p 2 1/2

[ (SR a) <o / ZCJRf ac
§2d—1 1 2d—1

Using orthogonality and (3.4.14]) we thus see that

P 1/p 1/2

/52d1 D GRI)| d| s dT Z‘ij(Z)‘Q ) (3.4.23)

jeI jel
which, together with (3.4.22)) leads to
1/2

|71

~ 2
e S ‘ij‘
jel LP((Cd)

Thus, (3.4.9) from Proposition completes the proof of Theorem

We finish this section with the proof of Theorem [3.4.1]

Proof of Theorem [3:4.1] Using (3.4.21), (3.4.7), and Minkowski’s integral inequality on the
space (2({1,. ..,S},L (Q4)) we see that

s ) 1/2 ) 1/2
(Shscr) sen [ (S (E[gonde)) w e

Jel

Thus, another application of Minkowski’s integral inequality followed by Proposition

ol ~ 2
(Z 7,
s=1

gives

1/2

1/2 g 9
) < prdk/? /S . > Zijj fs dg.
L?(CY) s=1"j€eI Lo(cd)
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Using Khintchine’s inequality (3.2.19) followed by Hélder’s inequality on S2?~! we see that

S B ) 1/2
s
s=1 LP((Cd)

Sprd? /52«1—1 [Cd /01 ilrs(g)ZCjEjfs(z)

Jjel

1 s p
* 7k /2 =
S /(Cd/o /S2d—1 jZQ;C]R] [;7’8(5)]05(2)} d¢ dédz

Finally, (3.4.23) followed by ([3.4.9)) from Proposition and Khintchine’s inequality ([3.2.18)

1/p

p
dédz | dc¢

1/p

give
P N\ 2 . 5\ P2 1/p
(Z‘R*fs> s | [ S| X rene]] ] s
s=1 cdJo jel s=1
Lp(Cd) J
1] S p 1/p S p/2 1/p
<o ([ [ n@ne)| aa) e ([ (Snr) e
(Cd 0 s=1 (Cd s=1
The proof of Theorem [3.4.1] is thus completed. O

3.5 Restriction to the initial Riesz transforms

The purpose of this section is twofold. Firstly, we restrict the maximal operator R* acting
on LP(C%) to a maximal operator R* acting on LP(R?). This is done in a way which preserves
estimates for the norms. However, the restricted maximal operator R* is not the same as R*.
Therefore, we need to estimate their difference, which is done in the second part of Section
9.0l

3.5.1 Bounding the restriction R* of R*.

In the previous section in Theorems [3.4.1] and [3.4.2] we proved dimension-free estimates for
the operator R* acting on LP(C%). An approach similar to [26, Chapter 4] leads to dimension-
free estimates for the restriction of this operator to LP(R?) which we now describe.

To elaborate, for z € R? and ¢ > 0 we define the restricted kernel K:;(l‘) by

t
K;(x) dr, for |z| < ¢,

_ z; o rd=1
= TwSd-1 dj+k/ 2 At k/2
[T S 1 (L4 r2) (3.5.1)
IC;(x) = K;(x), for |z| > t.

Recall that K; is the kernel given by (3.0.1) when Pj(z) = xj, ---xj, j € I. A short
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computation based on (1.5.5), (3.0.5)), and (3.0.6) gives, for x # 0,

i 5og, T / ot
et Yk d—l‘x|d+k %_1 (1+r2)d+k/2
* 3.5.2
F(d-i—g) /oo opd—1 d T Tj K( ) ( )
ﬂ-d/QF(%)F(g) 0 (1 +T2)d+k/2 ’(L“d+k ‘x’d-i-k

For f € LP(RY) we let Rif = f+ K} and we define
Rf =Y RiRif
jel
and

R*f = sup |Rtf‘.
teQ4
A transference argument leads to the two results below. The proofs of Theorems [3.5.1

and are based on ideas from [26] Section 4]. However, compared to [26, Section 4| extra
difficulties arise. These complications stem from the fact that we need to restrict compositions
of singular integral operators instead of just one singular integral operator. Furthermore,

useful formulas for the multiplier symbols of ﬁ; or R; are not available.

Theorem 3.5.1. Fiz k € N. For each p € (1,00) there is a constant A(p, k) independent of
the dimension d and such that for any S € N we have

g 1/2 g 1/2
(Z\R*fsl2> < A(p, k) <Z|fs|2> ,
s=1 s=1

Lr(R4) Lr(R4)
whenever fi,..., fs € LP(RY). Moreover, A(p, k) satisfies A(p,k) Sy (b")/>4/2.

Theorem 3.5.2. Fiz k € N. For each p € (1,00) there is a constant B(p, k) independent of
the dimension d and such that

HR*fHLP(Rd) < B(p, k)HfHLP(Rd)a
whenever f € LP(RY). Moreover, B(p, k) satisfies B(p, k) <p (p*)*+*/2.

The restriction procedure from Theorems [3.4.1] and [3.4.2] to Theorems [3.5.1] and [3.5.2
will result in the kernels K ; and IN(; defined in (3.4.1) being integrated over their imaginary

component 4y in R?. This is the origin of the kernel IC; as the next lemma justifies.

Lemma 3.5.3. For each t > 0 and = € R? it holds
/Rd Ri(x + iy) dy = KL (2). (3.5.3)

Proof. To justify (3.5.3]) consider two cases: |z| >t and |z| < ¢. In the first case, integrating
in polar coordinates in R? and noting that Jga-1 Pj(z + irw) dw = Pj(x) gives

- . . Pj(z+iy) . Pj(z+1y)
K]t-(erzy)dy:/ kj_iw y:/ k]-iw
Rd yeRe: [atiy|>t @ + 1y R [x+ iyl
~ 00 Td_l _ P(x) 00 Td_l
= %Sd—lpj(l’)/ 73 dr = YkSd-1 3 k/ w7z ar
0 <|x!2 + r2)d+ " | Jo (14 2y R

= Kj(z) = Kj(z) = Ki(x).
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In the fourth equality above we used change of the variables r — r|z| and then we used

(3.5.2)). Similarly, in the second case |z| < t we obtain

7qdfl

(:U)/ dr
‘/t2—|$|2 <‘x|2 +T2)d+k/2

- Pi(x+1iy ~
/ ’Yk](,iwﬁk dy = VkSa—1F;
YER?: [g+iy|>t T + Y|

- Kl (@),

where in the second equality we used the change of variable r — r|z|. Thus (3.5.3) is justified.
O

We first present the proof of Theorem [3.5.2] The proof of Theorem [3.5.1] is similar. We
merely need a technically more involved duality argument instead of (3.5.4) below and an
application of Theorem [3.4.1] instead of Theorem |3.4.2

Proof of Theorem [3.5.2] By Lebesgue’s monotone convergence theorem we may restrict the

supremum to a finite set of positive numbers {¢1,...,tx}, as long as our final estimate is

independent of N. Further, a density argument shows that it suffices to consider f € S(R?).
For F: C? — C and u > 0 we let (6,F)(x + iy) = F(z + iuy) and define

RUM(F) (@ +iy) = (5,1 0 B 0 8,)(F) (@ + iy) = B (6.,F)(x + iu~'y).

Using Theorem [3.4.2] it is straightforward to see that

sup ‘Et"“F‘
N

n=1,...,

< B(p, k)HFHLP(Cd)’

Lr(C4)

Note that by duality between the spaces LP(C%; £>°({t1,...,tx})) and LY(C% 2 ({t1,...,tn}))

the above inequality can be rewritten in the following equivalent form

N N
D (RUE, Go)pacny| < B, Fllpoca | Y Gl ; (3.5.4)
n=1 n=1 La(C)

where G,, € LI(C%), n=1,...,N.
Let n € S(R?) be a fixed function such that [7[lp(ray = 1 and take f € S(R%). Denoting

F(z+iy) = (f@n)(z,y) = f(x) - nly), x,yeR?

we claim that
lim (R""F, G)raca) = (R'(f) @ 1, G) pa(cay (3.5.5)

u—0t
for any function G € S(C?) and all ¢ > 0.
Assume for a moment that the claim holds. Fix e € (0,1) and let ¢ € S(R?) be a function
of LI(R%) norm 1 and such that | (0, ¥) p2gay | = (1 —¢). Take g, € SR¥), n =1,...,N.
Then, substituting F' = f ® n and G,, = g, ® ¥ in we have

N N
DR (f @), gn @ V) p2ony| < BER)S @ nlloco)|[ D 190 © Y]
ot n=1 La(C?)
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At this point claim (3.5.5)) implies

N N
SR 1, gu) 2y || 6) 2y | < BRI ooy || D lonl
n=1 n=1 L1(R9)

Now, using duality between the spaces LP(R% ¢>°({t1,...,tx})) and LIY(RE (1 ({t1,...,tn}))
together with the density of Schwartz functions in L(R?) we conclude that

(1—¢)|| sup ‘Rt”ﬂ
N

n=1,...,

< B, Bl 1o (ray-
Lp(Rd)

Since € € (0, 1) was arbitrary this completes the proof of Theorem m
It remains to verify claim (3.5.5). Since R =Y jer RLR; it is easy to see that
Rt“F =" R“RYF,
Jel
where, for F' = f ® n, we denote
REU(F)(x +iy) = RY(0,F)(z +iu"y),  RY(F)(z +iy) = R;(6,F)(z +iu"y).
Thus, it is enough to justify that

lim (RY“RYF, G)p2(cay = (RER;f) @ 0, G) 2 (cay (3.5.6)

u—0+ 7

for jeI,t>0,and G € S(C?.

Fix j € I and ¢t > 0 and denote by m! and m the multiplier symbols on C? corresponding
to the operators ﬁ; and Ej, respictively. TLhen §u(m?) and 6, (m) are the multiplier symbols
corresponding to the operators R;fu and R}, respectively. Thus, identifying C¢ with R2?,

taking the Fourier transform on R?¢, and using Plancherel’s theorem we see that
<R§’UR;LF, G>L2((C’1) = <(5u(m)5u(mt)}'[F],f[G]>L2(C,1) (357)

By formula (3.0-3) (applied on R??) and definitions (3.4.1), (3.4.2)) for P;j(z) = zj = zj, - -~ zj,

we have )
kD5 (€ + iuT)

|€+iu7’|k ’
for £,7 € R% Hence, for £ # 0 and 7 € R it holds that lim,_,o+ m(&,ur) = m(&,0) =

(—i)k%ﬁ). Another application of ([3.0.3)) (this time on R?) shows that the function mq(€) :=

m(&,0) is the multiplier symbol of the operator R; acting on L?(R9).
Since the operators ﬁ; and éj are both bounded on L?(C%) the functions d,(m) and
6u(m?) are in L>°(C?) uniformly in v > 0. Thus, coming back to (3.5.7) and using Lebesgue’s

dominated convergence theorem we see that

Su(m)(§,7) = (=)

lim (RYRYF, G) pacay = lim (8,(m") FIF), g FIG]) 12(cay.

u—0+ u—0t

provided the limit on the right hand side exists. By definition of mg applying again Plancherel’s
theorem we obtain

lim (RY“RYF, G)p2cay = lim (RUF, (Rj @ 1)*G) 2 (cay, (3.5.8)

u—0t u—0+
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provided the limit on the right hand side exists. In the above formula R; ® I denotes the
operator I?; acting only on the R? coordinates of a function defined on C¢ and the adjoint is

taken with respect to the inner product on L?(C%). Now, if we justify that

lim (RYUF, (R; ® I)*G) p2cay = (R5(f) ® n, (R; @ 1)*G) 12(ca) (3.5.9)

u—0t

and use the formula
(RE(f) @n, (R @ 1)*G) p2cay = (RER; f) @, G)2(cay

together with (3.5.8)), then we will complete the proof of claim (3.5.6)).
Since the operators éﬁ’u are bounded on L?(C?) uniformly with respect to u > 0, to prove

(3.5.9) it suffices to show that
lim (R}"F.G) 2 (cay = (R(f) @1, G) 2 (cay, (3.5.10)

u—0t
where G € S(C%), and use the density of Schwartz functions in L*(C?%). For z = z + iy,

z,y € R% we have

RM(F)(2) = B (f @ n)(2) = w0, 1 (K}) + (f @ m)(2)
B - _q Pi@ +iuly)
a R4 fle =) /y/e]Rd: |2/ +iu—1y | >t " |z’ 4+ iu—1y’ |2d+kn(y s (3:5.11)

-~ P(CU +Z?/) / I3t
= flo —a") = iy — wy) dy' do’.
/Rd /y'GRdZ |m’+iy’|>t ‘ / Zy ‘2d+k

Moreover, we will show that for fixed ¢ > 0 it holds

Pj(z' +iy')
T odk

fz — 2" Ly syt € LY(CY). (3.5.12)

|z’ + iy/|

uniformly in z € R?. Recall that P; is a homogeneous polynomial of degree k and that f is a
Schwartz function. Hence

// f ’da:’<// ’fx_x)cldydm
RY J |2/ iy’ [>t |2 + iy/| R Sfarriy ¢ |2 + iy'|?

dy/’ dy/’
< [ |- / +/ az' Soa £
/Rd | | wi<e B4 Jigise |y '

Hence, taking the limit as « — 07 in (3.5.11]) and using Lebesgue’s dominated convergence

theorem followed by Lemma [3.5.3| we obtain

n Pz’ + 1Y)
) Atk

. Stu / ~ P'(x/+iy/) ’og

lim RYY(F)(z) = - ST gy d

g @ =0 | I x)/y'eRdsleﬂy/bt o iy P (3.5.13)
=n(y) | flz—a)Kj(a')dz" = n(y)Rjf(z) = (R}(f) @ n)(z,y),

Rd
for z,y € RY Moreover, another application of (3.5.12)) shows that fij“(F) € L>®(C%)

uniformly in v > 0. Now, since GesS (C?) using again Lebesgue’s dominated convergence
theorem followed by ([3.5.13)) we reach

lim (RY“F,G ) 2(cay = ( Jim, RY“F,G) p2(cay = (RE(F) @1, G) 12(ca)-

u—07t
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This justifies (3.5.10)), hence, also claim (3.5.6)). The proof of Theorem is thus completed.
O

Now we prove Theorem Note that we will use claim (3.5.5|) justified in the proof of
Theorem [3.5.2]

Proof of Theorem [3.5.1] By Lebesgue’s monotone convergence theorem we may restrict the
supremum in the definition of R* to a finite set of positive numbers {t1,...,tnx}, as long as
our final estimate is independent of N. Further, a density argument shows that it suffices to
consider f1,..., fs € S(RY).

For F': C?* — C and u > 0 we let (6,F)(x +iy) = F(x + iuy) and define

R(F)(z + i) i= (8,01 0 B 0.8,)(F)( + iy) = B8, F) (& +iu”ly).
Using Theorem [3.4.1] it is straightforward to see that

S 1/2
< A(p, k) (Z\Fﬁ)

NG
sup ‘ﬁt”’“Fs‘>
s=1

1n1,,

Lr(Cd) Lp(Cd)

Note that by duality between the spaces LP(C% Ey,) and L9(CY%; Ey), where

Ew=0({1,...,850°({t1,...,tn})) and Ey =0 ({1,....,8h 0 ({t1,....tn})

the above inequality can be rewritten in the following equivalent form

S N _
Z Z(Rtn’qu, Gn,s>L2((Cd)

s=1n=1

1/2

S 1/2 S N 2
(Z \Fsl2> > (Z IGn,SI> . (3.5.14)
s=1

s=1 =

Lp(C) " La(Cd)

where G, s € LY(C%, Ey).
Let 7 € S(RY) be a fixed function such that 10l poray = 1, take fi,..., fs € S(RY) and

denote

Fy(z+iy) = (fs@n)(z,y) = fs(@) -0y, zyeR! s=1,...8

Fix e € (0,1) and let ¢ € S(R?) be a function of LI(R?) norm 1 and such that | (n, w)Lg(Rd) | >
(1 —¢). Take g s € S(RY), n=1,...,N, s =1,...,S. Then, substituting F; = f; ® n and
Gn,s = gn,s ® ¢ in (3.5.14) we have

S N

Z Z<§tmu(fs ®1), gn,s ® ¢>L2((Cd)

s=1n=1

(i Ife® 77I2> " ES: (EN: |Gn.s ® w|>2

Lp ((Cd) La ((Cd)
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At this point claim (3.5.5)) from the previous proof implies

S N
Z_;Z:l Rt fSa gns L2(R)
s 1/2 S /N 2
) (zw) z(z |gn,s|)

s=1 =

-1 1
Lr(RY) || \*70 M La(Rd)

(n, ¢>L2(Rd)

1/2

Now, using duality between the spaces LP(R%; E,,) and LI(R?; E1) together with the density
of Schwartz function in L(R?) we conclude that
S 1/2
) (Z \fﬁ)
s=1

g 1/2
(1-¢) (Z s \Rt"fs\)

1=

Lr(R4) Lr(R4)
Since € € (0, 1) was arbitrary this completes the proof of Theorem O
3.5.2 Bounding the difference between R' and R!
Define the difference kernels on R by
tio . et ¢
Ei(z) == Kj(z) — Kj(z). (3.5.15)

Recall that by definitions (3.0.1)) of K} and (3.5.1]) of IC; we have Ejt (x) = —lC; (x)if |z| < ¢t
and Fj(x) = 0 if |z| > t. We let D; be the operator on LP(R) given by D!f = Ef % f and
define
D'f =Y DIR;f,  D*f=sup |D'f|. (3.5.16)

- teQy

jel
Clearly,

Rt — Rt 4 Dt,

so using Theorems [3.5.1] and [3.5.2] we reduce Theorems [3.3.2] and [3.3.3] to the following two

statements.

Theorem 3.5.4. Fix k € N. For each p € (1,00) there is a constant A(p, k) independent of
the dimension d and such that for any S € N we have

1/2 g 1/2
Z|D fs < A(p, k) (zw) ,
s=1

Lr(R) Lo (R2)
whenever f1,..., fs € LP(R?). Moreover, A(p, k) satisfies A(p, k) <p (p*)>/>+k/2,

Theorem 3.5.5. Fiz k € N. For each p € (1,00) there is a constant B(p, k) independent of

the dimension d and such that

”D*fHLP(IRd) < B(p, k)HfHLP(Rd)a

whenever f € LP(RY). Moreover, B(p, k) satisfies B(p, k) Sy (o)*+/2
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The proofs of the above two theorems will follow the scheme of the proofs of Theorems
and [3:4.2] The main difference lies in the application of the method of rotations. It has
to be appropriate for the operator D!. For ¢t > 0 we let I* be the function on (0, c0) given by

r> 0. (3.5.17)

0 Sd—l
1 =10 [ T
=

Using the definitions (3.5.1)) and (3.5.15) and integrating in polar coordinates in RY we

obtain

D f(z) = /R Wi fd@kﬁay\)ﬂx—y) dy

=57, / / % I'(r) f(z — rw) dw dr (3.5.18)
gd—1 T
oT (ktd
St [ oML () do = ) | e f@ o,
s L (5)T(5) Jsan
where B .
Hf) = s,y [ e fE=) g (3.5.19)
Yk 0 r
Let now H) f(z) = SUP;eq, }’Hfuf(x)’ The next proposition serves as a replacement for

Proposition [3.4.3]

Proposition 3.5.6. For each 1 < p < oo we have
S 1/2
(Z !H2f5\2>
s=1

uniformly in w € ST and the dimension d.

g 1/2
(Z |fs|2> (3.5.20)
s=1

Lr(R4) Lr(R4)

Proof. For f: R? - C, w € 8% and t > 0 we let

t
_ 1/ flo—rw)dr, M- f(x) = sup | M. f(2)
—t t>0

be the directional Hardy—Littlewood averaging operator and the directional Hardy—-Littlewood
maximal function. Using Fubini’s theorem and one-dimensional estimates for the Hardy—

Littlewood maximal function, see e.g. [22, Theorem 5.6.6], we obtain

g 1/2 g 1/2
(Z \MZZfs\2> <Z \fﬁ) ,
s=1 s=1

Lr(R%) Lr(R4)
uniformly in w € S~1. Thus, to prove (3.5.20) it suffices to show the pointwise estimate
M., f () S MG f(2)

uniformly in z € R%, w € S !, with implicit constants independent of the dimension.

This bound will follow if we justify that

T 1
g, L) 1 (3.5.21)
Vi r

)
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with the implicit constant being uniform in ¢ > 0, 0 < r < ¢, and the dimension d. Note that
for s > (1% — 12 we have 1 < Y&+l + . Hence, recalling (3.5.17) and using (3.0.6) we obtain

I dl
%Sdl ( 'Yde =

ds

Gl o st
<S_/ ds = S5q-1—
et Jo (14 s2)4F(=1/2 " oI (d + 552

Applying ([1.5.5)) and ( - we reach

G I'(r) _ 20 T(d+3) F(d“;‘l)F(%)g
wor ST P (BE) (it ) !
1
t

Sa—1

Ld+5) T(H)
D(d+51) T (4

Since k is fixed, using we conclude that

T It(r) _ (d+ 554"

—1\1/2
L

Sa—1

Thus, we completed the proof of (3.5.21]) and hence also the proof of Proposition m
O

We will also need vector-valued estimates for {R;(fs)}, j € I, s =1,...,d. The following
proposition can be deduced from Proposition if we proceed along the lines of |26 Section
4].

Proposition 3.5.7. For each 1 < p < co we have

1/2 12
Z |R; il P (Z |l ) : (3.5.22)
s=1 jel Lo (R Lo(RY)
1/2
Z |ij’2 S ~ P qk/ ”f”Lp Rd)> (3.5.23)
J€el
Lpr(R4)

uniformly in the dimension d.

Proof. In contrast to the proofs of Theorem and Theorem here we apply the
methods from [20, Section 4| in a direct way. Therefore we shall be brief. Let n = k = d and
identify C? with R??.

For the proof we take E = (2({1,...,5}) and F = (2({1,...,S} x I). The
operator T is defined by

T({fs}s=1,..5) = {éj(fs)}(s,j)e{l,...,s}xl'

Using (3.0.3) for P(z) = z;, - - - zj, one can check that the restricted operator Ty is then

To({fsts=1,...s) = {R;j(fs)}(s.)ef1,...syxI-
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Hence, |20, eq. (45)] together with (3.4.8)) lead to (3.5.22)).
The proof of (3.5.23)) is similar. We take E = C and F = ¢*(I). The operators T and

To are defined as above. The desired inequality follows from [26], eq. (45)] together with
B29). 0

We are finally ready to justify Theorems and [3.5.5] At this point the proofs mimic
the corresponding proofs of Theorems and

Proof of Theorem [3.5.4. We proceed analogously to the proof of Theorem [3.:4.1] on p. [56]
nevertheless we present the proof for completeness.

Observe that it follows from (|3.5.16f) and (3.5.18]) that
D'f(z) = —c)i) H, ijij (x) dw. (3.5.24)
2

Using this identity, estimate (3.4.7)) with g in place of d, and Minkowski’s integral inequal-
ity on the space £2({1,...,S}; L>°(Q,)) we see that

1/2
S /

S 1/2 )
(Swser) o[ (S (e[Sone)] w eew

s=1 jel
Thus, another application of Minkowski’s integral inequality followed by Proposition [3.5.0]
gives

1/2 1/2

s
Z|D fs Sp*dk/Q/Sdl S wiRsfs

=1 1
L#(Rd) e Lr ()

dw.

Using Khintchine’s inequality (3.2.19) followed by Hélder’s inequality on S9! we see that

1/2
Lr(R4)
1/p

s P
)| d¢dx dw

Sprdt? /Sdl /Rd /01 D re(€)Y wiRifs(w

s=1 jerI

P 1/p

1 S
< p*dh/? /Rd/o /Sd_l ]Ze;ijj[;rs({)fs(x)] dw d€ dx

Since for fixed z and £ the function w — >, w;R; [Zs 17s(&) fs(z )] belongs to H¢, apply-

ing Lemma [3.2.3| we obtain

P 1/p 2 1/2

/Sd1 jezleRj[irs(f)fs(:v)} dw < ph/? /Sd1 jzg;ijj[ rs(é)fs(w)] dw

s=1

]

s=1
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Then we use orthogonality of the functions w; with respect to the inner product on S4=1 and
an estimate for their L? norms similar to (3.4.14)), followed by (3.5.23) from Proposition m
and Khintchine’s inequality (3.2.18]) to get

1/2 g 5\ P/ 1/p
Z |D* fs < p*pk/2qh/ / / R; [er(f)fs(x)} dé dx
R4

LP(R4) jelI s=1

. p 1/p s p/2 1/p
SEP ([ [ IS @] adr)  serr | [ (SIRE)

R Jo :C

The proof of Theorem [3.5.4 is thus completed. O

Proof of Theorem [3.5.5. We proceed analogously to the proof of Theorem [3.4.2] on p. 55}
Using (3.5.24) and (3.4.7)) with g in place of d we see that

|D* f( \<dk/2/ H Zw]R fl (x)dw, z € RY.

Jel

Hence, Minkowski’s integral inequality followed by Proposition [3.5.6] show that

HD*fHLp(Rd) Sp*dk/z [gd—l ijij dw.
Jjel

Lr(R4)
Using Holder’s inequality and Fubini’s theorem we obtain
1/p

ID* Fll Lo (e Sprd? / /Sd ) Zw]R f(z)| dwdz . (3.5.25)

Jjel

Since for fixed @ the function w — . ;w;R; f(x) belongs to H¢, applying Lemma we

obtain

P 1/p 2 1/2
/ > wiRif(x)| dw| SpM? / > wiRif(x)| dw
Sd—1 |7 Sd—1 %
Jel jel
Using orthogonality of w; and a version of (3.4.14) for w; we thus see that
p 1/p 1/2
) ST I ) BTl DT I
gd—1 |4 ,
Jjel jel

which, together with (3.5.25)) leads to

1/2

1D Fll oy S 002 | S0 1R 112
jel
Lr(R4)

Thus, (3.5.23) from Proposition completes the proof of Theorem O
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Chapter 4

LP estimates for Riesz transforms

assocliated with Schrodinger operators

In the second part of the dissertation we consider a class of Riesz transforms related to
the Schrédinger operator
1

where A is the Laplacian on R? and V is a non-negative locally integrable function called
the potential. The operator L is rigorously defined via quadratic forms, see Section The

Riesz transforms are formally given for a > 0 by

a a 1 —a Ve(z) i a—1
Vi) =Viz) (-5A+V) " flz) = Ta) -/0 e " f(x) v dt, (4.0.1)
where e * is the semigroup generated by L.

In this chapter we consider a wide range of potentials and prove results on LP boundedness
of the operators Ry, with norm estimates which depend on the dimension d, unlike in other
chapters of the dissertation. In Chapter [5| we focus on a specific class of potentials which lets
us obtain dimension-free estimates of the LP norm of RY,.

There are two main results in this chapter. First we consider a general locally integrable

potential and prove LP boundedness of the Riesz transform associated with it, namely

Theorem 4.0.1. Let V € L{ . and take p € (1,2]. Then for all0 < a <
Ry, is bounded on LP.

the Riesz transform

S

The theorem generalizes several earlier results described in Section [1.3.2] It is derived as

a consequence of the endpoint bounds for R%// % on L?, see Proposition |4.1.3 and for R%/ on L'

(|2, Theorem 4.3], see also |21} 27]) together with the interpolation result given below.

Theorem 4.0.2. Let 0 < ag < ay. Assume that V € LllOC 18 such that R?} s bounded on LP!
for some p1 € [1,00) and R}® is bounded on L'. Then, R, is bounded on LP for every p and
a such that % =6+ 1]3;10 and a = Oay + (1 — 0)ay with some 6 € (0,1).

The other results concern L™ and L' boundedness of Rg, for specific classes of non-negative

potentials V', for which we assume a certain condition relating the value V(z) and the speed

69
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at which V (y) decreases for y in a ball around . The main classes of potentials to which our
results apply are given in the following theorem. In order to make the presentation clearer,
we will say that some property holds globally if there is a compact set F' C R¢ such that the
property holds for almost all z € R4\ F.

Theorem 4.0.3. Let V: R? — [0,00) be a function in L (RY). Then in all the three cases

loc

1. V(z) =~ 1 globally
2. For some a > 0 we have V(z) =~ |z|* globally
3. For some > 1 we have V(z) ~ B globally

each of the Riesz transforms R%, a > 0, is bounded on L>= and on L'.

In the proof of the above theorem we first use the positivity-preserving property of the

t

semigroup et so that we only need to bound the quantity

Ry (1)(z) = V(x) / e E(1)(x) te L dt.
0
We estimate it using the Feynman—-Kac formula
e (1) (z) = E, [e* Jo V(Xs)ds}

by splitting the underlying probability space into events relating the value of V' (Xy) and V' (z)
in a way which facilitates the estimates and which was described in Section [I.4]
The case of L! estimates is similar, but more complex. First we use duality between the
spaces L' and L™ in order to reduce the task of estimating the L' norm of the operator
v = VAL~ to estimating the L° norm of the operator L™V“. Similarly to the previous
case, we use the positivity-preserving property of L=% and we remain with the goal of bounding

the quantity
L‘“(V“)(x):r(la) /D (V) (2) 191 dt

by a constant independent of x.

Before we move on to the proof we establish notations used in this chapter.

1. We say that f is a finitely simple function if it is a simple function supported in a

compact subset of R?. Such functions are clearly dense in LP, 1 < p < oo.
The space of smooth compactly supported functions on R? is denoted by C°.

2. For x € R? and 7 > 0 we denote by B(z,r) := {y € R? : |z —y| < r} the closed
Euclidean ball of radius r.
For a Lebesgue-measurable subset A C R? we denote by |A| its Lebesgue measure.

3. For a random variable X defined on a probability space (2, F,P) and A C R we denote
PX € A) =P({weN: X(w) € A}). We abbreviate almost everywhere and almost

every to a.e.
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4. The symbol Ca stands for a constant that possibly depends on A > 0. We write C
without a subscript when the constant is universal in the sense that it may depend only

on the dimension d and the parameter a of the Riesz transform.

5. For two quantities A and B we write A < B if A < CB for some constant C' > 0 which
may depend on d and a. If both A < B and B < A hold, then we write A ~ B.

If A and B are functions on R?, then A < B means that A < C'B for almost all z € R

For two functions A and B on R? we write A <, B if A(z) < B(x) for almost all z ¢ F

for some compact set F'. The same convention applies to the symbols < and ~.

4.1 Definitions and general results on L? for 1 <p < >

The main goal of this section is to define the Riesz transforms RY,, a > 0, on L? and
to prove LP boundedness results for these operators valid for general classes of non-negative
potentials V. Throughout this section we take 1 < p < co. The case of p = oo is addressed
in the next section.

Our general definition on LP will be based on semigroups related to —%A—H/ that are given
by the spectral theorem. Let V € LllOC be an a.e. non-negative potential. This assumption is
in force throughout the chapter even if this is not stated explicitly. Whenever we write V()
we mean the value at x of a particular representative of the equivalence class of V' in the space

Ll

loc*

closely the approach in |2 Section 3| (see also [II]) and define the Schrédinger operator L via

The same is true for any expression in which similar ambiguity may arise. We follow

quadratic forms. Consider the sesquilinear form

Q(u,v) = /Rd +(Vu, Vo) + Vuo (4.1.1)

on the domain
Dom(Q) = {f € L? : Vf € L? and V'/2f € L?},

where V f denotes the distributional gradient of f. We equip the domain with the norm

1/2
9

151y = (115-+ 309118 + ] )

which turns it into a Hilbert space with C2°(R?) as a dense subspace. Since @ is bounded

below and non-negative, there is a unique positive self-adjoint operator L such that
(Lu,v) = Q(u,v), wu € Dom(L), v e Dom(Q)
and its square root L'/2, defined on Dom(LY?) = Dom(Q), satisfies

|z = suvri+ [ves|, e oy, (4.12)

t

By [2, Section 3| the semigroup e~** is positivity-preserving and pointwise dominated by the

heat semigroup, hence it is a contraction on L? for 1 < p < oo.
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Let a > 0. For f € LP, 1 < p < o0, and € > 0 we define

(L+el)f =

1 Ry 1 —et

et e dt, (4.1.3)
I'(a) /0
Since the semigroup e™*" is a strongly continuous semigroup of contractions on LP, the integral
in (4.1.3) is well defined as a Bochner integral on LP. It is also not hard to see that for f € L?
the operator defined by (4.1.3) coincides with (L + eI)~® given by the spectral theorem.

Moreover, if f is an a.e. non-negative function in L? then

tL

L7 (@)=t s

/ e L f(x)t e ot dt, (4.1.4)
0

exists x-a.e. as a monotone pointwise limit, although it may be infinite. In either case

L™ f(z) =

1 >~ —tL a—1
F(a)/o e f(x)t T dt (4.1.5)

by the monotone convergence theorem. For a > 0 and a non-negative function f € LP we let
vi(z) =V¥z)L™f(x), z e R% (4.1.6)

This is well defined z-a.e. though possibly equal to infinity. Additionally, for a = 0 we set R?/
to be the identity operator.

Definition 4.1.1. Let 1 < p < oo and a > 0. We say that the Riesz transform RY, is bounded
on LP if there is a constant C' > 0 such that

1B fll, < ClIA, (4.1.7)

for all non-negative finitely simple functions f € LP.

Note that if RY, is bounded on LP, then for each finitely simple function f the quantity
RY%|f| given by (4.1.6) is finite for a.e. z € R%. Since ‘e*th‘ < e | f| we see that in this

case -
Ve(x) / e L f(x)tet dt
0

is finite z-a.e.. Thus, whenever RY{; is bounded on L? the integral above is a natural definition
of R{, f, first for finitely simple functions and then, by density, for arbitrary functions in L.

Using Stein’s complex interpolation theorem and functional calculus for symmetric con-
traction semigroups [10] we now prove an interpolation result for the operators R{,. Similar
method was applied in [2 Section 6|, where the authors proved the LP boundedness of R‘l// 2
for 1 < p < 2(q + €) by using Stein’s complex interpolation theorem together with the LP
boundedness of R%/. They considered non-negative potentials belonging to a reverse Holder

class By.

Theorem 4.1.1. Let 0 < ag < ay. Assume that V € LllOC s an a.e. non-negative potential
such that R{? is bounded on L and R{} is bounded on LP* for some po,p1 € (1,00). Then,
R 1s bounded on LP for every p and a such that % = p% + 128 and a = Gag + (1 —0)a; with

p1
some 0 € (0,1).
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Proof. Let € > 0 and denote F(¢) :== {x € R?: ¢ < V(2) < e7'}. It is enough to justify that

RO (@) = (Lp V) @) s [ e thpte) e te =
0

I'(a)

satisfies for all simple functions f the bound
IR fll, < Clfl, (4.1.8)

uniformly in € > 0 and with C' > 0 being a constant. Indeed, if holds, then taking
e — 07 we obtain the LP boundedness of R¢, first (with the aid of monotone convergence
theorem) for non-negative simple functions and then for all functions in LP.

Thus, in the remainder of the proof we fix € > 0 and focus on justifying . Denote
S={2€C:ap <Rez<ar}. Then, for z € S and € > 0 the function mS(\) = (A +¢)7 % is
a bounded function on [0, 00), hence, by the spectral theorem (L + el)™* is well defined as a

bounded operator on L?. We let
T.f=1pe)V?) (L+el)~?f, fer? (4.1.9)

Since (L + eI)~% given by the spectral theorem coincides with

1

I'(b) /0

for every b > 0 we have
R¥f=Tf,  fel

Thus, in order to justify (4.1.8) it suffices to prove a uniform in € > 0 bound for the LP norm
of Ty,.
This will be achieved by Stein’s complex interpolation theorem. Note first that for f, g

being finitely simple functions the pairing
h(z)=(T.f,9), 2z €8S,

gives a function which is holomorphic in S. To see this observe that (4.1.3)) still holds with
complex a € S. Combining this observation with the definition (4.1.9) of T, it is easy to see
that h is indeed holomorphic. Additionally, the spectral theorem gives the bound

Ih(2)| < Cle, f,9), (4.1.10)

valid for z € S. Altogether {T,} .cg is an analytic family of operators of admissible growth.
It remains to bound the operator T, for Re z = ag and Re z = a1; this is the place where

we use the assumptions on R?/j. We let z = a; +i7 for 7 € R, j = 0,1 and write
T. = (1pe)V?) - (L+el) ™ = (Lpe)V7)Ta, (L +I)77,

from which we see that
T2l < 12, 2+, (a0
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Since (L + €I) generates a symmetric contraction semigroup and p; € (1,00), by e.g. [10] the
imaginary powers (L + )™ satisfy

I(Z+en™ |, Se=, (4.1.12)
uniformly in € > 0 Moreover, we have
T, (f)()| = [R%* f(2)| < RY|f|(x),  zeR™
Thus, coming back to (4.1.11f) and using our assumptions on the LPi boundedness of R?} we

obtain, for z = a; +i7, 7 = 0,1,

||
IT:ll, Se*, TeR

Finally, applying Stein’s complex interpolation theorem, see e.g. |22, Theorem 1.3.7], we
obtain the LP boundedness of RY. O

Theorem immediately leads to the following corollary.

Corollary 4.1.2. Let 0 < ag < a1 and assume that both Ry? and Ry} are bounded on LP for
some 1 < p < co. Then RY, is bounded on LP for every ap < a < ai. In particular if Ry} is
bounded on LP, then RS, is bounded on LP for every 0 < a < aj.

Proof. We apply Theorem with pg = p1 = p. For the second part recall that R(‘)/ is the
identity operator. O

It is straightforward to see that the Riesz transform R%,/ ? is bounded on L2. Using Corol-

lary we now extend the L? boundedness to the operators Ry with 0 <a < %

Proposition 4.1.3. Let V € LlloC be an a.e. non-negative potential. If 0 < a < %, then RS,

extends to a contraction on L2.

Proof. By formula (4.1.2)) we have

HV1/2fH2 < HLl/Qf’ fece; (4.1.13)

27
here L'/? is the self-adjoint operator with domain Dom(L'/?) = Dom(Q), while Q is the

sesquilinear form given by (4.1.1). Using the fact that self-adjoint operators are closed we get
Dom(L'/?) € Dom(V'/?) and

sl < oo, g pomzt) (11,1

27
For each fixed € > 0 the operator (L + 5[)_1/2 is bounded on L? by the spectral theorem.
Taking f = (L +el)~"/?g with g € L? in ({#.1.14)) we get

HV1/2(L_|_€I)—1/29H2 < HLl/z(L+d)—1/2g‘ geL> (4.1.15)

27
If g is a non-negative function on L? then by definitions (#.1.3)), (4.1.6) and the monotone

convergence theorem we have lim__,+ HVI/Q(L +5I)_1/2gH2 = HR%/QQHQ' The right-hand
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side of (4.1.15)) converges to ||g||, as € — 07 by the spectral theorem. Therefore we justified
172 1/
that |Ry;"g

) < |lgll, for non-negative g € L?. This implies that RV2 is a contraction on L2
At this stage an application of Corollary shows that R is bounded on L? whenever
0<a< % The contractivity of RY, is not a direct consequence of the corollary. However, it

is easy to justify once we follow the proof of Theorem and use the spectral theorem to
enhance inequality (4.1.12]) to

|[(L+en) ™|, <1, T€ER.
m

When pp = 1 we have a slightly weaker variant of Theorem [.1.1] with the restriction

ag, a1 > 0. This is caused by the unboundedness of the imaginary powers L7, 7 € R, on L!.

Theorem 4.1.4. Let 0 < ag < ay. Assume that V € LllOC 18 such that R“l} 18 bounded on LP!
for some p1 € [1,00) and R}® is bounded on L'. Then, R, is bounded on LP for every p and
a such that % =6+ 1}7;10 and a = Oay + (1 — 0)ay with some 6 € (0,1).

Proof. The proof is similar to that of Theorem For € > 0 we define the sets F'(¢) and
the operators R*€ as in that proof. Once again it suffices to justify (4.1.8).
Let S = {z € C:ap < Rez < a1} and define the family of operators {7}, g as in (4.1.9).

Since this time ag > 0 the formula

T.f = (1pe)V7) -

1 /Oo —tL g 4z—1 —ct 2
e "t e dt, fel”, (4.1.16)
I'(z) Jo

holds for z € S. Moreover, {1} }.cs is a family of analytic operators of admissible growth; this
can be justified as in the proof of Theorem [4.1.1] Hence, in order to apply Stein’s complex
interpolation theorem it remains to bound HTZHpj for z = a; +i7, j = 0,1. Using (4.1.16)

o w|7]
and the asymptotics for the gamma function |I'(a; + i7)| ~ || V2e="5  see [0, 5.11.9],

we obtain the pointwise bound
IT.f ()] S (1 p) V) (@) - /0 e fl(@)t% e dt S emTIRY | f|()

valid for 2 = aj + 47, j = 0,1. Hence, the L' boundedness of Ry? together with the L
boundedness of Ry give

HTZH1 §e7r|7'\’ Z:a0+iT, TER)
and
IT2)l,, e, z=ai+ir, TER
Thus, using Stein’s complex interpolation theorem we complete the proof. ]

Analogously to the L? case one particular Riesz transform R‘l/ is always bounded on L!,
see |2, Theorem 4.3] and [21I), 27]. Interpolating this result with Proposition we obtain

the following theorem.
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Theorem 4.1.5. LetV & LllOC and take p € (1,2]. Then for all0 < a <

v is bounded on LP.

]l) the Riesz transform

Proof. The L? boundedness of R%,/ % is guaranteed by Proposition The L' boundedness
of R}, is justified in [2, Theorem 4.3]. Hence, Theorem gives the LP boundedness of
R{, whenever a = 0 + 1%9 = %. Finally, Corollary extends the boundedness on LP to
0<a< s, O

4.2 Definitions and a counterexample on L*

Here the approach from the previous section is invalid since e ** does not necessarily
extend to a strongly continuous semigroup on L*. However, for certain classes of potentials

the operator e *£, ¢t > 0, can be also expressed by the celebrated Feynman-Kac formula
@) =By [ h VOB R(x)] fer, (4.2.1)

where 1 < p < oo. The expectation E, is taken with regards to the Wiener measure
of the standard d-dimensional Brownian motion {X,}sso starting at = € R% here X, =
(X1 ..., X9). Since the potential V is a.e. non-negative, identity is true whenever
Ve L12OC belongs to the local Kato class K}fc. This follows for example from [50, Remark
4.14] once we recall that for V' € L12OC the operator —% + V is essentially self-adjoint on
C2°, hence its Friedrichs extension is its unique self-adjoint extension. We will not need the
definition of the local Kato class in the dissertation; for our purpose it is important to note
that Lfoc - Kclloc whenever ¢ > 1 satisfies ¢ > g, see [32, Lemma 4.105]. Therefore is
true for V € Lfo . Whenever ¢ > g and ¢ > 2, in particular for V' € L{¥ . The right-hand side

of (4.2.1)) makes sense also for f € L>, see [32, Section 4.2.4], which leads us to the definition
e f(x) =By |e” fot"(Xs)dsf(Xt)} . feL™® t>0. (4.2.2)

To deal with measurability questions we need a technical lemma on the continuity of e *% f.

Lemma 4.2.1. Assume that q > % and ¢ = 2 and let V € Liloc be an a.e. mon-negative
potential. Then for all f € L™ the function e ' f(x) given by ([4.2.2)) is jointly continuous in

(t,x) € (0,00) x R%. In particular e=**(1)(z) is jointly continuous in t and x.

Proof. Since LiL . C K }loc it follows from [50}, Proposition 3.5] that e~ is an integral operator

with its kernel K;(z,y) being a jointly continuous functions of (¢, z,y). Since V' > 0 we also
2

have K;(z,y) < (2rt)~9/? exp(%) and therefore for each N > 0 it holds

_ —jwl?
/ Ki(z, y)lf(y)ldy < = d/QHfHOO/ L e dw. (4.2.3)
lz—y[>N lwl>25

Consider now (t,z) — (to,zo) and let ¢ > 0 be arbitrarily small. Splitting

e f(x) = Ki(x, d Ki(x, d
fw=[ Ky (2,9) (v) dy

z—y|>N
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and using (4.2.3)) we see that for N = N(e) large enough holds

ez“fw>—/“ Ki(e.9)f(y) dy| < ¢
|z—y|<N

uniformly in % < ¢ < 2tg and |z — | < 1. Moreover, for such (¢, z) we see that C|| f|| .o Ljyj<Nt}ao|+1
is an integrable majorant of 1j,_,<nK:i(z,y)f(y). Thus, using Lebesgue’s dominated con-

vergence theorem we obtain

lim sup }e_th(x) — e_tOLf(wo)‘ < 2e.
(t,x)%(to,xo)

Since € > 0 was arbitrary this completes the proof. O

Now, take a > 0 and let V' € L5 be an a.e. non-negative potential. For a non-negative

function f € L* we define the Riesz transform R, by

@ f(x) = VO(x) - — /OOEI [e—féV'(Xs)de(Xt)] to=ldt,  fe L. (4.2.4)

T(a) Jo

Note that by Lemma the function R{, f(x) is then a measurable function on R? possibly
being infinite for some x. Moreover, by (4.2.1) the L°° definition (4.2.4) coincides with the
LP definition (4.1.6) whenever f is a finitely simple function.

Since the semigroup is positivity preserving we have

e f(@)] < e (I floD (@) = [ flloe™(M)(2),  fe L™, (4.2.5)
which leads to the following definition of the L® boundedness of RY,.

Definition 4.2.1. We say that the Riesz transform RY, is bounded on L if
IRE (D), < . (4.2.6)

Note that if (4.2.6) holds, then by (4.2.5)) for every f € L* we have |R{,(f)(z)| < || f|l R (1)(x)
so that

IR (Dl < Cllfllaes f € L™, (4.2.7)
with C = [R%,(1)]

Since

[e'e

Re(1)(2) = Vo(z) F(la) /0 T (1) () 0 (4.2.8)

it is apparent that in order for R{, to be finite a.e. on supp V' the monotone function ¢

e (1) (x) must converge to 0 as ¢t — co. This however is not always the case.

Proposition 4.2.2. Let d > 3 and let V be a non-negative potential on R® which is compactly
supported and not identically equal to zero. Assume that V € LY with q > % and g = 2. Then,
for any a > 0 we have R{,(1)(x) = oo for all x such that V(x) # 0. In particular RY, is

unbounded on L.
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Proof. Fix a > 0. For z € R? we let w(z) = lims_,00 e~*(1)(x). From [20, Lemma 2.4] there
exists a constant § > 0 such that § < w(z) < 1 uniformly in 2 € R%. Since by the semigroup
property w(x) = e~ (w)(z) for any t > 0, we see that e 7t (1)(z) = e~**(w)(z) > 6 uniformly
in z € R%. Consequently, the integral [;°e™"*(1)(z)t* ! dt is infinite for a.e. z and so is

R{,(1)(x) as long as V(x) # 0. O
The definition below is meant to guarantee the z-a.e. finiteness of R, f(z).

Definition 4.2.2. Let V € L5 be an a.e. non-negative potential and let 6 > 0. We say

that the semigroup e~** has an exponential decay of order § (ED(J) for short) if there exists
a constant C' > 0 such that

e ()] < Ce™™,  t>0. (ED(5))

o0

The assumption (E£D(6)) implies |R{, f(x)] < Co~*V*(x)||f||,, 2-a.e.. Note, however,
that this may not be enough to conclude that ||R{,(1)|_ < oo.

4.3 L* boundedness for classes of potentials

Throughout this section we assume that V' € Li5.. Here our goal is to estimate the L>
norm of R{, for classes of potentials V. As mentioned in Definition this is the same as

estimating || R{,(1)||, with R{,(1) defined by (4.2.8).
Before we dive into details, we prove a general result concerning the L decay of the

semigroup e~ ** defined in (4.2.2). We will use Lemma below to prove the L™ and L'
boundedness of R{, for concrete examples of potentials V' in Theorem Here 7 denotes
a (d — 1)-dimensional hyperplane in R?. For N > 0 we let P be the strip

P =Py :={z cR?: dist(z,7) < N} and set x = 1p.

Lemma 4.3.1. Let N > 0 and assume that the potential V € Lg% is uniformly positive
outside the strip Py. More precisely we assume that V' is non-negative a.e. and that there is
c > 0 such that V(x) > ¢ for a.e. x satisfying dist(x,7) > N. Then the semigroup e " has
ED(5) with 6 = %min (c, ﬁ) More precisely, there is a universal constant C' > 0 such that
fort >0 and x € R? it holds

e E(1)(x) < Ce?,

To prove the above lemma we will need an auxiliary fact. Lemma below can be
deduced from [32, Lemma 4.105]. For the sake of completeness we give a more direct proof

below.
Lemma 4.3.2. For all k >0, t >0, and x € R? we have
EIE |:62 fot k‘X(Xs)dSi| < 068N2k2t’ (431)

where C' > 0 is a universal constant.
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Proof. We prove this fact in the case 7 = {0} x R®"! and P = [~ N, N] x R%"!. The general
result follows from the invariance of Brownian motion under orthogonal transformations (see
[42, p. 5]) and the fact that the bound is independent of x. Since in this case x(Xs) =
1_n,n(X3) it suffices to prove the lemma in the dimension d = 1. In particular in the proof
we take x € R.

The main tool of our proof is the local time of Brownian motion defined for ¥ € R in the

one-dimensional case as

where {Y;}s>0 is the standard one-dimensional Brownian motion starting at 0. It is well

known that

/ s = [ L

for any locally integrable function f, see [0, (5.4)]. In particular, we have
t N—x

The law of L;(y) was computed by Takacs [52]. From a paper of Doney and Yor [14], see the
last identity in Section 3 on p. 277 (with 4 = 0 and = = y) and [14} eq. (1.4)], it follows that
the distribution of L(y) is given by

Cyt00 + fyi(2) dz

on [0,400), where ¢y denotes the Dirac measure at 0,

2 _(yl+2)?
Fya(z) = \/\%e i, yeR, z>0, (4.3.3)

and ¢, < 1 is a normalizing constant whose value is irrelevant for us.

Using (4.3.2) and Jensen’s inequality for z € R we obtain

¢ 2 (N=% kLi(y)d 1 N=e  NkL
E, [ezfo kx(Xs)ds} — K, {e JoNE RLe(y) y] < ﬁEo [/ oANKL:(y) dy]
—N—zx

1 N—x o0
5N /_N_w< +/0 e fyt(2) dz> dy
1 o0

N—x
=14+ — 64Nkz/ fyi(2) dydz
0 —N—x

The 14 term in the second line comes from the atom of the distribution of L(y) at z = 0.
Since the function y — f,(2) is radially decreasing, we can change the limits of the inner
integral to [—N, N|, possibly increasing its value. Thus, using (4.3.3) gives

R 4N’“/Nxf (2)dydz <1+ /OO 4N’“/Nf (2)dyd
e tl2)ayaz % (& ,tz yaz
2N Jo _Neg 2N Jo N7

o N y+2)2
=1+ V2 / 64Nkz/ e 5 dydz.
Nyt Jo 0

(4.3.4)
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First we deal with the inner integral. Since y and z are positive, we estimate it by

N wan? N2 22
/ e 2t dyg/ e 2t dy= Ne 2t.
0 0

Plugging the above estimate into (4.3.4), we obtain

E, [Qfokst ds <1+ /2 / 4Nkz—2—tdz

21.2
eSth

~

which completes the proof of Lemma [1.3.2] O

Now we prove Lemma It is noteworthy that the quadratic dependence on k on the
right-hand side of (4.3.1)) is crucial in the proof.

Proof of Lemma[4:3.1] We want to make use of the assumption that the potential V' is uni-
formly positive outside the set P together with the previous lemma. We achieve this by an
appropriate application of the Cauchy—Schwarz inequality.

Recall that y = 1p and take k € (0,c|. Since the potential 2(V + ky) is bounded below

by 2k, using Cauchy—Schwarz inequality we estimate

e"tL(1)(z) = E, [e— Iy V(Xs)ds} [ — [y V(Xo)+hx(Xs) ds o fy kx(Xs)ds
< (Ex [672 I V(xsmx(xs)dle/? (EI [62 I kx(xsms])l/?
o HE [ 2 [ kx(Xa) ds }1/2. (4.3.5)

Applying Lemma for k satisfying 4N2k? < % we get

€_tL(]1)($) < e—kt+4N2k2t <e % = Rd.

In particular, the above estimate holds for k¥ = min(c, (8N2)~!) and the proof is completed.
O

Now we focus on our goal, which is estimating the quantity

I'(a) R%(1)(z) = V(z) /O T e (1) (2) oL (4.3.6)

independently of x € R%. We will do this by splitting the integral in (4.3.6)) into two parts
and estimating them separately.
Before stating the result we need to introduce a quantity p which plays a crucial role in

our assumptions. For v > 1 and = € R% we define

u

p = pz(u) = sup {r >0 Y@ < V(y) for a.e. y € B(x, r)}; (4.3.7)

recall that B(x,r) denotes the closed Euclidean ball of radius 7 in R?. Consequently, p,(u)

V(z)

is the radius of the largest closed ball around x in which the potential V is at least a.e.

We note that p,(u) is a non-decreasing function of u with values in [0, co]. We also set

e =1r(x) = pa(28) for k=0,1,.... (4.3.8)
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Our main assumption will be phrased in terms of

max(1,V (z)) 2(s) J
I°(V)(z) ::/ s lem "0 ds for a.e. z € R% (4.3.9)
1
_P2(s)
If pz(s) = 0o, then we define e™ 4@ = 0.
First we estimate the integral in (4.3.6) from 0 to 1. Recall that implicit constants in <
and ~ do not depend on z € R? but may depend on a > 0 and d.

Lemma 4.3.3. Let V be an a.e. non-negative potential and let a > 0. Then we have
1
V(m)a/ e E(1)(x) vt dt < TV (x) + 1 for a.e. x € R
0
Proof. First if V(z) < 2, then

V(m)“/ol (1) (2) 1L dt < 1.

From now on we focus on the other case V(z) > 2. Define K = K(x) = |log, V(x)]. For
fixed z € R and k£ = 0,1, 2,... we introduce the sets

Ay = {y er?: Vo) ¢ V(y)} (4.3.10)

and
Qp ={w e Q: Xs(w) € Ay, for almost all s € [0,¢]}, (4.3.11)

where (2, F,P) is the underlying probability space for the d-dimensional Brownian motion
{X;s}s>0 started at 0.
Note that both the families {Ax} and {€} are increasing in k. Using the Feynman—Kac

formula (4.2.2)) we write

e (1)(x) =
t K t t
E, [e_ Jivi(xs)ds 190] i ZEI [e— JEV(Xs)ds lﬁkﬂﬁz,l} +E, [e‘ [ivi(Xs)ds 19%}
k=1
etV 4 Z Sp (QenQ_y) +P(Q%). (4.3.12)

We need to estimate the probabilities in the above formula. This will be achieved with the

aid of inequality

P(Q) <P ( sup | X — x| > rk) . (4.3.13)

0<s<t
Before moving further we justify (4.3.13)). To prove this inequality we will show that
{w €N: sup [Xs(w) —z| < rk} C O
0<s<t

up to a set of P measure 0. More precisely, we will demonstrate that for P almost all w € Q

we have the implication

if sup |Xs(w)— x| <7 then also Xs(w) € Ay for almost all s € [0,¢]. (4.3.14)

0<s<t
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To this end take w € €2 such that supyc,<; | Xs(w) — x| < 7. Using the definitions (4.3.7)
and (£.3.8) of p and rj, we see that there is a set N C R? of measure 0 such that
%4
if Xs(w) ¢ N then 2(:) < V(Xs(w)),

By the definition (4.3.10]) of A this statement is the same as the implication
if Xs(w) ¢ N then X5(w) € Ay.

Define f,(s) := X (w), s € [0,#], and let N(w) = f;1[N] C [0,]. Then s ¢ N(w) if and only

if Xs(w) ¢ N. We shall now demonstrate that ’N (w)’ = 0 for P almost all w € Q. Observe
that

[M@)| = lfs € [0.1]: Xo(w) € VY] :/0 L ey (5 ) ds.

Calculating the expected value of the above expression and using Fubini’s theorem give

E[|N]] =E [/Ot 1y wyen (5, w) ds} = /OtE [Lx.weny (s w)] ds
_ /Otp(xs(w) € N) ds = 0.

The last equality follows from the fact that |N| = 0 and that each of the variables X, has a
continuous distribution. Since ‘N (w)’ is non-negative, it has to be 0 for P almost all w € .
Hence we have proved that for P almost all w €  there is a set N(w) C [0,] of Lebesgue

measure 0 and such that

if s ¢ N(w) then X (w) € Ay

This proves (4.3.14)) and in consequence (4.3.13)).
Now we come back to calculating the probabilities in (4.3.12)). The right-hand side of

inequality (4.3.13)) is the probability that X exits the ball of radius r; centered at x. We
can estimate it from above by the probability that X, exits an inscribed cube whose sides are
parallel to the coordinate axes. The length of its diagonal equals av/d = 2ry, where a is the

cube’s side length, so we get

P(sup | Xs — 2 2%) <P<sup maX}XSi—xi‘ > a> :F’(max sup ‘X;—xi’ > a>
0<s<t 0<s<t 1 2 i 0<s<t 2
a
Sd-]?(sup ‘Xsl—xl‘ > >
0<s<t 2
a
<d-P X' >=)+d-P| inf (X} —z)<—=
(oi‘?it( ) 2) " (05@( s )

1 1
= . —_ > - — . — >

0<s<t
"'k

V2td

r2
< 4derfc < ) < Ade~ 244,
(4.3.15)
The last equality in (4.3.15)) follows from the reflection principle for Brownian motion, while
the last inequality is a well-known bound for the complementary error function erfc, see e.g.

[40, eq. (7.8.3)].
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Consequently,
7"2
P () < dde 7 (4.3.16)

and coming back to (4.3.12) for 0 < t < 1 we get

V@) TRy r

K
e*tL(]l)(a;) < e Vi) 4 Ze 2k ¢ 2td + e 2ud
k=1

(4.3.17)
K we 2, 2,
<eWVO 4y e em T e
k=1
Integrating and multiplying this inequality by V(x)* gives
! K o1 %
V(fv)“/ e (1) (@)t dt S 1+ ) 2Mem a4+ V(z)%e 2 (4.3.18)
0 k=1

Then, for £ > 2 we estimate each of the terms in the sum by an integral recalling that

re(x) = pp(2%) and using the fact that p,(u) is a non-decreasing function of u

2 k—1 2 ou
ka5 / p(utag— 55 gy (4.3.19)
k—2

The last term in (4.3.18)) is estimated in a similar manner using additionally the fact that
V(x)* < [E 202 gy, This yields

2 K 2 (gu

v 2(2v)

V(m)“e_% é/ o(utDap— 2 gy (4.3.20)
K-1

We estimate the first term of the sum in (4.3.18]) by a constant and plug this, (4.3.19) and
(4.3.20)) into (4.3.18)), which results in

o % s K [ACR)
1+ 22’““6_7 +V(z)%e 24 <1 +/ 2%e™ 2d du
k=1 0 (4.3.21)
log, V() P2 (2%)
<1 —|—/ 2U%e™ "2d du.
0
Finally we substitute s = 2" to get
log, V(z) 2 (2%) V(x) 2 (s)
1 +/ 2%e™ T2d duw~1 +/ s lem "2 ds < 1+ IYV)(x). (4.3.22)
0 1
O

In the next lemma we estimate the second part of the integral from (4.3.6)).

Lemma 4.3.4. Let V be an a.e. non-negative potential and suppose that the semigroup e &

satisfies (ED(9)|) for some 6 > 0 and take a > 0. Then we have

V(z)" /100 e M) (@)t tat STU(V)(x) +1, xR (4.3.23)
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Proof. Using the semigroup property and the positivity-preserving property of {e=*};5¢ for
t > 1 we obtain
e (1) () = eI UL (@) < [|lem@DE)| e A1) (@) .
o0 4.3.24
< Ce—&t/2€—(1/2)L(l)(x)7
where the last two inequalities follow from (ED()) and (4.2.1)). Plugging this into (4.3.23)

we get

V(x) /loo et () (x) 1ot dt S V(x)%e 2 (1) (). (4.3.25)

Now we are left with proving that V(z)e=%/2(1)(z) < I%(V)(z) + 1. If V(z) < 2, then this
is true. Assume that V(z) > 2 and let K(x) = |logy V(x)]. Recall that by (4.3.17) we have

2 2
k-1 K

K
(z) _ V(=)
€_L/2(]l)(:£) < e_v2 + E e 2kfle”"2d 4 e 2d.
k=1

_ V(=) a
Since V(z)% 28T <2k:1a) , repeating calculations as in (4.3.18])—(4.3.22) we get

K 'r27 TQ
V(a)'e M) () S 1+ Y 25 + V()% 20 S 1+14(V)(x). (4.3.26)
k=1
In view of (4.3.25)) this completes the proof of the lemma. O

Together, Lemma and Lemma lead to the following conclusion.

Theorem 4.3.5. Let V € Ly be an a.e. non-negative potential. Suppose that the semigroup
e~'Y has exponential decay of order § >0 (see (ED(O))). If

I"(V) <$g 1 (4.3.27)
for some a > 0, then the operator Ry, is bounded on L.

Proof. We need to estimate the quantity
Ve(x) / e (1) (x)tetdt (4.3.28)
0

independently of . Take N > 0 such that I*(V)(z) < 1 for almost all |x| > N. Then by

Lemma and Lemma the expression (4.3.28) is uniformly bounded for a.e. || > N.
If on the other hand |z| < N, then, since V € L®. and the semigroup satisfies (ED(0)|), the

loc

expression (4.3.28)) is also uniformly bounded z-a.e. O

As an application of this theorem, we prove that R{, is bounded on L if V' is of the order
of a power function or an exponential function. The corollary below is a restatement of one

of our main results — Theorem [.0.3] — in the L™ case.
Corollary 4.3.6. Let V: R — [0,00) be a function in LS. Then in all the three cases

1. V(z) =~ 1 globally
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2. For some a > 0 we have V(z) = |z|* globally

3. For some > 1 we have V(z) =~ BI*| globally
each of the Riesz transforms R{,, a > 0, is bounded on L.

Remark. More generally, the theorem also holds if in (2) and (3) we take an arbitrary norm

on R? instead of the Euclidean norm |-|. The proof is the same mutatis mutandis.

Proof. In the proof implicit constants in <, >, and ~ do not depend on z € R? but may
depend ona >0, a>0or 5> 1.

Clearly in all three cases the assumptions of Lemma are satisfied, so the semigroup
satisfies and we only need to check that holds.

In the first case V(z) is bounded for almost all sufficiently large values of |z| and so is
I%(V)(z) for all a > 0.

In the second case we need to estimate from below p,(s) appearing in (V). We shall
||
2

prove that py(s) > provided s and |z| are large enough. Let N be such that for some

0 <m < M it holds

mlz|* < V(z) < M|x|* for a.e. |z] > N. (4.3.29)
Take |z| > 2N and assume that |z —y| < m. Then 2|z| > |y| > 5 > N so that (4.3.29)

holds with y in place of x. Consequently, V' (z) = V(y) for such = and y so that for s larger

than some threshold depending only on N, m and M it holds V (y) > V(I) . This means that
for a.e. |z| > 2N and uniformly large enough s > 1 we have p;(s) > | | Thub for any a > 0
we obtain )
=]
IYV)(x) Sg 1+ |z *Ye 10a <S4 1. (4.3.30)
as desired.

Finally we handle the third case. We shall prove that p,(s) > é min ( |z[,logs s ) provided
s and |z| are large enough. Let N > 0 be such that for some 0 < m < 1 < M we have

mfBl < V(z) < Mp* for a.e. |x| > N. (4.3.31)

Take |z| > 2N, s > 4, and assume that |:U - y\ 1 min (|z|, logg s). Then, similarly to the
previous paragraph, || ~ |y| > N and (4.3.31)) also hOldb with y in place of x. Therefore, for
V(y)
(

such = and y we have glvI=lol ~ V- o partlcular ly| — |z[ — v <logg V(y) — logsz V (x), for

some v > 0 independent of x and y. Hence, we reach
1
—5 min (|z|, logg s) — v < logg V(y) — logg V(). (4.3.32)

Taking s large enough we see that —%logﬁ s —v = —loggs and coming back to (4.3.32)
we obtain @ < V(y). In conclusion, we proved that py(s) > 3 min (|z],logs s) for a.c.
|| > 2N when s is large enough (independently of ). Now, using (4.3.31)) we obtain the

uniform in |z| > 2N bound

glel (logg )% )2 Mpl=! |2
I(V)(z) S4 1 +/1 s le”16a  ds+ /6 ‘ s lemTea ds S,y 1, (4.3.33)

This completes the treatment of the third case and also the proof of Corollary [4.3.6] O
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4.4 L' boundedness for classes of potentials

In this section we estimate the L' norm of the operator Ry, for a > 0 and various non-

negative potentials V' € Ly . Recall that the assumption V' € LiS. guarantees the validity of

the Feynman-Kac formula (4.2.1)).

The idea is to estimate the L norm of the adjoint operator which formally is

1 > —tL a a—1
F(a)/o e (Vef)tv dt.

Using the positivity-preserving property of et the task naturally reduces to estimating the

(L7ove)f =

L norm of the function
P(a)L (V) (x) = / (V) () 47 dt (4.4.1)
0

Since V may be unbounded, the expression e **(V®)(z) may be infinite for some x in which
case the x-measurability of the integral (4.4.1) is not clear. To remedy the situation we
formally define

[(a)L™%(V)(z) = lim Ooe_tL(Vaﬂv<N)(m) o le /N gt (4.4.2)
N—oo /g

Note that each of the integrals in is finite and measurable by Lemma hence the
limit gives a measurable function by the monotone convergence theorem. We will now show
that if L=*(V*) € L*, then R{, is bounded on L' with norm estimate ||R{ ||, < ||[L7*(V*)|
Take a finitely simple function f and assume that L=%(V®) € L*. The following equalities
and inequalities hold provided that all the expressions are finite, which will turn out to be
true. In the calculations below we use duality between the spaces L' and L™ and the fact

tL

that the semigroup e™** is symmetric and positivity preserving and that the operator L™ is

also positivity preserving.

IRV fll; = sup (RYf,g9) < sup
geL®

/ V(@)L f(2)g(z) do
Rd

llglloo=1
llgll oo =1
1 : a > a—1_—
< s / l9(@)] Tim V(2)"1 0 cn(a) / () (@) e N di de
F(a) ||9H _ Rd N—o0 0
1 —tL a—1 —t/N
M ngnoo / / V(@) g (w) e M) ) da 14N d
—tL a a—1_—t/N
— 1
F( Ry ]Rd (V |x‘<N)(J})diL‘t e dt

</ o < [, <
Rd

Changing the order of integration and swapping limits and integrals is allowed since all
the functions are non-negative and non-decreasing with respect to N. Since finitely sim-
ple functions are dense in L', we have shown that indeed R{, is bounded on L' and ||R{||, <
L=Vl
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Throughout this section we estimate the L> norm of L~=*(V*) in the form (4.4.1]). This
is allowed since by the assumptions which we will impose on V' both e~*/(V%)(x) and the
integral (4.4.1]) will turn out to be finite z-a.e.. This permits us to take N = oo in (4.4.2]).

In what follows for z € R? and u > 1 we let
o=o0z(u)=sup{r=>0:V(y) <uV(zx) forae yec B(z,r)}.

Consequently, o, (u) is the radius of the largest closed ball around x in which the potential V'
is at most uV (x) a.e. We remark that o, (u) is a non-decreasing function of u with values in

[0, 00]. Using the quantity o, (u) we define

o o3 (s)
JYV)(z) = min(l,V(a:)“)/ s lem™ 7% ds for a.e. x € R%. (4.4.3)
1
If Ve L* and uV (x) > ||V, then V(y) < uV (x) for a.e. y € B(x,r) with arbitrarily large
0'920 s)
r > 0. In this case 0,(u) = oo and by convention e~ 52 0. This is the case for instance if

V € L™ is of constant order for large z.
We begin with estimating the integral (4.4.1]) from 0 to 1. Recall that implicit constants

in < and ~ are allowed to depend on d and a > 0.

Proposition 4.4.1. Let V € L{®

inequality

e be an a.e. non-negative potential and take a > 0. Then the

1
/ eV (@)t dt S (JUV) (@) + 1)V (@) + 1) (4.4.4)
0
holds uniformly for a.e. x € R? that satisfies V(x) # 0.

Moreover, if V' is an a.e. non-negative potential which satisfies the growth estimate V(x) < e™da

for a.e. x € R%, then
1
/ e_tL(Va)($) 91 ¢ 5 €‘x|2, x c RY. (445)
0

Proof. Proof of (#.4.4). Here we consider 2 € R? such that V(z) # 0
Recall that

A ={yer": Y2 <v(y)}

and

Qp ={w e Q: X;(w) € Ay, for almost all s € [0,¢]}.
Here we shall also need
B; = {y eRY: 29V (z) < V(y) < 2J'+1V(:c)}

and
Uy =0 = {weQ: Xy(w) € Bj}.

Note that the sets {B;};cz are pairwise disjoint and

W @)= [ D 1V @) + e ) 15,V () + e (Ty=V®) (x)
J<0 >0
S V(@) (1) (@) + ) V(e)* 2 (15,) (). (4.4.6)

Jj>0
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We shall prove that the estimates

/0 e (1) (@) 62 dt < (19(V) (&) + 1) ( /100 e s 1) D

and

2

/01 e EWVO(x)t T dt STV (z) + 14 V(x)® </100 1o ds) 448

hold uniformly for  such that V(x) # 0. The inequalities (4.4.7)) and (4.4.8) imply ( -
We prove (4.4.7) first. Let K = max(1, |log, V(z)|) and for k = 1,...,K and j € Z

denote
e = pa(25), sj = 0.(27).
Estimating the second term in (4.4.6)) we use the Feynman-Kac formula (4.2.1) with f =

V@lp; to write
D e (Vo) () S Vi) Y 2% (1)) (). (4.4.9)
7>0 7>0

Using again (4.2.1)), proceeding as in the proof of Lemma and applying (4.3.16)) we obtain

e (1) (z) < e V@R +Z -5 p ¢ N +P(Q%NTy)

< P(\I/ )1/2 < —tV(z + e ok c )1/2 +P(Qc )1/2)

V@) TR rk
SP( )1/2 _tV —|— e 2k e Tatd + e m

Further, we have ¥; C {w € Q : Xy(w) & B(x,s;)} up to a set of P measure 0. Indeed,
a.e. y € B(z,s;) satisfies V(y) < 27V (), hence it lies outside B;. Here we also use the fact

that X; has a continuous distribution. Thus we reach

1 P
IP’(\I/J)éP(\Xt—ﬂ >sj)_(27rt)d/2/|2sj€ 2t dy
ey e 5 (4.4.10)
oy < e

< —
(Qﬂt)d/Q |y\2s]

so that

‘L o2(s) v _tV<z ) &
e (]lBj)(JU)Se 8t - x)—l—z TTad e dd | .

Puttlng the above bound in and replacing the sum over j with an integral as in (4.3.20))

and (| we reach
aoja, —tL a —tV(z) W) TR a _UI(‘S>
ZV(J}) 27% (]lB].)( z) SV(x) —|—Ze ok e~ atd +e” 4td 22]

7>0 7>0

K 2 00 2
V@) Thea r oz (s)
S V(x)a (etV(fE) + E e 2k e T4atd + e4§l> / saflef S ds.
1

k=1
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The first term on the right-hand side of (4.4.6|) was already estimated in the proof of Lemmam
by

V(z) T2, r2
V(x)%e (1) (z) < V(x) ( —Vi +Z - ~ i +e—2{§> ’

see (4.3.17). Hence, coming back to we reach

00 K 2
z( s) _tV(x) r?
e*tL(Va)(a;) SV(x)® (/ s¢ e~ ds + 1) (etv(ﬂf) + Ze ke Sl e M)
1

k=1

We use the above inequality to estimate fol e (V) (x) t*~1 dt. From this point on the proof

is a repetition of the argument in (4.3.17)—(4.3.22)) that leads to (4.4.7)).

Now we pass to the proof of (4.4.8). This time we merely estimate e~**(1p,)(z) by P(¥;).
In view of (4.4.6)) and (4.4.10) proceeding as in the proof of (4.4.7) we thus obtain

_tV(z) 2 2 . 53
(V) (2) S V(@) ( v +Z T e ) + V()2
7>0
K T 'r" 2 S (72 S
< V( ( V() _}_Zeft‘/( ) _ ’§td1 + e~ 2t(i> +V( ) / Sa—le_% ds.
1

Once again we integrate the above expression by repeating the argument in (4.3.17)—(4.3.22)

and obtain (4.4.8]).
Proof of (4.4.5) The growth assumption on V implies that

ly—x® |y2

E.[V (X)) < (2mt) =42 / e” 2 e+ dy. (4.4.11)
R4

To estimate the above integral, we rewrite the exponent in the form

2 4lz|? 2
_M+ - yP@2—t) — 4z, y) + 202 ‘yx/r— | - 55 2l
4 2t At = m

and plug it into (4.4.11)) obtaining

4z|? 2 ‘ VO 2z

— 2|z ) —

E,[V (X)) S (2nt) ¥ exp | 20— = / exp | — vert
4t Rd 4t

4t 4t

_ 2z|% [ dmt \ V3 2 \%? |z)?
— (2 d/2 b o I Y Y [l
(2t) eXp( it >(2—t> 2o—t) TP\

/2
The quantity (%) is bounded for ¢ € [0, 1], hence we get

ol® _ 9|42 vz —t|°
— (27t)"9/2 2=t 77 / _WvETH ) 4
(27t) exp y exp

E.[V(X)" S e, t<1.
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Thus, using the Feynman—Kac formula (4.2.1)) we estimate

2

e (V) (@) < B[V (X)) S e

so that )
/ (V) (@) 1L dt < el
0
This completes the proof of Proposition O

Now we pass to the integral restricted to the range [1,00). We shall prove several
results with varying assumptions on the potential V. For this reason the treatment here is
significantly more complicated than in Section [4.3]

We start with a counterpart of Proposition[£.4.1] To this end we need yet another quantity

K2(V)(z) == min(1, V(x)a)/ e~00(8) ga=1 g for a.e. z € RY, (4.4.12)
1

where a,c > 0. Note that this is essentially larger than J%(V')(z) defined by (4.4.3) and used
in Proposition [f.4.1] Indeed, observe that for each ¢ > 0 there is a constant M independent
of x and s such that % > coy(s) — M for all s > 1 and x € Rd, which means that

o2 (s)
e % < eMe*CUI(S)

and in turn
JV)(x) S K2(V)(x). (4.4.13)

Proposition 4.4.2. Let V be an a.e. mon-negative potential. Assume that the semigroup
et satisfies (ED(S)) with some § > 0. Let a > 0, take b > a and define

. (b—a da
¢ =min (8b’ 41)) . (4.4.14)
Then -
/ e (VY (@)t dt < (KA(V)(z) + 1)(I°(V)(z) + 1) (4.4.15)
1

uniformly in every x such that V(z) # 0.

Moreover, if V is of exponential growth n, i.e.
V(z) < el (4.4.16)

with n < % then

/ e*tL(Va)(:c) to L dt < exp (\/gan]a:\), x € R, (4.4.17)

1

Remark. The implicit constants in (4.4.15)), (4.4.17) possibly depend on a,b,d,n.

Proof. Proof of (| . Using the splitting into the sets B; as in and the Feynman-—
Kac formula 1} we obtain

e (V) (@) SV (2)e (1) (2) + ) V()" % (15,)(x)
3>0
5 V( )a —tL + ZV a2jaE fg V(Xs)ds]l\pj]
7>0
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By Lemma, we have

/Oo V(z)%e (1) (z)te dt STV (z) + 1 S IY(V) () + 1.
1

Hence, we only focus on the integral over the second term, namely fl () t27 L dt with
= V(x)"2E,] e o VXedsyy ). (4.4.18)
7>0

Let p = g and let ¢ be its conjugate exponent. Then Holder’s inequality gives

() < Y V)2 (e V) (5, 1g,)
7>0 (4.4.19)
S V@) (@) B(wy) .

7>0

Using (4.4.19)) we shall prove that
/ Sy(0) 1L dt < (I(V)(z) + 1) ( / e=eoe(®) a1 g 4 1) . (4.4.20)
1 1

/ Sy(t)te v dt < V(x)e ( / e—ww<8>s“—1ds>. (4.4.21)
1 1

These two inequalities imply that

and

/ TSt de S (KA(V) (@) + DIV (@) + 1),
1

and thus are enough to complete the proof of .
We start with . Using monotonicity, the semigroup property, and we
obtain that
e (1) (x) = e PR (1) (@) S e PR (1) (2),

Hence, (4.4.19)) gives

1
S;B(t) < 6_% (V(x)ap —L/2 > /p ZQ](],]P; 1/q

7>0

Since ap = b a repetition of the computation in (4.3.26)) shows that

So(t) S (IP(V)(@) +1) - e 3 - 3 23p(w;) Ve, (4.4.22)

7>0
Now, using the estimate ) for P(¥;) we obtain

2

ZQJaP 1/q < ZQJae 4tq (4.4.23)

j>0 7>0

Consider the integral
2

o0 5t 1
e e 4if1ta dt.
1
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We split it at ¢ = s; and estimate each part separately:

2

0o 5t 2 sj 3 0 5
/ e 2re 4“175“ Lar < / R dt—l—/ e 2t Lt
1 1 Si

J

55 65
_ - S
<e 8a+4e P<€ J.

Recall that ¢ = min(bS_b , 9 )- Formally, the splitting above only works when s; > 1, however,

the estimate :
St

o0
/ ¢ e Tatto Lat < ecs
1

remains true for any s; > 0. Consequently, integrating (4.4.23)) we get

/ Zzﬂ“@ )T dE <Y 20 S / e~coa(8)ga=1 g (4.4.24)

7>0 7>0 1

where in the last inequality above we used the fact that s; = 0.(27). Combining (4.4.24) with

(4.4.22) gives (4.4.20)).
We pass to the proof of (4.4.21). Note that (4.4.19) and the assumption (ED(4)|) imply

—5t/pZV agaa[p )I/q

7>0

thus, an application of (4.4.24)) produces
o0 oo
/ Sp(t)tetdt < V(x)a/ e~eo=(8) g1 g
1 1
and (4.4.21)) is justified.

Proof of (4.4.17). Using the Feynman—Kac formula (4.2.2)) and Cauchy—Schwarz inequal-

ity we obtain

V) (2) < By [V2(X)] V2B, [em2 VO 0]

<E, [V2(X)]7? (e (1) (2)) 2.

Hence, the assumptions (ED(9)) and (4.4.16)) give

(V) (1) < et/ (Exezn‘l'Xt')l/z.
We claim that the proof of will be completed if we show that

Epe?mXel < exp (2dn2a2t + 2\/gna\a:|). (4.4.25)
Indeed, the above estimate leads to

o0 (o]
/ e*tL(V“)(m) v tatr < ¢Vinale] / exp(—% + dn2a2t) v tat < e‘/g”am,
1 1

: W : X " : V3
where in the last inequality we used the assumption n < Joda”
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It remains to justify (4.4.25)). Since

1 |z —z2| lz— z\2

E, [ezntﬂth _ 2na\z|6_ = 2 > < 1/ 277az2 11zl dz
(27rt) (2mt)%/? (2mt)4?

) 2 (4.4.26)
— 2nalz| ,— 5 d
= | | e e~ 2
oV 27t /]R ’

it suffices to focus on each of the factors in the above product separately. A simple computation
shows that

2na|zl i Z" dz; < eQna|x2| / 62na|zifzi|ef‘zz = dz:

V2t / V2t ’
1 y[2

— e2nalzi / 2naly| = alzs| __—__ [ g2nay

—e s dy < 2e e - dy
2mt V2t

2
— 26277“‘“'6% _ 26277a|56i|62?72a2t.
Hence, coming back to (4.4.26) and using the inequality Zf.l:l |z < \/gm we obtain

d
E, [ezna‘Xﬂ < 2de2dn*a’t H e?naleil < exp <2d772a2t + 2\/;11761]33\),
i=1

thus proving the claim (4.4.25)).
The proof of Proposition is thus completed. O

By a comparison with the Hermite semigroup we can improve Proposition in the full

range a > 0 for potentials V' which grow faster than |:L'|2 at infinity.

Proposition 4.4.3. Let ¢,b, N be positive constants. Assume that V € LY is an a.e. non-

loc
negative potential that satisfies c|z|* V( ) for a.e. |z| = N and V(x) < etlel® . Denote
= %. Then, for each 0 < a < Mtj;h 2 we have
o0
/ etV (@)t dt <1,  zeRL (4.4.27)

1
Proof. Denote by w a C° function which is equal to ¢|z|?® for || < N, is bounded by c|z|?,
and vanishes for |z| > 2N. Then, for all k£ € (0, 1], we have

V(x) + kw(z) > cklz|, for a.e. z € R%.

Hence, using and Cauchy—Schwarz inequality we obtain
et (V) (z) = B, [ — [iV(Xs) dsva( )} —E, [67 fOt(V+kw)(Xs)dsVa(Xt) ) ekfotw(Xs)ds}
< (Ex [6—2f5(V+kw)(Xs)dsV2a( Xt)Dl/ 2 (EI [ezk f5w<xs>dSD1/2
(Ex [e—2ckf0t |Xs|2dsv2a(Xt)})1/2' (Ez [egkfgw(xs)dsbl/z
. (e—t<—%+2ck|x\2>(VQa)(JUD1/ 2 (5. [ fgw(xgdle/?

<

(4.4.28)
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In what follows we denote

v =(c, k) = 2Vck.

Throughout the proof the implicit constants in < depend on k € (0,1], thus also on 7.
Appropriate k and 7 will be fixed at a later stage. From [53], 4.1.2] or [49] 1.4] we deduce that

_B o eklaf? (A2 2 d/2
U= 5+2kal®) f (1) — —H-3+% Hf(a:)z(%) / K] (2,y)f(y) dy,
]Rd
with

K] (z,y) =

p <—g (]:U|2 + |y!2> coth~yt + vz, y>)

sinh ~t

2 7t
Y|z -yl ~tanhy 2
= —————exp| — - + ,
(sinh ~t)4/2 P ( 4tanh 7 4 [+l

1
(sinh ~t)@/2 .

2
Using the upper bound on V' we estimate e_t(_%*'%'”"‘Q)(VQ“) as follows

2
e—t(—%-}-%h\z) (VQa)(l‘)

1 |z — y|2 Wtanhlt 9
< V(y)?® - — 2z + d
~ (Sil’lh’yt)d/Q R (y) exp ( 4tanh77t 4 |.Z' y| Y
2 Yyt
_ant 2 qlz—yl° ~ytanhF 2
< 2ab — — d 4.4.29
Se 2 /Rdexp<a!y| Ltanh 2 i eyl dy )

Rewriting the exponents we obtain

|z — y|2 ~ tanh %t

g 2
2ably|* — — T+
ol Atanh 2 =ty
b ~ coth vt ~ csch vyt :1:2 fycoth’yt+ (’ycsch’yt)2 ‘$|2
=|2ab— —— —x| — .
2 4dab — v coth~t 2 8ab — 2y coth vt

We see that for the integral in (4.4.29)) to be finite the quantity ¢(t) == 2ab — %hw has to

. . . . tanh 2 . tanh 2
be negative for all ¢ > 1, which is satisfied for a < 2 o~ since 7 n = < Wcsz}wt. For such

a we have ¢(t) < 3 (tanh 3 — coth~t) and

vz —y|? vtanh 5
e 2ably|* — x +
/. Xp< L T L
~ coth~t (’ycsch’yt)2 / o)y
= — d
eXp< ( > YL ] € y

< y ht + csch? ~yt | ‘2 r \?
<exp|—=|co x —— :
P\72 78T fanh 3 — coth~t o(t)

Denoting () := cothyt 4+ % a calculation gives
2

yesch?~t - (=1 + tanh? 1)
(tanh 3 — coth~t) 2 .

W) = -
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Since v’ is positive the function v is strictly increasing. Moreover it has a zero at t = % SO

that for ¢ > 1 we have 1(t) > ¢(1) = § > 0 and thus we can continue the previous calculation

2 d/2
¥ csch” ~t 9 T
- th~t _
exp< 9 \ T + tanh 3 — coth7t> =] > ( go(t))

as follows

7y tanh 7

Next we need to handle the term (—¢(t))~%2. Since a < T

we see that

(—90(75))—51/2 < (*y (coth*yt — tanh %))761/2 <1, t>1.

Finally plugging the above estimates in (4.4.29)) we get

_dyt 8z

e*t(*%+§‘x|2)(v2a)(x) <e ze Tz, (4.4.30)

uniformly in z € R? and t > 1.

1/2
Next we estimate (E, |e2 Jo«(Xs)ds . Since w < 4¢N?1p for P = [-2N,2N] x R4~1,
we can apply Lemma with k&’ = 4ckN?2, which gives

E, [ I3 o(Xe)ds] < SIAEENL _ 2yt (4.4.31)

Combining (4.4.30) and (4.4.31]) and coming back to (4.4.28]) we reach

R -1 e T N T d
e (VY (z)t dt Se”a e 1 e T dE < 1, x € RY,
1 1

provided that v < %. This can be achieved by taking k£ = min(1, ’Z—Z), since for such k we
have
di/3
= 2Vck < —.
U T
The proof of Proposition is thus completed. O

We shall now derive L' boundedness of Ry, using Proposition m together with one of

the Propositions [£.4.2 and [£.4.3]

Combining Proposition and Proposition we get a theorem on the L! bound-
edness of R{,. Note that this theorem inherits the stronger assumptions on V' from Proposi-
tion Its advantage is the allowance of large a when V() < e”®l with small 7. This is

useful for instance when V(x) ~, |z|”.

Theorem 4.4.4. Let V be an a.e. mnon-negative potential having an exponential growth

[@.4.16) for some n > 0 and such that e ' has an exponential decay (ED(0))) of order § > 0.

Let 0 < a< n—%, take b > a and let ¢ be the constant defined in (4.4.14). If

K{V)(@) Sgl  and  I°(V)(2) S 1,

then RS, is bounded on L.
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Proof. By duality it suffices to estimate the L norm of

1 /OO —tL ayqra—1 1 /1 —tL a\gpa—1 /OO —tL a\pa—1
e VO~ dt = e V9t dt + e VOt dt
twh &V tw ¢V fwh ¢ VI
= L+G.

z]2
Using the bound e*! < e'fe and (4.4.5) from Proposition [4.4.1 we see that

L(z) S C(N),

whenever |z| < N. Then (4.4.13) together with (4.4.4) from Proposition [4.4.1] gives

L]l S 1.
The estimate
Gl 1
is a straightforward consequence of our assumptions and Proposition [1.4.2] O

Proposition and Proposition allow us to improve Theorem [4.4.4] for potentials
that grow at least as a constant times |x]2 The improvement comes from the replacement of

the condition K2(V)(z) <, 1 by J*(V)(z) < 1. This is useful e.g. for potentials V() = gl
B > 1, for which K2(V') may be unbounded.

Theorem 4.4.5. Let 0 < a < oo and let V' be an a.e. non-negative potential which satisfies
the estimate c|z|* <, V(z) for some ¢ > 0. Assume that for all € > 0 we have V(z) <. eclel”.

If
JV)(@) Sy and  IU(V)(2) g 1,

then RY, is bounded on L.

Proof. We use the splitting again. The estimate |G|, < 1 is a consequence of
Proposition Indeed, the assumption V(z) < elo with arbitrarily small € > 0 implies
that we can apply Propositionwith arbitrarily large a > 0. The bound ||L||, < 1 follows
from the assumptions and Proposition [f.4.1] as in the proof of Theorem [4.4.4] O

As a corollary of Theorems and we obtain the L' boundedness of Ry, for various
classes of potentials. The corollary below is a restatement of Theorem [£.0.3|from the beginning

of the chapter in the L' case.

Corollary 4.4.6. Let V: R% — [0,00) be a function in LS. Then in all the three cases
1. V(z) = 1 globally
2. For some a > 0 we have V(z) =~ |z|* globally

3. For some B > 1 we have V(z) = B globally

each of the Riesz transforms R%, a > 0, is bounded on L'.
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Remark. Similarly to Corollary the Euclidean norm |-| in (2) and (3) can be replaced by

an arbitrary norm on R%.

Proof. In the proof implicit constants in <, >, and ~ do not depend on z € R? but may
depend ona >0, a>0or 5> 1.
Note that in all three cases the assumptions of Lemma [4.3.1] are satisfied so that the

semigroup e~ satisfies (ED(0))).
In case 1) we merely use (ED(d)|) and obtain

1
I'(a)

> —tL a a—1 1 /oo —tL a—1
/Oe V@t it S s [ el et

uniformly in z € R%.
In the treatment of the remaining cases we will apply Theorem in case 2) and

Theorem in case 3).
We start with case 2); the task is to check that the assumptions of Theorem hold.

Clearly (4.4.16) is true for any n > 0. In the proof of Corollary we justified in (4.3.30))
that I°(V)(z) <, 1 for any b > 0. Finally we need to control K¢(V)(z). To this end we shall

estimate o, (s) from below. Let C', N, m and M be non-negative constants such that
mlz|* < V(z) < M|z|* for ae. |z| >N

and
V(z)<C forae. |z|<N.

1/«

Take |z| > N and assume that |x — y| < e|z|s"/“, where € > 0 is a constant to be determined

in a moment. Then
lyl < |2 + |z — y| < |a|(1 +es'/?)

so that for |y| > N we have
Vi) < Mlgl* < Mla] (1+25/%)" < MAJZ|® (1+ %)

for some constant A > 1 depending only on «. On the other hand

V(z) = m|z|*
so taking e such that M Ae® = 3 we see that the inequality |z —y| < e|z|s*/® implies
Vv MA
V(y) < MAJz]® (1 +e%s) < MAJz|" + 2(9”) < < =+ ;) V(z) < sV (x),

whenever s is large enough (independently of x). Thus we proved that o, (s) > e|x|s'/* for

such s and a.e. |x| > N. Consequently,

oo
REV)(@) So 1+ [ e sl g,

for any a,c > 0 and an application of Theorem completes the proof in case 2).
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Finally we justify case 3). It is clear that ¢|z|? Se Viz) S eslel” for some ¢ > 0 and all
e > 0. Moreover, in the proof of Corollary 4.3.6in (4.3.33) we justified that I¢(V)(z) <4 1.
Thus, in order to use Theorem it remains to estimate J(V')(x). Similarly, to case 2)
we shall estimate 0,(s) from below. Let M > 0 be a constant such that V(y) < Mgl for
a.c. y € R% and let N, m be non-negative constants such that mg!* < V(z) for a.e. |z| > N.

Take |z| > N, s > 1 and assume that [z — y| < §logg s. Then we have [y| < || —I—%logﬂ S, SO
that M
V(y) < Mst?pll < =12V (2) < sV (@),
m

for s large enough (independently of y and ). In other words we proved that o, (s) > % logg s

whenever |z| > N and s is uniformly large enough. Consequently,

(logg 5)*

JUV)(z) Sy 1 +/ e” s s hds .1
1

for any a > 0 and an application of Theorem completes the proof in case 3). O

We finish this section with improved results for Riesz transforms R, in the range 0 < a <
1. These results are not needed in the proof of Corollary [£:4.6] however they might be useful
in other cases.

Using the L! boundedness of R‘l/ one may improve Propositionin therange 0 < a < 1.

Proposition 4.4.7. Let a < 1 and assume that e " satisfies (ED(0)) with some § > 0. Then
the estimate

/ h e (VO (z)ttdt < 1 (4.4.33)
1

holds uniformly in x € R?.

Proof. Observe that for a < 1 we have
e (V) (@) < e H(V)(2) + e (1) (2),
so that
/ e BV (z) L dt </ e E(V)(z)te ! dt—l—/ e E(1)(x) te L dt. (4.4.34)
1 1 1

From e.g. |2 Theorem 4.3] we see that the operator R%/ is bounded on L' which, by duality,
means that the first integral in (4.4.34)) is bounded independently of z. Boundedness of the

second integral follows from (ED(0)). O

Finally, combining Proposition [4.4.7] and Proposition we obtain an improved version
of Theorem [£.4.4] in the range 0 < a < 1.
Theorem 4.4.8. Let 0 < a < 1 and let V be an a.e. non-negative potential which satisfies
2
the growth estimate V(x) < exp(%) and such that e=** has an exponential decay (ED(0)))
for some § > 0. If

JUVIx) S and  TH(V)(2) 56 1,

then RS, is bounded on L.
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Proof. We use the splitting (4.4.32)). The estimate ||G||,, < 1 is an immediate consequence of
Proposition [4.4.7} The bound ||L||, < 1 follows from the assumptions and Proposition [4.4.1]
as in the proof of Theorem [A.4.4] O



Chapter 5

Dimension-free estimates for Riesz
transforms associated with

Schrodinger operators

In this chapter we investigate the same Riesz transforms R{, as in Chapter {4} see ,
but this time we aim at estimating their norm independently of the dimension d of the
underlying space R?. In order to achieve the desired results we consider only potentials of the
form

Viz) =Vi(x)+ -+ Vy(x), (5.0.1)

where each V; acts only on the i-th coordinate of the argument x and has polynomial growth

with the exponent not greater than 2, i.e. there are absolute constants m and M such that
mlzi|* < Vi(z) < Mz|* (5.0.2)

for some 0 < a < 2. This holds for example if V;(z) = 22 and V() = ||?, which results in the
‘190/ |€ associated
with the harmonic oscillator is known to be bounded independently of the dimension, see
[24, 28], [34], although only if a = %

By the definition (4.0.1) of R{, and the positivity-preserving property of the semigroup

operator L = —3A+ |z|? called the harmonic oscillator. The Riesz transform R

e~'L obtaining the L bounds for R{, amounts to estimating the value of R{ (1)(x) inde-
pendently of & and d, which in turn hints that the main part of the proof is estimating the

semigroup applied to the constant function 1, i.e. e *¥(1). The particular structure of V'

(5.0.1)) lets us write

d 1 62
L= L, whereL; = ~55.2 TV (5.0.3)
i=1 T
and, as a consequence, factorize the semigroup e** in the following way
d d
et = He_tL" and hence e F(1)(z) = He_tL"(]l)(x). (5.0.4)
i=1 i=1

This is the key property allowing us to get estimates that does not depend on the dimension

d.

100
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The main result of the chapter is the following theorem.

Theorem 5.0.1. Fiz o> 0 and let V' given by (5.0.1) satisfy (5.0.2)). For a > 0 let the Riesz
transform RS, be defined as in (4.0.1). Then there is a constant C' > 0 depending on m, M,

and o and independent of the dimension d such that

IRV flloo < Cllflles f €L

As a by-product of our considerations we also obtain L' estimates for R%, but only for a

limited range of a. The reason for this is that we need to use concavity of the function z¢.

Theorem 5.0.2. Fiz o> 0 and let V' given by (5.0.1)) satisfy (5.0.2)). For a <1 let the Riesz
transform RS, be defined as in (4.0.1). Then there is a constant C' > 0 depending on m, M,

and a and independent of the dimension d such that

||R(\1/f”1 < CHbe VS L.

As mentioned above, the proof of the theorems is based on the estimates of the semigroup

et thus similarly to the previous chapter we will extensively use the Feynman-Kac formula
eith(.’L') — EZ‘ |:€7 fot V(Xs)de(Xt) , f c L2. (505)

It will let us obtain exponential estimates for the one-dimensional semigroups e *l,

namely
e Hi(1)(z) < e ¥Vi®)  for t < N,

which we will then combine, using the factorization property (5.0.4), into an estimate for the
whole semigroup e **. As mentioned in the introduction, it is noteworthy that the constant
in front of the exponential in the above estimate is 1. This means that we can multiply

L without constants growing with

one-dimensional bounds to estimate the full semigroup e~
the dimension. From that moment the proof will be similar to L™ and L' estimates of the
operator R{, presented in Sections and in particular instead of estimating the L' norm

of R{, = V4L™% directly we estimate the L° norm of the adjoint operator

(LV) f(z) = F(la) /O T eV ) () 10 .

In this case the formula for the factorization of the semigroup becomes

d d
Z e (1) e ti(V;),  where L' = L — L;.
i=1 i=1

('b
&
=~

—~~

<

S~—
I

g
4
h

—~

~

S~—
I

Since now we pursue dimension-free estimates, the notation A < B means that A < CB
for some constant C' > 0 which does not depend on the dimension d but may depend on a,
a, m and M. If both A < B and B < A, then we write A ~ B.
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5.1 Definitions

In this chapter we consider the same operators as in Chapter ] and thus we encourage
the reader to consult Section where we define the semigroup e tLf for f € L> and the
Riesz transform R{, and then we present basic facts regarding these operators. In particular

it follows that Theorem [5.0.1| may be rewritten as

Theorem 5.1.1. Fiz o> 0 and let V' given by (5.0.1)) satisfy (5.0.2)). For a > 0 let the Riesz
transform RY, be defined as in (4.0.1). Then there is a constant C' > 0 independent of the
dimension d such that

17V (Dl < C-

The only additional operators we need are the one-dimensional semigroups e~ ‘%, where
L; = ;;;—&—V;, i=1,...,d
For x = (21,...,24) € R y € Rand f: RY = R let
foi(y) = f(@1, oo Tim1, Yy Tig 1y - -+, T4)-
Then for i = 1,...,d we define
e (@) = By, [T RV (x| fe L, (5.1.1)

The expectation E;, is taken with regards to the Wiener measure of the standard one-
dimensional Brownian motion {X!},- starting at z; € R.
As the next lemma shows, this is the definition that suits best our purpose of factorizing

tL tL;

the semigroup e™*" into one-dimensional factors e~

Lemma 5.1.2. Fiz d and let the d-dimensional semigroup et be given by [#.2.2) and the
one-dimensional semigroup e~ tF by (5.1.1). Then for f € L we have

d d
e f(z) = ((Het“) f) () and e (1)(@) = [ (e (1)(@)) . (5.1.2)

i=1 =1

Proof. We will prove by induction that for £k =1,...,d we have

k
((Hewi> f) (aj):E(Il’“_’wk)[ = Jo Zima Vi(Xs) de(Xt,...,Xf,xkﬂ,...,xd)}, (5.1.3)
=1

which justifies the first formula in (5.1.2) if we take k = d.
The case k = 1 is clear from the definition (5.1.1)) of e~***. Now suppose that (5.1.3))
holds. Then

k+1
((H et“) f) (2) = En.. [ o Vi (X ((H etk ) ) (Xf“)]
=1 rk+1

[e* Jo Vier1(Xs) ds E(wh 20) [e* Jo i Vi(Xs)de(Xt e va Xf+1, Thi2s- -, xd)”

k+1
[ = Jo T Vi(Xs) dsf(th,...Xf“,mm,---@d)}-

yeesTht1)
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Note that we can use the same Brownian motion in the inner and in the outer expected value
since its coordinates are independent of each other and V;(X,) depends only on X?.
The second formula in (5.1.2) follows from the definitions of e™** and e~*% and the fact

that the coordinates of d-dimensional Brownian motion are independent. O

5.2 One-dimensional estimates

In this section we prove the aforementioned exponential decay of the one-dimensional

semigroup which we will then combine to estimate the semigroup e *%.

Lemma 5.2.1. For every N > 0 there is a constant cy > 0 such that
e ti(1)(z) < emNVile) (5.2.1)
for all z € R? and 0 < t < N. Moreover, if |x;| < 4, then
(1) (z) < e~ (TTHV@) (5.2.2)

Proof. First we will show that (5.2.1) is satisfied for 0 < ¢ < to for some ¢y and then we will
extend the estimate to all 0 <t < N.
We begin with the case |z;| < 4. We will make use of the inequality

2

e < l—x—i—%, x> 0. (5.2.3)

The Feynman—Kac formula (5.1.1)) together with (5.2.3]) give

(/;V;(Xs)ds> 2] . (5.2.4)

We need to estimate the first and the second expected value in the expression above. In order

e i(1)(z) < 1 - Ey, Uot Vi(X5) dS] + %Ewi

to do this we will need the fact that for any a,b > 0 and o > 0 we have
(a+0)* ~a” +b* (5.2.5)
and an estimate for the moments of the standard normal distribution
E| X" ~ s2/2,

Let us begin by estimating E,Vi(Xs) from below and assume without loss of generality
that x; > 0.
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Now we estimate the last term in ([5.2.4]) using Cauchy—Schwarz inequality.

t 2 t i 2« t P20 20
/%(Xs)ds 5t/ E, [‘Xs+xi‘ }dsgt/ Eo UXS] + } ds
0 0 0

t o 2
~ t/ s 4 2% ds ~ 102 4 12229 < (tfﬂ + txf‘) .
0

Ty

Plugging this into , recalling that |z;| < 4, and choosing ty sufficiently small yields

@ @ 2
e Li(1)(z) <1 —c (ﬁ“ + ta:f‘) +c2 (t5+1 + tmf‘)

« — g+1 o
<l—c <t5+1 —{—txfj‘) <e c(fz +tm)

which implies (5.2.1]) and (| - ) for ¢ <

The second case is when |x;| > 4 and tVz(x) < 2Alog5, where A = % with m and M
as in ((5.0.2)). We will roughly show that then we have

;%e-wwnxm):-—e%h(w)u»s;—cwcm. (5.2.6)

However since the equality may not hold, we replace V; with V*(z) = min(V;(x),n) for any
n > 0, we establish for V;*, then we prove for V" and finally we deduce
for V;.

Recall that V; satisfies m|x;|* < Vi(z) < M|x;|* and take z;,y; € R such that |z; — y;| <

l il Then |x’| < |yi| < 2|z;| so that we have
2°M
Vily) < Mlyi|” < 2°Mlai|” < —=Vi(x) = AVi(x)
and e .
T m
Vily) 2 mlyi|* 2 m—= > 5o Vi(e) = Vi)

We also calculate the probability that suppcgc; ’X; — :cZ’ > ‘I;‘ using the reflection principle

to get
; |zz|2
P < sup }X’ - azl‘ > |xl|> <de™ st (5.2.7)
0<s<t 2
Now, for n > 0, we define V{*(z) = min(Vj(z),n) and L = —5 + V;* and use the

Feynman-Kac formula and (5.2.7) to get

e (V) (@) = By, [ W EDEYR(X)] 3 By, [e B DSy ()]

> B (Yoceer 2 S VP(X) and V(X)) € AVi(a)) Lo maico)

P (Vosuer L) < V() < AV(@)) T et

A A
> V”( ) 1—8e™ Isit|2> ¢2A%log5
A

Vi'(z)
A

>

7 N N

_ 4% 2
1 _86 8t0> 6_2A 10g5 2 C‘/;n(m)
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if ¢g is sufficiently small, which proves that
d n n
e (M)(@) = —eT (V) (@) < eV (). (5.2.8)

Differentiation is allowed here by the Leibniz integral rule. Now we show that this implies a
version of ([5.2.1]) with V. Consider the function

F(#) = e~ (1) ) V).

If we differentiate it and use (5.2.8), we get

F() = Dot (1) () €O 4 V(@) et (1) ) £

g _C‘/Zn(ﬂj) GCt‘/in(x) —'— C‘/Zn(x) GCt‘/;n(m) — 0
Since f(0) = 1, we conclude that
e (1)(z) < "),

Now we take the limit as n goes to infinity on both sides of the inequality. The left-hand side
becomes

lim e~ (1)(z) = lim E,, [e_fOt Vin(XS)ds} =E,, {e_fOtVi(XS)ds = e tLi(1) ().

n—o0 n—o0

Passing with the limit under the integral sign is allowed since the integrand is dominated by

the constant function 1 which is integrable. On the right-hand side we get

lim e
n—oo

—ctV(x) _ e—CtVi (z)
= )

so altogether we get (5.2.1)).

The last case to consider is |x;| > 4 and tV;(z) > 2Alog5. We choose sufficiently small ¢

and use (5.2.7) to obtain

) _tVi(x) - g
etLi(1)(z) e~ AP (vogsgt Yile) W(XS)) 1P (aogsgt Viz) w(xs))
2 (5.2.9)
_tVi(@) e _tVi(@) _tVi(=)
<e TAaA e st Lhe A Le 24

which is (5.2.1]). In the second-to-last inequality we used the assumption o < 2.
Recall that we have just proved that

eftLi(Il)(ac) efctVi(z)

N

is satisfied for t < tg and z € R?%. If N < tg, then the proof is finished, so suppose that N > tg
and take t € [tg, N]. Then we have

e_tLi(]l)(:L‘) < e_tOLi(]]_)(LU) < e—ctOV,-(z) _ e—c%ot\/i(m) < e—c%tVi(x) _ e—cNtV,-(z)‘

The inequality ([5.2.2)) can be extended to ¢ € [0, N] in a very similar way. Suppose that N > ¢
and take t € [tp, N]. Then

PR t\ 2+, 41 to @
—e(td " rovi@) () TTETR@) o (18
e <e e .

e H(1)(x) <

This finishes the proof. ]
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5.3 L™ dimension-free estimates

In this section we prove Theorem [5.1.1] using one-dimensional estimates from Lemmas

15.2.1] and [4.3.1] The latter result applied to each of the one-dimensional semigroups e %,

together with the factorization property (5.1.2)), gives

e (1)(z) < et (5.3.1)

for x € R? and t > N, where N > 0 and § > 0 are universal constants.
First we estimate the upper part of the integral in (4.0.1)), i.e. the integral from N to oo,

dividing the calculations into two cases depending on the value of a. If a < 1, then

N
2

V(:L“)a/Nooe_tL(Il)(x) 11 dt < V(z)®e 2L (1)(x) /Noo e~ 30d a1 gy

a—1
< N
~ od

V(e) e 2 (1)(x) S

Ul

d
> Vi) e (1) (a).
i=1
In the last inequality we used the fact that

(144 xg)* <af+...24

for a <1 and z; > 0.
If, on the other hand, a > 1, then

Here in the last inequality we used that fact that
(214 F2a)" <A (2] 4o F )

for a > 1 and x; > 0, which follows from Jensen’s inequality or Holder’s inequality. Thus, we

have reduced our problem to the one-dimensional case of estimating Vi“e_%Li(]l)7 which may
be done by invoking ([5.2.1]), namely

=
&
Q
()
[
|z
&
—~
=
S~—
&
IN

9 a
‘/i(x)a 6—%61\7‘/1(3?) < (chlve> (532)

Then we handle the lower part of the integral in (#.0.1)). We estimate e~**(1)(x) for t < N
independently of z and d by using (5.2.1]) and the factorization property ([5.1.2), which gives

e (1) () < NV,
and then integrate
N [%S)
V(x)® / e (1) (x)t* L dt < V(z) / emeNtV(@) o=l gp o 0
0 0

This completes the proof of Theorem [5.1.1]
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5.4 L' dimension-free estimates

In this section we will again use the one-dimensional estimates for the semigroups et

to prove dimension-free estimates of the L' norm of Ry, for 0 < a < 1. The idea is the same

as in Section i.e. to estimate the L* norm of the adjoint operator formally given by

1
I'(a)

o
V@) = i [ e et an
0
As before the positivity-preserving property of e * lets us reduce the task to estimating the

L norm of )

V@) = /O T et () () 1 . (5.4.1)

The question of well-definedness of the function L=*(V*)(x) is addressed in Section As

in the L°° case we reformulate Theorem in the following way

Theorem 5.4.1. Fiz o > 0 and let V' given by - satisfy - Fora <1 let the Riesz
transform RY, be defined as in (4.0.1). Then there is a constant C' > 0 independent of the

dimension d such that

Iz (vl < €.

Before we move to the proof, we need two general results regarding the semigroup et
The first one is a factorization property for e 7*(V)
d d ‘
e (V) = Z e L (V; Z e_tLZ e Li(V;), where L' = L — L;. (5.4.2)
i=1 i=1
The second one is an estimate for e =L (V%)
e—tLi (Va)( ) [ fo (Xs) dSV(Xt) :|
S EO [ fo (Xs+z)ds V( )a} "‘EO [ fo (Xs+x)ds V( ) }
S Eo [Vi(X0)"] + Vi(@)" By, [ Jo Vi) o]
<tD 4 V(@) e (1) (2), (5.4.3)

valid for t > 0 and = € R?. Here we used estimate (5.0.2) for V and (5.2.5). Now we are in
position to prove Theorem

Proof of Theorem[5.4.1] We begin with the upper part of the integral in (4.0.1]), i.e. the
integral from N to co. Using subadditivity of the function z® for a < 1, factorization ,
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and ((5.3.1)) we obtain

[e'S) o d
/ e vy (z) vt dt < /N ;eﬂ(m(x)taldt

N

cc d )
—tL" —tL; ay (g a—1
</N Z (1)() €5 (V) () 19

0o d
< / Z e—té(d—l)e—tLi (‘/Za)(ﬂj) 7fa—l dt
N =1

< Ne—1 Z /OO He_tLi(Via)Hooe_ta(d_l) dt
=1 N
d
S Z He NL,-(‘/ia)Hoo/ e—td(d—l) dt
=1

Then we use (5.4.3) and ((5.2.1) and we estimate the resulting function similarly to (5.3.2]).

To deal with the lower part we use the inequality
e—tL(Va) < e—tL(V)a’ a< 1,

which follows from Hélder’s inequality. We use this and (5.4.2)) to get

N N [ d , .
/ e (V) (x) t T dt g/ (Z et (1)(2) etLi(Vi)(x)> t~Ldt.
0 0 \i=1
Then we use (5.4.3)) and obtain

N L 1 N Lt L ’ 1
et N(z)t*~ < et T bl (x) e i T a=
| etvn@etas | (}j (1)(@) (5 + Vila) e (1)( >)> 1t di

N . , ¢
= /0 (V(x)e_tL(]l)(x) +t2 Z e_tLl(]l)(a:)> to 1 dt
d

a
< / ! V()% (1) (x)* 2t dt + / ! te (Z etU(n)(x)> e dt.
0 0 i=1
To the first integral we apply and factorization , which lets us estimate the first
integral by a constant independent of x and the dimension d. To estimate the second integral
we fix = (21, ...,24) and divide its coordinates x; into those whose absolute value is greater
than 4 and all others. Say there are k coordinates greater than 4 and d — k not greater than

4. Then we consider three cases.

First we assume that £ = 0 and apply (5.2.2)) and (5.1.2)) to get

N o (d _ a N PO o
/ t2 2 :e_tLZ(]l)(.r) ta—l dt < / dae—a(d—l)cNt2 ts ta—l dt 5 ﬁ -1
0 i=1 0
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In the last inequality we used

(5.4.4)

00 T (M)
/ A prgr= NP L
0 BAT
with A =a(d—1)en, =5 +1land vy =@ +a—1.
Then if k£ = d, we apply (5.2.1)) and (5.1.2]) and use the fact V;(z) > m - 4% which gives

d

N , ¢ N
/ ¢ (Z et“(ll)(x)> ol dt < / doe~ A maent(d=1) 455" gt gy
0 0

=1

~

N
< / da674°‘macNtd tafl di <1
0

The third case is when 0 < k < d in which the estimate is a mixture of the estimates for
k=0 and k = d. Observe that each (d — 1)-element subsequence of (z1,...,x4) has at least
k — 1 elements greater than 4 and at least d — k — 1 elements not greater than 4. By (/5.2.1))

and (5.2.2)) this means that

N d , “ N N
I (Ze‘t”(ﬂ)(x>> Pt [ e et ook g ot g
0 — 0

Then we use Holder’s inequality with p = % (p=o0if k=1)and ¢ = dfgzl (g = o

if k = d— 1) to the functions e~*"macnt(k=1) and eaen (d=k=1)t2 T iy respect to the

measure ¢t~ dt which yields

N
a $+1 aa
da/ 674 macyt(k—1) efacN(dfkfl)tT 5 el gy
0

N « 1/p N $4+1 aa
S e </ 674 macnt(d—2) a1 dt) (/ efacN(d72)t7 t% a1 dt)
0 0
1 1/p 1 1/q
<o )
(&) (@)

Again, in the last inequality we used ([5.4.4)). O

1/q
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