
Problem List 3 (Ramsey theory)

Graph Theory, Winter Semester 2023/24, IM UWr

1. (a)− By constructing a suitable colouring of K8, show that R(3, 4) ≥ 9.

(b)◦ Show that if R(s − 1, t) and R(s, t − 1) are both even, then we actually have
R(s, t) ≤ R(s− 1, t) +R(s, t− 1)− 1.

(c)− Deduce that R(3, 4) = 9.

2.+ Consider the blue/orange colouring of K17 such that the edge ij is coloured blue
if i − j ≡ ±1,±2,±4 or ±8 (mod 17), and orange otherwise. Show that with this
colouring K17 has no monochromatic K4, and therefore R(4, 4) > 17.
[Hint: in order to simplify your proof, start by showing that the map [17] → [17]
sending i to 3i (modulo 17) swaps the blue edges with the orange edges.]

3.− Show that R(s, t) ≤
(
s+t−2
s−1

)
and that R(s, t) ≤ 2s+t−3 for all s, t ≥ 2. Deduce that

R(s, s) = O(4s).

4. Given two graphs G and H, we write R(G,H) for the smallest n ≥ 2 such that any
blue/orange colouring of Kn has either a blue subgraph isomorphic to G, or an orange
subgraph isomorphic to H.

(a)− Why does R(G,H) exist?

(b)◦ Show that R(K1,t, Kr+1) = rt+ 1 for all r, t ≥ 1.
[Hint: use Turán’s Theorem.]

(c)◦ For k ≥ 1, let Ik be the “set of k disjoint edges”—that is, a graph with V (Ik) =
{vi | i ∈ [k]} ⊔ {wi | i ∈ [k]} and E(Ik) = {viwi | i ∈ [k]}. Show that R(Ik, Kr) =
2k + r − 2 for all k ≥ 1 and r ≥ 2.

(d)◦ Show that R(Ik, Ik) = 3k − 1 for all k ≥ 1.

5. Let k ≥ 1.

(a)+ Show that every blue/orange colouring of the edges of K2k−1,2k−1 contains a
monochromatic tree of order 2k with two vertices of degree k.

(b)− Give a blue/orange colouring of the edges of K2k,2k with no connected monochro-
matic subgraphs of order 2k + 1.

6. Given k, s ≥ 2, we write Rk(s) for the Ramsey number R(

k︷ ︸︸ ︷
s, . . . , s).

(a)− By exhibiting a suitable colouring of K(s−1)2 , show that R(s, s) = Ω(s2).

(b)− Show that Rk(s) = Ω(sk) for any fixed k ≥ 2.

(c)◦ Show that Rk(s) ≤ kks for all k, s ≥ 2.
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7. (a)◦ Show that Rk(3) ≤ k · Rk−1(3) for all k ≥ 3, and deduce that Rk(3) ≤ 3 · k! for
all k ≥ 2.

(b)◦ Let x1, . . . , xn ∈ R2 be points such that no three of them lie on a straight line,
where n = 3 · k! for some k ≥ 2. Show that some three of these points form an
angle > π

(
1− 1

k

)
.

(c)+ Show that if G1, . . . , Gk ≤ Kn are bipartite subgraphs and E(Kn) =
⋃k

i=1E(Gi),
then n ≤ 2k. Deduce that in the previous part of the problem we could take
n = 2k + 1 instead of n = 3 · k!.

8.◦ Show that every sequence (xn)
∞
n=1 of real numbers has a monotone (that is, non-

increasing or non-decreasing) subsequence.

9.◦ Let g1, . . . , gn : R → R be bounded functions, and let ε, δ > 0. Suppose that f : R →
R is such that for all x, y ∈ R with |f(x)− f(y)| > δ we have |gi(x)− gi(y)| > ε for
some i. Show that f is bounded.

10. (Ramsey’s Theorem for hypergraphs). Let k ≥ 2.

(a)◦ Let s, t ≥ k. Show that there exists n ≥ k with the following property: given
any blue/orange colouring of all k-element subsets of a set V with |V | = n, there
exists either a subset W1 ⊆ V with |W1| = s all of whose k-element subsets are
blue, or a subset W2 ⊆ V with |W2| = t all of whose k-element subsets are orange.
[Hint: letting R(k)(s, t) be the smallest such integer n, show that we have
R(k)(s, t) ≤ R(k−1)

(
R(k)(s− 1, t), R(k)(s, t− 1)

)
+ 1.]

(b)+ Show that for any blue/orange colouring of all k-element subsets of N, there exists
an infinite subset W ⊆ N all of whose k-element subsets have the same colour.

(c)− Deduce that for any infinite subset A ⊆ R2, there exists an infinite subset B ⊆ A
such that either B is contained in a line, or no three points in B are collinear.

(d)+ Suppose we have a blue/orange colouring of all infinite subsets of N. Is there
always an infinite subset W ⊆ N all of whose infinite subsets have the same
colour?
[Hint: could we have such a blue/orange colouring so that A and A ∪ {n} have
different colours whenever n /∈ A? Feel free to use the Axiom of Choice.]
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