Problem List 3 (Ramsey theory)

GRAPH THEORY, WINTER SEMESTER 2023/24, IM UWR

1. (a)~ By constructing a suitable colouring of Kg, show that R(3,4) > 9.
(b)© Show that if R(s — 1,¢) and R(s,t — 1) are both even, then we actually have
R(s,t) < R(s—1,t)+ R(s,t — 1) — 1.
(¢)~ Deduce that R(3,4) = 9.

2.7 Consider the blue/orange colouring of Kj; such that the edge ij is coloured blue
if i —j = £1,42,4+4 or £8 (mod 17), and orange otherwise. Show that with this
colouring K37 has no monochromatic Ky, and therefore R(4,4) > 17.

[Hint: in order to simplify your proof, start by showing that the map [17] — [17]
sending i to 31 (modulo 17) swaps the blue edges with the orange edges.]

3.7 Show that R(s,t) < (Sif) and that R(s,t) < 25773 for all s,¢ > 2. Deduce that
R(s,s) = O(4%).

4. Given two graphs G and H, we write R(G, H) for the smallest n > 2 such that any
blue/orange colouring of K, has either a blue subgraph isomorphic to G, or an orange
subgraph isomorphic to H.

(a)~ Why does R(G, H) exist?

(b)© Show that R(K;,, K,11) =rt+ 1 for all r,t > 1.
[Hint: use Turdn’s Theorem.]

(c)® For k > 1, let I}, be the “set of k disjoint edges”——that is, a graph with V(I},) =
{vi | i € [k]} U{w; |i€ [k]} and E(I;) = {vyw; | i € [k]}. Show that R(Ix, K,)
2k +r—2forall k>1andr > 2.

(d)© Show that R(I, I) = 3k — 1 for all k > 1.

5. Let kK > 1.
(a)* Show that every blue/orange colouring of the edges of Koy _19r—1 contains a
monochromatic tree of order 2k with two vertices of degree k.
(b)~ Give a blue/orange colouring of the edges of Ky 9r with no connected monochro-

matic subgraphs of order 2k + 1.

k
6. Given k,s > 2, we write Ri(s) for the Ramsey number R(5,...,3s).

(a)~ By exhibiting a suitable colouring of K (s_1)2, show that R(s,s) = Q(s?).
(b)~ Show that Ry (s) = Q(s*) for any fixed k > 2.
(c)® Show that Ry(s) < k** for all k,s > 2.
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7. (a)®

(b)®©

(c)*

Show that Ry (3) < k- Ri_1(3) for all £ > 3, and deduce that Rg(3) < 3 - k! for
all £ > 2.

Let x1,...,7, € R? be points such that no three of them lie on a straight line,
where n = 3 - k! for some k£ > 2. Show that some three of these points form an
angle > 7 (1 = %)

Show that if Gy, ..., Gy < K, are bipartite subgraphs and F(K,,) = Ule E(G)),
then n < 2F. Deduce that in the previous part of the problem we could take
n = 2% 4+ 1 instead of n = 3 - kl.

8.9 Show that every sequence (z,)5°; of real numbers has a monotone (that is, non-
increasing or non-decreasing) subsequence.

9.° Let g1,...,9,: R — R be bounded functions, and let £, > 0. Suppose that f: R —
R is such that for all z,y € R with |f(z) — f(y)| > 6 we have |g;(z) — gi(y)| > € for
some ¢. Show that f is bounded.

10. (Ramsey’s Theorem for hypergraphs). Let k > 2.

(a)°

Let s,t > k. Show that there exists n > k with the following property: given
any blue/orange colouring of all k-element subsets of a set V' with |V| = n, there
exists either a subset Wi C V with |W;| = s all of whose k-clement subsets are
blue, or a subset Wy C V' with |W3| = t all of whose k-element subsets are orange.
[Hint: letting R%)(s,t) be the smallest such integer n, show that we have
R®(s,t) < R¥=V (RW(s —1,t), RM(s,t — 1)) + 1]

Show that for any blue/orange colouring of all k-element subsets of N, there exists
an infinite subset W C N all of whose k-element subsets have the same colour.

Deduce that for any infinite subset A C R?, there exists an infinite subset B C A
such that either B is contained in a line, or no three points in B are collinear.

Suppose we have a blue/orange colouring of all infinite subsets of N. Is there
always an infinite subset W C N all of whose infinite subsets have the same
colour?

[Hint: could we have such a blue/orange colouring so that A and AU {n} have
different colours whenever n ¢ A? Feel free to use the Aziom of Choice.]



