

Problem List 3 (Ramsey theory)

GRAPH THEORY, WINTER SEMESTER 2023/24, IM UWR

1. (a)⁻ By constructing a suitable colouring of K_8 , show that $R(3, 4) \geq 9$.
 - (b)[○] Show that if $R(s-1, t)$ and $R(s, t-1)$ are both even, then we actually have $R(s, t) \leq R(s-1, t) + R(s, t-1) - 1$.
 - (c)⁻ Deduce that $R(3, 4) = 9$.
2. + Consider the blue/orange colouring of K_{17} such that the edge ij is coloured blue if $i - j \equiv \pm 1, \pm 2, \pm 4$ or $\pm 8 \pmod{17}$, and orange otherwise. Show that with this colouring K_{17} has no monochromatic K_4 , and therefore $R(4, 4) > 17$.

[Hint: in order to simplify your proof, start by showing that the map $[17] \rightarrow [17]$ sending i to $3i$ (modulo 17) swaps the blue edges with the orange edges.]
3. ⁻ Show that $R(s, t) \leq \binom{s+t-2}{s-1}$ and that $R(s, t) \leq 2^{s+t-3}$ for all $s, t \geq 2$. Deduce that $R(s, s) = O(4^s)$.
4. Given two graphs G and H , we write $R(G, H)$ for the smallest $n \geq 2$ such that any blue/orange colouring of K_n has either a blue subgraph isomorphic to G , or an orange subgraph isomorphic to H .
 - (a)⁻ Why does $R(G, H)$ exist?
 - (b)[○] Show that $R(K_{1,t}, K_{r+1}) = rt + 1$ for all $r, t \geq 1$.

[Hint: use Turán's Theorem.]
 - (c)[○] For $k \geq 1$, let I_k be the “set of k disjoint edges”—that is, a graph with $V(I_k) = \{v_i \mid i \in [k]\} \sqcup \{w_i \mid i \in [k]\}$ and $E(I_k) = \{v_i w_i \mid i \in [k]\}$. Show that $R(I_k, K_r) = 2k + r - 2$ for all $k \geq 1$ and $r \geq 2$.
 - (d)[○] Show that $R(I_k, I_k) = 3k - 1$ for all $k \geq 1$.
5. Let $k \geq 1$.
 - (a)⁺ Show that every blue/orange colouring of the edges of $K_{2k-1, 2k-1}$ contains a monochromatic tree of order $2k$ with two vertices of degree k .
 - (b)⁻ Give a blue/orange colouring of the edges of $K_{2k, 2k}$ with no connected monochromatic subgraphs of order $2k + 1$.
6. Given $k, s \geq 2$, we write $R_k(s)$ for the Ramsey number $R(\overbrace{s, \dots, s}^k)$.
 - (a)⁻ By exhibiting a suitable colouring of $K_{(s-1)^2}$, show that $R(s, s) = \Omega(s^2)$.
 - (b)⁻ Show that $R_k(s) = \Omega(s^k)$ for any fixed $k \geq 2$.
 - (c)[○] Show that $R_k(s) \leq k^{ks}$ for all $k, s \geq 2$.

7. (a)[○] Show that $R_k(3) \leq k \cdot R_{k-1}(3)$ for all $k \geq 3$, and deduce that $R_k(3) \leq 3 \cdot k!$ for all $k \geq 2$.

(b)[○] Let $x_1, \dots, x_n \in \mathbb{R}^2$ be points such that no three of them lie on a straight line, where $n = 3 \cdot k!$ for some $k \geq 2$. Show that some three of these points form an angle $> \pi (1 - \frac{1}{k})$.

(c)⁺ Show that if $G_1, \dots, G_k \leq K_n$ are bipartite subgraphs and $E(K_n) = \bigcup_{i=1}^k E(G_i)$, then $n \leq 2^k$. Deduce that in the previous part of the problem we could take $n = 2^k + 1$ instead of $n = 3 \cdot k!$.

8.[○] Show that every sequence $(x_n)_{n=1}^{\infty}$ of real numbers has a monotone (that is, non-increasing or non-decreasing) subsequence.

9.[○] Let $g_1, \dots, g_n: \mathbb{R} \rightarrow \mathbb{R}$ be bounded functions, and let $\varepsilon, \delta > 0$. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that for all $x, y \in \mathbb{R}$ with $|f(x) - f(y)| > \delta$ we have $|g_i(x) - g_i(y)| > \varepsilon$ for some i . Show that f is bounded.

10. (*Ramsey's Theorem for hypergraphs*). Let $k \geq 2$.

(a)[○] Let $s, t \geq k$. Show that there exists $n \geq k$ with the following property: given any blue/orange colouring of all k -element subsets of a set V with $|V| = n$, there exists either a subset $W_1 \subseteq V$ with $|W_1| = s$ all of whose k -element subsets are blue, or a subset $W_2 \subseteq V$ with $|W_2| = t$ all of whose k -element subsets are orange.
[Hint: letting $R^{(k)}(s, t)$ be the smallest such integer n , show that we have $R^{(k)}(s, t) \leq R^{(k-1)}(R^{(k)}(s-1, t), R^{(k)}(s, t-1)) + 1$.]

(b)⁺ Show that for any blue/orange colouring of all k -element subsets of \mathbb{N} , there exists an infinite subset $W \subseteq \mathbb{N}$ all of whose k -element subsets have the same colour.

(c)⁻ Deduce that for any infinite subset $A \subseteq \mathbb{R}^2$, there exists an infinite subset $B \subseteq A$ such that either B is contained in a line, or no three points in B are collinear.

(d)⁺ Suppose we have a blue/orange colouring of all infinite subsets of \mathbb{N} . Is there always an infinite subset $W \subseteq \mathbb{N}$ all of whose infinite subsets have the same colour?
[Hint: could we have such a blue/orange colouring so that A and $A \cup \{n\}$ have different colours whenever $n \notin A$? Feel free to use the Axiom of Choice.]