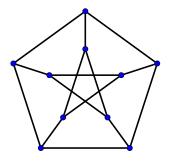
Problem List 2 (Extremal problems, mainly)

Graph Theory, Winter Semester 2023/24, IM UWR

- 1.⁺ Let T be a tree, and let φ be an automorphism of T, i.e. a bijection $\varphi \colon V(T) \to V(T)$ such that $v \sim w$ if and only if $\varphi(v) \sim \varphi(w)$. Show that either $\varphi(v) = v$ for some $v \in T$, or $\varphi(v) = w$ and $\varphi(w) = v$ for some $vw \in E(T)$.
- 2.⁺ Recall that a (possibly infinite) tree is a (possibly infinite) connected graph with at least one vertex and no cycles. Show that every infinite connected graph G has a spanning tree, i.e. a tree $T \leq G$ such that V(T) = V(G).

 [Hint: feel free to use the Axiom of Choice in the form of Zorn's Lemma.]
- 3. Prove that an incomplete regular graph of order n cannot contain a complete subgraph of order $> \frac{n}{2}$.
- 4. Let $n \ge 1$, and let $x_1, \ldots, x_{3n} \in \mathbb{R}^2$ be points such that $||x_i x_j|| \le 1$ for all i and j. Prove that $||x_i - x_j|| > 1/\sqrt{2}$ for at most $3n^2$ pairs (i, j) with i < j. [Hint: can four of these points have all pairwise distances greater than $1/\sqrt{2}$?]
- 5. Let G be a graph with $n \ge r + 2 \ge 4$ vertices and $t_r(n) + 1$ edges.
 - (a) Show that for every p with $r+1 \le p \le n$, G has a subgraph H with |H|=p and $e(H)=t_r(p)+1$.
 - (b) Deduce that $K_{r+2} \{e\} \leq G$, where $e \in E(K_{r+2})$.
- 6.° For any integers $n \ge t \ge 1$, construct a graph G with |G| = n, $\Delta(G) = t 1$, and $e(G) = \lfloor \frac{n(t-1)}{2} \rfloor$.
- 7. Let $p \geq 2$ be a prime number, and let \mathbb{F}_p be the field with p elements. Consider the projective plane over \mathbb{F}_p , that is, $\mathbb{F}_p P^2 = (\mathbb{F}_p^3 \setminus \{(0,0,0)\})/\simeq$, where \simeq is defined by setting $(x,y,z) \simeq (\lambda x, \lambda y, \lambda z)$ for $\lambda \in \mathbb{F}_p \setminus \{0\}$; we write (x:y:z) for the equivalence class of $(x,y,z) \in \mathbb{F}_p^3$ in $\mathbb{F}_p P^2$. Let G be a graph with $V(G) = \mathbb{F}_p P^2$ such that $(x:y:z) \sim_G (x':y':z')$ if and only if $(x:y:z) \neq (x':y':z')$ and xx'+yy'+zz'=0.
 - (a) Show that G is C_4 -free. [Hint: \mathbb{F}_p is a field, so you can use everything you know about vector spaces.]
 - (b) Compute the degree of any vertex $(x:y:z) \in V(G)$ (consider two cases, depending on whether or not $x^2 + y^2 + z^2 = 0$).
 - (c) Compute |G| and give a positive lower bound on $\frac{e(G)^2}{|G|^3}$.
 - (d)⁻ Bertrand's Postulate, proved by P. L. Chebyshev, states that for any integer $n \geq 2$ there exists a prime number p with $n . Use this to show that <math>\operatorname{ex}(n; C_4) = \Omega(n\sqrt{n})$.

- 8. Show that $ex(n; K_{t,t}) \leq \frac{1}{2}z_t(n)$ for all $n \geq t \geq 1$.
- 9. Let G be an infinite graph. For $n \geq 2$, define $x_n = \max\{e(H)/\binom{n}{2} \mid H \leq G, |H| = n\}$. Show that the sequence $(x_n)_{n=2}^{\infty}$ is non-increasing, and deduce that it converges.
- 10. Determine the chromatic number of the following graphs.
 - (a)⁻ P_n and C_n for any n.
 - (b) The *Petersen graph*, displayed on the right.
 - (c) The join K of graphs G and H, defined by setting $V(K) := V(G) \sqcup V(H)$ and $E(K) := E(G) \sqcup E(H) \sqcup \{vw \mid v \in G, w \in H\}$, where $\chi(G) = r$ and $\chi(H) = s$.



- 11. Let G be a graph with $e(G) \ge 1$, and let $r = \chi(G)$.
 - (a) Explain why $ex(n; G) \ge ex(n; K_r)$ for all $n \ge r$.
 - (b) Show that if $ex(n; G) = ex(n; K_r)$ for some $n \ge r$, then there exists $e \in E(G)$ such that $G \{e\}$ is (r-1)-partite.
- 12.° For each $r \geq 3$, construct a K_r -free graph G with $\chi(G) = r$. [Hint: remove a certain collection of 2r 1 edges from K_{2r-1} .]
- 13. (a) For each $d \in \{1, 0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\}$, construct an infinite graph G_d with $ud(G_d) = d$.
 - (b) Given an infinite graph G, define its lower density as

 $\ell \mathrm{d}(G) := \lim_{n \to \infty} \min \left\{ e(H) / \binom{n}{2} \; \middle| \; H \text{ is an induced subgraph of } G \text{ of order } n \right\}.$

Why does $\ell d(G)$ exist? Which values can $\ell d(G)$ take?

- 14. (a) Let G be a connected graph of order $n \ge 1$, and let k < n be such that for any $v, w \in G$ with $v \ne w$ and $v \nsim w$ we have $d(v) + d(w) \ge k$. Show that $P_k \le G$.
 - (b)⁺ Show that if G is P_k -free then $e(G) \leq \frac{|G|(k-1)}{2}$. Hence compute $\operatorname{ex}(nk, P_k)$ for all $n, k \geq 1$.
- 15. For every $k \geq 2$, give an example of a k-connected graph of order ≥ 3 that is not Hamiltonian. What is the smallest possible order of such a graph? [Hint: see Problem 1.13.]
- 16.[○] Is the Petersen graph (see Problem 2.10) Hamiltonian?
- 17. Show that a connected graph G has an Euler trail if and only if it has ≤ 2 vertices of odd degree.