

Problem List 1 (Structural properties)

GRAPH THEORY, WINTER SEMESTER 2023/24, IM UWR

1. + Find (by “drawing” pictures representing graphs) all pairwise non-isomorphic graphs of order 4.
2. – For a graph G , define a relation \approx on $V(G)$ by saying $v \approx w$ if and only if there exists a path in G with endpoints v and w . Show that \approx is an equivalence relation—that is, show that $(\forall u \in G)(u \approx u)$, that $(\forall u, v \in G)(u \approx v \Rightarrow v \approx u)$, and that $(\forall u, v, w \in G)([u \approx v \wedge v \approx w] \Rightarrow u \approx w)$.
3. – Show that any graph of order at least 2 has two vertices of the same degree.
4. Given a graph G , define its *complement* \overline{G} as a graph with vertices $V(\overline{G}) = V(G)$, such that given $v, w \in V(G)$ with $v \neq w$, we have $vw \in E(\overline{G})$ if and only if $vw \notin E(G)$.
 - (a) – Show that if $G \cong \overline{G}$, then $|G| \equiv 0$ or $1 \pmod{4}$.
 - (b) + For any $n \geq 1$, construct a graph G of order $4n$ such that $G \cong \overline{G}$.
[Hint: take inspiration from the fact that P_3 has order 4 and $P_3 \cong \overline{P_3}$.]
 - (c) – Modify your construction to obtain a graph H of order $4n + 1$ such that $H \cong \overline{H}$.
5. (a) \circlearrowright Show that every connected graph G with $|G| \geq 1$ contains a vertex $v \in G$ such that $G - \{v\}$ is connected.
[Hint: pick v so that some connected component of $G - \{v\}$ is as big as possible.]
 - (b) \circlearrowright A connected graph with at least one vertex is called a *tree* if it has no cycles. Show that every tree with ≥ 2 vertices has a vertex of degree 1 (such a vertex is called a *leaf*).
 - (c) \circlearrowright Deduce that if T is a tree then $e(T) = |T| - 1$.
 - (d) + Let G be a graph with $|G| = n$. We say that a tuple $(d_G(v_1), \dots, d_G(v_n))$, where $\{v_1, \dots, v_n\} = V(G)$, is a *degree sequence* of G . Show that a given tuple (d_1, \dots, d_n) of integers, where $n \geq 2$, is a degree sequence of a tree if and only if $d_i \geq 1$ for all i and $\sum_{i=1}^n d_i = 2n - 2$.
6. + Let $G = (V, E)$ be a graph. Show that there exists a partition $V = A \sqcup B$ such that all vertices of $G[A]$ and of $G[B]$ have even degree.
[Hint: consider what happens when we remove a vertex v of odd degree and “invert” adjacency between the neighbours of v .]
7. + Suppose G is a graph that has no induced cycles of odd length—that is, for any $A \subseteq V(G)$, the graph $G[A]$ is not a cycle of odd length. Show that G is bipartite.

8. \vdash Let G be a regular bipartite graph with vertex classes W and M , with $e(G) > 0$. Show that G contains a matching from W to M .

9. \circ Let $n \geq m \geq 1$. An $m \times n$ *Latin rectangle* is an $m \times n$ matrix with entries in $[n]$ such that each $i \in [n]$ appears exactly once in each row and at most once in each column. Show that any $m \times n$ Latin rectangle forms the first m rows of an $n \times n$ Latin rectangle.
[Hint: use Hall's Marriage Theorem.]

10. Let G be an infinite bipartite graph with (infinite) vertex classes W and M , and suppose that $|N_G(A)| \geq |A|$ for every $A \subseteq W$.

(a) $^+$ Show, by constructing an example, that such a graph G does not need to contain a matching from W to M .

(b) $^{++}$ Suppose that W is countable and $d_G(w) < \infty$ for all $w \in W$. Show that in this case G does contain a matching from W to M .
[Hint: apply Hall's Marriage Theorem to finite subgraphs $G_1 \leq G_2 \leq \dots$ of G .]

11. \circ Show that any connected regular bipartite graph is 2-connected.

12. Let $k \geq 2$.

(a) $^+$ Give an example of a k -edge-connected graph that is not 2-connected. Is there an incomplete k -connected graph that is not 2-edge-connected?

(b) \circ Give an example of a graph G such that $G - \{v\}$ is not 2-edge-connected but $G - \{vw\}$ is k -edge-connected for some $v \in G$ and $w \in N_G(v)$.

13. Let G be an incomplete k -connected graph for some $k \geq 2$.

(a) $^+$ Show that for every $x \in G$ and every $U \subseteq V(G) \setminus \{x\}$ with $|U| \geq k$, there exists a collection of $(\{x\}, U)$ -paths $P^{(1)}, \dots, P^{(k)}$, where $P^{(i)} = xy_{i,1} \dots y_{i,m_i}$, such that $y_{i,j} \neq y_{i',j'}$ for $(i, j) \neq (i', j')$ and such that $y_{i,j} \in U$ if and only if $j = m_i$.
[Hint: add a vertex to G , connect it by edges to every vertex of U , show that the resulting graph is still k -connected, and use Menger's Theorem.]

(b) $^+$ Show that if $|G| \geq 2k$ then G contains a cycle of length $\geq 2k$.

(c) $^+$ Show that every collection of k vertices in G is contained in a cycle.

14. $^+$ Let G be a k -edge-connected graph for some $k \geq 1$, and let $F \subseteq E(G)$ with $|F| = k$. Show that $G - F$ has at most two connected components.

15. Let G be an r -regular graph for some $r \geq 1$, and let $H = L_G$ be the line graph of G (appearing in the proof of the edge version of Menger's Theorem).

(a) $^-$ Show that H is regular.

(b) $^+$ Show that $L_H \cong G$ if and only if $r = 2$.