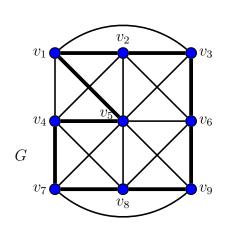
GRAPH THEORY

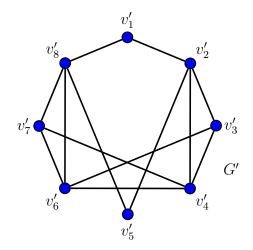
Mock Class Test 2

Solutions

Exercise A

Consider the following graphs G and G':





Decide whether or not each of these graphs is Hamiltonian. Explain your answers.

Solution for G:

Yes: for instance,

 $v_1v_2v_3v_6v_9v_8v_7v_4v_5v_1$

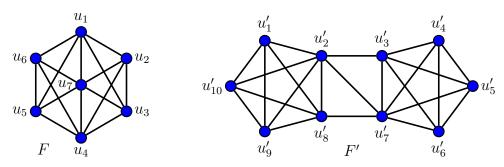
(drawn as thick edges in the picture) is a Hamilton cycle in G.

Solution for G':

No: any cycle passing through v_1' (respectively v_5') must contain $v_8'v_1'v_2'$ (respectively $v_8'v_5'v_2'$) as a subpath. But since any cycle passes through v_8' and v_2' at most once, it follows that the only cycle containing both $v_8'v_1'v_2'$ and $v_8'v_5'v_2'$ as subpaths (and therefore the only cycle passing through both v_1' and v_5') is $v_8'v_1'v_2'v_5'v_8'$, which has length 4 < |G'|.

Exercise B

Consider the following graphs F and F':



Find the independence number α of each of these graphs, and explain your answers (giving reasons for both why the independence number is $\geq \alpha$ and why it is $\leq \alpha$).

Solution for F:

 $\alpha(F) = 2$: we have $\alpha(F) \geq 2$ since, for instance, the subset $\{u_1, u_4\}$ is independent.

We have $\alpha(F) \leq 2$ since the subgraphs $F[\{u_1, u_2, u_3\}] \cong K_3$ and $F[\{u_4, u_5, u_6, u_7\}] \cong K_4$ are complete, so any independent subset of F can contain at most one vertex from each of those subgraphs.

Solution for F':

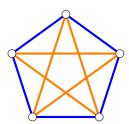
 $\alpha(F') = 2$: we have $\alpha(F') \ge 2$ since, for instance, the subset $\{u'_1, u'_3\}$ is independent.

We have $\alpha(F) \leq 2$ since the subgraphs $F'[\{u'_1, u'_2, u'_8, u'_9, u'_{10}\}] \cong K_5$ and $F'[\{u'_3, u'_4, u'_5, u'_6, u'_7\}] \cong K_5$ are complete, so any independent subset of F' can contain at most one vertex from each of those subgraphs.

Question 1

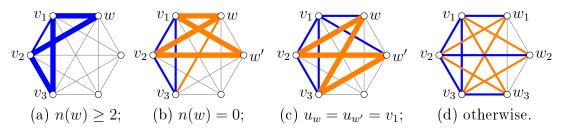
Show that $R(C_4, C_4) = 6$.

Solution: Consider the following blue/orange edge-colouring of K_5 :



Then the edges of each colour forms a subgraph isomorphic to C_5 , and C_5 has no subgraphs isomorphic to C_4 . Thus this edge-colouring of K_5 contains no monochromatic 4-cycles, showing that $R(C_4, C_4) > 5$.

Conversely, suppose we have a blue/orange edge-colouring of K_6 ; we aim to find a monochromatic C_4 . Since R(3,3)=6, we can find a monochromatic triangle $K_6[T] \leq K_6$: without loss of generality, it is blue. Let $T=\{v_1,v_2,v_3\}$, and given a vertex $w \in K_6-T$, let n(w) be the number of blue edges among the edges wv_1 , wv_2 and wv_3 . The following pictures represent the argument below:



If $n(w) \ge 2$ for some $w \in K_6 - T$ then we may assume, without loss of generality, that the edges wv_1 and wv_2 are blue (a). Then $wv_1v_3v_2w$ is a blue C_4 , as required.

Thus, we may assume that $n(w) \leq 1$ for all $w \in K_6 - T$. If n(w) = 0 for some $w \in K_6 - T$, pick any $w' \in K_6 - (T \cup \{w\})$. Then $n(w') \leq 1$ and therefore, without loss of generality, the edges $w'v_1$ and $w'v_2$ are orange (b). Since the edges wv_1 , wv_2 and wv_3 are all orange, the cycle $wv_1w'v_2w$ is an orange C_4 , as required.

Thus, we may assume that n(w) = 1 for all $w \in K_6 - T$, and so for each $w \in K_6 - T$ there exists a unique vertex $u_w \in T$ such that the edge wu_w is blue. If $u_w = u_{w'}$ for some $w \neq w'$ —without loss of generality, $u_w = u_{w'} = v_1$ (c)—then the edges wv_2 , wv_3 , $w'v_2$ and $w'v_3$ are all orange and so $wv_2w'v_3w$ is an orange C_4 , as required.

Thus, we may assume that $u_w \neq u_{w'}$ for $w \neq w'$, and so we may enumerate the vertices $V(K_6-T) = \{w_1, w_2, w_3\}$ so that the edge $w_i v_j$ is blue if i = j and orange otherwise (d). Now if at least one of the edges of $K_6 - T$ is blue—without loss of generality, $w_1 w_2$ is blue—then $w_1 w_2 v_2 v_1 w_1$ is a blue C_4 , as required. Otherwise, all three edges of $K_6 - T$ are orange, and so $w_1 v_2 w_3 w_2 w_1$ is an orange C_4 , as required.

Question 2

Let $n \geq 2$, and let G_n be a graph with $V(G_n) = \{(a,b) \in \mathbb{N}^2 \mid 1 \leq a < b \leq n\}$, such that $(a,b) \sim_{G_n} (a',b')$ if and only if either a=b' or b=a'. By using the Multicolour Ramsey's Theorem, show that $\chi(G_n) \to \infty$ as $n \to \infty$.

Solution: Given $k \in \mathbb{N}_{\geq 2}$, consider the Ramsey number $N(k) = R(3, \ldots, 3)$, which exists by the Multicolour Ramsey's Theorem. It is then enough to show that $\chi(G_n) > k$ whenever $n \geq N(k)$.

Let $n \in \mathbb{N}$ with $n \geq N(k)$, and suppose for contradiction that $\chi(G_n) \leq k$. Thus, there exists an admissible k-colouring $c \colon V(G_n) \to [k]$. We define a k-edge-colouring $C \colon E(K_n) \to [k]$ as follows: given $v = (a,b) \in V(G_n)$, we set C(ab) = c(v).

Since $n \geq N(k)$, it follows by the definition of N(k) that there exists a monochromatic triangle in $T \leq K_n$ of colour $i \in [k]$ with respect to C. Let $V(T) = \{a, b, c\}$, ordered so that a < b < c. Then, in particular, we have c(a, b) = C(ab) = i and c(b, c) = C(bc) = i. However, the vertices (a, b) and (b, c) are adjacent in G_n , contradicting the fact that the k-colouring c is admissible.

Thus $\chi(G_n) > k$, as required.

Question 3

Let $p, \varepsilon \in (0,1)$ be constants. Using the fact that $\ln(t!) = t \ln(t) - t + o(t)$, show that $\Delta(G) < (ep + \varepsilon)n$ for almost every $G \in \mathcal{G}(n,p)$ (where e = 2.718...).

Solution: Let $c = ep + \varepsilon$ and $t = \lceil cn \rceil$, and let X be the number of subgraphs of $G \in \mathcal{G}(n,p)$ isomorphic to $K_{1,t}$; note that we have $\Delta(G) < t$ if and only if X = 0. Suppose, without loss of generality, that c < 1 (otherwise the result is trivial). Now given a subset $U \subseteq V(G)$ with |U| = t and a vertex $v \in G - U$, the probability that G contains a $K_{1,t}$ with vertex classes $\{v\}$ and U is p^t . There are $\binom{n}{t}$ ways to choose U and, having chosen U, there are n - t ways to choose v, implying that

$$\mathbb{E}X = \binom{n}{t} \cdot (n-t) \cdot p^t = \frac{n!p^t}{t!(n-t-1)!}.$$

Now since $\ln(t!) - \ln((t-1)!) = \ln(t) = o(t)$ and $t-1 < cn \le t$, we have an approximation

$$\ln(t!) = cn \ln(cn) - cn + o(n) = cn \ln(c) + cn \ln(n) - cn + o(n);$$

similarly, since $\ln((n-t+1)!) - \ln((n-t-1)!) \le 2\ln(n-t+1) = o(n)$ and n-t-1 < (1-c)n < n-t+1, we have

$$\ln((n-t-1)!) = (1-c)n\ln((1-c)n) - (1-c)n + o(n)$$

= $(1-c)n\ln(1-c) + (1-c)n\ln(n) - (1-c)n + o(n)$.

Combining with the fact that $t \ln(p) = cn \ln(p) + O(1)$, this implies that

$$\ln(\mathbb{E}X) = n\ln(n) - n + cn\ln(p) - cn\ln(c) - cn\ln(n) + cn$$

$$- (1-c)n\ln(1-c) - (1-c)n\ln(n) + (1-c)n + o(n)$$

$$= [1-c-(1-c)]n\ln(n) - [1-c-(1-c)]n + cn\ln(p)$$

$$- cn\ln(c) - (1-c)n\ln(1-c) + o(n)$$

$$= n\left[-c\ln(c/p) - (1-c)\ln(1-c) + o(1)\right].$$

Finally, note that $\ln(c/p) = \ln(e + \frac{\varepsilon}{p}) > 1$, implying that $\ln(\mathbb{E}X) < -n \cdot f(c)$ for n large enough, where $f(x) = x + (1-x)\ln(1-x)$. The function f is differentiable on (0,1), with derivative

$$f'(x) = 1 + (-1) \cdot \left[1 \cdot \ln(1-x) + (1-x) \cdot \frac{1}{1-x} \right] = -\ln(1-x) > 0,$$

implying that f is increasing on (0,1) and therefore f(c) > f(0) = 0. This shows that $\ln(\mathbb{E}X) \to -\infty$ and therefore $\mathbb{E}X \to 0$ as $n \to \infty$. Therefore, by Markov's Inequality, we have

$$\mathbb{P}(X > 0) = \mathbb{P}(X \ge 1) \le \mathbb{E}X \to 0$$

as $n \to \infty$, implying that almost every $G \in \mathcal{G}(n, p)$ has no subgraphs isomorphic to $K_{1,t}$ and therefore satisfies $\Delta(G) < t$, as required.