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Abstract

Let W be a reflection group generated by a finite set of simple
reflections S. We determine sufficient and necessary condition for in-
vertibility and positive definitness of the Poincaré series

∑
w q`(w) w,

where `(w) denotes the algebraic length on W relative to S. Gen-
eralized Poincaré series are defined and similar results for them are
proved.

In case of finite W, representations are constructed which are canon-
ically associated with the algebraic length. For crystallographic groups
(Weyl groups) these representations are decomposed into irreducible
components. Positive definitness of certain functions involving gen-
eralized lengths on W is proved. The proofs don’t make use of the
classification of finite reflection groups. Examples are provided.

1 Introduction

We start with an account of definitions and results on reflection groups that
we need in this paper. For the details we refer to the book by Humphreys
[20], whose notation we follow, and to [2, Chapter VI].
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A reflection in a finite dimensional vector space V, endowed with a non-
degenerate symmetric bilinear form (x, y), is a linear operator which sends
some nonzero vector to its negative and fixes the orthogonal complement to
this vector. If sx denotes the reflection about the vector x then sx acts by
the rule

sxy = y − 2
(x, y)

(x, x)
x. (1)

Let the vectors ∆ = {r1, r2, . . . , rn} form a basis for V and let S = {s1, s2, . . . sn}
denote the set of corresponding reflections. A reflection group is a group W
generated by S.

The set
Φ = {wri | w ∈ W, i = 1, 2 . . . , n}

is called a root system whenever it can be decomposed as Φ = Π∪−Π, where
Π denotes the subset of Φ consisting of the vectors

∑n
1 airi, with ai ≥ 0. The

elements of Π are called positive roots, while those of −Π are called negative
roots. The elements of ∆ are called the simple roots and the elements of S
are called simple reflections.

If the group W is finite (which means that Φ is a finite set) then the order
m(i, j) of any product sisj has to be finite. It turns out that the numbers
m(i, j) determine the group W up to an isomorphic equivalence. The group
W can be described in algebraic way as generated by S with

s2
i = 1, (sisj)

m(i,j) = 1,

as the only relations among elements in S. A convenient way of encoding this
information is the Coxeter graph of W. The set of generators is the vertex
set of this graph. If m(s, s′) ≥ 3 we join s and s′ by an edge labelled with
m(s, s′).

Any element w ∈ W is a product of simple reflections, say w = si1si2 . . . sik .
The smallest k for which this occur will be called the length `(w) of w. The
length has important geometric interpretation. There holds

`(w) = |Π ∩ w−1(−Π)|. (2)

This means that `(w) is precisely the number of positive roots sent by w to
negative roots.

If we select some of the reflections J ⊆ S, then the group generated by
them is also a reflection group denoted by WJ . The corresponding simple
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roots are ∆J = {ri | si ∈ J}. The set

ΦJ = {wri | w ∈ WJ , si ∈ J}

is a corresponding root system. The set ΦJ decomposes into subsets of posi-
tive ΠJ and negative −ΠJ roots. The length of w as element in WJ coincides
with the one defined by the ambient system (W,S). Moreover for elements
in w ∈ WJ we have

ΠJ ∩ w−1(−ΠJ) = Π ∩ w−1(−Π). (3)

(see [20, Proposition 1.10]).
The group W is finite if and only if the bilinear form associated with the

n× n matrix
a(i, j) = − cos

π

m(i, j)

is positive definite. Moreover finite reflection groups are classified into 5
series and some exceptional cases.

Part of our result will hold only for so called crystallographic reflection
groups. These are finite reflection groups such that 2a(i, j) is an integer
for any i, j. It turns out that these are precisely the Weyl groups of simple
Lie algebras. The finite reflections groups that are left behind are dihedral
groups and two exceptional ones, known as H3 and H4.

In Section 2 we study the invertibility of Poincaré series of (W,S). This
has many important applications in noncommutative probability theories.
The Poincaré series (or Poincaré polynomial in case of finite W ) is a formal
power series of the form

∑
w∈W

q`(w)w, where q is a complex number. For finite

Coxeter groups (W,S) we determine the values of Q for which Pq(W ) is
invertible in the group algebra of W. In particular, for the permutation group
Sn, we obtain a result of Zagier [28] that Pq(Sn) is invertible if and only if
q(i−1)i 6= 1 for any i = 1, 2, . . . , n. Zagier uses the invertibility properties
of Pq(Sn) in constructing models of q–oscillators in infinite statistics. On
the other hand Bożejko et al. [6, 7, 8, 9] make use of positive definitness
of Pq(Sn) this time in constructing generalized Brownian motions and in
finding realizations of noncommutative Gausssian processes in connection
with quantum Young–Baxter equation (see also [22]). Dykema and Nica
[16] use Fock realizations of canonical q–commutation relations found in [8].
They derive positivity properties of Pq(Sn) to show stability properties of the
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generalized Cuntz algebras generated by q–oscillator (see [6, 8, 17, 22]). The
positive definitness of Pq(W ) for infinite Coxeter groups was a key point in
the proof [4] that such groups do not have Kazhdan property T.

In this paper we study also positive definitness and invertibility of the
generalized Poincaré series for (W,S). This is any function P (·) which is
multiplicative in the following sense: if the product uv is reduced for u, v ∈ W,
then P (uv) = P (u)P (v). We also require that P (s) = P (s′) for s, s′ ∈ S,
whenever s and s′ are conjugate in W. We show that the generalized Poincaré
series P =

∑
P (w)w is positive definite if and only if −1 ≤ P (s) ≤ 1, for

any s ∈ S (see [7], where the finite Coxeter groups were considered).
The positive definitness of the Poincaré series is also connected with the

problem of determining which locally compact groups are so called weakly
amenable (see [14]). Roughly a group G is weakly amenable if the Fourier
algebra A(G) admits an approximate unit bounded with respect to com-
pletely bounded multiplier norm (this is a norm weaker than the norm of
A(G) but stronger than the multiplier norm on A(G)). Partial results were
obtained for special groups (see [5, 21, 23, 24, 27]). In particular our The-
orem 1 played a crucial role in [21]. We conjecture that all Coxeter groups
are weakly amenable. We think that the results in this paper constitute a
step towards proving this conjecture. Another step, from the geometrical
viewpoint, has been made in [25].

The proof of invertibility of Pq(W ) relies on a peculiar geometrical prop-
erty of the Coxeter complex associated with (W,S). Namely, if w0 denotes
the longest element in W, then

w0WJ1 ∩WJ2 = ∅,

where J1 and J2 are arbitrary proper subsets of S. In other words, any facet
about the identity element of the group e is disjoint from any facet about
the element w0.

In Section 3 we construct representations of W associated with the length
`(w). We show that the correspondence

w 7→ 1
2
|Π| − `(w)

is a positive definite function on W. As a sideffect we obtain another proof
of positive definitness of the Poincaré series Pq(W ) in case of finite Coxeter
group. It would be of great interest to find a canonical representation of W
associted with Pq(W ). This has been done only for special cases (see [23, 24]).
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The main result in Section 3.1 is a decomposition of the representations
corresponding to the length function into irreducible components in case of
crystallographic groups. For noncrystallographic case, the decomposition
holds but it does not yield irreducible components. In Section 3.2 we com-
pute the decomposition of the function ϕ(w) = 1

2
|Π| − `(w) into irreducible

positive definite functions. Th eprrof don’t make use of classification of fi-
nite reflection groups. The key point is a characterization of kernels k(x, y)
defined on Φ× Φ, invariant for the action of the group W.

Throughout the paper by A ⊂ B we will mean that A is properly con-
tained in B. Otherwise we will write A ⊆ B. The symbol |A| will denote
the number of elements in the set A. The symbol A4B will denote the set
(A \B) ∪ (B \ A).

2 Positive definitness and invertibility of the

Poincaré series

Let (W,S) be a Coxeter system with finite generator set S. For an element
w ∈ W let `(w) denote the length of w.

For a subset J of S the symbol WJ will denote the subgroup of W gen-
erated by J. Let

W J = {w ∈ W | `(ws) > `(w), for all s ∈ J}. (4)

By [20, page 19] (see also [2, Problem IV.1.3]) any element w ∈ W admits a
unique decomposition

w = wJw
J , `(w) = `(wJ) + `(wJ), (5)

where wJ ∈ WJ and wJ ∈ W J .
Let q = {qs}s∈S be a family of complex numbers such that qs = qs′ , if s

and s′ are conjugate in W. For an element w ∈ W , let

qw = qs1qs2 . . . qsn if w = s1s2 . . . sn, `(w) = n.

By [2, Proposition 1.5.5] the function w 7→ qw is well defined. Observe that

if qs = q for all s ∈ S, then qw = q`(w). The function qw is multiplicative in
the following sense.

qw1w2 = qw1qw2 , if `(w1w2) = `(w1) + `(w2).
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The conjugation relation yields a decomposition of S into equivalence
classes say

S = A1 ∪ A2 ∪ Am. (6)

Hence q takes m values q1, q2, . . . , qm. Let w = s1s2 . . . sn be a reduced rep-
resentation of w. Then

qw =
m∏

i=1

q
`i(w)
i , (7)

where
`i(w) = |{j | sj ∈ Ai}|. (8)

By aforementioned [2, Proposition 1.5.5] the function `i(w) does not depend
on representation of w in reduced form. This will also follow from the next
proposition.

Proposition 1

(i) Two simple reflections s and s′ in S are conjugate in W if and only if
there exists w ∈ W such that wr = r′, where r and r′ are the corre-
sponding simple roots.

(ii) For any w ∈ W and i = 1, 2, . . . ,m

`i(w) = |Πi ∩ w−1(−Πi|,

where Πi = Π ∩ {wrj | sj ∈ Ai}.

Proof. Part (i) follows immediately from the identity

swr = wsrw
−1.

Let w = s1s2 . . . sn be a reduced representation of w. Define roots θi, i =
1, 2, . . . , n by the rule

θi = snsn−1 . . . si+1(ri).

It is easy to check that

Π ∩ w−1Π = {θ1, θ2, . . . , θn},

(see [20, Exercise 5.6.1, page 115]). Observe that sj ∈ Ai if and only if
θj ∈ Πi. This yields the conclusion. ut
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Lemma 1 Assume a group W acts transitively on a set Ω, and there exists
a subset A ⊂ Ω, such that (wA)4A is a finite set for any w ∈ G. Then the
function w 7→ q|(wA)4A| is positive definite on W, for any −1 ≤ q ≤ 1.

Proof. Observe that

|(v−1wA)4A| = |(wA)4(vA)| =
∑
x∈Ω

|χwA − χvA|2.

By [1, page 81] the correspondence w 7→ |(wA)4A| is so called negative
definite function on W. Thus by Schoenberg’s theorem (see [1, Theorem 2.2,
page 74]) we get the conclusion for 0 ≤ q ≤ 1. Observe that the real valued
function

w 7→ (−1)|(wA)4A|

is multiplicative on W. Hence it is positive definite on W. Using Schur’s
theorem, that the product of positive definite functions yields another such
function, completes the proof of the lemma. ut

Theorem 1 Let (W,S) be a Coxeter system and let q = {qs}s∈S be such
that −1 ≤ qs ≤ 1 and qs = qs′ , whenever s, s′ are conjugate in W. Then the
function w 7→ qw is positive definite.

Proof. By (7) it suffices to show that w 7→ q
`i(w)
i is positive definite. This

follows immediately from Lemma 1, Proposition 1 and the fact that

`i(w) = |Πi ∩ w−1(−Π)| =
1

2
|(wΠi)4Πi|.

ut
The functions w 7→ `i(w) will play essential role in the next section.
The function w 7→ qw will be called the Poincaré series of W and denoted

by Pq(W ). It can be expressed as the power series

Pq(W ) =
∑

w∈W

qw w.

In the sequel we will identify Pq(W ) with the convolution operator by

this function on `2(W ). We are interested when this operator is invertible.
For a subset A ⊂ W , let

Pq(A) =
∑
w∈A

qw w .
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By (4) and (5) we immediately get

Pq(W ) = Pq(WJ)Pq(W
J) . (9)

The following formula has important consequences (cf. [20, Proposition
1.11]).

Proposition 2

(i) Let (W,S) be a finite Coxeter group. Then

qw0w0 =
∑
J⊆S

(−1)|J |Pq(W
J) ,

where w0 is the unique longest element in W.

(ii) If Pq(W ) is an invertible operator, then

∑
J⊂S

(−1)|J |Pq(WJ)−1 = {qw0 w0 − (−1)|S| e}Pq(W )−1 .

Proof. By (9) the operator Pq(WJ) is invertible, if Pq(W ) is invertible.
Thus it suffices to show (i). We have

∑
J⊆S

(−1)|J |Pq(W
J) =

∑
J⊆S

(−1)|J |

 ∑
w∈W J

qwλ(w)


=

∑
w∈W

 ∑
J

w∈WJ

(−1)|J |

 qwλ(w) .

Let
Jw = {s ∈ S | `(ws) > `(w)}.

Observe that w ∈ W J if and only if J ⊆ Jw. Therefore

∑
J

w∈WJ

(−1)|J | =
∑

J⊂Jw

(−1)|J | = (1− 1)|Jw| =
{

0 if Jw 6= ∅
1 if Jw = ∅

However Jw = ∅ if and only if w = w0. Thus∑
J⊂S

(−1)|J |Pq(WJ)−1 = qw0w0.
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ut
The subset I ⊆ S will be called connected if I is connected in the Coxeter

graph of (W,S). If WI is finite group the unique longest element of WI will
be denoted by w0(I).

For a subset J ⊆ S let

T (J) = {q | (qw0(I))2 = 1 for some connected I ⊆ J}.

Proposition 3 Let (W,S) be a finite Coxeter system. If q /∈ T (S), then the
convolution with Pq(W ) is an invertible operator on `2(W ).

Proof. We prove the assertion by induction on n = |S|. For n = 1 we
have S = {s} and P (W ) = 1+qs. Hence Pq(W )−1 = (1−q2)−1(1−qs) exists

as long as q2 6= 1.
Assume S is not connected. Then S = S ′∪S ′′, s′s′′ = s′′s′ for any s′ ∈ S ′

and s′′ ∈ S ′′. Hence W = WS′WS′′ . This implies

Pq(W ) = Pq(WS′)Pq(WS′′).

Thus, with no loss of generality, we can restrict ourselves to the case S is
connected. By definition we have

T (J) ⊆ T (S).

Therefore, if q /∈ T (S), then q /∈ T (J) for J ⊂ S. By induction hypothesis
the inverse Pq(WJ)−1 exists for each J ⊂ S. Thus by Proposition 2

qw0w0 − (−1)|S|e =
∑
J⊂S

(−1)|J |Pq(W
J)

=

[∑
J⊂S

(−1)|J |Pq(WJ)−1

]
Pq(W ) .

Using the fact that w2
0 = 1 (see [20, page 16]) gives

(qw0)2 − 1 = (qw0w0 + (−1)|S|e)(qw0w0 − (−1)|S|e)

= (qw0w0 + (−1)|S|e)

[∑
J⊂S

(−1)|J |Pq(WJ)−1

]
Pq(W ). (10)

Since by assumption (qw0)2 6= 1 thus thus Pq(W ) is left invertible, and also
right invertible as it is a finite dimensional operator. ut
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The converse implication will be shown in Theorem 3. To this end we
need more information about parabolic subgroups of (W,S). A Coxeter group
(W,S) is called irreducible if the Coxeter graph is connected; i.e. the set S
cannot be decomposed into two disjoint subsets S1 and S2 commuting with
each other.

The following result is interesting for its own sake.

Theorem 2 If (W,S) is a finite irreducible Coxeter group, and J, J ′ are
proper subsets of S, then

w0WJ ∩WJ ′ = ∅ .

We start with a lemma.

Lemma 2 Let {s1, s2, . . . , sn} = S be such that {s1, s2, . . . , sk} is connected
for any 1 ≤ k ≤ n. Then the root r = snsn−1 . . . s2(r1) is positive and

r =
n∑

i=1

αiri, αi > 0.

Proof. We use induction on n. Assume

sn−1 . . . s2(r1) =
n−1∑
i=1

αiri αi > 0.

Then

r = snsn−1 . . . s2(r1) = sn

(
n−1∑
i=1

αiri

)

=
n−1∑
i=1

αiri − 2
n−1∑
i=1

αi
(ri, rn)

(rn, rn)
rn.

We have (ri, rn) ≤ 0 (see [20]) and (ri, rn) < 0 for at least one value of i,
where i = 1, 2, . . . , n− 1. Thus the lemma follows. ut

We return to the proof of Theorem 2. We will use the fact that w0 sends
all positive roots to negative roots. This implies

Π ∩ (w0w)−1(−Π) = Π ∩ w−1Π.

Hence
Π = [Π ∩ w−1(−Π)] ∪ [Π ∩ (w0w)−1(−Π)]. (11)
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Consider the positive root constructed in Lemma 2. If r belongs to the first
summand in (11) then it is a linear combination of those ri, for which si ∈ J
(see Introduction). This is a contradiction. Similarly r cannot belong to the
second summand, if w0w ∈ WJ ′ . ut

Remark. Theorem 2 does not hold if the group (W,S) is not irreducible.
For example we can take W = ZZ2 × ZZ2 and S = {s1, s2}. Let WJ = {e, s1}
and WJ ′ = {e, s2}. Then w0 = s1s2 and

w0WJ ∩WJ ′ = {s2}.

Theorem 3 Let (W,S) be a finite Coxeter group. Then the convolution
operator Pq(W ) is invertible if and only if q 6∈ T (S).

Proof. It suffices to consider the case when the system (W,S) is irre-
ducible. The “if” part has been shown in Proposition 3. We only need to
show that if Pq(W ) is invertible, then q /∈ T (S). Assume for a contradic-
tion that q ∈ T (S). Then there exists a connected subset J ⊂ S, such that

(qw0(J))2 = 1. We will show that Pq(WJ) is not invertible, which implies that
Pq(W ) is not so either, in view of (9). Thus with no loss of generality we

may assume that J = S, i.e. (qw0)2 = 1. By (10) we get

(qw0w0 + (−1)|S|e)

[∑
J⊂S

(−1)|J |Pq(WJ)−1

]
Pq(W ) = 0.

Since Pq(W ) is invertible we have

(qw0w0 + (−1)|S|e)

[∑
J⊂S

(−1)|J |Pq(WJ)−1

]
= 0. (12)

We will show that (12) is impossible. The support of Pq(WJ)−1 is a subset
of WJ . This is based on the general fact that the convolution inverse to a
function f on a group is supported by a subgroup generated by the support
of f. Therefore

supp(f) = G ⊂
⋃

J⊂S

WJ .

The equation (12) implies w0G ∩G 6= ∅, which yields

w0WJ ∩WJ ′ 6= ∅
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for some J, J ′ ⊂ S . In view of Theorem 2, this is a contradiction. ut
Remark. In view of Theorems 1 and 3 we get that for every choice of

qs ∈ (−1, 1), where s ∈ S, the convolution operator with Pq(W ) is strictly
positive definite; i.e.

(Pq(W ) ∗ f, f) ≥ c(f, f),

for some c > 0, where (f, g) =
∑

w∈W f(w)g(w).
If (W,S) has the property that all generators in S are conjugate, then

qs = q does not depend on s, and qw = q`(w).

Corollary 1 Let W = Sn be the permutation group generated by the set of
transpositions
S = {(i, i+ 1) | i = 1, 2, . . . , n}. The convolution operator with the Poincaré
polynomial

Pq(Sn) =
∑

g∈Sn

q`(g)g

is invertible if and only if

q
i(i−1)

2 6= 1 for every i = 1, 2, . . . , n.

3 Canonical representations associated with

length

3.1 Irreducible root systems and invariant kernels

Let Φ be a root system in an Euclidean space V (see [20, Section 1.2]). Any
vector x in Φ defines the reflection sx according to (1). The group generated
by all reflections sx will be denoted by W. The elements of W permute the
vectors in Φ. We will assume that the system Φ is irreducible; i.e. it cannot
be decomposed into two nonempty root systems which are orthogonal to each
other with respect to the inner product in V.

Vectors in Φ may have different lengths. For a real number λ let Φλ

consist of all roots in Φ of length λ, and let Vλ be the linear span of Φλ. Since
the elements of W act on V by isometries they permute the vectors in Φλ.

Lemma 3 Let kλ = dimVλ and dλ = |Φλ|. Then

∑
z∈Φλ

(x, z)(y, z) = λ2dλ

kλ

(x, y)
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for any x, y ∈ Vλ.

Proof. It suffices to prove the formula for x, y ∈ Φλ since both its sides
represent bilinear forms on Vλ. We define a new inner product in Vλ as follows.

[x, y] =
∑

z∈Φλ

(x, z)(y, z).

Any element g ∈ W permute the roots in Φλ, hence

[gx, gy] = [x, y] for any x, y ∈ Vλ, g ∈ W.

By [2, Prop V.1.11] the group W acts transitively on Φλ, beacuse the system
Φ is irreducible. This implies

[x, x] = [y, y] for any x, y ∈ Φλ.

Let c = λ−2[x, x] for x ∈ Φλ. Then since λ2 = (x, x) we get

[x, y] = [sxx, sxy] = [−x, y − 2
(x, y)

(x, x)
x]

= −[x, y] + 2c(x, y),

for x, y ∈ Φλ. Thus

[x, y] = c(x, y) for x, y ∈ Φλ. (13)

The equality extends linearly to all x, y ∈ Vλ.
It suffices to determine the constant c. Let {ei}kλ

i=1 be an orthonormal
basis for Vλ relative the inner product ( ·, ·). Then by (13) we have

ckλ =
kλ∑
i=1

c(ei, ei) =
kλ∑
i=1

[ei, ei]

=
∑

z∈Φλ

kλ∑
i=1

(ei, z)
2 =

∑
z∈Φλ

(z, z) = λ2dλ.

ut
Let Hλ be the linear space of all real valued functions on Φλ with the

property f(−x) = −f(x), for x ∈ Φλ. We endow Hλ with the inner product

(f1, f2)H =
∑

x∈Φλ

f1(x)f2(x). (14)
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The action
πλ(g)f(x) = f(g−1x)

yields a unitary representation of W on Hλ. We are going to decompose this
representation into irreducible components. In the next subsection we will
also study its matrix coefficients.

By Schur’s lemma the problem of decomposition of a given unitary repre-
sentation can be reduced to studying linear selfadjoint operators commuting
with this representation. Any selfadjoint operator K on Hλ commuting with
the action of W on Hλ corresponds to a real valued matrix k(x, y), x, y ∈ Φλ,
such that

k(gx, gy) = k(x, y), (15)

k(x, y) = k(y, x), (16)

k(−x, y) = −k(x, y). (17)

The correspondence is given by

k(x, y) = (Kex, ey),

where
ev(w) = 2−1/2(δv,w − δ−v,w), v, w ∈ Hλ,

where

δv,w =
{

1 if v = w,
0 if v 6= w.

From now on we assume that the root system Φ is crystallographic; i.e.
the quantity

n(x, y) = 2
(x, y)

(y, y)

takes only integer values. This property implies (see [2, Proposition VI.1.12])
that the roots can take two different lengths at most. Moreover the following
lemma will be very useful (see [2, Section VI.1.3]).

Lemma 4 ([2]) Let x, y ∈ Φλ. Then n(x, y) can take only the values 0, ±1
and ±2. In particular n(x, y) = ±2 if and only if x = ±y.

Proposition 4 Let a matrix k(x, y) satisfy (15), (16) and (17). Then there
exist real constants α and β such that

k(x, y) = α(x, y) + β{δx,y − δ−x,y}.
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Proof. First we will show that the value k(x, y) depends only on (x, y)
or equivalently on n(x, y). By (17) we may restrict ourselves to the case
n(x, y) ≥ 0. We have three possibilities.

(1) n(x, y) = 0.

Then sxy = y and

−k(x, y) = k(−x, y) = k(sxx, sxy) = k(x, y).

Thus k(x, y) = 0.

(2) n(x, y) = 2.

Thus by Lemma 2 we get x = y. Therefore it suffices to make sure that
k(x, x) does not depend on x. This holds true because W acts transitively
on Φλ (see [2, Prop V.1.11]) and k(gx, gx) = k(x, x) for g ∈ W.
(3) n(x, y) = 1.

Let n(x′, y′) = 1. We have to show that k(x′, y′) = k(x, y). In view of the
properties of k(x, y) and n(x, y) satisfy it suffices to show that there exists
w ∈ W such that

wx = ±x′ and wy = ±y′.

Firstly, there exists g such that gx = x′. Let y′′ = gy. If y′′ = y′ we are done.
Thus we may assume y′′ 6= y′. We have

n(x′, y′′) = n(gx, gy) = n(x, y) = n(x′, y′) = 1.

This implies y′′ 6= −y′. Thus y′′ 6= ±y′. We will further break the resaoning
into three subcases.

(3a) n(y′, y′′) = 1.

Letting h = sy′′sy′sy′′ gives

h = sy′−y′′ , hx′ = x′, hy′ = y′′.

Let w = hg. Then wx = hx′ = x′ and wy = hy′′ = y′.

(3b) n(y′, y′′) = 0.

Letting h = sy′sx′sy′′sx′sy′sx′ gives

h = sy′+y′′−x′sx′ , hx′ = −x′, hy′′ = −y′.
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Let w = hg. Then wx = hx′ = −x′ and wy = hy′′ = −y′.
(3c) n(y′, y′′) = −1.

We have

n(sx′y
′′, y′) = n(y′′ − x′, y′) = n(y′′, y′)− n(x′, y′) = −2.

In view of Lemma 2 this implies sx′y
′′ = −y′. Let w = sx′g. Then wx =

sx′x
′ = −x′ and wy = sx′y

′′ = −y′.
We are now in position to determine the constants α and β. Assume

x 6⊥ y, x 6= ±y and let α = (x, y)−1k(x, y), if such a pair exists, and α = 0,
otherwise. Set β = k(x, x)− α(x, x). The lemma is then satisfied. ut

Proposition 1 implies that the space of operators commuting with action
of W on Vλ is at most two dimensional. Hence the representation πλ can
be decomposed into two irreducible subrepresentations or it is irreducible
itself. The latter holds if and only if the positive roots in Φλ are mutually
orthogonal.

Let Pλ be defined on Hλ by

Pλf(x) =
kλ

λ2dλ

∑
z∈Φλ

(x, z)f(z). (18)

Lemma 3 implies that the operator Pλ is a projection. Clearly it commutes
with the action of W. Let us determine the subspace PλHλ.

Lemma 5 PλHλ = {f ∈ Hλ | f( · ) = ( · , w) for some w ∈ Vλ}.

Proof. For f ∈ Hλ we have

Pλf(x) = (x,w), where w =
kλ

λ2dλ

∑
z∈Φλ

f(z) z.

Conversely, if f(x) = (x,w) for some w ∈ Vλ, then by Lemma 3

Pλf(x) =
kλ

λ2dλ

∑
z∈Φλ

(x, z)(z) = (x,w) = f(x).

ut
Lemma 3 implies that PλHλ is isomorphic to Vλ and the representation

πλ restricted to PλHλ is equivalent to the action of W on Vλ. If Φλ contains
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two roots which are not parallel nor perpendicular, then Pλ 6= I and Hλ has
nontrivial decomposition

Hλ = (I − Pλ)Hλ ⊕ PλHλ.

Thus we arrived at the following.

Theorem 4 The representation πλ of W on Hλ has two irreducible subspaces
PλHλ and (I−Pλ)Hλ, provided that Φλ contains two roots x and y such that
x 6= ±y and x 6⊥ y. Otherwise the representation πλ is irreducible itself. The
representation πλ restricted to PλHλ is equivalent to the action of W on Vλ.

3.2 Matrix coefficients of πλ

For an irreducible root system Φ in V let ∆ denote the set of simple roots.
Φ decomposes into two disjoint subset Π and −Π consisting of positive and
negative roots, respectively. The group W is generated by the reflections sx,
where x ∈ ∆. As was mentioned in the Introduction the algebraic length of
elements g ∈ W with respect to the generators sx, x ∈ ∆ can be expressed
in geometric manner as

`(g) = |gΠ ∩ −Π|. (19)

This formula has been used in [4] to show that the correspondence g 7→ `(g)
is a negative definite function on W. We will extend this result in the case of
finite Coxeter groups by showing that the function g 7→ 1

2
|Π|−`(g) is positive

definite. We will also give a decomposition of it into pure positive definite
functions; i.e. positive definite functions which are coefficients of irreducible
representations.

Let H consists of all real valued functions on Φ such that f(−x) = −f(x),
for x ∈ Φ, endowed with the inner product (14). The group W acts on H by
isometries

π(g)f(x) = f(g−1x).

Obviously the representations πλ defined in Section 2 are subreprepresenta-
tions of π.

Proposition 5 Let ξ = 1
2
(χΠ − χ−Π), where χA denotes the indicator func-

tion of a set A. Then

(π(g)ξ, ξ)H = 1
2
|Π| − `(g).

In particular the mapping g 7→ 1
2
|Π| − `(g), is positive definite function on

W.
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Proof. We have

4(π(g)ξ, ξ)H = |gΠ ∩ Π|+ |g(−Π) ∩ (−Π)|
−|gΠ ∩ (−Π)| − |g(−Π) ∩ Π|.

We have

|gΠ ∩ Π| = |g(−Π) ∩ (−Π)| = |Π| − |gΠ ∩ (−Π| = |Π| − `(g),

|g(−Π) ∩ Π| = |gΠ ∩ (−Π)| = `(g).

This gives the conclusion. ut
The set Φλ decomposes in natural way into the subsets Πλ and −Πλ of

positive and negative, respectively, roots of length λ. Let us define the length
function on W relative to λ as

`λ(g) = |gΠλ ∩ −Πλ|.

Similarly to Proposition 2 we get the following.

Proposition 6 Let ξλ = 1
2
(χΠλ

− χ−Πλ
). Then

(πλ(g)ξλ, ξλ)H =
1

2
|Πλ| − `λ(g).

In particular the mapping g 7→ 1
2
|Πλ| − `λ(g), is positive definite function on

W.

Remark. By [2, Proposition V.1.11] if two simple roots ri and rj have
equal length then there exists w ∈ W such that wri = rj. This implies
wsiw

−1 = sj; i.e. the reflections si and sj are conjugate to each other. The
converse is also true. In this way the set ∆λ corresponds to a conjugate class
Ai in (6). Thus the length `λ coincides with one of the functions `i defined
in Proposition 1.

Using Schur’s theorem and power series expansion of ex gives that the
exponent of a positive function is again such function. Thus Proposition 6
implies that for every choice of 0 < q < 1 the correspondence

w 7→ q`λ(w)

is positive definite. This gives an alternate proof of Theorem 1 in the case of
finite reflection groups.
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From now on we assume that the root system Φ is crystallographic. By
[2] Φ can have roots of at most two different lengths. If Φ = Φλ ∪ Φλ′ then
`(g) = `λ(g) + `λ′(g) and π = πλ⊕πλ′ . If Φ = Φλ, then of course `(g) = `λ(g)
and π = πλ. Thus π = πλ or it decomposes into representations πλ and
πλ′ . In Section 3.1 we solved the problem of decomposing the representation
πλ. Now we will compute the corresponding decomposition of the positive
definite functions

g 7→ 1
2
|Πλ| − `λ(g).

Lemma 6 Let vλ be the sum of all positive roots of length λ; i.e.

vλ =
∑

x∈Πλ

x.

Then

(r, vλ) =

{
0 r ∈ ∆ \∆λ,
λ2 r ∈ ∆λ,

(20)

where ∆λ is the set of simple roots of length λ.

Proof. Let r ∈ ∆\∆λ. Then srvλ = vλ, because sr permutes the roots in Πλ.
Hence

(r, vλ) = (r, srvλ) = (srr, vλ) = −(r, vλ).

Thus (r, vλ) = 0.
Let r ∈ ∆λ. Then srvλ = vλ − 2r, beacuse srr = −r. Hence

(r, vλ) = (srr, srvλ) = −(r, vλ) + 2(r, r).

Therefore
(r, vλ) = (r, r) = λ2.

ut
Any root x in Φ can be uniquely represented as a linear combination of

simple roots
x =

∑
r∈∆

αr(x)r. (21)

The coefficients αr(x), r ∈ ∆, are all nonnegative or all nonpositive according
to whether the root x is positive or negative. Define the function nλ(x) for
x ∈ Φλ by

nλ(x) =
∑

r∈∆λ

αr(x),

where ∆λ = {r ∈ ∆ | ‖r‖ = λ}.
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Lemma 7 For x ∈ Φλ we have∑
z∈Πλ

(x, z) = λ2nλ(x).

Proof. By Lemma 4 and by (21) we have∑
z∈Πλ

(x, z) = (x, vλ) =
∑
r∈∆

αr(x)(r, vλ)

=
∑

r∈∆λ

λ2αr(x) = λ2nλ(x).

ut

Theorem 5 The mappings

ϕλ(g) = nλ(gvλ) (22)

ψλ(g) = 1
4
dλ − `λ(g)− kλ

dλ

nλ(gvλ) (23)

are pure positive definite functions on W, where dλ = |Φλ| and kλ = dimVλ.

Proof. We will show that

(πλ(g)Pλξλ, Pλξλ) =
kλ

λ2dλ

nλ(gvλ)

(πλ(g)(I − Pλ)ξλ, (I − Pλ)ξλ) = 1
4
dλ − `λ(g)− kλ

λ2dλ

nλ(gvλ).

This will yield that both functions are positive definite. Since the restrictions
of πλ to either PλHλ or (I − Pλ)Hλ are irreducible, the above functions are
pure positive definite functions on W.

By definition of Pλ we have

Pλδx(y) =
kλ

λ2dλ

(x, y).

Combining this, Lemma 5 and the fact that Pλ is an orthogonal projection
commuting with πλ(g) gives

(πλ(g)Pλvλ, Pλvλ) = (πλ(g)Pλvλ, vλ) =
1

4

∑
x,y∈Πλ

(Pλ{δgx − δ−gx}, δy − δ−y)

=
kλ

λ2dλ

∑
x,y∈Πλ

(gx, y) =
kλ

λ2dλ

∑
x∈Πλ

nλ(gx)

=
kλ

λ2dλ

nλ(gvλ).
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Furthermore, since I − Pλ is a projection commuting with πλ(g), we obtain

(πλ(g)(I − Pλ)ξλ, (I − Pλ)ξλ) = (πλ(g)(I − Pλ)ξλ, ξλ)

= (πλ(g)ξλ, ξλ)− (πλ(g)Pλξλ, ξλ)

= 1
4
dλ − `λ(g)− kλ

λ2dλ

nλ(gvλ).

ut

3.3 Examples.

(a) Groups of type An.

We have

V = {x ∈ IRn+1 |
n+1∑
i=1

xi = 0} and Φ = {ei − ej | i 6= j}.

The roots have equal length λ =
√

2. The positive roots and simple roots are
as follows.

Π = {ei − ej | i < j},
∆ = {e1 − e2, e2 − e3, . . . , en − en+1}.

We also have

dλ = n(n+ 1),

kλ = n,

vλ =
∑
i<j

(ei − ej),

nλ(ei − ej) = j − i.

The group W can be identified with the permutation group Sn+1. In this case
we have

ϕλ(σ) =
∑
i<j

[σ(j)− σ(i)]

ψλ(σ) =
n(n+ 1)

4
− `(σ)− 1

2(n+ 1)

∑
i<j

[σ(j)− σ(i)]
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By Theorem 5 both functions are pure positive definite functions on Sn+1.
It can be easily determined that the irreducible representation of Sn+1 cor-

responding to the function ϕλ has the diagram (2, 1, 1, . . . , 1) int he Young
tableaux, while the representation corresponding to ψλ has the diagram
(3, 1, 1, . . . , 1).

(b) Groups of type Bn.

In that case V = IRn and

Φ = {±ei ± ej | i 6= j = 1, 2, . . . , n} ∪ {±ei | i = 1, 2, . . . , n}.

The positive roots and simple roots are

Π = {ei ± ej | i < j} ∪ {ei | i = 1, 2, . . . , n},
∆ = {e1 − e2, e2 − e3, . . . , en−1 − en, en}.

There are two lengths 1 and
√

2. Let λ =
√

2. Then

Πλ = {ei ± ej | i < j},
∆λ = {e1 − e2, e2 − e3, . . . , en−1 − en}.

We thus have

dλ = 2n2,

kλ = n,

vλ = 2
n−1∑
i=1

(n− i)ei,

nλ(ei) = n− i.

The group W can be identified with ZZn
2×Sn. An element (τ, σ), where τ ∈ ZZn

2

and σ ∈ Sn, acts on V by the rule

(τ, σ)ei = (−1)τ(i)eσ(i).

We have

ϕλ(τ, σ) = 2
n−1∑
i=1

(−1)τ(i)(n− i)[n− σ(i)]

ψλ(τ, σ) =
n2

2
− `(τ, σ)− 1

2n

n−1∑
i=1

(−1)τ(i)(n− i)[n− σ(i)].
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(c) Groups of type Dn.

In that case V = IRn and

Φ = {±ei ± ej | i 6= j = 1, 2, . . . , n}.

The roots have equal length λ =
√

2. The positive roots and simple roots are

Π = {ei ± ej | i < j},
∆ = {e1 − e2, e2 − e3, . . . , en−1 − en, en−1 + en}.

We have

dλ = 2n(n− 1),

kλ = n,

vλ = 2
n−1∑
i=1

(n− i)ei,

nλ(ei) = n− i.

The group W can be identified with the semidirect product of Sn and the
subgroup A of ZZn

2 consisting of τ = (τ(1), τ(2), . . . , τ(n)) such that
∑
τ(i) is

an even number. The subgroup A is normal in W. Then

ϕλ(τ, σ) = 2
n−1∑
i=1

(−1)τ(i)(n− i)[n− σ(i)]

ψλ(τ, σ) =
n(n− 1)

2
− `(τ, σ)− 1

2(n− 1)

n−1∑
i=1

(−1)τ(i)(n− i)[n− σ(i)].
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