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ORTHOGONAL POLYNOMIALS AND A DISCRETE BOUNDARY
VALUE PROBLEM II*

RYSZARD SZWARC

Abstract. Let {P.}n=o be a system of polynomials orthogonal with respect to a measure/x on the real
line. Then Pn satisfy the three-term recurrence formula xP. YnPn+l + flnPn + anPn-. Conditions are given
on the sequence an, fin, and Yn under which any product PnP. is a linear combination of Pk with positive
coefficients. The result is applied to the measures dtx(x)- (1-xE)a[x[ 2/3+1 dx and dpt(x)--[x[E+le-X2dx,
a, /3>-1. As a corollary, a Gasper result is derived on the Jacobi polynomials P.’) with a->_/3 and

a+fl+l-->O.
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The present paper is a continuation of our earlier work [9]. We were concerned
in part I with the following question. Given a probability measure/x on the real line
R such that all its moments are finite, let { P,},=o be a system of orthogonal polynomials
obtained from the sequence of consecutive monomials 1, x, x2, by the Gram-
Schmidt procedure. We do not impose any special normalization upon P, except that
its leading coefficient be positive. The product PP,, is a polynomial of degree n + m
and it can be expressed as

n+m

(1) P.P,= ., c(n, m, k)Pk
k=[n-m

with some real coefficients c(n, m, k). We are asking when c(n, m, k) are nonnegative
for any n, m, k N. The coefficients c(n, m, k) from (1) are called the linearization

coefficients of {P,} and if they are nonnegative we simply say that the linearization
coefficients are nonnegative.

It is well known that P, that P, obey a three-term recurrence formula of the form

(2) xe VnPn+1-3t- nPn 3
t- olnPn_l,

where a,, Y, are positive, except ao =0, and ft, are real. In [9, Thm. 1], we proved
that if {a,}, {ft,}, {a, + T,} are increasing sequences and T, ->- a,, for n 0, 1, 2, ,
then the linearization coefficients of {P,} are nonnegative.

Our aim now is to get rid in some way of the condition of the monotonicity of
the sequence {ft,}. Roughly the idea consists in reducing the problem to the case ft, 0.
This can be done in the following way. Consider first polynomials P, satisfying

(3) xp. y.p.+, + a.P._,, Po .
Then, of course, P2, are even functions while P2,,+1 are odd ones. Equivalently, this
means that the corresponding measure, which orthogonalizes {P,} (and which exists
by the Favard theorem [5]) is symmetric with respect to zero. An easy calculation gives
the following:

x2p2,(x) T2n+l TznP2n+2(X) A- (o2n+l T2n + az,,Tz,,-1)P,,(x)
(4)

+ az,,az,,-iP2,,-z(X).
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Let us define the polynomials Q, by

(5) Q.(y)= p,(c-).

Then by (4) the polynomials Q, satisfy

(6) yQ,(y)= y2,+ly2,Q,+l(X)+(a2,+ly2, + a2,y2.-1) Q,(x) + a2,c2,_lQ,-l(x).

Observe that (6) is again a three-term recurrence formula. Moreover, if the polynomials
P, have nonnegative linearization coefficients, then by (5) the polynomials Q, do as well.

We can go the other way around. Assume we are given a sequence of polynomials
Q, orthogonal with respect to a measure v supported on [0, +c). Instead of studying
the Q, we can examine the polynomials P, satisfying (3) and (5) with regard to the
question of nonnegative linearization coefficients. Those are easier to handle, because
in (3) the coefficients/3, are missing, unlike in the recurrence formula for Q..

First we will sharpen Theorem 1 from [9] in case of symmetric measures.
THEOREM 1. Let orthogonal polynomials P, satisfy

(7) xP. Y.P.+I + a.Pn-1, n 0, 1, 2, ,
where ao O, a., y. >-_ O. Assume that the sequences {c2.}, {a2.+1}, {a2. + Y2.}, {O2n+l -Y2.+1} are increasing and a. <-y. for n O, 1, 2,.... Then the linearization coefficients
of P. are nonnegative.

Proof As in [9], Remark 1, we can renormalize P. (i.e., multiply each P. by a
positive number tr.) so as to satisfy

(8) X,I. Ol.+ Pn+ -]"

Of course, it does not affect the conclusion of the theorem, so we introduce no new
symbols for the renormalized polynomials. Let be a symmetric probability measure
that orthogonalizes the polynomials P,. Then by (1)

(9) c(n, m, k) f pEk dl= ; P.P,.Pkd.

Hence the quantity c(n, m, k) P d/x is invariant under permutations of n, m, k. Since

/x is symmetric, then c(n, m, k) =0 if n, m, k are all odd numbers. Thus if c(n, m, k) 0
then one of n, m, k is an even number. By invariance, we can always assume that k
is such. Collecting all of the above it suffices to show that in the formulas

(10)
P2nP2m c(2n, 2m, 2k)Pzk,

Pz.+P2,.+l c(2n + 1, 2m + 1, 2k)P2k

the coefficients c(2n, 2m, 2k) and c(2n + 1, 2m + 1, 2k) are nonnegative. It automatically
implies that they are also nonnegative in the formula

(11) P2.+P2,. c(2n+ 1, 2m, 2k+ 1)P2k+.

Let L be the linear operator acting on the sequences {a.}.=0 by

(12) La. Ogn+lan+ qt. )tn_lan_l.

Let L, and L denote the linear operators acting on the matrices {u(n, m)}n,m=O
as the operator L does but according to the n or m variable (cf. [9]). Fix k 6N and
consider the matrix u(n, m) c(n, m, k). By (8) and (9) (cf. [9]) we have (L, Lm)u --0.
Moreover, u(n, 0)= 1 for n=2k and u(n, 0)=0 otherwise. Hence the following
maximum principle would complete the proof.
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(13)

LEMMA 1. Let the matrix u(n, m), n, m 0, 1, 2,.. satisfy

u(2n, 0) >= 0,

(L.-Lm)u =0

u(2n+ 1, 0) =0, n =0, 1, 2, .
Then (under the assumptions of Theorem 1) u (n, m) >- 0 for n >- m.

For the proof of Lemma 1 we refer the reader to [9] (the proof of Theorem 3).
It suffices to observe that (10) and (11) imply u(n, m)=0 whenever n+ m is an odd
number. Hence, scanning the proof of Theorem 3 from [9], we can observe that the
coefficients cs,,, which are computed there, have the property that s+ r is an even
number.

Combining Theorem 1, (4), (5), and (6) immediately gives the following corollary.
COROLLARY 1. Let the orthogonal polynomials Q.(y) satisfy the recurrenceformula

yQ. .Q.+, +.Q. + .Q._,.

Assume that there exist sequences a., y. of nonnegative numbers (ao=0) and a real
constant such that

(14) 9. 72.+, Y2., 8. a2.a2._,, /3. a2.+, y. + a2.y2.- +/3,

and a., y. satisfy the assumptions of Theorem 1. Then the linearization coefficients of
Q. are nonnegative.

Before giving applications of Corollary 1 let us study the relation between
orthogonal polynomials P. and Q. connected by (3) and (5). Let be a measure that
orthogonalizes the polynomials P.. Then

io0= P2.(x)P2m(X)dl(X) 2 P2.(x)P2,,,(x) dlz(x)

2 Q.(y)Q(y) dlz(rf).

Hence Q. are orthogonal with respect to the measure du(y)= 2d/x(/f), y >-0. Note
that the measure /x can be recovered back from v by dtz(x)=1/2dv(x), x>=O, and
dtx(-x) dtz(x).

It is worthwhile to look at the polynomials R. defined by

Then

1
S. y y P.+ /-f

P.+(x) P (x)
2 x2 m+ dtx(x)

X X

=2 S.(y)Sm(y)y dtx(vcf).

Hence the measure that orthogonalizes the S. is 2y d/z(V) or simply y dr(y).
THEOREM 2. Let {P.}=0 be the system ofpolynomials orthogonal with respect to

the measure dlz(x) (1-x2)lxl2+’ dx, x e (-1, 1), ,/3>-1. Ifa >= and a + + 1>=
O, then the coefficients c(n, m, k) in P.P,. , c(n, m, k)Pk are nonnegative.
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Proof It suffices to find a three-term recurrence formula for P, so as to fulfill the
assumptions of Theorem 1.

LEMMA 2. The polynomials {Pn},=o satisfying

n+a+/3+l n
15) xP2n P2n+l P2n-1,

2n+ a +fl + 1 +2n+a +/3 +1

n+a n+l(16) xP2n-1
2n+a+fl

P2n + P2n-2
2n+c+fl

for n-0,1,2,..., (P0=l) are orthogonal with respect to the measure dl(x)=
(1 x2)lx[2+1 dx.

Proof of Lemma 2. Let R’t)(y) denote the Jacobi polynomials normalized by
R,’) (1)= 1. Let

(17) ,(y)=R’)(2y-1).

Then Q, are orthogonal with respect to the measure dr(y)=(1-y)y dy. By the
recurrence formula for R’t) (see [6, (4) p. 172] or [4, (3) and (11), p. 169]), t, satisfy

(n+a++l)(n+a+l)
YQ"

(2n + + fl + l )(2n + a + fl + 2)
Qn+

+ l+(2n+a+/i[a+fl+2) (-

n(n + fl)+ t,-lo
(2n + a +/3 + 1)(2n + a + fl)

Let P, be the polynomials satisfying (13). Then by (4) and (6) the polynomials
Q,(y) P2, (x/f) satisfy the same recurrence formula as t, do. Indeed, in both recur-
rence formulas the coefficients of Q,+, Q,-1 and ,+, Qn- coincide. Then the
coefficients of Q,, Qe must also coincide because in both formulas the sum of coefficients
is equal to 1 (for Q,= R’)(1) 1 and Q,(1)= P2,(1)= 1 by (14)). Hence we have
just proved that Q, Q,. This means Q, are ohogonal with respect to the measure
dr(y) (1-y)yO dy. Thus by the reasoning of Corollary 1 the polynomials P, are
ohogonal with respect to the measure d(x)=dp(xZ)=(1-xZ)x[2+ dx, as was
required.

Let us return to the proof of Theorem 2. From Lemma 1 we can easily see that
if a and a+ + 10 then the assumptions of Theorem 1 are satisfied. This
completes the proof.

COROLLARY 2 (Gasper [6]). Let R’) be the Jacobi polynomials normalized so
that R’ (1) 1. If and a + + 1 0 then

n+m

R(.’t)R(,"= Y c(n, m, k)Rk’t)
k=ln-m

with nonnegative coefficients c(n, m, k).
Proof Let Pn be the polynomials orthogonal with respect to the measure dl(x)=

(1--xZ)lXl a+l dx and satisfying (15) and (16). Then by Theorem 2 we have PnPm
Y d(n,m,k)Pk, where d(n,m,k)>-O. From the proof of Lemma 2 we know that
P.,(v/-f)=R’)(2y-1). Hence we get R’t)R’t)=d(Zn, 2m, Zk)Rk’), where
d(2n, 2m, 2k)>-O.



DISCRETE BOUNDARY VALUE PROBLEM II 969

COROLLARY 3. Let a >--_ fl and a + fl + 1 >-_ O. Then

(y+l)R(n’,+l)R(m,,+l)=
n+m

c(n,m,k)Rk’t3),
k=ln-ml

n+m

R’3’R’3+’= d(n, m, k)Rk’’+’,

where c(n, m, k) and d (n, m, k) are nonnegative coefficients.
Proof. Let P, be the orthogonal polynomials corresponding to the measure dlz(x)

(1-x-)lxl=+l dx. Then, as we have seen in the proof of Lemma 2, P2,(x/-f)
R’’)(2y 1). Let the polynomials Sn(y) be defined as S(y)=(1/v) P2+l(v/-f). By
the considerations following Corollary 1 we know that S(y) are orthogonal with
respect to the measure 2y dtx(x/-f)=(1-y)y+1 dy and Sn(1)= 1. This yields S,(y)=
R’)(2y-1). Now both required formulas coincide with (10) and (11). The latter
have nonnegative coefficients if a ->_/3 and a +/3 + 1 >= 0.

Now we turn to the so called generalized Hermite polynomials.
THEOREM 3. Let P. be the polynomials orthogonal with respect to the measure

dl(X) Ix[ 2/* e -0’2 dx, a >-1. Then the P, have nonnegative linearization coefficients.
Proof First we show that P, satisfy the following recurrence formulas.

(18) xPzn --(n+ o + 1)Pzn+1 + nP2n_l,

(19)

Indeed, let P, satisfy (18) and (19). Then

x2p2, (n + a + 1)P2,+2 + (2n + a + 1)Pzn + nP2,-2.

Hence, putting Q,(y)= P2y(V/) gives

yQ,, (n + ce + 1)Q,+I +(2n + a + 1)Q, + nQ,_l.

Therefore, the polynomials Q, coincide with the Laguerre polynomials (-1)nL,’), so
they are orthogonal with respect to the measure dr(y)= y’ e-y dy. This implies that
P, are orthogonal with respect to the measure dlz(x)= 1/2dv(x) Ixl’+ e-’ dx. Com-
bining (18), (19) and Theorem 2 yields the conclusion.
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