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A Counterexample to Subexponential Growth of 
Orthogonal Polynomials 

R. Szwarc 

Abstract. We construct an example of polynomials p,, orthonormal with respect to a 
measure # such that the sequence p,, (x) has an exponential lower bound for a point x 
in the support of/z. 

1. Introduction 

Let # be a probabil i ty measure on R with all moments finite. I f  {p,, }~=0 is a system of  
orthonormal polynomials  obtained by the Gram-Schmid t  procedure from 1, x,  x e . . . . .  
then 

Xpn = 3-n+lPn+l "q- flnPn + 3-nP.- l ,  

where ~.. are positive coefficients and 13. are real ones. 
I n  [Szl]  we showed that if  a point z does not belong to the support of/~,  then 

lirn inf (Ip (z)l + Ip,2,+,<z)l) ' / '>  1, 

provided that the sequence 3., is bounded. 
There are several results suggesting that the converse should also hold. Namely, if  the 

sequences )~, and/3,, are asymptotically periodic and 3.,, is bounded away from 0, then 

l i m s u p l p , ( x ) l J / "  < 1 
11----~ 0 0  

uniformly for x ~ supp # .  This result is due to Zhang [Z1] (see also [Sz2] for a simple 
alternate proof). Zhang 's  proof  is a refinement of  [NTZ] where the case of  convergent 
coefficients was considered (see also [LN] and [Nev]). 

In this paper we show that if  the coefficients are not asymptotically periodic,  but still 
bounded and bounded away from 0, then it is possible to have a point x in supp/z for 
which 

l i m i n f  Ip, ,(x)[ 1/" > 1. 
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Our results are the following. 

T h e o r e m  1. Let Pn be orthonormal polynomials satisfying the recurrence formula 

(1.1) xp ,  = 3.,+lp,+I + 3 . n P n - l ,  n = O, 1 . . . . .  

where p_l  = 0, P0 = 1, and 

1 
for n r  k, 

a 22 k , L. = ~ for n =  

1 
f o r  n = 22k+l ,  

2a 

where a > 0 is fixed. Let Iz be the corresponding spectral measure. Then 

I (a + a - I ) ,  �89 (a +a-S) ] ,  (i) supp/z C [ -  
I (a + a -  1) ~ supp # ,  (ii) + 

-I/nY�89 + a - l ) )  > a :~1/12 > l, and (iii) lim i n f , , ~ / J .  ~ 

(iv) [ - 1,1] c supp/z. 

T h e o r e m  2. Let r. be orthonormal polynomials satisfying the recurrence formula 

1 i 
(1.2) x r .  = ~r .+l  + /3 . r .  + ~r ._~,  n = O, 1 . . . . .  

where r - t  = 0, r0 = 1,130 -- - �89 b(1 + ~/1 + b-Z), and 

/ 3 . =  for n = 2  2k, 

b for n = 2  2k+1, 

where b is a f ixed nonzero real number. Let 0 be the corresponding spectral measure. 
Then 

(i) suppo  c [ -  ~ . v f ~ +  1], 

(ii) +~ / -~  + 1 ~ supp~o, 

(iii) l i m i n f . - . ~ r ~ / ' ( V F ~ +  1) > (Ibl q- b 2 ~ " - ~ )  1/12 > I, 
I/n / 

(iv) l imin f , . _~ r , ,  t -  v~b-~+ 1) < (Ib[ + ~ ) - 1 / 3 .  

(v) [ -  1,1] c suppQ, and 
(vi) supp Lo is symmetric about O. 

The proofs of Theorems 1 and 2 are contained in Section 2. We point out that in both 
cases the polynomials p,, and r,, are very close to the case of  so-called asymptotically pe- 
riodic coefficients. Indeed, in Theorem 1 although the sequence ~-n is not asymptotically 
periodic itself, the limit 

1 
lim ()~[~-2"'" ~. . ) l /n  : _ 

.-+oo 2 
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exists. In Theorem 2 the coefficients fl,, are not convergent but their average tends to 0. 
In both theorems the coefficients ~,, are bounded away from 0. Without the latter it is 
not hard to obtain large growth at a point in the support o f / z  (see Example 1). 

2. Proofs  o f  the  T h e o r e m s  

We begin with polynomials q, satisfying the recurrence relation 

x q 2 n  = } " n q 2 n + l  "-}" O t n q 2 n - l  , 

(2.1) 
xq2n+l =Otn+lq2n+2 -'}- Ynq2n, 

where y,,  or,, are positive numbers for n > 1, or0 = 0, Y0 = I, q_l = 0, and q0 ---- 1. 
Since the corresponding Jacobi matrix is symmetric and its diagonal entries are equal to 0, 
the polynomials q,, are orthonormal with respect to a measure 0, which is symmetric 
about the origin. Notice that since Y0 = 1, we have fx2dO(x) = 1. B y  (2.1) the 
polynomials qz~(X) and q2,+l (x) involve only even or odd powers of  x, respectively. 
Hence the following are polynomials of  exact degree n: 

Wn (y) : ( -  l)"q2, (y 1/2), 
(2.2) 

V, (y) = ( - 1 ) "  y - l  /2 q2,,+ j (yUZ). 

The next lemma is an immediate consequence of (2.2). 

L e m m a  1. (i) The polynomials Wn (y) are orthonormal with respect to the measure 
dw(y )  = 2dO(yU2),  y > O. 

(ii) The polynomials V, (y)  are orthonormal with respect to the measure d r ( y )  = 
2ydO(yU2) ,  y > O. 

Substituting x = y 1/2 into (2.1) and using (2.2) give 

(2.3) 
W,, = y ,  V,, - or, V,,_ l, 

y V, = y ,  W,, - ot,,+l W,,+I. 

Let w,, = W,(O) and v,, = V,(0). Then (2.3) gives 

W n  = ~ n V n  - -  O l n V n _ l  , 
(2.4) 

tXn+l Wn+l : y n L O n .  

By the induction argument the following can be deduced: 

L e m m a  2. 

tO n = 

V n - -  _ _  

~ n - I  ~n -2  " ' "  }/0 

Oln O l n -  I " " " ~ 1  

YO Yn Wn Win" 
m = O  
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Our plan is now the following. We want to find bounded sequences of positive 
coefficients {a,,} and {y,, } such that: 

(i)  l i m "  2 2 i/,, l n f , ~ ( w , , + w , +  I) < 1 .ByTheorem 1 o f [Sz l ] th i s impl ie s tha t0  6 suppog. 
(ii) ~ 2 ~ , = 0  w,, = +c~ .  This implies o9({0}) = 0, hence 0 is an accumulation point of  

supp o9. Therefore 0 6 supp v, where d r ( y )  = y dog (y ) .  

(iii) l iminf,_.oo vn l/~ > 1. 

After this plan is carried out the polynomials Pn satisfying Theorem 1 will be obtained 
by affine transformation of the polynomials Vn, so the point 0 will be mapped onto 
- • (a + a - l ) .  

2 
Fix a > 1. We skip the case 0 < a < 1 which can be dealt with similarly. Let 

nm = 2  "1 , f o r m  > 2 ,  andn l  = 0 .  Let 

/ a  for n2m-1 < n < n2m, 

(2.5) or, = 11 for n2m < n <_ n2m+l~ 
a 

Yn-I : - - .  

Thus the ratio e,,-___2~ takes values a - l  or a according to whether n falls into the interval 
fin 

(n2m-l, nzm] or (n2m, n2,,,+j ]. Using Lemma 2 we then get 

r/2m 

2m - I j 
: a - - ( n 2 , . - - n 2 m  I ) + ( n 2 , , , - 1 - - . ' 1 2 , , , - 3 )  . . . . .  i n 2 - - n t )  o--n~'"--2Ej I ( - - l ) . n j  

Similarly we obtain 

a "z' '+'-2 E~",C-1)~nJ 
1 / ) n  2m + I ~ . 

Substituting n m =  2 m for m >_ 2 and n i = 0 gives 

(2.6) Wz2 . . . .  a -(z2''+8)/3 , 

(2.7) Wz2,,,+, = a(2 2','+~ -8)/3. 

Since the ratio ~"+' is bounded (2.6) yields 
tO~t 

.2 , l / ~ = l i m i n f  1 + \  w~ ] J  l iminf(w~ + w,,+t)  w?,+] 

Moreover, (2.7) implies 

(W2) l/n 

= l i m  i n f ( w , , )  2/" < a -2/3 < 1. 

r 

w,2, = 
n = 0  
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Now we check that property (iii) of  the plan is also satisfied. To this end observe that 
(2.4), (2.5), and the fact that a > 1 imply 

W n - I  > ton if n2,n_ I < n < n2m,  

Wn--I "~ tOn if n2m < n <_. n2m+l.  

Now by Lemma 2 we have (Yo = 1) 

y,,v,, _> w~-' max{tO~ . . . . .  w2}. 

Fix n. There is an m such that n2 . . . .  1 < n < n2m+l. We consider two cases: 

(a) w .  < w.2,,,_ ) . Then 

(b) w .  > w.2,,,_ , . Then 

ynl)n > w - l w  2 
- -  t t  t 1 2 m _  I W n 2 m - - I  " 

~ ,  1)n > - 1 2 --  Wn ton "~ Wn ~ Wn2,,,-~" 

Hence 

(V,,v,,) ~/" >_ (w,,2,,,_,) t/" >_ (w.2.,_,) j/"~"'+~. 

Now combining (2.7), the fact that n., = 2"  and y~/"  ~ 1 gives 

lim inf v,l,/" > a IIj2. 
/'/'--~ OQ 

Summarizing what we have done so far: V, are polynomials orthonormal with respect 
to the measure v such that 

(i) supp v C [0, +oo) ,  
(ii) 0 6 supp v, and 

(iii) l iminf ,~oo  V,l /"(O) > a I/Iz > 1. 

Using (2.3) we can derive the recurrence formula for V,: 

2 
yVn = -ot,,+IYn+l V,+l + (Otn+ l + y,z) g ,  _ otnyn Vn - I .  

In view of (2.5) we get that the coefficient of  V,, is constant. Namely, 

2 O~n+l -J- V:  = 1 + a 2. 

Also the sequence or. y,, can be easily determined: I i n,n 
6r n : 2 if  n = n2m; 

if  n ~ "  / ' / 2 m - l .  

Let p,, be defined by 

(2.8) p . ( x )  = ( - 1 ) " V . ( 2 a x  + (a 2 + 1)). 

I f / z  denotes the corresponding orthogonalizing measure, then 

(2.9) d l z ( x )  = d v ( 2 a x  + (a 2 + 1)). 
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Using the recurrence relation for 11. it is easy to verify that p .  satisfies (1.1). Hence the 
corresponding measure # is symmetric about the origin. Also by properties (i)-(iii) of  
the polynomials Vn we obtain 

I (a + a-J),  + ~ ) ,  (i) supp/x C [ ' ~  

t ( a  + a -1) ~ supp/z, and (ii) - 
1 (a + - a - l ) }  1/" (iii) lim in f ._ .~  { p .  ( -  ~ > > 1. al /12 

Now Theorem l(i)-(iii) follows from the fact that/z is symmetric about 0. 
It remains to show Theorem 1 (iv). The proof is based entirely on the recurrence formula 

(1.1). It is well known that the support o f / z  can be identified with the spectrum of the 
difference operator 

(La)n = ) ~ n + l a n + l  + )~,,a,,-i 

on the Hilbert space eZ(N) of square summable sequences. Fix a real number x. We will 
show that cos x is in the spectrum of L. To this end it suffices to find a sequence of 
vectors v., in g2(N) such that IlVm [[ = 1 and I[(cosx - L)vm II --+ 0, when m --> c~. The 
sequence v,,, is called an approximate eigenvector. Let 

{~i.x if 2 2m -q- 1 < n < 2 2m+l - -  l ,  
u.,(n) -- 

otherwise. 

Then it is not hard to compute (see the proof of Theorem 1 of [Szl]) that 

II(eosx - L)u,.l[ = 1 and Iluml] = (22"' - 2) I/z. 

Hence v., = ~'' is an approximate eigenvector corresponding to the eigenvalue cos x. 
II u., I1 

I ( a + a - i ) ]  Remark. We were unable to determine if the entire interval [ -  �89 ( a + a - 1 ) ,  
is contained in supp t~. Theorem 1 implies only that the endpoints are accumulation points 
of supp/z. Perhaps methods of [GHV] might be used to determine the spectrum of/~.  

Remark. The sequence n,. = 2" can be replaced by n,. = [tim 1. where/3 > 1 and 
[. ] denotes the greatest integer value of a number. Then the estimate in Theorem l(iii) 
becomes 

lim inf pl / .  ( 1 (a + a -1)) > a +(~-J)/{~21~+l)) > 1. 

If we do not require that ~.. is bounded away from 0, then it is much easier to get an 
exponential lower bound on the support of  # as the following example shows. 

Example 1. Let p.  satisfy 

xp .  =2-4n-lp.+l + (2 -4n + 22-4")pn -{-23--4npn--l, n > 1, 

xpo = 2 - 1 p l  + 2-2p0. 

Since the coefficients in the recurrence formula converge to 0, the support of  # is a 
countable set with 0 as the only accumulation point. Hence 0 ~ supp tz. By induction it 
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can be shown that p , (O)  = ( - 2 ) " .  Thus 

lim Ip,(O)l  U" = 2 > 1. 
n---~ O~ 

Now we turn to the proof  of  Theorem 2. We consider only the case b > 0. Then 
there is a unique number a > 1, satisfying b = �89 (a - a - l ) .  Moreover, we have 

I ( a + a - i  x / ~ +  1 = ~ ) and a = b + ~/-b-~ + 1. 
Let W, be the polynomials defined by (2.1), (2.2), and (2.5) for this value of a : B y  

(2.3) w e get a recurrence relation for the polynomials W,,: 

y W .  : --or,,+, y,, W,,+l + (or 2 + y2)W. - o~,,y.-I W. - l .  

By (2.5) we have or,, y._ l = a. Also by (2.5) we can deduce that 

~2+y2. = 

Define the polynomials r.  (x) by 

1 if n = 0 ,  

aZ + l if n S~ nm, 

2a  z if  n = n2m, 

2 if n = n2,n+l. 

(2.10) r, ,(x)  = ( - 1 ) " W n ( 2 a x  + (a 2 + 1)). 

Then it can be readily checked that r ,  satisfy (1.2). If  Q denotes the corresponding 
orthogonalizing measure, then 

(2.11) d o ( x )  = d w ( 2 a x  + (a 2 + 1)) 

(see Lemma  1). Also, since the supports o fw  and v are equal (see the proof  of  Theorem 1 ), 
so are the supports of  Q and # (see (2.9), (2.11)). This gives Theorem 2(i), (ii), (v), and 
(vi). Now by (2.3), (2.8), and (2.10) we get 

r ,  = y ,  p,~ + or, P , -  I. 

Hence 

I (a + a -1)  We used the fact that the polynomials p ,  take positive values at the point 
as the support of  the corresponding measure lies to the left of  this point. By (2.6) and 
(2.10) we obtain 

limlmr,,~ , - ~ (a + a - l  < a -~/3,. 

This completes the proof o f  Theorem 2. �9 
Condition (iii) o f  Theorem 1 implies that the integrals 

f ~(a) d # ( x )  

• x 4- y ( a )  

t ( a + a - l  are finite, where y ( a )  : ~ ). Indeed, it follows from the next proposition. 
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Proposition 1. Let Iz be a probability measure supported in [0, + ~ ) .  Let {P,,},=0 
denote the system of corresponding orthonormal polynomials. I f  the integral 
f + ~  x - l  dlz(x) is divergent, then 

lim inf(/3,,p,2(0)) l/" < 1, 
n--~  OO 

where ft, = f+oo xpZ(x ) d#(x) ,  

Proof. We can assume that the support of /z  is infinite because otherwise there are 
only finitely many nonzero p, .  Being orthonormal polynomials, p,  satisfy a recurrence 
formula 

(2.12) 

Let 

Xpn ~ "~'nPn+l + fl, P, + ~ n - l P n - 1 .  

~,,- i p , -  l ( 0 )  
(2.13) g" -- fl,,p,(O) 

The numbers g, are well defined because 

t~. = xpZ(x)  d~t(x)  > O. 

Since supp # C [0, +oo),  the numbers p,, (0) have alternating signs. Hence g,, > 0 and 
by (2.12) we have 

z, 2 
(2.14) g,,+~ (1 - g,) = 

This means that the right-hand side of (2.14) is a chain sequence with g, as its parameter 
sequence (see Chapter III.5 of [Ch]). Since the integral f o  x - j  dl_t(x) is infinite then 
by Theorem 1 of [Sz3] g,, is determined uniquely by (2.14). Thus g, is also a maximai 
parameter sequence (see Theorem III.5.3 of [Ch]). By Theorem III.6.2 of [Ch] we get 

lira sup ~ > 1. 
n--+~ i=1 

By (2.13) and (2.14) we get that 

iz I gj ~o 
i=! 1 -- gi 2.npn(O)pn+l(O) 

Observing that 
2 - z .  p, (0)p,,+~ (0) <_ fl,,p, (0) 

yields the conclusion. �9 

I ( a + a - l )  In order to apply Proposition I to our example we can shift polynomials by 
l (a + a-I to the right and observe that/3, = ~ ) > 0. 
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