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Abstract

For two measures which differ by a point mass relations between
the corresponding difference operators are studied. Conditions are given
which ensure these operators are compact perturbations of each other.
An example showing that this is not true in general is provided also.
The method makes use of chain sequences and quadratic transformations.
Applications to growth of orthogonal polynomials are given.

0 Introduction

The main objective of this paper is to study relations between two systems of
orthogonal polynomials corresponding to two measures which differ by a point
mass. The intuition suggests that the difference operator associated with poly-
nomials via recurrence formula shouldn’t change to much if we add a point mass
to the measure. One expects that the new difference operator is a compact per-
turbation of the original one. In Section 3 we show that under some conditions
on the measure it is so. This generalizes partially results of Nevai [Nev79]. How-
ever the statement is not true in general. We show an example of two measures
equal modulo a point mass such that corresponding difference operators are not
compact perturbations of each other.

The basic tools we use are chain sequences and quadratic transformations.
These are described in Section 1 and 2. The notion of chain sequences is due to
Wall [Wal48]. We refer to Chihara’s book [Chi78] for results on chain sequences
that are frequently used in the present work. In particular a kind of master key
is Chihara’s theorem on the convergence of chain sequences [Chi78, Theorem
6.4]. As his proof involves the continued fractions we give an alternative proof in
the Appendix. Also, in Section 2, we characterize so called maximal parameter
sequences for chain sequences.
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In Section 4 we discuss the growth of orthonormal polynomials on the in-
terval of orthogonality. Nevai, Totik and Zhang [NTZ91] showed that if the
coefficients in the recurrence formula are convergent then the polynomials have
uniform subexponential growth on the interval of orthogonality. 12 years ear-
lier Nevai [Nev79] showed almost uniform subexponential growth in the interior
of the interval. We show using tricks with quadratic transformations that one
can derive uniform subexponential growth from the almost uniform one. The
method works for measures whose support consists of an interval and finitely
many points off the interval.

1 Chain sequences

Let µ be a probability measure on the real line R all of whose moments are
finite. We will always assume that the support of µ is an infinite so that the
monomials 1, x, x2, . . . are linearly independent. Let {Pn}∞n=0 be a system of
orthonormal polynomials obtained from the sequence 1, x, x2, . . . by the Gram-
Schmidt procedure. Then Pn obey a three-term recurrence formula of the form

xPn = λnPn+1 + βnPn + λn−1Pn−1 (1)

where λn are positive coefficients while βn are real ones. With this relation we
usually associate the difference operator L acting on sequences as

Lan = λnan+1 + βnan + λn−1an−1 (2)

L is a symmetric operator on the space `2(N) of square summable sequences.
For any complex number z and initial value a0 there exists a unique eigenvector
{an}∞n=0 corresponding to the eigenvalue z. This is due to the fact that λn are
nonzero numbers. The correspondence

J : {an}∞n=0 7→
∞∑

n=0

anPn

is an isometry from `2(N) into the Hilbert space L2(N, dµ). By (1) and (2) we
have

L = J∗MxJ

where Mx is a linear operator on L2(R, dµ) whose action is to multiply by the
variable x. As such the operator L has a simple spectrum which coincides with
that of Mx, the latter being, as is well known, the support of µ. By this reasoning
the operator L is positive definite if and only if the support of the measure µ
is contained in the half-axis [0, +∞). The positivity of L can be stated also in
terms of the coefficients λn and βn. This is where the chain sequence turn up
in natural way. The following result is well–known. We will give a short proof
for the sake of completeness.
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Proposition 1 ([Chi78, Theorem 9.2]) The support of µ is contained in [0, +∞)
if and only if βn > 0, n ∈ N, and there is a sequence of numbers mn satisfying
0 ≤ mn ≤ 1 and

λ2
n−1

βnβn−1
= mn(1−mn−1) n = 0, 1, . . . . (3)

Proof. Let ∆n denote the n× n minor of the matrix of L, i.e.

∆n =

∣∣∣∣∣∣∣∣∣∣

β0 λ0 . . . 0 0
λ0 β1 . . . 0 0
...

...
. . .

...
...

0 0 . . . βn−1 λn−1

0 0 . . . λn−1 βn

∣∣∣∣∣∣∣∣∣∣
Expanding the determinant relative to the last row two times succesively gives
a recurrence formula for ∆n.

∆n = βn∆n−1 − λ2
n−1∆n−2 n ≥ 2.

Assume that supp µ ⊂ [0, +∞). Then L is positive definite operator. We
then have

βn =
∫ +∞

0

xPn(x)2dµ(x).

Since the support of µ is an infinite subset of nonnegative reals, then βn > 0.
The positivity of L implies that ∆n ≥ 0 for every n. Actually we have ∆n > 0.
Indeed, if ∆n = 0, then there would exist a sequence a with finite support such
that La = 0. As L has simple spectrum, so a is a multiple of the sequence
{Pn(0)}∞n=0, which doesn’t vanish for infinitely many n. Hence a = 0. For the
same reason βn > 0, for every n. Set ∆−1 = 1, m0 = 0 and

mn =
λ2

n−1

βn

∆n−2

∆n−1
for n = 1, 2, . . . .

Then 0 ≤ mn ≤ 1, and also (3) is satisfied.
Conversely if βn > 0 and there is a sequence mn satisfying (3), then the

sequence m̃n defined by m̃0 = 0, and

λ2
n−1

βnβn−1
= m̃n(1− m̃n−1) n = 1, 2, . . .

fulfills 0 ≤ m̃n ≤ mn (cf. [Chi78, Theorem 5.2, page 93]). But as we have seen
in the first part of the proof

m̃n =
λ2

n−1

βn

∆n−2

∆n−1
.

Hence ∆n > 0, for every n ∈ N and L is positive definite operator. �
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Sequences {an}∞n=0 that admit a representation of the form

an = gn(1− gn−1) 0 ≤ gn ≤ 1,

are called chain sequences. {gn}∞n=0 is called a parameter sequence for {an}∞n=0.
When g0 = 0, then gn is called the minimal parameter sequence. By [Chi78,
Theorem 5.3,page 94] there exists a maximal parameter sequence {Mn} such
that gn ≤ Mn for every parameter sequence {gn}∞n=0. If the maximal and mini-
mal sequences coincide we say that {an}∞n=0 determines its parameter sequence
uniquely. We are going to describe minimal and maximal parameter sequences
by means of quadratic transformations. We refer the reader to [Chi78, Chapters
III.5, IV.2] for more detailed treatment of the above notions.

2 Quadratic transformations

Let dµ0(y) and dµ1(y) be probability measures with infinite support contained
in [0, +∞), having all moments finite, and related by

dµ1(y) = c−1ydµ0(y), c =
∫ +∞
0

y dµ0(y).

The corresponding orthonormal polynomials Q0,n and Q1,n satisfy the recur-
rence formula

yQi,n = λi,nQi,n+1 + βi,nQi,n + λi,n−1Qi,n−1, i = 0, 1. (4)

Let dνi(x) be a symmetric measure such that

dνi(x) =
1
2
dµi(x2) x ≥ 0.

and Pi,n be the polynomials orthonormal with respect to dνi(x). Then the poly-
nomials Pi,2n are even functions while Pi,2n+1 are odd ones, hence they satisfy
a recurrence formula of the form

xPi,n = αi,nPi,n+1 + αi,n−1Pi,n−1, i = 0, 1 (5)

There are certain relations between those polynomials as well as between
coefficients of the corresponding recurrence formulas. They are summarized in
the following proposition which should be compared with [Chi78, Theorem 9.1]

Proposition 2 We have

Pi,2n(y1/2) = Qi,n(y) i = 0, 1 (6)

y−1/2P0,2n+1(y1/2) = c−1/2Q1,n(y) (7)

αi,2n αi,2n+1 = λi,n α2
i,2n−1 + α2

i,2n = βi,n, i = 0, 1 (8)

α0,2n+1α0,2n+2 = λ1,n α2
0,2n + α2

0,2n+1 = β1,n (9)
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Proof. The first formula follows from the fact that the polynomials Pi,2n(y1/2),
are orthonormal relative to dµi(y). Next observe that the polynomials
c1/2y−1/2P0,2n+1(y1/2) are orthonormal relative to c−1ydµ0(y) = dµ1(y). This
gives (7).

By (5) we obtain

x2Pi,2n = αi,2nαi,2n+1 Pi,2n+2 +
(
α2

i,2n−1 + α2
i,2n

)
Pi,2n

+ αi,2n−2αi,2n−1Pi,2n−2 (10)
x2Pi,2n+1 = αi,2n+1αi,2n+2 Pi,2n+3 +

(
α2

i,2n + α2
i,2n+1

)
Pi,2n+1

+ αi,2n−1αi,2n Pi,2n−1 (11)

Now combining (4) through (7), we get the conlusion. �

The formulas (8) and (9) imply that β−1
i,nα2

i,2n−1 are parameter sequences
for (βi,nβi,n+1)−1λ2

i,n. These are the minimal parameter sequences as their take
value zero for n = 0. Also β−1

1,nα2
0,2n is a parameter sequence for (β1,nβ1,n+1)−1λ2

1,n.
We are going to show that this one is a maximal parameter sequence.

Theorem 1 Let dµ(y) be a probability measure with all moments finite, whose
support is infinite and contained in [0, +∞). Let the corresponding orthonormal
polynomials Qn satisfy

yQn = λnQn+1 + βnQn + λn−1Qn−1.

If
∫ +∞
0

y−1dµ(y) = +∞, then (βnβn+1)−1λ2
n is a chain sequence that determines

its parameter sequence uniquely. If the integral s =
∫ +∞
0

y−1dµ(y) is finite
then letting dµ0(y) = s−1y−1dµ(y), and adopting the notation preceding the
theorem, implies that the sequence β−1

n α2
0,2n is the maximal parameter sequence

for (βnβn+1)−1λ2
n.

Proof. Suppose that gn is a parameter sequence for (βnβn+1)−1λ2
n, and

g0 > 0. First we are going to show that dµ(y) has finite moment of order −1.
Then we will show that gn ≤ β−1

n α2
0,2n.

We may assume that

gn =
α̃2

2n

βn
,

for a sequence of numbers α̃2n. Set

α̃2
2n+1 = βn − α̃2

2n.

Then {
λn−1 = α̃2n−1α̃2n

βn = α̃2
2n + α̃2

2n+1

(12)

Define the polynomials P̃n by P̃0 = 1 and

xP̃n = α̃nP̃n+1 + α̃n−1P̃n−1. (13)
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Hence they are orthonormal with respect to a symmetric probability measure
dν̃(x). By (12) and (13) the polynomials P̃2n+1 satisfy the formula

x2P̃2n+1 = λnP̃2n+3 + βnP̃2n+1 + λn−1P̃2n−1. (14)

As the polynomials xQn(x2) satisfy the same formula we get

P̃2n+1(x) = c̃1/2xQn(x2), c̃ > 0.

The polynomials y−1/2P̃2n+1(y1/2), are orthogonal with respect to ydν̃(y1/2),
hence

2c̃ydν̃(y1/2) = dµ(y) (15)

This implies that dµ(y) has finite moment of order −1. Set

dµ0(y) = c−1y−1dµ(y).

Then dµ1(y) = dµ(y). From now on we follow the notation introduced in the
begining of this section, except for the subscript 1, which we tend to drop when
denoting objects associated to dµ(y). We thus have

y−1dµ(y) = y−1dµ1(y) = 2cdν0(y1/2). (16)

Therefore by (15) and (16) the measures dν0(x) and dν̃(x) can differ by a point
mass at 0. However by (16) dν0(x) cannot carry an atom at the origin. In
conclusion we get

dν̃ = aν0 + (1− a)δ0, (17)

for a number a, 0 ≤ a < 1.
Now observe that by (5) and (13) we obtain

x = xP0,0 = α0,0P0,1

x = xP̃0 = α̃0P̃1

Since P̃n and P0,n are orthonormal relative to the measures ν̃ and ν0 respectively,
we have

α̃2
0 = α̃2

0

∫ +∞

−∞
P̃1(x)2 dν̃(x)

= α2
0,0

∫ +∞

−∞
P0,1(x)2 d{aν0 + (1− a)δ0}(x)

= aα2
0,0

∫ +∞

−∞
P0,1(x)2 dν0(x) = aα2

0,0

This implies

g0 =
α̃2

0

β0
≤

α2
0,0

β0
.

Both gn and β−1
n α2

0,n are parameter sequences for (βnβn+1)−1λ2
n, the first one

by assumption, the other one by the considerations preceding the theorem (at-
tention: we have set β1,n = βn). In view of [Chi78, Theorems 5.2, 5.3, pages
93–94] this yields that β−1

n α2
0,n is the maximal parameter sequence. �
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3 Perturbations of orthogonal polynomials

Let dµ(y) be a probability measure with infinite support contained in [0, +∞).
The corresponding orthonormal polynomials Qn satisfy the recurrence formula

yQn = λnQn+1 + βnQn + λn−1Qn−1.

By Proposition 1 we know that βn > 0, and (βnβn+1)λ2
n is a chain sequence.

For the purpose of this paper we introduce the following notion.

Definition 1 Let A ≥ 0. We say that dµ(y) belongs to the class C(A), if
suppµ ⊂ [0, +∞) and

λn

λn+1

n−→ 1,
λn

βn

n−→
√

A.

Observe that

dµ(y) ∈ C(A) =⇒
(

βn

βn+1

n−→ 1,
λ2

n

βnβn+1

n−→ A

)
. (18)

Thus by [Chi78, Theorem 6.4] (see also Appendix) the number A can take values
between 0 and 1

4 .
The class C(A) is invariant for two types of perturbations. For 0 < a < 1,

let µa = aµ + (1− a)δ0.

Theorem 2 (i) dµ(y) ∈ C(A) iff ydµ(y) ∈ C(A).

(ii) dµ(y) ∈ C(A) iff dµa(y) ∈ C(A).

Proof. (i) Adopting the notation of Section 2, we have to show that dµ0(y) ∈
C(A) iff dµ1(y) ∈ C(A).

Assume that dµ1(y) ∈ C(A). By Theorem 1 the sequence β−1
1,nα2

0,2n is the
maximal parameter sequence for (β1,nβ1,n+1)−1λ2

1,n. As by (18) the latter con-
verges to A, so by [Chi78, Theorems 6.3, 6.4, page 102] (see Appendix) we
have

gn =
α2

0,2n

β1,n

n−→ 1 +
√

1− 4A

2
(19)

By Proposition 2 (9) and (18) we have

α2
0,2n+1

α2
0,2n

=
β1,n − α2

0,2n

α2
0,2n

=
1− gn

gn

n−→ 1−
√

1− 4A

1 +
√

1− 4A
= B (20)

By (18) and (19) we also have

α2
0,2n+2

α2
0,2n

=
β1,n+1

β1,n

gn+1

gn

n−→ 1. (21)
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Now (20) and (21) imply

α2
0,2n

α2
0,2n−1

n−→ 1 +
√

1− 4A

1−
√

1− 4A
(22)

Combining (20), (21) and (22) gives

α0,n+2

α0,n

n−→ 1. (23)

Therefore by (8)
λ0,n+1

λ0,n
=

α0,2n+2α0,2n+3

α0,2nα0,2n+1

n−→ 1.

Next, (8), (20), (22) and (23) give

β0,n

λ0,n
=

α2
0,2n−1 + α2

0,2n

α0,2nα0,2n+1

=
α0,2n−1

α0,2n+1

α0,2n−1

α0,2n
+

α0,2n

α0,2n+1

n−→
√

B +
1√
B

=
1√
A

.

Hence dµ0 ∈ C(A). The proof of the opposite implication of (i) is similar and is
left to the reader.

(ii) Observe that if we set µ0 = µa, the measure µ1 does not depend on
the choice of a. Hence by the first part of the theorem, µ ∈ C(A) if and only if
µ1 ∈ C(A), and this holds if and only if µa ∈ C(A). �

Theorem 3 Let Qn and Q
(a)
n be the polynomials orthonormal relative to the

measures µ and µa = aµ + (1 − a)δ0, respectively. Assume that the support
suppµ is bounded. Let

yQn = λnQn+1 + βnQn + λn−1Qn−1

yQ(a)
n = λ(a)

n Q
(a)
n+1 + β(a)

n Q(a)
n + λ

(a)
n−1Q

(a)
n−1

If dµ(y) ∈ C(A), then

λ(a)
n − λn

n−→ 0 and β(a)
n − βn

n−→ 0.

Proof. Consider pairs of measures of the form (µ0, µ1), where µ0 = µ, or
µ0 = µ(a). As we have already seen, in both cases the measures µ1 coincide.
However the coefficients α0,n and β0,n are not equal, and so we must denote
them differently according to the case. Let α0,n, β0,n and α

(a)
0,n β

(a)
0,n denote the

sequences corresponding to µ0 = µ and µ0 = µ(a), respectively. The correspond-
ing sequences with subscripts 1 are identical.

By Proposition 2 and remarks following it, the sequnces

hn =
α2

0,2n

β1,n
h(a)

n =

(
α

(a)
0,2n

)2

β1,n
(24)
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are the parameter sequences for (β1,nβ1,n+1)−1λ2
1,n. By Theorem 2 we have

dµ1 ∈ C(A). Hence by already quoted Chihara’s result [Chi78, page 102] the
sequences hn and h

(a)
n are convergent and

hn
n−→ 1±

√
1− 4A

2
h(a)

n
n−→ 1±

√
1− 4A

2
(25)

Actually, since by Theorem 1 h
(a)
n is not a maximal parameter sequence, then

by [Chi78, Theorems 6.3, 6.4] it tends to 1
2 (1 −

√
1− 4A). Moreover we can

assume without lost of generality, that µ({0}) = 0. Hence by Theorem 1, hn is
the maximal parameter sequence and as such must tend to 1

2 (1 +
√

1− 4A). In
any case (25) is sufficient for our purposes.

By Proposition 2 and (24) we have

(λn)2 − (λ(a)
n )2 = (λ0,n)2 − (λ(a)

0,n)2

= β1,nβ1,n+1{hn(1− hn)− h(a)
n (1− h(a)

n )}

βn − β(a)
n = β0,n − β

(a)
0,n

= α2
0,2n − α2

0,2n−2 − (α(a)
0,2n)2 + (α(a)

0,2n−2)2

= β1,nhn − β1,n−1hn−1 − β1,nh(a)
n + β1,n−1h

(a)
n−1.

Now the conclusion follows as sequences hn and h
(a)
n are convergent, β1,n is

bounded and β1,n/β1,n+1 is convergent to 1 (in view of µ1 ∈ C(A)), and finally
because

hn(1− hn) n−→ A h(a)
n (1− h(a)

n ) n−→ A. �

Let Qn denote the polynomials orthonormal relative to the measure µ, and

yQn = λnQn+1 + βnQn + λn−1Qn−1.

Following [Nev79] we say that a measure µ belongs to M(a, b), if

λn
n−→ 2a, βn

n−→ b.

Corollary 1 (Nevai) Let µ ∈ M(a, b), and (y−A) be positive on suppµ. Then
(y −A)dµ(y) ∈ M(a, b).

Proof. Translating the measure if necessary, we may assume that A = 0.
Then supp µ ⊂ [0, +∞). In that case we have b > 0. Hence the measure µ0

belongs to C(a2/4b2). By Theorem 2 also the measure dµ1(y) = cydµ(y) is in
C(a2/4b2). To complete the proof we need to show that either λ1,n or β1,n is
convergent. This can be read off from the proof of Theorem 2. Indeed, by (8)
and (9) we have

λ1,n = α0,2n+1α0,2n+2 = λ0,n
α0,2n+2

α0,2n
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Thus by (23)
lim

n→∞
λ1,n = lim

n→∞
λ0,n.

�

Let L and L(a) denote difference operators associated with µ and µ(a), i.e.

Lan = λnan+1 + βnan + λn−1an−1

L(a)an = λ(a)
n an+1 + β(a)

n an + λ
(a)
n−1an−1

Theorem 3 states that if µ ∈ C(A) then L(a) is a compact perturbation of the
operator L. It is not so in general, as the following example shows.

Example 1. Roughly the construction consists in finding a chain sequence with
two parameter sequences that are not approximately equal at infinity. Let

αn =


2−1/2 for n = 4k, 4k + 1
3−1/2 for n = 4k + 2
21/23−1/2 for n = 4k + 3

α̃n =


21/23−1/2 for n = 4k
3−1/2 for n = 4k + 1
2−1/2 for n = 4k + 2, 4k + 3

Observe that

α2n+1α2n+2 = α̃2n+1α̃2n+2 (26)
α2

2n + α2
2n+1 = α̃2

2n + α̃2
2n+1 (27)

On the other hand

α2nα2n+1 − α̃2nα̃2n+1 = ±

(
1
2
−
√

2
3

)
(28)

Consider orthogonal polynomials defined by the recurrence relations

xPn = αnPn+1 + αn−1Pn−1, P0 = 1,

xP̃n = α̃nP̃n+1 + α̃n−1P̃n−1, P̃0 = 1.

The polynomials Pn and P̃n are orthonormal relative to symmetric measures
dν(x) and dν̃(x), respectively. Let

dµ(y) = 2dν(y1/2) dµ̃(y) = 2dν̃(y1/2).

The polynomials y−1/2P2n+1(y1/2) and y−1/2P̃2n+1(y1/2) are orthogonal relative
to ydµ(y) and ydµ̃(y), respectively. By (27) and (28) they satisfy the same
recurrence formula. Thus

ydµ(y) = ydµ̃(y).
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Hence the measures dµ(y) and dµ̃(y) can differ by a point mass at 0. The
corresponding orthogonal polynomials are Qn(y) = P2n(y1/2) and Q̃n(y) =
P̃2n(y1/2) which in view of (26), (27) satisfy the recurrence relations

yQn = λnQn+1 + βnQn + λn−1Qn−1,

yQ̃n = λ̃nQn+1 + β̃nQ̃n + λ̃n−1Q̃n−1,

where λn = α2nα2n+1, and λ̃n = α̃2nα̃2n+1. By (28) the difference λ̃n−λn stays
away from 0, despite the fact that the corresponding measures are equal modulo
point mass at 0.

4 Growth of orthogonal polynomials

Let Qn denote the polynomials orthonormal relative to the measure µ, and

yQn = λnQn+1 + βnQn + λn−1Qn−1.

Assume µ ∈ M(a, b). It is well-known that since the formula is a compact
transformation of the constant–coefficients recurrence formula with λn = a/2,
and βn = b, the support of the measure µ consists of the interval [a − b, a + b]
and the denumerable set, whose accumulation points belong to this interval. In
[Nev79, Theorem 3.9, page 11] it was shown that if a measure µ is in M(a, b),
then

lim
n→∞

[b2 − (y − a)2]
Qn(y)2

Q0(y)2 + Q1(y)2 + . . . + Qn(y)2
= 0, (29)

uniformly for y ∈ [a− b, a+ b]. In particular the polynomials Qn(y) have almost
uniform subexponential growth in (a− b, a + b), i.e.

lim sup n
√

Qn(y) ≤ 1,

uniformly for y ∈ [c, d] ⊂ (a − b, a + b). It took twelve years of efforts to drop
the word ”almost” from the estimate. Namely in [NTZ91, Theorem 2] it is
shown that (29) holds without the factor b2 − (y − a)2, and also exponent 2
can be replaced by any positive p. In particular the polynomials have uniform
subexponential growth in the entire closed interval [a− b, a + b].

In this section we are going to show that there are cases when subexponential
growth at the end points of the interval can be derived from Nevai’s result (29)
itself. By using affine transformations we can reduce considerations only to the
class M( 1

2 , 1
2 ), We start with the simplest case.

Proposition 3 (Nevai, Totik, Zhang) Assume that µ ∈ M( 1
2 , 1

2 ), and suppµ =
[0, 1]. Then

lim sup n
√

Qn(y) ≤ 1,

uniformly in [0, 1].

11



Proof. Let dν(x) be the symmetric measure defined by dν(x) = 1
2dµ(x2), for

x > 0. As we have seen in Section 2 the polynomials Pn(x) that are orthonormal
relative to dν(x), satisfy

xPn = αnPn+1 + αn−1Pn−1,

and P2n(x) = Qn(x2). Also by (8) the sequence gn = α2
2n−1/βn is a parameter

sequence for an = λ2
n−1/(βn−1βn). By assumption we have an → 1/4. Hence by

[Chi78, Theorem 6.4] (see also Appendix) we have

α2
2n−1 = gnβn →

1
4
.

By (8) we also have

α2n =
λn

α2n+1
→ 1

2
.

This implies that ν ∈ M(0, 1). By Nevai’s theorem (see (29)) we conclude that

lim sup n
√

Pn(x) ≤ 1,

uniformly for x ∈ [−1 + ε, 1− ε], for any ε > 0. In particular

lim sup n
√

Qn(y) = lim sup n

√
P2n(y1/2) ≤ 1,

uniformly for any y ∈ [0, 1 − ε]. By considering the reflected measure dµ̌(y) =
dµ(1− y), we can deduce that also

lim sup n
√

Qn(y) ≤ 1,

uniformly for any y ∈ [ε, 1]. This completes the proof. �

This method works also for measures that admit finitely many points off the
interval [0, 1].

Proposition 4 (Nevai, Totik, Zhang) Assume that µ ∈ M( 1
2 , 1

2 ), and suppµ =
[0, 1] ∪ F, where F is a finite set of points disjoint from [0, 1]. Then

lim sup n
√

Qn(y) ≤ 1,

uniformly in [0, 1].

Proof. We will show the conclusion for y ∈ [0, 1 − ε], and then extend it
to the entire interval by considering, as at the end of the preceding proof, the
measure reflected about the point 1

2 .
Let x0 be the least negative point in F. Let dµ0(y) = dµ(y − y0). Then

µ0 ∈ M(a, b − y0). By Corollary 1 we have µ1 ∈ M(a, b − y0), where dµ1(y) =
cydµ0(y). By (5) and Proposition 2 (6), (7) the polynomials Q0,n and Q1,n are
related by

Q0,n = α0,2nQ1,n + α0,2n−1Q1,n−1.

12



The sequences α0,n is bounded as the corresponding measure dν0 has bounded
support. If polynomials Q1,n satisfy

lim sup n

√
Q1,n(y) ≤ 1,

uniformly on [0, 1− ε], then also

lim sup n

√
Q0,n(y) ≤ 1.

Thus it suffices to consider the measure dµ1(x + x0), whose support contains
less points off the interval [0, 1]. Repeating this argument we can reduce the
problem to the case of measure in M( 1

2 , 1
2 ), when we don’t have any mass point

to the left from 0. Then we can apply Proposition 3. �

It would be interesting to know if there is a similar way of handling the case
of infinitely many points off the interval.

Appendix

For the sake of selfcontainment we will give an alternative proof of the fact
that if a chain sequnce is convergent then any parameter sequence is convergent
as well. The result is due to Chihara [Chi62], and can be found in [Chi78], too.
The proof makes use of contineued fractions. Our proof is straightforward.

Proposition 5 Let a sequence an be of the form an = (1− gn−1)gn, where 0 ≤
gn ≤ 1. If an is convergent then also gn is convergent. Moreover, if limn an = a,
then 0 ≤ a ≤ 1/4, and

lim
n

an =
1±

√
1− 4a

2
.

Proof. First we show that a ≤ 1/4. For a contradiction assume a > 1/4.
Then gn+1(1− gn) ≥ 1/4 for n large. Thus

gn+1 ≥
1

4(1− gn)
≥ gn.

This means gn is increasing, hence it converges to g, for 0 ≤ g ≤ 1. Consequently

a = (1− g)g ≤ 1/4.

Let

sn =
1
2

(
1−

√
(1− 4an)+

)
Sn =

1
2

(
1 +

√
(1− 4an)+

)
.

Observe that

gn ≥ gn+1 ⇐⇒ an ≤ 1/4 and sn ≤ gn ≤ Sn. (30)

13



We have sn → s, and Sn → S, where

s =
1
2

(1−
√

1− 4a), S =
1
2

(1−
√

1− 4a).

Let δ > 0. Take N large so that |SN−S| ≤ δ, for n > N. Assume that gN > S+δ.
Thus gN ≥ SN . In view of (30) this implies

gN+1 ≥ gN > S + δ.

Now by induction one can show that gn is increasing beginning from N. Thus
gn converges to a number strictly greater than S. This gives a contradiction.
Therefore we can conclude that

lim sup gn ≤ S. (31)

The case a = 1
4 requires a special approach. If a = 1

4 , then s = S = 1
2 . Let

εn = 1
2

√
(1− 4an)+. Then by (30) we obtain

gn+1 ≥ gn ⇐⇒
∣∣∣∣gn −

1
2

∣∣∣∣ ≤ εn.

As εn → 0, we get either lim inf gn ≤ 1
2 or gn is decreasing beginning from some

N. In view of (31) this completes the proof in this case.
Let’s turn to the case a < 1

4 . Then s < 1
2 < S.

(1) Assume that d = lim inf gn ∈ (s, S). Let 0 < δ < S − d. Then there is N,
such that

gn ≥ sn, |Sn − S| ≤ δ for n ≥ N.

Since d < S − δ, there exists n ≥ N with

sn ≤ gn ≤ S − δ ≤ Sn.

By virtue of (30) we obtain

sn+1 ≤ gn+1 ≤ gn ≤ S − δ ≤ Sn+1.

Now by induction we can show that lim sup gn ≤ S − δ. Letting δ tend to
S − d we end up with

lim sup gn ≤ d = lim inf gn.

(2) Assume that d = lim inf gn ≤ s. Fix δ > 0 such that d + δ ≤ 1
2 . There

exists N, such that

an ≤ (d + δ)(1− d− δ) for n ≥ N. (32)

By assumption gn ≤ d + δ, for some n ≥ N. Then by (32) we have

gn+1 =
an

1− gn
≤ an

1− d− δ
≤ d + δ.

By induction we conclude that gm ≤ d + δ, for any m > n. Consequently
lim sup gn ≤ d + δ. Since δ is arbitrary we get lim inf gn = lim sup gn.

(3) lim inf gn ≥ S. By (31) this implies

lim inf gn = lim sup gn = S. �
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