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Preface

Stochastic and Markovian modeling are of importance to many areas of science
including physics, biology, engineering, as well as economics, finance, and social
sciences. This text is an undergraduate-level introduction to the Markovian mod-
eling of time-dependent randomness in discrete and continuous time, mostly on
discrete state spaces, with an emphasis on the understanding of concepts by
examples and elementary derivations. This second edition includes a revision of the
main course content of the first edition, with additional illustrations and applica-
tions. In particular, the exercise sections have been considerable expanded and now
contain 138 exercises and 11 longer problems.

The book is mostly self-contained except for its main prerequisites, which consist
in a knowledge of basic probabilistic concepts. This includes random variables,
discrete distributions (essentially binomial, geometric, and Poisson), continuous
distributions (Gaussian and gamma), and their probability density functions,
expectation, independence, and conditional probabilities, some of which are
recalled in the first chapter. Such basic topics can be regarded as belonging to the
field of “static” probability, i.e., probability without time dependence, as opposed to
the contents of this text which is dealing with random evolution over time.

Our treatment of time-dependent randomness revolves around the important
technique of first-step analysis for random walks, branching processes, and more
generally for Markov chains in discrete and continuous time, with application to the
computation of ruin probabilities and mean hitting times. In addition to the treat-
ment of Markov chains, a brief introduction to martingales is given in discrete time.
This provides a different way to recover the computations of ruin probabilities and
mean hitting times which have been presented in the Markovian framework. Spatial
Poisson processes on abstract spaces are also considered without any time ordering.

There already exist many textbooks on stochastic processes and Markov chains,
including [BN96, Çin75, Dur99, GS01, JS01, KT81, Med10, Nor98, Ros96,
Ste01]. In comparison with the existing literature, which is sometimes dealing with
structural properties of stochastic processes via a more compact and abstract
treatment, the present book tends to emphasize elementary and explicit calculations
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instead of quicker arguments that may shorten the path to the solution, while being
sometimes difficult to reproduce by undergraduate students.

Some of the exercises have been influenced by [Çin75, JS01, KT81, Med10,
Ros96] and other references, while a number of them are original, and their solu-
tions have been derived independently. The problems, which are longer than the
exercises, are based on various topics of application. This second edition only
contains the answers to selected exercises, and the remaining solutions can be
downloaded in a solution manual available from the publisher’s Web site, together
with Python and R codes. This text is also illustrated by 41 figures.

Some theorems whose proofs are technical, as in Chaps. 7 and 9, have been
quoted from [BN96, KT81]. The contents of this book have benefited from
numerous questions, comments, and suggestions from undergraduate students in
Stochastic Processes at the Nanyang Technological University (NTU) in Singapore.

Singapore, Singapore Nicolas Privault
March 2018
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Introduction

A stochastic1 process is a mathematical tool used for the modeling of
time-dependent random phenomena. Here, the term “stochastic” means random and
“process” refers to the time-evolving status of a given system. Stochastic processes
have applications to multiple fields and can be useful anytime one recognizes the
role of randomness and unpredictability of events that can occur at random times in,
e.g., physical, biological, or financial system.

For example, in applications to physics one can mention phase transitions,
atomic emission phenomena, etc. In biology, the time behavior of live beings is
often subject to randomness, at least when the observer has only access to partial
information. This latter point is of importance, as it links the notion of randomness
to the concept of information: What appears random to an observer may not be
random to another observer equipped with more information. Think, for example,
of the observation of the apparent random behavior of cars turning at a crossroad
versus the point of view of car drivers, each of whom are acting according to their
own decisions. In finance, the importance of modeling time-dependent random
phenomena is quite clear, as no one can make definite predictions for the future
moves of risky assets. The concrete outcome of random modeling lies in the
computation of expectations or expected values, which often turn out to be more
useful than the probability values themselves. An average or expected lifetime, for
example, can be easier to interpret than a (small) probability of default. The
long-term statistical behavior of random systems, which also involves the estima-
tion of expectations, is a related issue of interest.

Basically, a stochastic process is a time-dependent family ðXtÞt2T of random
variables, where t is a time index belonging to a parameter set or timescale T. In
other words, instead of considering a single random variable X, one considers a
whole family of random variables ðXtÞt2T , with the addition of another level of
technical difficulty. The timescale T can be finite (e.g., T ¼ f1; 2; . . .;Ng) or
countably infinite (e.g. T ¼ N ¼ f0; 1; 2; . . .g) or even uncountable (e.g. T ¼ ½0; 1�,

1From the Greek “r¿o0vo1” (stokhos), meaning “guess”, or “conjecture”.
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T ¼ Rþ ). The case of uncountable T corresponds to continuous-time stochastic
processes, and this setting is the most theoretically difficult. A serious treatment of
continuous-time processes would in fact require additional background in measure
theory, which is outside of the scope of this text. Measure theory is the general
study of measures on abstract spaces, including probability measures as a particular
case, and allows for a rigorous treatment of integrals via integration in the Lebesgue
sense. The Lebesgue integral is a powerful tool that allows one to integrate func-
tions and random variables under minimal technical conditions. Here we mainly
work in a discrete-time framework that mostly does not require the use of measure
theory.

That being said, the definition of a stochastic process ðXtÞt2T remains vague at
this stage since virtually any family of random variables could be called a stochastic
process. In addition, working at such a level of generality without imposing any
structure or properties on the processes under consideration could be of little
practical use. As we will see later on, stochastic processes can be classified into two
main families:

Stochastic Processes

– Markov Processes
Roughly speaking, a process is Markov when its statistical behavior after time
t can be recovered from the value Xt of the process at time t. In particular, the
values Xs of the process at times s 2 ½0; tÞ have no influence on this behavior as
long as the value of Xt is known.

– Martingales
Originally, a martingale is a strategy designed to win repeatedly in a game of
chance. In mathematics, a stochastic process ðXtÞt2Rþ is a martingale if the best
possible estimate at time s of its future value Xt at time t[ s is simply given by
Xs. This requires the careful definition of a “best possible estimate,” and for this
we need the tool of conditional expectation which relies on estimation in the
mean square sense. Martingale are useful in physics and finance, where they are
linked to the notion of equilibrium.
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Time series of order greater than one form another class of stochastic processes that
may have neither the Markov property nor the martingale property in general.

The outline of this text is as follows. After reviewing in Chap. 1 the probabilistic
tools required in the analysis of Markov chains, we consider simple gambling
problems in Chap. 2, due to their practical usefulness and to the fact that they only
require a minimal theoretical background. Next, in Chap. 3, we turn to the study of
discrete-time random walks with infinite state space, which can be defined as
stochastic processes with independent increments, without requiring much abstract
formalism. In Chap. 4, we introduce the general framework of Markov chains in
discrete time, which includes the gambling process and the simple random walk of
Chaps. 2 and 3 as particular cases. In the subsequent Chaps. 5, 6, and 7, Markov
chains are considered from the point of view of first-step analysis, which is intro-
duced in detail in Chap. 5. The classification of states is reviewed in Chap. 6, with
application to the long-run behavior of Markov chains in Chap. 7, which also
includes a short introduction to the Markov chain Monte Carlo method. Branching
processes are other examples of discrete-time Markov processes which have
important applications in life sciences, e.g., for population dynamics or the control
of disease outbreak, and they are considered in Chap. 8. Then in Chap. 9, we deal
with Markov chains in continuous time, including Poisson and birth and death
processes. Martingales are considered in Chap. 10, where they are used to recover
in a simple and elegant way the main results of Chap. 2 on ruin probabilities and
mean exit times for gambling processes. Spatial Poisson processes, which can be
defined on an abstract space without requiring an ordered time index, are presented
in Chap. 11. Reliability theory is an important engineering application of Markov
chains, and it is reviewed in Chap. 12. All stochastic processes considered in this
text have a discrete state space and discontinuous trajectories.

Introduction xvii



Chapter 1
Probability Background

In this chapter we review a number of basic probabilistic tools that will needed for
the study of stochastic processes in the subsequent chapters. We refer the reader to
e.g. [Dev03, JP00, Pit99] for additional background on probability theory.

1.1 Probability Spaces and Events

Wewill need the followingnotation coming fromset theory.Given A and B to abstract
sets, “A ⊂ B” means that A is contained in B, and in this case, B \ A denotes the
set of elements of B which do not belong to A. The property that the element ω
belongs to the set A is denoted by “ω ∈ A”, and given two sets A and Ω such that
A ⊂ Ω , we let Ac = Ω \ A denote the complement of A in Ω . The finite set made
of n elements ω1, . . . ,ωn is denoted by {ω1, . . . ,ωn}, and we will usually make a
distinction between the element ω and its associated singleton set {ω}.

A probability space is an abstract set Ω that contains the possible outcomes of a
random experiment.

Examples

(i) Coin tossing: Ω = {H, T }.
(ii) Rolling one die: Ω = {1, 2, 3, 4, 5, 6}.
(iii) Picking one card at random in a pack of 52: Ω = {1, 2, 3, . . . , 52}.
(iv) An integer-valued random outcome: Ω = N = {0, 1, 2, . . .}.

In this case the outcome ω ∈ N can be the random number of trials needed until
some event occurs.

(v) A nonnegative, real-valued outcome: Ω = R+.
In this case the outcome ω ∈ R+ may represent the (nonnegative) value of a
continuous random time.

© Springer Nature Singapore Pte Ltd. 2018
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2 1 Probability Background

(vi) A random continuous parameter (such as time, weather, price or wealth, tem-
perature,...): Ω = R.

(vii) Random choice of a continuous path in the spaceΩ = C(R+) of all continuous
functions on R+.
In this case, ω ∈ Ω is a function ω : R+ −→ R and a typical example is the
graph t �−→ ω(t) of a stock price over time.

Product Spaces:

Probability spaces can be built as product spaces and used for the modeling of
repeated random experiments.

(i) Rolling two dice: Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}.

In this case a typical element of Ω is written as ω = (k, l) with k, l ∈
{1, 2, 3, 4, 5, 6}.

(ii) A finite number n of real-valued samples: Ω = R
n .

In this case the outcomeω is a vectorω = (x1, . . . , xn) ∈ R
n with n components.

Note that to some extent, the more complex Ω is, the better it fits a practical and
useful situation, e.g. Ω = {H, T } corresponds to a simple coin tossing experiment
while Ω = C(R+) the space of continuous functions on R+ can be applied to the
modeling of stock markets. On the other hand, in many cases and especially in the
most complex situations, we will not attempt to specify Ω explicitly.

Events

An event is a collection of outcomes, which is represented by a subset of Ω .
The collections G of events that we will consider are called σ-algebras, and

assumed to satisfy the following conditions.

(i) ∅ ∈ G,
(ii) For all countable sequences An ∈ G, n ≥ 1, we have

⋃

n≥1

An ∈ G,

(iii) A ∈ G =⇒ (Ω \ A) ∈ G,
where Ω \ A := {ω ∈ Ω : ω /∈ A}.

Note that Properties (i i) and (i i i) above also imply

⋂

n≥1

An =
(

⋃

n≥1

Ac
n

)c

∈ G, (1.1.1)

for all countable sequences An ∈ G, n ≥ 1.
The collection of all events in Ω will often be denoted byF . The empty set ∅ and

the full space Ω are considered as events but they are of less importance because
Ω corresponds to “any outcome may occur” while ∅ corresponds to an absence of
outcome, or no experiment.
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In the context of stochastic processes, two σ-algebras F and G such that F ⊂ G
will refer to two different amounts of information, the amount of information asso-
ciated to F being here lower than the one associated to G.
The formalism of σ-algebras helps in describing events in a short and precise way.

Examples

(i) Ω = {1, 2, 3, 4, 5, 6}.
The event A = {2, 4, 6} corresponds to

“the result of the experiment is an even number”

(ii) Taking again Ω = {1, 2, 3, 4, 5, 6},

F := {Ω,∅, {2, 4, 6}, {1, 3, 5}}

defines a σ-algebra on Ω which corresponds to the knowledge of parity of an
integer picked at random from 1 to 6.

Note that in the set-theoretic notation, an event A is a subset of Ω , i.e. A ⊂ Ω ,
while it is an element of F , i.e. A ∈ F . For example, we have Ω ⊃ {2, 4, 6} ∈
F , while {{2, 4, 6}, {1, 3, 5}} ⊂ F .

(iii) Taking

G := {Ω,∅, {2, 4, 6}, {2, 4}, {6}, {1, 2, 3, 4, 5}, {1, 3, 5, 6}, {1, 3, 5}} ⊃ F ,

defines a σ-algebra on Ω which is bigger than F , and corresponds to the par-
ity information contained in F , completed by the knowledge of whether the
outcome is equal to 6 or not.

(iv) Take

Ω = {H, T } × {H, T } = {(H, H), (H.T ), (T, H), (T, T )}.

In this case, the collection F of all possible events is given by

F = {∅, {(H, H)}, {(T, T )}, {(H, T )}, {(T, H)}, (1.1.2)

{(T, T ), (H, H)}, {(H, T ), (T, H)}, {(H, T ), (T, T )},
{(T, H), (T, T )}, {(H, T ), (H, H)}, {(T, H), (H, H)},
{(H, H), (T, T ), (T, H)}, {(H, H), (T, T ), (H, T )},
{(H, T ), (T, H), (H, H)}, {(H, T ), (T, H), (T, T )},Ω} .

Note that the set F of all events considered in (1.1.2) above has altogether

1 =
(
n

0

)
event of cardinality 0,
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4 =
(
n

1

)
events of cardinality 1,

6 =
(
n

2

)
events of cardinality 2,

4 =
(
n

3

)
events of cardinality 3,

1 =
(
n

4

)
event of cardinality 4,

with n = 4, for a total of

16 = 2n =
4∑

k=0

(
4

k

)
= 1 + 4 + 6 + 4 + 1

events. The collection of events

G := {∅, {(T, T ), (H, H)}, {(H, T ), (T, H)},Ω}

defines a sub σ-algebra of F , associated to the information “the results of two coin
tossings are different”.

Exercise: Write down the set of all events on Ω = {H, T }.
Note also that (H, T ) is different from (T, H), whereas {(H, T ), (T, H)} is equal

to {(T, H), (H, T )}.
In addition, we will usually make a distinction between the outcome ω ∈ Ω and

its associated event {ω} ∈ F , which satisfies {ω} ⊂ Ω .

1.2 Probability Measures

A probability measure is a mapping P : F −→ [0, 1] that assigns a probability
P(A) ∈ [0, 1] to any event A ∈ F , with the properties

(a) P(Ω) = 1, and

(b) P

( ∞⋃

n=1

An

)
=

∞∑

n=1

P(An), whenever Ak ∩ Al = ∅, k �= l.

Property (b) above is named the law of total probability. It states in particular that
we have

P(A1 ∪ · · · ∪ An) = P(A1) + · · · + P(An)

when the subsets A1, . . . , An of Ω are disjoints, and

P(A ∪ B) = P(A) + P(B) (1.2.1)
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if A ∩ B = ∅. We also have the complement rule

P(Ac) = P(Ω \ A) = P(Ω) − P(A) = 1 − P(A).

When A and B are not necessarily disjoint we can write

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

The triple
(Ω,F ,P) (1.2.2)

was introduced by A.N. Kolmogorov (1903–1987), and is generally referred to as
the Kolmogorov framework.

A property or event is said to hold P-almost surely (also written P-a.s.) if it holds
with probability equal to one.

Example

Take
Ω = {

(T, T ), (H, H), (H, T ), (T, H)
}

and
F = {∅, {(T, T ), (H, H)}, {(H, T ), (T, H)},Ω} .

The uniform probability measure P on (Ω,F) is given by setting

P({(T, T ), (H, H)}) := 1

2
and P({(H, T ), (T, H)}) := 1

2
.

In addition, we have the following convergence properties.

1. Let (An)n∈N be a nondecreasing sequence of events, i.e. An ⊂ An+1, n ∈ N.
Then we have

P

(
⋃

n∈N
An

)
= lim

n→∞P(An). (1.2.3)

2. Let (An)n∈N be a nonincreasing sequence of events, i.e. An+1 ⊂ An , n ∈ N. Then
we have

P

(
⋂

n∈N
An

)
= lim

n→∞P(An). (1.2.4)
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1.3 Conditional Probabilities and Independence

We start with an example.
Consider a population Ω = M ∪ W made of a set M of men and a set W of

women. Here the σ-algebraF = {Ω,∅,W, M} corresponds to the information given
by gender. After polling the population, e.g. for a market survey, it turns out that a
proportion p ∈ [0, 1] of the population declares to like apples, while a proportion
1 − p declares to dislike apples. Let A ⊂ Ω denote the subset of individuals who
like apples, while Ac ⊂ Ω denotes the subset individuals who dislike apples, with

p = P(A) and 1 − p = P(Ac),

e.g. p = 60% of the population likes apples. It may be interesting to get a more
precise information and to determine

• the relative proportion
P(A ∩ W )

P(W )
of women who like apples, and

• the relative proportion
P(A ∩ M)

P(M)
of men who like apples.

Here, P(A ∩ W )/P(W ) represents the probability that a randomly chosen woman
in W likes apples, and P(A ∩ M)/P(M) represents the probability that a randomly
chosen man in M likes apples. Those two ratios are interpreted as conditional prob-
abilities, for example P(A ∩ M)/P(M) denotes the probability that an individual
likes apples given that he is a man.

For another example, suppose that the population Ω is split as Ω = Y ∪ O into
a set Y of “young” people and another set O of “old” people, and denote by A ⊂ Ω

the set of people who voted for candidate A in an election. Here it can be of interest
to find out the relative proportion

P(A | Y ) = P(Y ∩ A)

P(Y )

of young people who voted for candidate A.
More generally, given any two events A, B ⊂ Ω with P(B) �= 0, we call

P(A | B) := P(A ∩ B)

P(B)

the probability of A given B, or conditionally to B.

Remark 1.1 We note that if P(B) = 1 we have P(A ∩ Bc) ≤ P(Bc) = 0, hence
P(A ∩ Bc) = 0, which implies

P(A) = P(A ∩ B) + P(A ∩ Bc) = P(A ∩ B),

and P(A | B) = P(A).
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We also recall the following property:

P

(
B ∩

∞⋃

n=1

An

)
=

∞∑

n=1

P(B ∩ An)

=
∞∑

n=1

P(B | An)P(An)

=
∞∑

n=1

P(An | B)P(B),

for any family of disjoint events (An)n≥1 with Ai ∩ A j = ∅, i �= j , and P(B) > 0,
n ≥ 1. This also shows that conditional probability measures are probability mea-
sures, in the sense that whenever P(B) > 0 we have

(a) P(Ω | B) = 1, and

(b) P

( ∞⋃

n=1

An

∣∣∣B
)

=
∞∑

n=1

P(An | B), whenever Ak ∩ Al = ∅, k �= l.

In particular, if
∞⋃

n=1

An = Ω , (An)n≥1 becomes a partition of Ω and we get the law

of total probability

P(B) =
∞∑

n=1

P(B ∩ An) =
∞∑

n=1

P(An | B)P(B) =
∞∑

n=1

P(B | An)P(An), (1.3.1)

provided that Ai ∩ A j = ∅, i �= j , and P(B) > 0, n ≥ 1. However, we have in gen-
eral

P

(
A
∣∣∣

∞⋃

n=1

Bn

)
�=

∞∑

n=1

P(A | Bn),

even when Bk ∩ Bl = ∅, k �= l. Indeed, taking for example A = Ω = B1 ∪ B2 with
B1 ∩ B2 = ∅ and P(B1) = P(B2) = 1/2, we have

1 = P(Ω | B1 ∪ B2) �= P(Ω | B1) + P(Ω | B2) = 2.

Independent Events

Two events A and B are said to be independent if

P(A | B) = P(A),

which is equivalent to
P(A ∩ B) = P(A)P(B).
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In this case we find
P(A | B) = P(A).

1.4 Random Variables

A real-valued random variable is a mapping

X :Ω −→ R

ω �−→ X (ω)

from a probability space Ω into the state space R. Given

X : Ω −→ R

a random variable and A a (measurable)1 subset of R, we denote by {X ∈ A} the
event

{X ∈ A} := {ω ∈ Ω : X (ω) ∈ A}.

Given G a σ-algebra on Ω , the mapping X : Ω −→ R is said to be G-measurable if

{X ≤ x} := {ω ∈ Ω : X (ω) ≤ x} ∈ G,

for all x ∈ R. In this case we will also say that the knowledge of X depends only on
the information contained in G.
Examples

(i) Let Ω := {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}, and consider the mapping

X : Ω −→ R

(k, l) �−→ k + l.

Then X is a random variable giving the sum of the two numbers appearing on
each die.

(ii) the time needed everyday to travel from home to work or school is a random
variable, as the precise value of this time may change from day to day under
unexpected circumstances.

(iii) the price of a risky asset is a random variable.

In the sequel we will often use the notion of indicator function 1A of an event A.
The indicator function 1A is the random variable

1Measurability of subsets of R refers to Borel measurability, a concept which will not be defined
in this text.
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1A :Ω −→ {0, 1}
ω �−→ 1A(ω)

defined by

1A(ω) =
{
1 if ω ∈ A,

0 if ω /∈ A,

with the property
1A∩B(ω) = 1A(ω)1B(ω), (1.4.1)

since

ω ∈ A ∩ B ⇐⇒ {ω ∈ A and ω ∈ B}
⇐⇒ {1A(ω) = 1 and 1B(ω) = 1}
⇐⇒ 1A(ω)1B(ω) = 1.

We also have
1A∪B = 1A + 1B − 1A∩B = 1A + 1B − 1A1B,

and
1A∪B = 1A + 1B, (1.4.2)

if A ∩ B = ∅.
For example, if Ω = N and A = {k}, for all l ∈ N we have

1{k}(l) =
⎧
⎨

⎩

1 if k = l,

0 if k �= l.

Given X a random variable, we also let

1{X=n} =
⎧
⎨

⎩

1 if X = n,

0 if X �= n,

and

1{X<n} =
⎧
⎨

⎩

1 if X < n,

0 if X ≥ n.
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1.5 Probability Distributions

The probability distribution of a random variable X : Ω −→ R is the collection

{P(X ∈ A) : A is a measurable subset of R}.

As the collection ofmeasurable subsets ofR coincides with the σ-algebra generated
by the intervals in R, the distribution of X can be reduced to the knowledge of either

{P(a < X ≤ b) = P(X ≤ b) − P(X ≤ a) : a < b ∈ R},

or
{P(X ≤ a) : a ∈ R}, or {P(X ≥ a) : a ∈ R},

see e.g. Corollary3.8 in [Çın11].
Two random variables X and Y are said to be independent under the probability

P if their probability distributions satisfy

P(X ∈ A , Y ∈ B) = P(X ∈ A)P(Y ∈ B)

for all (measurable) subsets A and B of R.

Distributions Admitting a Density

We say that the distribution of X admits a probability density distribution function
fX : R −→ R+ if, for all a ≤ b, the probability P(a ≤ X ≤ b) can be written as

P(a ≤ X ≤ b) =
∫ b

a
fX (x)dx .

We also say that the distribution of X is absolutely continuous, or that X is an
absolutely continuous randomvariable. This, however, doesnot imply that the density
function fX : R −→ R+ is continuous.

In particular, we always have

∫ ∞

−∞
fX (x)dx = P(−∞ ≤ X ≤ ∞) = 1

for all probability density functions fX : R −→ R+.

Remark 1.2 Note that if the distribution of X admits a density then for all a ∈ R,
we have

P(X = a) =
∫ a

a
f (x)dx = 0, (1.5.1)

and this is not a contradiction.
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In particular, Remark1.2 shows that

P(a ≤ X ≤ b) = P(X = a) + P(a < X ≤ b) = P(a < X ≤ b) = P(a < X < b),

for a ≤ b. Property (1.5.1) appears for example in the framework of lottery games
with a large number of participants, in which a given number “a” selected in advance
has a very low (almost zero) probability to be chosen.

The density fX can be recovered from the cumulative distribution functions

x �−→ FX (x) := P(X ≤ x) =
∫ x

−∞
fX (s)ds,

and

x �−→ 1 − FX (x) = P(X ≥ x) =
∫ ∞

x
fX (s)ds,

as

fX (x) = FX (s) = ∂

∂x

∫ x

−∞
fX (s)ds = − ∂

∂x

∫ ∞

x
fX (s)ds, x ∈ R.

Examples

(i) The uniform distribution on an interval.

The probability density function of the uniform distribution on the interval
[a, b], a < b, is given by

f (x) = 1

b − a
1[a,b](x), x ∈ R.

(ii) The Gaussian distribution.

The probability density function of the standard normal distribution is given by

f (x) = 1√
2π

e−x2/2, x ∈ R.

More generally, the probability density function of the Gaussian distribution
with mean μ ∈ R and variance σ2 > 0 is given by

f (x) := 1√
2πσ2

e−(x−μ)2/(2σ2), x ∈ R.

In this case, we write X � N (μ,σ2).

(iii) The exponential distribution.
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The probability density function of the exponential distribution with parameter
λ > 0 is given by

f (x) := λ1[0,∞)(x)e
−λx =

⎧
⎨

⎩

λe−λx , x ≥ 0

0, x < 0.
(1.5.2)

We also have
P(X > t) = e−λt , t ∈ R+. (1.5.3)

(iv) The gamma distribution.

The probability density function of the gamma distribution is given by

f (x) := aλ

Γ (λ)
1[0,∞)(x)x

λ−1e−ax =

⎧
⎪⎪⎨

⎪⎪⎩

aλ

Γ (λ)
xλ−1e−ax , x ≥ 0

0, x < 0,

where a > 0 and λ > 0 are parameters, and

Γ (λ) :=
∫ ∞

0
xλ−1e−xdx, λ > 0,

is the gamma function.

(v) The Cauchy distribution.

The probability density function of the Cauchy distribution is given by

f (x) := 1

π(1 + x2)
, x ∈ R.

(vi) The lognormal distribution.

The probability density function of the lognormal distribution is given by

f (x) := 1[0,∞)(x)
1

xσ
√
2π

e− (μ−log x)2

2σ2 =

⎧
⎪⎪⎨

⎪⎪⎩

1

xσ
√
2π

e− (μ−log x)2

2σ2 , x ≥ 0

0, x < 0.

Exercise: For eachof the aboveprobability density functions, check that the condition
∫ ∞

−∞
f (x)dx = 1

is satisfied.
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Fig. 1.1 Probability P((X, Y ) ∈ [−0.5, 1] × [−0.5, 1]) computed as a volume integral

Joint Densities

Given two absolutely continuous random variables X : Ω −→ R and Y : Ω −→ R

we can form the R2-valued random variable (X,Y ) defined by

(X,Y ) :Ω −→ R
2

ω �−→ (X (ω),Y (ω)).

We say that (X,Y ) admits a joint probability density

f(X,Y ) : R2 −→ R+

when

P((X,Y ) ∈ A × B) =
∫

B

∫

A
f(X,Y )(x, y)dxdy

for all measurable subsets A, B of R, cf. Fig. 1.1.
The density f(X,Y ) can be recovered from the joint cumulative distribution function

(x, y) �−→ F(X,Y )(x, y) := P(X ≤ x and Y ≤ y) =
∫ x

−∞

∫ y

−∞
f(X,Y )(s, t)dsdt,

and

(x, y) �−→ P(X ≥ x and Y ≥ y) =
∫ ∞

x

∫ ∞

y
f(X,Y )(s, t)dsdt,

as

f(X,Y )(x, y) = ∂2

∂x∂y
F(X,Y )(x, y) (1.5.4)

= ∂2

∂x∂y

∫ x

−∞

∫ y

−∞
f(X,Y )(s, t)dsdt (1.5.5)
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= ∂2

∂x∂y

∫ ∞

x

∫ ∞

y
f(X,Y )(s, t)dsdt,

x, y ∈ R.

The probability densities fX : R −→ R+ and fY : R −→ R+ of X : Ω −→ R and
Y : Ω −→ R are called the marginal densities of (X,Y ) and are given by

fX (x) =
∫ ∞

−∞
f(X,Y )(x, y)dy, x ∈ R, (1.5.6)

and

fY (y) =
∫ ∞

−∞
f(X,Y )(x, y)dx, y ∈ R.

The conditional density fX |Y=y : R −→ R+ of X given Y = y is defined by

fX |Y=y(x) := f(X,Y )(x, y)

fY (y)
, x, y ∈ R, (1.5.7)

provided that fY (y) > 0. In particular, X and Y are independent if and only if
fX |Y=y(x) = fX (x), x, y ∈ R, i.e.,

f(X,Y )(x, y) = fX (x) fY (y), x, y ∈ R.

Example

If X1, . . . , Xn are independent exponentially distributed random variables with
parameters λ1, . . . ,λn we have

P(min(X1, . . . , Xn) > t) = P(X1 > t, . . . , Xn > t)

= P(X1 > t) · · ·P(Xn > t)

= e−t (λ1+···+λn), t ∈ R+, (1.5.8)

hence min(X1, . . . , Xn) is an exponentially distributed random variable with param-
eter λ1 + · · · + λn .

Given the joint density of (X1, X2) given by

f(X1,X2)(x, y) = fX1(x) fX2(y) = λ1λ2e
−λ1x−λ2 y, x, y ≥ 0,

we can write
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P(X1 < X2) = P(X1 ≤ X2)

=
∫ ∞

0

∫ y

0
f(X1,X2)(x, y)dxdy

= λ1λ2

∫ ∞

0

∫ y

0
e−λ1x−λ2 ydxdy

= λ1

λ1 + λ2
, (1.5.9)

and we note that

P(X1 = X2) = λ1λ2

∫

{(x,y)∈R2+ : x=y}
e−λ1x−λ2 ydxdy = 0.

Discrete Distributions

We only consider integer-valued random variables, i.e. the distribution of X is given
by the values of P(X = k), k ∈ N.

Examples

(i) The Bernoulli distribution.

We have
P(X = 1) = p and P(X = 0) = 1 − p, (1.5.10)

where p ∈ [0, 1] is a parameter.

Note that any Bernoulli random variable X : Ω −→ {0, 1} can be written as
the indicator function

X = 1A

on Ω with A = {X = 1} = {ω ∈ Ω : X (ω) = 1}.

(ii) The binomial distribution.

We have

P(X = k) =
(
n

k

)
pk(1 − p)n−k, k = 0, 1, . . . , n,

where n ≥ 1 and p ∈ [0, 1] are parameters.

(iii) The geometric distribution.

In this case, we have
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P(X = k) = (1 − p)pk, k ∈ N, (1.5.11)

where p ∈ (0, 1) is a parameter. For example, if (Xk)k∈N is a sequence of
independent Bernoulli random variables with distribution (1.5.10), then the
random variable,2

T0 := inf{k ∈ N : Xk = 0}

can denote the duration of a game until the time that the wealth Xk of a player
reaches 0. The random variable T0 has the geometric distribution (1.5.11) with
parameter p ∈ (0, 1).

(iv) The negative binomial (or Pascal) distribution.

We have

P(X = k) =
(
k + r − 1

r − 1

)
(1 − p)r pk, k ∈ N, (1.5.12)

where p ∈ (0, 1) and r ≥ 1 are parameters. Note that the sum of r ≥ 1 inde-
pendent geometric random variables with parameter p has a negative binomial
distribution with parameter (r, p). In particular, the negative binomial distribu-
tion recovers the geometric distribution when r = 1.

(v) The Poisson distribution.

We have

P(X = k) = λk

k! e
−λ, k ∈ N,

where λ > 0 is a parameter.

The probability that a discrete nonnegative random variable X : Ω −→ N ∪ {+∞}
is finite is given by

P(X < ∞) =
∞∑

k=0

P(X = k), (1.5.13)

and we have

1 = P(X = ∞) + P(X < ∞) = P(X = ∞) +
∞∑

k=0

P(X = k).

Remark 1.3 The distribution of a discrete random variable cannot admit a density.
If this were the case, by Remark1.2 we would have P(X = k) = 0 for all k ∈ N and

2The notation “inf” stands for “infimum”, meaning the smallest n ≥ 0 such that Xn = 0, if such an
n exists.
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1 = P(X ∈ R) = P(X ∈ N) =
∞∑

k=0

P(X = k) = 0,

which is a contradiction.

Given two discrete random variables X and Y , the conditional distribution of X given
Y = k is given by

P(X = n | Y = k) = P(X = n and Y = k)

P(Y = k)
, n ∈ N,

provided that P(Y = k) > 0, k ∈ N.

1.6 Expectation of Random Variables

The expectation, or expected value, of a random variable X is the mean, or average
value, of X . In practice, expectations can be even more useful than probabilities. For
example, knowing that a given equipment (such as a bridge) has a failure probability
of 1.78493 out of a billion can be of less practical use than knowing the expected
lifetime (e.g. 200000 years) of that equipment.

For example, the time T (ω) to travel from home to work/school can be a random
variable with a new outcome and value every day, however we usually refer to its
expectation IE[T ] rather than to its sample values that may change from day to day.

Expected Value of a Bernoulli Random Variable

Any Bernoulli random variable X : Ω −→ {0, 1} can be written as the indicator
function X := 1A where A is the event A = {X = 1}, and the parameter p ∈ [0, 1]
of X is given by

p = P(X = 1) = P(A) = IE[1A] = IE[X ].

The expectation of a Bernoulli random variable with parameter p is defined as

IE[1A] := 1 × P(A) + 0 × P(Ac) = P(A). (1.6.1)

Expected Value of a Discrete Random Variable

Next, let X : Ω −→ N be a discrete random variable. The expectation IE[X ] of X is
defined as the sum

IE[X ] =
∞∑

k=0

kP(X = k), (1.6.2)
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in which the possible values k ∈ N of X are weighted by their probabilities. More
generally we have

IE[φ(X)] =
∞∑

k=0

φ(k)P(X = k),

for all sufficiently summable functions φ : N −→ R.

The expectation of the indicator function X = 1A = 1{X=1} can be recovered from
(1.6.2) as

IE[X ] = IE[1A] = 0 × P(Ω \ A) + 1 × P(A) = 0 × P(Ω \ A) + 1 × P(A) = P(A).

Note that the expectation is a linear operation, i.e. we have

IE[aX + bY ] = aIE[X ] + bIE[Y ], a, b ∈ R, (1.6.3)

provided that
IE[|X |] + IE[|Y |] < ∞.

Examples

(i) Expected value of a Poisson random variable with parameter λ > 0:

IE[X ] =
∞∑

k=0

kP(X = k) = e−λ
∞∑

k=1

k
λk

k! = λe−λ
∞∑

k=0

λk

k! = λ, (1.6.4)

where we used the exponential series (A.1).

(ii) Estimating the expected value of a Poisson random variable using R:

Taking λ := 2, we can use the following R code:

poisson_samples <− rpois(100000, lambda = 2)
poisson_samples
mean(poisson_samples)

Given X : Ω −→ N ∪ {+∞} a discrete nonnegative random variable X , we have

P(X < ∞) =
∞∑

k=0

P(X = k),

and

1 = P(X = ∞) + P(X < ∞) = P(X = ∞) +
∞∑

k=0

P(X = k),

and in general
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IE[X ] = +∞ × P(X = ∞) +
∞∑

k=0

kP(X = k).

In particular, P(X = ∞) > 0 implies IE[X ] = ∞, and the finiteness IE[X ] < ∞
condition implies P(X < ∞) = 1, however the converse is not true.

Examples

(a) Assume that X has the geometric distribution

P(X = k) := 1

2k+1
, k ≥ 0, (1.6.5)

with parameter p = 1/2, and

IE[X ] =
∞∑

k=0

k

2k+1
= 1

4

∞∑

k=1

k

2k−1
= 1

4

1

(1 − 1/2)2
= 1 < ∞,

by (A.4). Letting φ(X) := 2X , we have

P(φ(X) < ∞) = P(X < ∞) =
∞∑

k=0

1

2k+1
= 1,

and

IE[φ(X)] =
∞∑

k=0

φ(k)P(X = k) =
∞∑

k=0

2k

2k+1
=

∞∑

k=0

1

2
= +∞,

hence the expectation IE[φ(X)] is infinite althoughφ(X) is finitewith probability
one.3

(b) The uniform random variable U on [0, 1] satisfies IE[U ] = 1/2 < ∞ and

P(1/U < ∞) = P(U > 0) = P(U ∈ (0, 1]) = 1,

however we have

IE[1/U ] =
∫ 1

0

dx

x
= +∞,

and P(1/U = +∞) = P(U = 0) = 0.
(c) If the random variable X has an exponential distribution with parameter μ > 0

we have

3This is the St. Petersburg paradox.



20 1 Probability Background

IE
[
eλX

] = μ

∫ ∞

0
eλxe−μxdx =

⎧
⎪⎪⎨

⎪⎪⎩

1

μ − λ
< ∞ if μ > λ,

+∞, if μ ≤ λ.

Conditional Expectation
The notion of expectation takes its full meaning under conditioning. For example, the
expected return of a random asset usually depends on information such as economic
data, location, etc. In this case, replacing the expectation by a conditional expectation
will provide a better estimate of the expected value.

For instance, life expectancy is a natural example of a conditional expectation
since it typically depends on location, gender, and other parameters.

The conditional expectation of X : Ω −→ N a finite random variable given an
event A is defined by

IE[X | A] =
∞∑

k=0

kP(X = k | A) =
∞∑

k=0

k
P(X = k and A)

P(A)
.

Lemma 1.4 Given an event A such that P(A) > 0, we have

IE[X | A] = 1

P(A)
IE [X1A] . (1.6.6)

Proof The proof is done only for X : Ω −→ N a discrete random variable, however
(1.6.6) is valid for general real-valued random variables. ByRelation (1.4.1) we have

IE[X | A] = 1

P(A)

∞∑

k=0

kP(X = k | A)

= 1

P(A)

∞∑

k=0

kP({X = k} ∩ A) = 1

P(A)

∞∑

k=0

kIE
[
1{X=k}∩A

]
(1.6.7)

= 1

P(A)

∞∑

k=0

kIE
[
1{X=k}1A

] = 1

P(A)
IE

[
1A

∞∑

k=0

k1{X=k}

]

= 1

P(A)
IE [1AX ] , (1.6.8)

where we used the relation

X =
∞∑

k=0

k1{X=k}

which holds since X takes only integer values. �
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Example

(i) Consider Ω = {1, 3,−1,−2, 5, 7} with the uniform probability measure given
by

P({k}) = 1/6, k = 1, 3,−1,−2, 5, 7,

and the random variable
X : Ω −→ Z

given by
X (k) = k, k = 1, 3,−1,−2, 5, 7.

Then IE[X | X > 0] denotes the expected value of X given

{X > 0} = {1, 3, 5, 7} ⊂ Ω,

i.e. the mean value of X given that X is strictly positive. This conditional expec-
tation can be computed as

IE[X | X > 0] = 1 + 3 + 5 + 7

4

= 1 + 3 + 5 + 7

6

1

4/6

= 1

P(X > 0)
IE[X1{X>0}],

where P(X > 0) = 4/6 and the truncated expectation IE[X1{X>0}] is given by
IE[X1{X>0}] = (1 + 3 + 5 + 7)/6.

(ii) Estimating a conditional expectation using R:

geo_samples <− rgeom(100000, prob = 1/4)
mean(geo_samples)
mean(geo_samples[geo_samples<10])

Taking p := 3/4, by (A.4) we have

IE[X ] = (1 − p)
∞∑

k=1

kpk = p

1 − p
= 3,

and

IE[X | X < 10] = 1

P(X < 10)
IE

[
X1{X<10}

]

= 1

P(X < 10)

9∑

k=0

kP(X = k)
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= 1
9∑

k=0

pk

9∑

k=1

kpk

= p(1 − p)

1 − p10
∂

∂ p

9∑

k=0

pk

= p(1 − p)

1 − p10
∂

∂ p

(
1 − p10

1 − p

)

= p(1 − p10 − 10(1 − p)p9)

(1 − p)(1 − p10)
� 2.4032603455.

If the random variable X : Ω −→ N is independent of the event A4 we have

IE[X1A] = IE[X ]IE[1A] = IE[X ]P(A),

and we naturally find
IE[X | A] = IE[X ]. (1.6.9)

Taking X = 1A with

1A : Ω −→ {0, 1}
ω �−→ 1A :=

{
1 if ω ∈ A,

0 if ω /∈ A,

shows that, in particular,

IE[1A | A] = 0 × P(X = 0 | A) + 1 × P(X = 1 | A)

= P(X = 1 | A)

= P(A | A)

= 1.

One can also define the conditional expectation of X given A = {Y = k}, as

IE[X | Y = k] =
∞∑

n=0

nP(X = n | Y = k),

where Y : Ω −→ N is a discrete random variable.

Proposition 1.5 Given X a discrete random variable such that IE[|X |] < ∞, we
have the relation

4i.e., P({X = k} ∩ A) = P({X = k})P(A) for all k ∈ N.
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IE[X ] = IE[IE[X | Y ]], (1.6.10)

which is sometimes referred to as the tower property.

Proof We have

IE[IE[X | Y ]] =
∞∑

k=0

IE[X | Y = k]P(Y = k)

=
∞∑

k=0

∞∑

n=0

nP(X = n | Y = k)P(Y = k)

=
∞∑

n=0

n
∞∑

k=0

P(X = n and Y = k)

=
∞∑

n=0

nP(X = n) = IE[X ],

where we used the marginal distribution

P(X = n) =
∞∑

k=0

P(X = n and Y = k), n ∈ N,

that follows from the law of total probability (1.3.1) with Ak = {Y = k}, k ≥ 0.

Taking

Y =
∞∑

k=0

k1Ak ,

with Ak := {Y = k}, k ∈ N, from (1.6.10) we also get the law of total expectation

IE[X ] = IE[IE[X | Y ]] (1.6.11)

=
∞∑

k=0

IE[X | Y = k]P(Y = k)

=
∞∑

k=0

IE[X | Ak]P(Ak).

Example

Life expectancy in Singapore is IE[T ] = 80 years overall, where T denotes the
lifetime of a given individual chosen at random. Let G ∈ {m, w} denote the gender
of that individual. The statistics show that

IE[T | G = m] = 78 and IE[T | G = w] = 81.9,
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and we have

80 = IE[T ]
= IE[IE[T |G]]
= P(G = w)IE[T | G = w] + P(G = m)IE[T | G = m]
= 81.9 × P(G = w) + 78 × P(G = m)

= 81.9 × (1 − P(G = m)) + 78 × P(G = m),

showing that
80 = 81.9 × (1 − P(G = m)) + 78 × P(G = m),

i.e.

P(G = m) = 81.9 − 80

81.9 − 78
= 1.9

3.9
= 0.487.

Variance

The variance of a random variable X is defined in general by

Var[X ] := IE[X2] − (IE[X ])2,

provided that IE[|X |2] < ∞. If (Xk)k∈N is a sequence of independent random vari-
ables we have

Var

[
n∑

k=1

Xk

]
= IE

⎡

⎣
(

n∑

k=1

Xk

)2
⎤

⎦ −
(
IE

[
n∑

k=1

Xk

])2

= IE

[
n∑

k=1

Xk

n∑

l=1

Xl

]
− IE

[
n∑

k=1

Xk

]
IE

[
n∑

l=1

Xl

]

= IE

[
n∑

k=1

n∑

l=1

Xk Xl

]
−

n∑

k=1

n∑

l=1

IE[Xk]IE[Xl ]

=
n∑

k=1

IE[X2
k ] +

∑

1≤k �=l≤n

IE[Xk Xl] −
n∑

k=1

(IE[Xk])2 −
∑

1≤k �=l≤n

IE[Xk]IE[Xl ]

=
n∑

k=1

(IE[X2
k ] − (IE[Xk])2)

=
n∑

k=1

Var[Xk]. (1.6.12)
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Random Sums

In the sequel we consider Y : Ω −→ N an a.s. finite, integer-valued randomvariable,
i.e. we have P(Y < ∞) = 1 and P(Y = ∞) = 0.

Based on the tower property or ordinary conditioning, the expectation of a random

sum
Y∑

k=1

Xk , where (Xk)k∈N is a sequence of random variables, can be computed from

the tower property (1.6.10) or from the law of total expectation (1.6.11) as

IE

[
Y∑

k=1

Xk

]
= IE

[
IE

[
Y∑

k=1

Xk

∣∣∣Y
]]

=
∞∑

n=0

IE

[
Y∑

k=1

Xk

∣∣∣Y = n

]
P(Y = n)

=
∞∑

n=0

IE

[
n∑

k=1

Xk

∣∣∣Y = n

]
P(Y = n),

and if Y is (mutually) independent of the sequence (Xk)k∈N this yields

IE

[
Y∑

k=1

Xk

]
=

∞∑

n=0

IE

[
n∑

k=1

Xk

]
P(Y = n)

=
∞∑

n=0

P(Y = n)

n∑

k=1

IE [Xk] .

Similarly, for a random product we will have, using the independence of Y with
(Xk)k∈N,

IE

[
Y∏

k=1

Xk

]
=

∞∑

n=0

IE

[
n∏

k=1

Xk

]
P(Y = n) (1.6.13)

=
∞∑

n=0

P(Y = n)

n∏

k=1

IE [Xk] ,

where the last equality requires the (mutual) independence of the random variables
in the sequence (Xk)k≥1.

Distributions Admitting a Density

Given a random variable X whose distribution admits a density fX : R −→ R+ we
have

IE[X ] =
∫ ∞

−∞
x fX (x)dx,
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and more generally,

IE[φ(X)] =
∫ ∞

−∞
φ(x) fX (x)dx, (1.6.14)

for all sufficiently integrable function φ on R. For example, if X has a standard
normal distribution we have

IE[φ(X)] =
∫ ∞

−∞
φ(x)e−x2/2 dx√

2π
.

In case X has a Gaussian distribution with mean μ ∈ R and variance σ2 > 0 we get

IE[φ(X)] = 1√
2πσ2

∫ ∞

−∞
φ(x)e−(x−μ)2/(2σ2)dx . (1.6.15)

Exercise: In case X � N (μ,σ2) has a Gaussian distribution with mean μ ∈ R and
variance σ2 > 0, check that

μ = IE[X ] and σ2 = IE[X2] − (IE[X ])2.

When (X,Y ) : Ω −→ R
2 is a R2-valued couple of random variables whose distri-

bution admits a density fX,Y : R2 −→ R+ we have

IE[φ(X,Y )] =
∫ ∞

−∞

∫ ∞

−∞
φ(x, y) fX,Y (x, y)dxdy,

for all sufficiently integrable function φ on R2.
The expectation of an absolutely continuous random variable satisfies the same lin-
earity property (1.6.3) as in the discrete case.
The conditional expectation of an absolutely continuous random variable can be
defined as

IE[X | Y = y] =
∫ ∞

−∞
x fX |Y=y(x)dx

where the conditional density fX |Y=y(x) is defined in (1.5.7), with the relation

IE[X ] = IE[IE[X | Y ]] (1.6.16)

which is called the tower property and holds as in the discrete case, since

IE[IE[X | Y ]] =
∫ ∞

−∞
IE[X | Y = y] fY (y)dy

=
∫ ∞

−∞

∫ ∞

−∞
x fX |Y=y(x) fY (y)dxdy
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=
∫ ∞

−∞
x

∫ ∞

−∞
f(X,Y )(x, y)dydx

=
∫ ∞

−∞
x fX (x)dx = IE[X ],

where we used Relation (1.5.6) between the density of (X,Y ) and its marginal X .
For example, an exponentially distributed random variable X with probability

density function (1.5.2) has the expected value

IE[X ] = λ

∫ ∞

0
xe−λxdx = 1

λ
.

Conditional Expectation Revisited

The construction of conditional expectation given above for discrete and absolutely
continuous random variables can be generalized to σ-algebras.

Definition 1.6 Given (Ω,F ,P) a probability space and p ≥ 1, we let L p(Ω,F)

denote the space of F-measurable and p-integrable random variables, i.e.

L p(Ω,F) := {
F : Ω −→ R : IE[|F |p] < ∞}

.

We define a scalar product 〈·, ·〉L2(Ω,F) between elements of L2(Ω,F), as

〈F,G〉L2(Ω,F) := IE[FG], F,G ∈ L2(Ω,F).

This scalar product is associated to the norm ‖ · ‖L2(Ω,F) by the relation

‖F‖ =
√
IE[F2] = √〈F, F〉L2(Ω,F), F ∈ L2(Ω,F),

and it induces a notion of orthogonality, namely F is orthogonal to G in L2(Ω,F)

if and only if 〈F,G〉L2(Ω,F) = 0.

Definition 1.7 Given G ⊂ F a sub σ-algebra of F and F ∈ L2(Ω,F), the condi-
tional expectation of F given G, and denoted

IE[F | G],

is defined as the orthogonal projection of F onto L2(Ω,G).

As a consequence of the uniqueness of the orthogonal projection onto the subspace
L2(Ω,G) of L2(Ω,F), IE[F | G] is characterized by the relation

〈G, F − IE[F | G]〉L2(Ω,F) = 0,

which rewrites as
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IE[G(F − IE[F | G])] = 0,

i.e.
IE[GF] = IE[GIE[F | G]],

for all bounded and G-measurable random variables G, where 〈·, ·〉L2(Ω,F) denotes
the inner product in L2(Ω,F).
In addition, IE[F | G] realizes the minimum in mean square distance between F and
L2(Ω,G), i.e. we have

‖F − IE[F | G]‖L2(Ω,F) = inf
G∈L2(Ω,G)

‖F − G‖L2(Ω,F). (1.6.17)

The following proposition will often be used as a characterization of IE[F | G].
Proposition 1.8 Given F ∈ L2(Ω,F), X := IE[F | G] is the unique random vari-
able X in L2(Ω,G) that satisfies the relation

IE[GF] = IE[GX ] (1.6.18)

for all bounded and G-measurable random variables G.

The conditional expectation operator has the following properties.

(i) IE[FG | G] = GIE[F | G] ifG depends only on the information contained inG.

Proof: By the characterization (1.6.18) it suffices to show that

IE[HFG] = IE[HGIE[F |G]], (1.6.19)

for all bounded and H-measurable random variables H , which implies
IE[FG | G] = GIE[F | G].

Relation (1.6.19) holds from (1.6.18) because the product HG is G-measurable
hence G in (1.6.18) can be replaced with HG.

(ii) IE[G|G] = G when G depends only on the information contained in G.

Proof: This is a consequence of point (i) above by taking F = 1.

(iii) IE[IE[F |G] | H] = IE[F |H] ifH ⊂ G, called the tower property.

Proof: First we note that (i i i) holds when H = {∅,Ω} because taking G = 1
in (1.6.18) yields

IE[F] = IE[IE[F | G]]. (1.6.20)

Next, by the characterization (1.6.18) it suffices to show that
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IE[H IE[F |G]] = IE[H IE[F |H]], (1.6.21)

for all bounded and G-measurable random variables H , which will imply (i i i)
from (1.6.18).

In order to prove (1.6.21) we check that by point (i) above and (1.6.20) we
have

IE[H IE[F |G]] = IE[IE[HF |G]] = IE[HF]
= IE[IE[HF |H]] = IE[H IE[F |H]],

and we conclude by the characterization (1.6.18).
(iv) IE[F |G] = IE[F] when F “does not depend” on the information contained in

G or, more precisely stated, when the random variable F is independent of the
σ-algebra G.

Proof: It suffices to note that for all bounded G-measurable G we have

IE[FG] = IE[F]IE[G] = IE[GIE[F]],

and we conclude again by (1.6.18).
(v) If G depends only on G and F is independent of G, then

IE[h(F,G)|G] = IE[h(F, x)]x=G . (1.6.22)

Proof: This relation can be proved using the tower property, by noting that for
any K ∈ L2(Ω,G) we have

IE[K IE[h(x, F)]x=G] = IE[K IE[h(x, F) | G]x=G]
= IE[K IE[h(G, F) | G]]
= IE[IE[Kh(G, F) | G]]
= IE[Kh(G, F)],

which yields (1.6.22) by the characterization (1.6.18).

The notion of conditional expectation can be extended from square-integrable ran-
dom variables in L2(Ω,F) to integrable random variables in L1(Ω,F), cf. e.g.
[Kal02], Theorem5.1.

When the σ-algebra G := σ(A1, A2, . . . , An) is generated by n disjoint events
A1, A2, . . . , An ∈ F , we have

IE[F | G] =
n∑

k=1

1Ak IE[F | Ak] =
n∑

k=1

1Ak

IE[F1Ak ]
P(Ak)

.
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1.7 Moment and Probability Generating Functions

Characteristic Functions

The characteristic function of a random variable X is the function ΨX : R −→ C

defined by
ΨX (t) = IE

[
ei t X

]
, t ∈ R.

The characteristic function ΨX of a random variable X with density f : R −→ R+
satisfies

ΨX (t) =
∫ ∞

−∞
ei xt f (x)dx, t ∈ R.

On the other hand, if X : Ω −→ N is a discrete random variable we have

ΨX (t) =
∞∑

n=0

ei tnP(X = n), t ∈ R.

The main applications of characteristic functions lie in the following theorems:

Theorem 1.9 Two random variables X : Ω −→ R and Y : Ω −→ R have same
distribution if and only if

ΨX (t) = ΨY (t), t ∈ R.

Theorem1.9 is used to identify or to determine the probability distribution of a
random variable X , by comparison with the characteristic function ΨY of a random
variable Y whose distribution is known.

The characteristic function of a random vector (X,Y ) is the function ΨX,Y :
R

2 −→ C defined by

ΨX,Y (s, t) = IE
[
eisX+i tY

]
, s, t ∈ R.

Theorem 1.10 The random variables X : Ω −→ R and Y : Ω −→ R are indepen-
dent if and only if

ΨX,Y (s, t) = ΨX (s)ΨY (t), s, t ∈ R.

A random variable X is Gaussian with mean μ and variance σ2 if and only if its
characteristic function satisfies

IE
[
eiαX

] = eiαμ−α2σ2/2, α ∈ R. (1.7.1)

In terms of moment generating functions we have, replacing iα by α,

IE
[
eαX

] = eαμ+α2σ2/2, α ∈ R. (1.7.2)
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From Theorems1.9 and 1.10 we deduce the following proposition.

Proposition 1.11 Let X � N (μ,σ2
X ) and Y � N (ν,σ2

Y ) be independent Gaussian
random variables. Then X + Y also has a Gaussian distribution

X + Y � N (μ + ν,σ2
X + σ2

Y ).

Proof Since X and Y are independent, by Theorem1.10 the characteristic function
ΨX+Y of X + Y is given by

ΦX+Y (t) = ΦX (t)ΦY (t)

= ei tμ−t2σ2
X /2ei tν−t2σ2

Y /2

= ei t (μ+ν)−t2(σ2
X+σ2

Y )/2, t ∈ R,

where we used (1.7.1). Consequently, the characteristic function of X + Y is that of a
Gaussian random variable with mean μ + ν and variance σ2

X + σ2
Y and we conclude

by Theorem1.9.

Moment Generating Functions

The moment generating function of a random variable X is the function ΦX :
R −→ R defined by

ΦX (t) = IE
[
et X

]
, t ∈ R,

provided that the expectation is finite. In particular, we have

IE[Xn] = ∂n

∂t
ΦX (0), n ≥ 1,

provided that IE[|X |n] < ∞, and

ΦX (t) = IE
[
et X

] =
∞∑

n=0

tn

n! IE[Xn],

provided that IE
[
et |X |] < ∞, t ∈ R, and for this reason the moment generating func-

tion GX characterizes the moments IE[Xn] of X : Ω −→ N, n ≥ 0.
The moment generating function ΦX of a random variable X with density f :

R −→ R+ satisfies

ΦX (t) =
∫ ∞

−∞
ext f (x)dx, t ∈ R.

Note that in probability we are using the bilateralmoment generating function trans-
form for which the integral is from −∞ to +∞.
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Probability Generating Functions

Consider
X : Ω −→ N ∪ {+∞}

a discrete random variable possibly taking infinite values. The probability generating
function of X is the function

GX :[−1, 1] −→ R

s �−→ GX (s)

defined by

GX (s) := IE
[
sX1{X<∞}

] =
∞∑

n=0

snP(X = n), −1 ≤ s ≤ 1. (1.7.3)

Note that the series summation in (1.7.3) is over the finite integers, which explains
the presence of the truncating indicator 1{X<∞} inside the expectation in (1.7.3). If
the random variable X : Ω −→ N is almost surely finite, i.e. P(X < ∞) = 1, we
simply have

GX (s) = IE
[
sX

] =
∞∑

n=0

snP(X = n), −1 ≤ s ≤ 1,

and for this reason the probability generating function GX characterizes the proba-
bility distribution P(X = n), n ≥ 0, of X : Ω −→ N.

Examples

(i) Poisson distribution. Consider a random variable X with probability generating
function

GX (s) = eλ(s−1), −1 ≤ s ≤ 1,

for some λ > 0. What is the distribution of X?

Using the exponential series (A.1) we have

GX (s) = eλ(s−1) = e−λ
∞∑

n=0

sn
λn

n! , −1 ≤ s ≤ 1, (1.7.4)

hence by identification with (1.7.3) we find

P(X = n) = e−λ λn

n! , n ∈ N,
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i.e. X has the Poisson distribution with parameter λ.
(ii) Geometric distribution. Given X a random variable with geometric distribution

P(X = n) = (1 − p)pn , n ∈ N, we have

GX (s) =
∞∑

n=0

snP(X = n) = (1 − p)
∞∑

n=0

sn pn = 1 − p

1 − ps
, −1 < s < 1,

where we applied the geometric series (A.3).

We note that from (1.7.3) we can write

GX (s) = IE[sX ], −1 < s < 1,

since sX = sX1{X<∞} when −1 < s < 1.

Properties of Probability Generating Functions

(i) Taking s = 1, we have

GX (1) =
∞∑

n=0

P(X = n) = P(X < ∞) = IE
[
1{X<∞}

]
,

hence

GX (1) = P(X < ∞).

(ii) Taking s = 0, we have

GX (0) = IE[0X ] = IE[1{X=0}] = P(X = 0),

since 00 = 1 and 0X = 1{X=0}, hence

GX (0) = P(X = 0). (1.7.5)

(iii) The derivative G ′
X (s) of GX (s) with respect to s satisfies

G ′
X (s) =

∞∑

n=1

nsn−1
P(X = n), −1 < s < 1,

hence, taking s := 1 we have
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G ′
X (1) = IE[X ] =

∞∑

k=0

kP(X = k),

provided that IE[X ] < ∞.

(iv) By computing the second derivative

G ′′
X (s) =

∞∑

k=2

k(k − 1)sk−2
P(X = k)

=
∞∑

k=0

k(k − 1)sk−2
P(X = k)

=
∞∑

k=0

k2sk−2
P(X = k) −

∞∑

k=0

ksk−2
P(X = k), −1 < s < 1,

we similarly find

G ′′
X (1) =

∞∑

k=0

k(k − 1)P(X = k)

=
∞∑

k=0

k2P(X = k) −
∞∑

k=0

kP(X = k)

= IE[X2] − IE[X ],

hence

Var[X ] = G ′′
X (1) + G ′

X (1)(1 − G ′
X (1)), (1.7.6)

provided that IE[X2] < ∞.
(v) When X : Ω −→ N and Y : Ω −→ N are two finite independent random vari-

ables we have

GX+Y (s) = IE
[
sX+Y

]
= IE

[
sX sY

]
= IE

[
sX

]
IE

[
sY

]
= GX (s)GY (s),

(1.7.7)

−1 ≤ s ≤ 1.
(vi) The probability generating function can also be used from (1.7.3) to recover

the distribution of the discrete random variable X as
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P(X = n) = 1

n!
∂n

∂sn
GX (s)|s=0, n ∈ N, (1.7.8)

extending (1.7.5) to all n ≥ 0.

Exercise: Show that the probability generating function of a Poisson random variable
X with parameter λ > 0 is given by

GX (s) = eλ(s−1), −1 ≤ s ≤ 1.

From the generating function we also recover the mean

IE[X ] = G ′
X (1) = λeλ(s−1)

|s=1 = λ,

of the Poisson random variable X with parameter λ, and its variance

Var[X ] = G ′′
X (1) + G ′

X (1) − (G ′
X (1))2

= λ2eλ(s−1)
|s=1 + λseλ(s−1)

|s=1 − λ2

= λ2 + λ − λ2 = λ,

by (1.7.6).

Exercises

Exercise 1.1 Consider a random variable X : Ω −→ N ∪ {∞} with distribution

P(X = k) = qpk, k ∈ N = {0, 1, 2, . . .},

where q ∈ [0, 1 − p] and 0 ≤ p < 1.

(a) Compute P(X < ∞) and P(X = ∞) by considering two cases, and give the
value of IE[X ] when 0 ≤ q < 1 − p.

(b) Assume that q = 1 − p and consider the random variable Y := r X for some
r > 0. ExplainwhyP(Y < ∞) = 1 and compute IE[Y ] by considering two cases
depending on the value of r > 0.

Exercise 1.2 Let N ∈ {1, 2, 3, 4, 5, 6} denote the integer random variable obtained
by tossing a six faced die and by noting the number on the upper side of the die.
Given the value of N , an independent, unbiased coin is thrown N times. We denote
by Z the total number of heads that appear in the process of throwing the coin N
times.
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(a) Using conditioning on the value of N ∈ {1, 2, 3, 4, 5, 6}, compute the mean and
the variance of the random variable Z .

(b) Determine the probability distribution of Z .
(c) Recover the result of Question (a) from the data of the probability distribution

computed in Question (b).

Exercise 1.3 Thinning of Poisson random variables. Given a random sample N of a
Poisson random variable with parameter λ, we perform a number N of independent
{0, 1}-valued Bernoulli experiments independent of N , each of them with parameter
p ∈ (0, 1). We let Z denote the total number of +1 outcomes occuring in the N
Bernoulli trials.

(a) Express Z as a random sum, and use this expression to compute the mean and
variance of Z .

(b) Compute the probability distribution of Z .
(c) Recover the result of Question (a) from the data of the probability distribution

computed in Question (b).

Exercise 1.4 Given X and Y two independent exponentially distributed random
variables with parameters λ and μ, show the relation

IE[min(X,Y ) | X < Y ] = 1

λ + μ
= IE[min(X,Y )]. (1.7.9)

Exercise 1.5 Given a random sample L of a gamma random variable with density

fL(x) = 1[0,∞)xe
−x ,

consider U a uniform random variable taking values in the interval [0, L] and let
V = L −U .
Compute the joint probability density function of the couple (U, V ) of random vari-
ables.

Exercise 1.6 Let X and Y denote two independent Poisson random variables with
parameters λ and μ.

(a) Show that the randomvariable X + Y has thePoisson distributionwith parameter
λ + μ.

(b) Compute the conditional distribution P(X = k | X + Y = n) given that X +
Y = n, for all k, n ∈ N.

(c) Assume that respective parameters of the distributions of X and Y are random,
independent, and chosen according to an exponential distributionwith parameter
θ > 0.

Give the probability distributions of X and Y , and compute the conditional
distribution P(X = k | X + Y = n) given that X + Y = n, for all k, n ∈ N.
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(d) Assume now that X and Y have same random parameter represented by a single
exponentially distributed random variable�with parameter θ > 0, independent
of X and Y .

Compute the conditional distribution P(X = k | X + Y = n) given that X +
Y = n, for all k, n ∈ N.

Exercise 1.7 A red pen and a green pen are put in a hat. A pen is chosen at random
in the hat, and replaced inside after it color has been noted.

• In case the pen is of red color, then a supplementary red pen is placed in the hat.
• On the other hand if the pen color is green, then another green pen is added.

After this first part of the experiment is completed, a second pen is chosen at random.
Determine the probability that the first drawn pen was red, given that the color of

the second pen chosen was red.

Exercise 1.8 A machine relies on the functioning of three parts, each of which
having a probability 1 − p of being under failure, and a probability p of functioning
correctly. All three parts are functioning independently of the others, and themachine
is working if and only if two at least of the parts are operating.

(a) Compute the probability that the machine is functioning.
(b) Suppose that themachine itself is set in a random environment in which the value

of the probability p becomes random. Precisely we assume that p is a uniform
random variable taking real values between 0 and 1, independently of the state
of the system.

Compute the probability that the machine operates in this random environment.



Chapter 2
Gambling Problems

This chapter consists in a detailed study of a fundamental example of random walk
that can only evolve by going up of down by one unit within the finite state space
{0, 1, . . . , S}. This allows us in particular to have a first look at the technique of first
step analysis that will be repeatedly used in the general framework ofMarkov chains,
particularly in Chap.5.

2.1 Constrained RandomWalk

To begin, let us repeat that this chapter on “gambling problems” is not primarily
designed to help a reader dealing with problem gambling, although some comments
on this topic are made of the end of Sect. 2.3.

We consider an amount $S of S dollars which is to be shared between two players
A and B. At each round, Player A may earn $1 with probability p ∈ (0, 1), and in
this case Player B loses $1. Conversely, Player A may lose $1 with probability q :=
1 − p, in which case Player B gains $1, and the successive rounds are independent.

We let Xn represent the wealth of Player A at time n ∈ N, while S − Xn represents
the wealth of Player B at time n ∈ N.

The initial wealth X0 of Player A could be negative, but for simplicity we will
assume that it is comprised between 0 and S. Assuming that the value of Xn , n ≥ 0,
belongs to {1, 2, . . . , S − 1} at the time step n, at the next step n + 1 we will have

Xn+1 =
{
Xn + 1 if Player A wins round n + 1,
Xn − 1 if Player B wins round n + 1.

Moreover, as soon as Xn hits one of the boundary points {0, S}, the process remains
frozen at that state over time, i.e.

© Springer Nature Singapore Pte Ltd. 2018
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n

Xn
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0
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Fig. 2.1 Sample path of a gambling process (Xn)n∈N

Xn = 0 =⇒ Xn+1 = 0 and Xn = S =⇒ Xn+1 = S,

i.e.

P(Xn+1 = 0 | Xn = 0) = 1 and P(Xn+1 = S | Xn = S) = 1, n ∈ N.

In other words, the game ends whenever the wealth of any of the two players reaches
$0, in which case the other player’s account contains $S (see Fig. 2.1).
Among the main issues of interest are:

• the probability that Player A (or B) gets eventually ruined,
• the mean duration of the game.

Wewill also be interested in the probability distribution of the random game duration
T , i.e. in the knowledge of P(T = n), n ≥ 0.

According to the above problem description, for all n ∈ N we have

P(Xn+1 = k + 1 | Xn = k) = p and P(Xn+1 = k − 1 | Xn = k) = q,

k = 1, 2, . . . , S − 1, and in this case the chain is said to be time homogeneous since
the transition probabilities do not depend on the time index n.

Since we do not focus on the behavior of the chain after it hits states 0 or S, the
probability distribution of Xn+1 given {Xn = 0} or {Xn = S} can be left unspecified.

The probability space Ω corresponding to this experiment could be taken as the
(uncountable) set

Ω := {−1,+1}N = {
ω = (ω0, ω1, . . .) : ωi = ±1, n ∈ N

}
,

with any elementω ∈ Ω represented by a countable sequence of+1or−1, depending
whether the process goes up or down at each time step. However, in the sequel we
will not focus on this particular expression of Ω .
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2.2 Ruin Probabilities

We are interested in the event

RA = “Player A loses all his capital at some time” =
⋃
n∈N

{Xn = 0}, (2.2.1)

and in computing the conditional probability

fS(k) := P(RA | X0 = k), k = 0, 1, . . . , S. (2.2.2)

Pathwise Analysis

First, let us note that the problem is easy to solve in the case S = 1, S = 2 and S = 3.

(i) S = 1.

In this case the boundary {0, 1} is reached from time 0 and we find

{
f1(0) = P(RA | X0 = 0) = 1,
f1(1) = P(RA | X0 = 1) = 0.

(2.2.3)

(ii) S = 2.

In this case we find
⎧⎨
⎩

f2(0) = P(RA | X0 = 0) = 1,
f2(1) = P(RA | X0 = 1) = q,

f2(2) = P(RA | X0 = 2) = 0.
(2.2.4)

(iii) S = 3.

The value of f2(1) = P(RA | X0 = 1) is computed by noting that starting from
state 1 , one can reach state 0 only by an odd number 2n + 1 of step, n ∈ N,
and that every such path decomposes into n + 1 independent downwards steps,
each of them having probability q, and n upwards steps, each of them with
probability p. By summation over n using the geometric series identity (A.3),
this yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f3(0) = P(RA | X0 = 0) = 1,

f3(1) = P(RA | X0 = 1) = q
∞∑
n=0

(pq)n = q

1 − pq
,

f3(2) = P(RA | X0 = 2) = q2
∞∑
n=0

(pq)n = q2

1 − pq
,

f3(3) = P(RA | X0 = 3) = 0.

(2.2.5)

https://doi.org/10.1007/978-981-13-0659-4


42 2 Gambling Problems

The value of f3(2) is computed similarly by considering n + 2 independent down-
wards steps, each of themwith probability q, and n upwards steps, each of themwith
probability p. Clearly, things become quite complicated for S ≥ 4, and increasingly
difficult as S gets larger.

First Step Analysis

The general case will be solved by the method of first step analysis, which will be
repeatedly applied to other Markov processes in Chaps. 3 and 5 and elsewhere.

Lemma 2.1 For all k = 1, 2, . . . , S − 1 we have

P(RA | X0 = k) = pP(RA | X0 = k + 1) + qP(RA | X0 = k − 1).

Proof The idea is to apply conditioning given the first transition from X0 to X1. For
all k = 1, 2, . . . , S − 1, by (1.2.1) we have

P(RA | X0 = k)

= P(RA and X1 = k + 1 | X0 = k) + P(RA and X1 = k − 1 | X0 = k)

= P(RA and X1 = k + 1 and X0 = k)

P(X0 = k)
+ P(RA and X1 = k − 1 and X0 = k)

P(X0 = k)

= P(RA and X1 = k + 1 and X0 = k)

P(X1 = k + 1 and X0 = k)
× P(X1 = k + 1 and X0 = k)

P(X0 = k)

+P(RA and X1 = k − 1 and X0 = k)

P(X1 = k − 1 and X0 = k)
× P(X1 = k − 1 and X0 = k)

P(X0 = k)
= P(RA | X1 = k + 1 and X0 = k)P(X1 = k + 1 | X0 = k)

+P(RA | X1 = k − 1 and X0 = k)P(X1 = k − 1 | X0 = k)

= pP(RA | X1 = k + 1 and X0 = k) + qP(RA | X1 = k − 1 and X0 = k)

= pP(RA | X0 = k + 1) + qP(RA | X0 = k − 1),

where we used Lemma 2.2 below on the last step. �

In the case S = 3, Lemma 2.1 shows that

⎧⎪⎪⎨
⎪⎪⎩

f3(0) = P(RA | X0 = 0) = 1,
f3(1) = p f3(2) + q f3(0) = p f3(2) + q = pq f3(1) + q,

f3(2) = p f3(3) + q f3(1) = q f3(1) = pq f3(2) + q2,

f3(3) = P(RA | X0 = 3) = 0,

which can be easily solved to recover the result of (2.2.5).
More generally, Lemma 2.1 shows that the function

fS : {0, 1, . . . , S} −→ [0, 1]

https://doi.org/10.1007/978-981-13-0659-4_3
https://doi.org/10.1007/978-981-13-0659-4_5
https://doi.org/10.1007/978-981-13-0659-4_1
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defined by (2.2.2) satisfies the linear equation1

f (k) = p f (k + 1) + q f (k − 1), k = 1, 2, . . . , S − 1, (2.2.6)

subject to the boundary conditions

fS(0) = P(RA | X0 = 0) = 1, (2.2.7)

and

fS(S) = P(RA | X0 = S) = 0, (2.2.8)

for k ∈ {0, S}. It can be easily checked that the expressions (2.2.3), (2.2.4) and (2.2.5)
do satisfy the above Eq. (2.2.6) and the boundary conditions (2.2.7) and (2.2.8).

Note that Lemma 2.1 is frequently stated without proof. The last step of the proof
stated above rely on the following lemma, which shows that the data of X1 entirely
determines the probability of the ruin event RA. In other words, the probability of
ruin depends only on the initial amount k owned by the gambler when he enters the
casino. Whether he enters the casino at time 1 with X1 = k ± 1 or at time 0 with
X0 = k ± 1 makes no difference on the ruin probability.

Lemma 2.2 For all k = 1, 2, . . . , S − 1 we have

P(RA | X1 = k ± 1 and X0 = k) = P(RA | X1 = k ± 1) = P(RA | X0 = k ± 1).

In other words, the ruin probability depends on the data of the starting point and not
on the starting time.

Proof This relation can be shown in various ways:

1. Descriptive proof (preferred): we note that given X1 = k + 1, the transition from
X0 to X1 has no influence on the future of the process after time 1, and the
probability of ruin starting at time 1 is the same as if the process is started at time
0.

2. Algebraic proof: first for 1 ≤ k ≤ S − 1 and k ± 1 ≥ 1, letting X̃0 := X1 − Z
where Z � X1 − X0 has same distribution as X1 − X0 and is independent of X1,
by (2.2.1) we have

1Due to the relation ( f + g)(k) = f (k) + g(k) we can check that if f and g are two solutions of
(2.2.6) then f + g is also a solution of (2.2.6), hence the equation is linear.
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P(RA | X1 = k ± 1 and X0 = k) = P

( ∞⋃
n=0

{Xn = 0}
∣∣∣X1 = k ± 1, X0 = k

)

=
P

(( ∞⋃
n=0

{Xn = 0}
)

∩ {X1 = k ± 1} ∩ {X0 = k}
)

P ({X1 = k ± 1} ∩ {X0 = k})

=
P

( ∞⋃
n=0

({Xn = 0} ∩ {X1 = k ± 1} ∩ {X0 = k})
)

P ({X1 = k ± 1} ∩ {X0 = k})

=
P

( ∞⋃
n=2

({Xn = 0} ∩ {X1 = k ± 1} ∩ {X0 = k})
)

P ({X1 = k ± 1} ∩ {X0 = k})

=
P

(( ∞⋃
n=2

{Xn = 0}
)

∩ {X1 = k ± 1} ∩ {X0 = k}
)

P ({X1 = k ± 1} ∩ {X0 = k})

=
P

(( ∞⋃
n=2

{Xn = 0}
)

∩ {X1 = k ± 1} ∩ {X1 − X̃0 = ±1}
)

P

(
{X1 = k ± 1} ∩ {X1 − X̃0 = ±1}

) (2.2.9)

=
P

(( ∞⋃
n=2

{Xn = 0}
)

∩ {X1 = k ± 1}
)
P

(
{X1 − X̃0 = ±1}

)

P ({X1 = k ± 1})P
(
{X1 − X̃0 = ±1}

) (2.2.10)

= P

( ∞⋃
n=2

{Xn = 0}
∣∣∣{X1 = k ± 1}

)

= P

( ∞⋃
n=1

{Xn = 0}
∣∣∣{X0 = k ± 1}

)

= P(RA | X0 = k ± 1),

otherwise if k = 1 we easily find that

P(RA | X1 = 0 and X0 = 1) = 1 = P(RA | X0 = 0),
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since {X1 = 0} ⊂ RA =
⋃
n∈N

{Xn = 0}. Note that when switching from (2.2.9) to

(2.2.10), using X̃0 := X1 − Z we regard the process increment starting from X1

as run backward in time.

�

In the remaining of this section we will prove that in the non-symmetric case p �= q
the solution of (2.26) is given by

fS(k) = P(RA | X0 = k) = (q/p)k − (q/p)S

1 − (q/p)S
= (p/q)S−k − 1

(p/q)S − 1
, (2.2.11)

k = 0, 1, . . . , S, and that in the symmetric case p = q = 1/2 the solution of (2.2.6)
is given by

fS(k) = P(RA | X0 = k) = S − k

S
= 1 − k

S
, (2.2.12)

k = 0, 1, . . . , S, cf. also Exercise 2.3 for a different derivation.
Remark that (2.2.11) and (2.2.12) do satisfy both boundary conditions (2.2.7) and

(2.2.8). When the number S of states becomes large we find that, for all k ≥ 0,

f∞(k) := lim
S→∞P(RA | X0 = k) =

⎧⎪⎪⎨
⎪⎪⎩

1 if q ≥ p,

(
q

p

)k

if p > q,

(2.2.13)

which represents the probability of hitting the origin starting from state k , cf. also
3.4.16 below and Exercise 3.2-(c) for a different derivation of this statement.

Exercise: Check that (2.2.11) agrees with (2.2.4) and (2.2.5) when S = 2 and S = 3.

In the graph of Fig. 2.2 the ruin probability (2.2.11) is plotted as a function of k
for p = 0.45 and q = 0.55.

We now turn to the solution of (2.2.6), for which we develop two different ap-
proaches (called here the “standard solution” and the “direct solution”) that both
recover (2.2.11) and (2.2.12).

https://doi.org/10.1007/978-981-13-0659-4_3
https://doi.org/10.1007/978-981-13-0659-4_3
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Fig. 2.2 Ruin probability f20(k) function of X0 = k ∈ [0, 20] for S = 20 and p = 0.45

Standard Solution Method

We decide to look for a solution of (2.2.6) of the form2

k �−→ f (k) = Cak, (2.2.14)

whereC and a are constants which will be determined from the boundary conditions
and from the Eq. (2.2.6), respectively.

Substituting (2.2.14) into (2.2.6) when C is non-zero yields the characteristic
equation

pa2 − a + q = p(a − 1)(a − q/p) = 0, (2.2.15)

of degree 2 in the unknown a, and this equation admits in general two solutions a1
and a2 given by

{a1, a2} =
{
1 + √

1 − 4pq

2p
,
1 − √

1 − 4pq

2p

}
=

{
1,

q

p

}
= {1, r},

for all p ∈ (0, 1], with
a1 = 1 and a2 = r = q

p
.

Note that we have a1 = a2 = 1 in case p = q = 1/2.

Non-symmetric Case: p �= q - Proof of (2.2.11)

In this case we have p �= q, i.e.3 r �= 1, and

f (k) = C1a
k
1 = C1 and f (k) = C2r

k

2Where did we get this idea? From intuition, experience, or empirically bymultiple trials and errors.
3From the Latin “id est” meaning “that is”.
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are both solutions of (2.2.6). Since (2.2.6) is linear, the sum of two solutions remains
a solution, hence the general solution of (2.2.6) is given by

fS(k) = C1a
k
1 + C2a

k
2 = C1 + C2r

k, k = 0, 1, . . . , S, (2.2.16)

where r = q/p and C1, C2 are two constants to be determined from the boundary
conditions.

From (2.2.7), (2.2.8) and (2.2.16) we have

⎧⎨
⎩

fS(0) = 1 = C1 + C2,

fS(S) = 0 = C1 + C2r S,
(2.2.17)

and solving the system (2.2.17) of two equations we find

C1 = − r S

1 − r S
and C2 = 1

1 − r S
,

which yields (2.2.11) as by (2.2.16) we have

fS(k) = C1 + C2r
k = rk − r S

1 − r S
= (q/p)k − (q/p)S

1 − (q/p)S
, k = 0, 1, . . . , S.

Symmetric Case: p=q=1/2 - Proof of (2.2.12)

In this case, Eq. (2.2.6) rewrites as

f (k) = 1

2
f (k + 1) + 1

2
f (k − 1), k = 1, 2, . . . , S − 1, (2.2.18)

and we have r = 1 (fair game) and (2.2.15) reads

a2 − 2a + 1 = (a − 1)2 = 0,

which has the unique solution a = 1, since the constant function f (k) = C is solution
of (2.2.6).

However this is not enough and we need to combine f (k) = C1 with a second
solution. Noting that g(k) = C2k is also solution of (2.2.6), the general solution is
found to have the form

fS(k) = f (k) + g(k) = C1 + C2k. (2.2.19)

From (2.2.7), (2.2.8) and (2.2.19) we have

⎧⎨
⎩

fS(0) = 1 = C1,

fS(S) = 0 = C1 + C2S,

(2.2.20)
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and solving the system (2.2.20) of two equations we find

C1 = 1 and C2 = −1/S,

which yields the quite intuitive solution

fS(k) = P(RA | X0 = k) = S − k

S
= 1 − k

S
, k = 0, 1, . . . , S. (2.2.21)

Direct Solution Method

Noting that p + q = 1 and due to its special form, we can rewrite (2.2.6) as

(p + q) fS(k) = p fS(k + 1) + q fS(k − 1),

k = 1, 2, . . . , S − 1, i.e. as the difference equation

p( fS(k + 1) − fS(k)) − q( fS(k) − fS(k − 1)) = 0, (2.2.22)

k = 1, 2, . . . , S − 1, which rewrites as

fS(k + 1) − fS(k) = q

p
( fS(k) − fS(k − 1)), k = 1, 2, . . . , S − 1,

hence for k = 1,

fS(2) − fS(1) = q

p
( fS(1) − fS(0)),

and for k = 2,

fS(3) − fS(2) = q

p
( fS(2) − fS(1)) =

(
q

p

)2

( fS(1) − fS(0)),

and following by induction on k we can show that

fS(k + 1) − fS(k) =
(
q

p

)k

( fS(1) − fS(0)), (2.2.23)

k = 0, 1, . . . , S − 1. Next, by the telescoping sum

fS(n) = fS(0) +
n−1∑
k=0

( fS(k + 1) − fS(k)),

Relation (2.2.23) implies

fS(n) = fS(0) + ( fS(1) − fS(0))
n−1∑
k=0

(
q

p

)k

, (2.2.24)
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n = 1, 2, . . . , S − 1. The remaining question is how to find fS(1) − fS(0), knowing
that fS(0) = 1 by (2.2.7).

Non-symmetric Case: p �= q

In this case we have r = q/p �= 1 and we get

fS(n) = fS(0) + ( fS(1) − fS(0))
n−1∑
k=0

rk

= fS(0) + 1 − rn

1 − r
( fS(1) − fS(0)), (2.2.25)

n = 1, 2, . . . , S − 1, where we used (A.2).
Conditions (2.2.7) and (2.2.8) show that

0 = fS(S) = 1 + 1 − r S

1 − r
( fS(1) − fS(0)),

hence

fS(1) − fS(0) = − 1 − r

1 − r S
,

and combining this relation with (2.2.25) yields

fS(n) = fS(0) − 1 − rn

1 − r S
= 1 − 1 − rn

1 − r S
= rn − r S

1 − r S
,

n = 0, 1, . . . , S, which recovers (2.2.11).

Symmetric Case: p = q = 1/2

In this case we have r = 1 and in order to solve (2.2.18) we note that (2.2.22) simply
becomes

fS(k + 1) − fS(k) = fS(1) − fS(0), k = 0, 1, . . . , S − 1,

and (2.2.24) reads

fS(n) = fS(0) + n( fS(1) − fS(0)), n = 1, 2, . . . , S − 1,

which has the form (2.2.19). Then the conditions fS(0) = 1 and fS(S) = 0, cf. (2.2.7)
and (2.2.8), yield

0 = fS(S) = 1 + S( fS(1) − fS(0)), hence fS(1) − fS(0) = − 1

S
,

https://doi.org/10.1007/978-981-13-0659-4
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and

fS(n) = fS(0) − n

S
= 1 − n

S
= S − n

S
,

n = 0, 1, . . . , S, which coincides with (2.2.21).

Remark 2.3 Note that when p = q = 1/2, (2.2.22) can be read as a discretization
of the continuous Laplace equation as

∂2 f

∂x2
(x) � ∂ f

∂x
(x + 1/2) − ∂ f

∂x
(x − 1/2)

� ( f (x + 1) − f (x) − ( f (x) − f (x − 1)))

= 0, x ∈ R, (2.2.26)

which admits a solution of the form

f (x) = f (0) + x f ′(0) = f (0) + x( f (1) − f (0)), x ∈ R,

showing the intuition behind the linear form of (2.2.19).

In order to compute the probability of ruin of Player B given that X0 = k we
only need to swap k to S − k and to exchange p and q in (2.2.11). In other words,
when X0 = k then Player B starts with an initial amount S − k and a probability q
of winning each round, which by (2.2.11) yields

P(RB | X0 = k) = (p/q)S−k − (p/q)S

1 − (p/q)S
= 1 − (q/p)k

1 − (q/p)S
if p �= q, (2.2.27)

where

RB := “Player B loses all his capital at some time” =
⋃
n∈N

{Xn = S}.

In the symmetric case p = q = 1/2 we similarly find

P(RB | X0 = k) = k

S
, k = 0, 1, . . . , S, if p = q = 1

2
, (2.2.28)

cf. also Exercise 2.3 below.
Note that (2.2.27) and (2.2.28) satisfy the expected boundary conditions

P(RB | X0 = 0) = 0 and P(RB | X0 = S) = 1,

since X0 represents the wealth of Player A at time 0.
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By (2.2.11) and (2.2.27) we can check that4

P(RA ∪ RB | X0 = k) = P(RA | X0 = k) + P(RB | X0 = k)

= (q/p)k − (q/p)S

1 − (q/p)S
+ 1 − (q/p)k

1 − (q/p)S

= 1, k = 0, 1, . . . , S, (2.2.29)

which means that eventually one of the two players has to lose the game. This means
in particular that, with probability one, the game cannot continue endlessly.

In other words, we have

P(Rc
A ∩ Rc

B | X0 = k) = 0, k = 0, 1, . . . , S.

In the particular case S = 3 we can indeed check by (1.2.4) that, taking

An :=
n⋂

k=1

{
X2k−1 = 1 and X2k = 2

}
, n ≥ 1,

the sequence (An)n≥1 is nonincreasing, hence

P

(⋂
n≥1

{
X2n−1 = 1 and X2n = 2

}∣∣∣X0 = 2

)

= P

(⋂
n≥1

n⋂
k=1

{
X2k−1 = 1 and X2k = 2

}∣∣∣X0 = 2

)

= lim
n→∞P

(
n⋂

k=1

{
X2k−1 = 1 and X2k = 2

}∣∣∣X0 = 2

)

= p lim
n→∞(pq)n = 0,

since we always have 0 ≤ pq < 1, and where we used (1.2.4). However, this is a
priori not completely obvious when S ≥ 4.

When the number S of states becomes large, (2.2.7) also shows that for all k ≥ 0
we have

lim
S→∞P(RB | X0 = k) =

⎧⎪⎪⎨
⎪⎪⎩

0 if p ≤ q,

1 −
(
q

p

)k

if p > q,

which represents the complement of the probability (2.2.13) of hitting the origin
starting from state k , and is the probability that the process (Xn)n∈N “escapes to
infinity”.

4Exercise: check by hand computation that the equality to 1 holds as stated.

https://doi.org/10.1007/978-981-13-0659-4_1
https://doi.org/10.1007/978-981-13-0659-4_1
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Fig. 2.3 Ruin probability as a function of p ∈ [0, 1] for S = 20 and k = 10

In Fig. 2.3 above the ruin probability (2.2.11) is plotted as a function of p for
S = 20 and k = 10.

Gambling machines in casinos are computer controlled andmost countries permit
by law a certain degree of “unfairness” (see the notions of “payout percentage” or
“return to player”) by taking p < 1/2 in order to allow the house tomake an income.5

Interestingly, we can note that taking e.g. p = 0.45 < 1/2 gives a ruin probability

P(RA | X0 = 10) = 0.8815,

almost equal to 90%, which means that the slightly unfair probability p = 0.45 at
the level of each round translates into a probability of only 0.1185 � %12 of finally
winning the game, i.e. a division by 4 from 0.45, although the average proportion of
winning rounds is still 45%.

Hence a “slightly unfair” game on each round can become devastatingly unfair
in the long run. Most (but not all) gamblers are aware that gambling machines are
slightly unfair, however most people would intuitively believe that a small degree
of unfairness on each round should only translate into a reasonably low degree of
unfairness in the long run.

2.3 Mean Game Duration

Let now
T0,S = inf{n ≥ 0 : Xn = 0 or Xn = S}

denote the time6 until any of the states 0 or S are reached by (Xn)n∈N, with T0,S = ∞
in case neither states are ever reached, i.e. when there exists no integer n ≥ 0 such
that Xn = 0 or Xn = S (see Fig. 2.4).

5In this game, the payout is $2 and the payout percentage is 2p.
6The notation “inf” stands for “infimum”, meaning the smallest n ≥ 0 such that Xn = 0 or Xn = S,
if such an n exists.
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Fig. 2.4 Sample paths of a gambling process (Xn)n∈N

Note that by (2.2.29) we have

P(T0,S < ∞ | X0 = k) = P(RA ∪ RB | X0 = k) = 1, k = 0, 1, . . . , S.

and therefore

P(T0,S = ∞ | X0 = k) = 0, k = 0, 1, . . . , S.

We are now interested in computing the expected duration

hS(k) := IE[T0,S | X0 = k]

of the game given that Player A starts with a wealth equal to X0 = k ∈ {0, 1, . . . , S}.
Clearly, we have the boundary conditions

{
hS(0) = IE[T0,S | X0 = 0] = 0, (2.3.1a)

hS(S) = IE[T0,S | X0 = S] = 0. (2.3.1b)

We start by considering the particular cases S = 2 and S = 3.

(i) S = 2.

We have

T0,2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if X0 = 0,

1 if X0 = 1,

0 if X0 = 2,

thus T0,2 is deterministic given the value of X0 and we simply have h2(1) =
T0,2 = 1 when X0 = 1.
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(ii) S = 3.

In this case the probability distribution of T0,3 given X0 ∈ {0, 1, 2, 3} can be
determined explicitly and we find, when X0 = 1,

⎧⎨
⎩
P(T0,3 = 2k | X0 = 1) = p2(pq)k−1, k ≥ 1,

P(T0,3 = 2k + 1 | X0 = 1) = q(pq)k, k ≥ 0,

since in an even number 2k of stepswe can only exit through state 3 after starting
from 1 , while in an odd number 2k + 1 of steps we can only exit through state
0 . By exchanging p with q in the above formulas we get, when X0 = 2,

⎧⎨
⎩
P(T0,3 = 2k | X0 = 2) = q2(pq)k−1, k ≥ 1,

P(T0,3 = 2k + 1 | X0 = 2) = p(pq)k, k ≥ 0,

whereas T0,3 = 0 whenever X0 = 0 or X0 = 3.
As a consequence, we can directly compute

h3(2) = IE[T0,3 | X0 = 2] = 2
∞∑
k=1

kP(T0,3 = 2k | X0 = 2)

+
∞∑
k=0

(2k + 1)P(T0,3 = 2k + 1 | X0 = 2)

= 2q2
∞∑
k=1

k(pq)k−1 + p
∞∑
k=0

(2k + 1)(pq)k

= 2q2

(1 − pq)2
+ 2p2q

(1 − pq)2
+ p

1 − pq

= 2q2 + p + qp2

(1 − pq)2

= 1 + q

1 − pq
, (2.3.2)

where we applied (A.4), and by exchanging p and q we get

h3(1) = IE[T0,3 | X0 = 1] = 2p2 + q + pq2

(1 − pq)2
= 1 + p

1 − pq
. (2.3.3)

Again, things can become quite complicated for S ≥ 4, and increasingly difficult
when S becomes larger.

https://doi.org/10.1007/978-981-13-0659-4
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In the general case S ≥ 4 we will only compute the conditional expectation of
T0,S and not its probability distribution. For this we rely again on first step analysis,
as stated in the following lemma.

Lemma 2.4 For all k = 1, 2, . . . , S − 1 we have

IE[T0,S | X0 = k] = 1 + p IE[T0,S | X0 = k + 1] + q IE[T0,S | X0 = k − 1].

Proof We condition on the first transition from X0 to X1. Using the equality 1A =
1A∩B + 1A∩Bc under the form

1{X0=k} = 1{X1=k+1,X0=k} + 1{X1=k−1,X0=k},

cf. (1.4.2), and conditional expectations we show, by first step analysis, that for all
k = 1, 2, . . . , S − 1, applying Lemma 1.4 and (1.6.6) successively to A = {X0 = k},
A = {X0 = k − 1} and A = {X0 = k + 1}, we have

IE[T0,S | X0 = k] = 1

P(X0 = k)
IE

[
T0,S1{X0=k}

]

= 1

P(X0 = k)

(
IE

[
T0,S1{X1=k+1,X0=k}

] + IE
[
T0,S1{X1=k−1,X0=k}

])

= P(X1 = k + 1 and X0 = k)

P(X0 = k)
IE[T0,S | X1 = k + 1, X0 = k]

+P(X1 = k − 1 and X0 = k)

P(X0 = k)
IE[T0,S | X1 = k − 1, X0 = k]

= P(X1 = k + 1 | X0 = k) IE[T0,S | X1 = k + 1, X0 = k]
+P(X1 = k − 1 | X0 = k) IE[T0,S | X1 = k − 1, X0 = k]

= p IE[T0,S | X1 = k + 1, X0 = k] + q IE[T0,S | X1 = k − 1, X0 = k] (2.3.4)

= p IE[T0,S + 1 | X0 = k + 1, X−1 = k] + q IE[T0,S + 1 | X0 = k − 1, X−1 = k]
(2.3.5)

= p IE[T0,S + 1 | X0 = k + 1] + q IE[T0,S + 1 | X0 = k − 1]
= p(1 + IE[T0,S | X0 = k + 1]) + q(1 + IE[T0,S | X0 = k − 1])
= p + q + p IE[T0,S | X0 = k + 1] + q IE[T0,S | X0 = k − 1]
= 1 + p IE[T0,S | X0 = k + 1] + q IE[T0,S | X0 = k − 1].

From (2.3.4) to (2.3.5) we relabelled X1 as X0, which amounts to changing T0,S − 1
into T0,S , or equivalently changing T0,S into T0,S + 1. �

https://doi.org/10.1007/978-981-13-0659-4_1
https://doi.org/10.1007/978-981-13-0659-4_1
https://doi.org/10.1007/978-981-13-0659-4_1
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In the case S = 3, Lemma 2.4 shows that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

h3(0) = IE[T0,S | X0 = 0] = 0,

h3(1) = 1 + ph3(2) + qh3(0) = 1 + ph3(2) = 1 + p(1 + qh3(1)) = 1 + p + pqh3(1),

h3(2) = 1 + ph3(3) + qh3(1) = 1 + qh3(1) = 1 + q(1 + ph3(2)) = 1 + q + pqh3(2),

h3(3) = IE[T0,S | X0 = 3] = 0,

which can be solved to recover the result of (2.3.2), (2.3.3).
More generally, defining the function hS : {0, 1, . . . , S} −→ R+ by

hS(k) := IE[T0,S | X0 = k], k = 0, 1, . . . , S,

Lemma 2.4 shows that

hS(k) = p(1 + hS(k + 1)) + q(1 + hS(k − 1)) = 1 + phS(k + 1) + qhS(k − 1),

k = 1, 2, . . . , S − 1, i.e. we have to solve the equation

⎧⎨
⎩
h(k) = 1 + ph(k + 1) + qh(k − 1), k = 1, 2, . . . , S − 1,

h(0) = h(S) = 0,
(2.3.6)

for the function h(k). Using the fact that p + q = 1, we can rewrite (2.3.6) as

(p + q)h(k) = 1 + ph(k + 1) + qh(k − 1), k = 1, 2, . . . , S − 1,

or as the difference equation

p(h(k + 1) − h(k)) − q(h(k) − h(k − 1)) = −1, k = 1, 2, . . . , S − 1,
(2.3.7)

under the boundary conditions (2.3.1a) and (2.3.1b).
The equation

p( f (k + 1) − f (k)) − q( f (k) − f (k − 1)) = 0, k = 1, 2, . . . , S − 1,
(2.3.8)

cf. (2.2.22), is called the homogeneous equation associated to (2.3.7).
We will use the following fact:

The general solution to (2.3.7) can be written as the sum of a homogeneous
solution of (2.3.8) and a particular solution of (2.3.7).
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Non-symmetric Case: p �= q

By (2.2.16) we know that the homogeneous solution of (2.3.8) is of the form C1 +
C2rk . Next, searching for a particular solution of (2.3.7) of the form k �−→ Ck
shows that C has to be equal to C = 1/(q − p). Therefore, when r = q/p �= 1, the
general solution of (2.3.7) has the form

hS(k) = C1 + C2r
k + 1

q − p
k. (2.3.9)

From the boundary conditions (2.3.1a) and (2.3.1b) and from (2.3.9) we have

⎧⎪⎪⎨
⎪⎪⎩
hS(0) = 0 = C1 + C2,

hS(S) = 0 = C1 + C2r
S + 1

q − p
S,

(2.3.10)

and solving the system (2.3.10) of two equations we find

C1 = − S

(q − p)(1 − r S)
and C2 = S

(q − p)(1 − r S)
,

hence from (2.3.9) we get

hS(k) = IE[T0,S | X0 = k] = 1

q − p

(
k − S

1 − (q/p)k

1 − (q/p)S

)
(2.3.11)

= 1

q − p
(k − SP(RB | X0 = k)) , k = 0, 1, 2, . . . , S,

which does satisfy the boundary conditions (2.3.1a) and (2.3.1b). Note that changing
k to S − k and p to q does not modify (2.3.11), as it also represents the mean game
duration for Player B.

When p = 1, i.e. r = 0, we can check easily that e.g. hS(k) = S − k, k =
0, 1, 2, . . . , S. On the other hand, when the number S of states becomes large, we
find that for all k ≥ 1,

h∞(k) := lim
S→∞ hS(k) = lim

S→∞ IE[T0,S | X0 = k] =

⎧⎪⎪⎨
⎪⎪⎩

∞ if q ≤ p,

k

q − p
if q > p,

(2.3.12)

with h∞(0) = 0, cf. also the symmetric case treated below when p = q = 1/2. In
particular, for k ≥ 1 we have



58 2 Gambling Problems

Fig. 2.5 Mean game duration h20(k) as a function of X0 = k ∈ [0, 20] for p = 0.45

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P(T0 < ∞ | X0 = k) < 1 and IE[T0 = ∞ | X0 = k] = ∞, p > q,

P(T0 < ∞ | X0 = k) = 1 and IE[T0 = ∞ | X0 = k] = ∞, p = q = 1

2
,

P(T0 < ∞ | X0 = k) = 1 and IE[T0 = ∞ | X0 = k] < ∞, p < q.

When r = q/p ≤ 1, this yields an example of a random variable T0 which is (almost
surely7) finite, while its expectation is infinite.8 This situation is similar to that of the
St. Petersburg paradox as in (1.6.5).

It is easy to show that (2.3.11) yields h2(1) = 1when S = 2.When S = 3, (2.3.11)
shows that, using the relation p + q = 1,9

IE[T0,3 | X0 = 1] = 1

q − p

(
1 − 3

1 − q/p

1 − (q/p)3

)
= 1 + p

1 − pq
, (2.3.13)

and

IE[T0,3 | X0 = 2] = 1

q − p

(
2 − 3

1 − (q/p)2

1 − (q/p)3

)
= 1 + q

1 − pq
, (2.3.14)

however it takes more time to show that (2.3.13) and (2.3.14) agree respectively with
(2.3.2) and (2.3.3). In Fig. 2.5 below the mean game duration (2.3.11) is plotted as a
function of k for p = 0.45.

Symmetric Case: p = q = 1/2

In this case (fair game) the homogeneous solution of (2.3.8) is C1 + C2k, given by
(2.2.19).

7“Almost surely” means “with probability 1”.
8Recall that an infinite set of finite data values may have an infinite average.
9This point is left as exercise.

https://doi.org/10.1007/978-981-13-0659-4_1
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Since r = 1we see that k �−→ Ck can no longer be a particular solution of (2.3.7).
However we can search for a particular solution of the form k �−→ Ck2, in which
case we find that C has to be equal to C = −1.

Therefore when r = q/p = 1 the general solution of (2.3.7) has the form

hS(k) = C1 + C2k − k2, k = 0, 1, 2, . . . , S. (2.3.15)

From the boundary conditions (2.3.1a) and (2.3.1b) and from (2.3.15) we have

⎧⎨
⎩
hS(0) = 0 = C1,

hS(S) = 0 = C1 + C2S − S2,
(2.3.16)

and solving the above system (2.3.16) of two equations yields

C1 = 0 and C2 = S,

hence from (2.3.15) we get

hS(k) = IE[T0,S | X0 = k] = k(S − k), k = 0, 1, 2, . . . , S,

(2.3.17)

which does satisfy the boundary conditions (2.3.1a) and (2.3.1b) and coincides with
(2.3.12) when S goes to infinity.

We note that for all values of p the expectation IE[T0,S | X0 = k] has a finite
value, which shows that the game duration T0,S is finite with probability one for all
k = 0, 1, . . . , S, i.e. P(T0,S = ∞ | X0 = k) = 0 for all k = 0, 1, . . . , S.

Remark 2.5 When r = 1, by the same argument as in (2.2.26) we find that (2.3.7)
is a discretization of the continuous Laplace equation

1

2

∂2 f

∂x2
(x) = −1, x ∈ R,

which has for solution

f (x) = f (0) + x f ′(0) − x2, x ∈ R.

Note that (2.3.17) can also be recovered from (2.3.11) by letting p go to 1/2. In
the next Fig. 2.6 the expected game duration (2.3.11) is plotted as a function of p for
S = 20 and k = 10.
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Fig. 2.6 Mean game duration as a function of p ∈ [0, 1] for S = 20 and k = 10

As expected, the duration will be maximal in a fair game for p = q = 1/2. On
the other hand, it always takes exactly 10 = S − k = k steps to end the game in case
p = 0 or p = 1, in which case there is no randomness. When p = 0.45 the expected
duration of the game becomes 76.3, which represents only a drop of 24% from the
“fair” value 100, as opposed to the 73% drop noticed above in terms of winning
probabilities. Thus, a game with p = 0.45 is only slightly shorter than a fair game,
whereas the probability of winning the game drops down to 0.12.

Remark 2.6 In this chapter we have noticed an interesting connection between anal-
ysis and probability. That is, a probabilistic quantity such as k �−→ P(RA | X0 = k)
or k �−→ IE[T0,S | X0 = k] can be shown to satisfy a difference equation which is
solved by analytic methods. This fact actually extends beyond the present simple
framework, and in continuous time it yields other connections between probability
and partial differential equations.

In the next chapter we will consider a family of simple random walks which can
be seen as “unrestricted” gambling processes.

Exercises

Exercise 2.1 Weconsider a gambling problemwith the possibility of a draw,10 i.e. at
time n the gain Xn of Player A can increase by one unit with probability r ∈ (0, 1/2],
decrease by one unit with probability r , or remain stable with probability 1 − 2r . We
let

f (k) := P(RA | X0 = k)

denote the probability of ruin of Player A, and let

h(k) := IE[T0,S | X0 = k]

10Also called “lazy random walk”.
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denote the expectation of the game duration T0,S starting from X0 = k, k = 0, 1,
. . . , S.

(a) Using first step analysis, write down the difference equation satisfied by f (k)
and its boundary conditions, k = 0, 1, . . . , S. We refer to this equation as the
homogeneous equation.

(b) Solve the homogeneous equation of Question (a) by your preferred method. Is
this solution compatible with your intuition of the problem? Why?

(c) Using first step analysis, write down the difference equation satisfied by h(k)
and its boundary conditions, k = 0, 1, . . . , S.

(d) Find a particular solution of the equation of Question (c).
(e) Solve the equation of Question (c).

Hint: recall that the general solution of the equation is the sum of a particular
solution and a solution of the homogeneous equation.

(f) How does the mean duration h(k) behave as r goes to zero? Is this solution
compatible with your intuition of the problem? Why?

Exercise 2.2 Recall that for any standard gambling process (Zk)k∈N on a state space
{a, a + 1, . . . , b − 1, b} with absorption at states a and b and probabilities p �= q
of moving by±1, the probability of hitting state a before hitting state b after starting
from state Z0 = k ∈ {a, a + 1, . . . , b − 1, b} is given by

1 − (p/q)b−k

1 − (p/q)b−a
. (2.3.18)

In questions (a), (b), (c) below we consider a gambling process (Xk)k∈N on the state
space {0, 1, . . . , S} with absorption at 0 and S and probabilities p �= q of moving
by ±1.

(a) Using Relation (2.3.18), give the probability of coming back in finite time to a
given state m ∈ {1, 2, . . . , S − 1} after starting from X0 = k ∈ {m + 1, . . . , S}.

(b) Using Relation (2.3.18), give the probability of coming back in finite time to the
given statem ∈ {1, 2, . . . , S − 1} after starting from X0 = k ∈ {0, 1, , . . . ,m −
1}.

(c) Using first step analysis, give the probability of coming back to state m in finite
time after starting from X0 = m.

(d) Using first step analysis, compute the mean time to either come back to m of
reach any of the two boundaries {0, S}, whichever comes first?

(e) Repeat the above questions (c), (d) with equal probabilities p = q = 1/2, in
which case the probability of hitting state a before hitting state b after starting
from state Z0 = k is given by

b − k

b − a
, k = a, a + 1, . . . , b − 1, b. (2.3.19)
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Exercise 2.3 Consider a gambling process (Xn)n∈N on the state space S = {0, 1,
. . . , S}, with probability p, resp. q, of moving up, resp. down, at each time step. For
k = 0, 1, . . . , S, let τk denote the first hitting time

τk := inf{n ≥ 0 : Xn = k}.

of state k by the process (Xn)n∈N, and let

pk := P(τk+1 < τ0 | X0 = k), k = 0, 1, . . . , S − 1,

denote the probability of hitting state
�

�

�

�

k+1 before hitting state 0 .

(a) Show that pk = P(τk+1 < τ0 | X0 = k) satisfies the recurrence equation

pk = p + qpk−1 pk, k = 1, 2, . . . , S − 1, (2.3.20)

i.e.
pk = p

1 − qpk−1
, k = 1, 2, . . . , S − 1.

(b) Check by substitution that the solution of (2.3.20) is given by

pk = 1 − (q/p)k

1 − (q/p)k+1
, k = 0, 1, . . . , S − 1. (2.3.21)

(c) Compute P(τS < τ0 | X0 = k) by a product formula and recover (2.2.11) and
(2.2.27) based on the result of part (2.3.21).

(d) Show that (2.2.12) and (2.2.28) can be recovered in a similar way in the sym-
metric case p = q = 1/2 by trying the solution pk = k/(k + 1), k = 0, 1, . . . ,
S − 1.

Exercise 2.4 Consider a gambling process (Xn)n∈N on the state space {0, 1, 2}, with
transition probabilities given by

⎡
⎢⎣
P(X1 = 0 | X0 = 0) P(X1 = 1 | X0 = 0) P(X1 = 2 | X0 = 0)

P(X1 = 0 | X0 = 1) P(X1 = 1 | X0 = 1) P(X1 = 2 | X0 = 1)

P(X1 = 0 | X0 = 2) P(X1 = 1 | X0 = 2) P(X1 = 2 | X0 = 2)

⎤
⎥⎦

=
⎡
⎢⎣

0 1 2

0 q p 0

1 q 0 p

2 0 0 1

⎤
⎥⎦,
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where 0 < p < 1 and q = 1 − p. In this game, Player A is allowed to “rebound”
from state 0 to state 1 with probability p, and state 2 is absorbing.

In order to be ruined, Player A has to visit state 0 twice. Let

f (k) := P(RA | X0 = k), k = 0, 1, 2,

denote the probability of ruin of Player A starting from k = 0, 1, 2. Starting from 0

counts as one visit to 0 .

(a) Compute the boundary condition f (0) using pathwise analysis.
(b) Give the value of the boundary condition f (2), and compute f (1) by first step

analysis.

Exercise 2.5 (a) Recover (2.3.17) from (2.3.11) by letting p go to 1/2, i.e. when
r = q/p goes to 1.

(b) Recover (2.2.21) from (2.2.11) by letting p go to 1/2, i.e. when r = q/p goes
to 1.

Exercise 2.6 Extend the setting of Exercise 2.1 to a non-symmetric gambling pro-
cess with draw and respective probabilities α > 0, β > 0, and 1 − α − β > 0 of
increase, decrease, and draw. Compute the ruin probability f (k) and the mean game
duration h(k) in this extended framework. Check that when α = β ∈ (0, 1/2) we
recover the result of Exercise 2.1.

Problem 2.7 We consider a discrete-time process (Xn)n≥0 that models the wealth
of a gambler within {0, 1, . . . , S}, with the transition probabilities

⎧⎨
⎩
P(Xn+1 = k + 1 | Xn = k) = p, k = 0, 1, . . . , S − 1,

P(Xn+1 = k − 1 | Xn = k) = q, k = 1, 2, . . . , S,

and
P(Xn+1 = 0 | Xn = 0) = q,

for all n ∈ N = {0, 1, 2, . . .}, where q = 1 − p and p ∈ (0, 1]. In this model the
gambler is given a second chance, and may be allowed to “rebound” after reaching
0. Let

W =
⋃
n∈N

{Xn = S}

denote the event that the player eventually wins the game.

(a) Let
g(k) := P(W | X0 = k)

denote the probability that the player eventually wins after starting from state
k ∈ {0, 1, . . . , S}. Using first step analysis, write down the difference equations
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satisfied by g(k), k = 0, 1, . . . , S − 1, and their boundary condition(s), which
may not be given in explicit form. This question is standard, however one has to
pay attention to the special behavior of the process at state 0.

(b) Obtain P(W | X0 = k) for all k = 0, 1, . . . , S as the unique solution to the sys-
tem of equations stated in Question (a). The answer to this question is very
simple and can be obtained through intuition. However, a (mathematical) proof
is required.

(c) Let
TS = inf{n ≥ 0 : Xn = S}

denote the first hitting time of S by the process (Xn)n≥0. Let

h(k) := IE[TS | X0 = k]

denote the expected time until the gambler wins after starting from state
k ∈ {0, 1, . . . , S}. Using first step analysis, write down the difference equations
satisfied by h(k) for k = 0, 1, . . . , S − 1, and state the corresponding boundary
condition(s). Again, one has to pay attention to the special behavior of the pro-
cess at state 0, as the equation obtained by first step analysis for h(0) will take
a particular form and can be viewed as a second boundary condition.

(d) Compute IE[TS | X0 = k] for all k = 0, 1, . . . , S by solving the equations of
Question (c).

This question is more difficult than Question (b), and it could be skipped at first
reading since its result is not used in the sequel. One can solve the homogeneous
equation for k = 1, 2, . . . , S − 1 using the results of Sect. 2.3, and a particular
solution can be found by observing that here we consider the time until Player
A (not B) wins. As usual, the cases p �= q and p = q = 1/2 have to be consid-
ered separately at some point. The formula obtained for p = 1 should be quite
intuitive and may help you check your result.

(e) Let now
T0 = inf{n ≥ 0 : Xn = 0}

denote the first hitting time of 0 by the process (Xn)n≥0. Using the results of
Sect. 2.2 for the ruin of Player B, write down the value of

pk := P(TS < T0 | X0 = k)

as a function of p, S, and k = 0, 1, . . . , S.

Note that according to the notation of this chapter, {TS < T0} denotes the event
“Player A wins the game”.
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(f) Explain why the equality

P(TS < T0 | X1 =k + 1 and X0 = k) = P(TS < T0 | X1 = k + 1)

= P(TS < T0 | X0 = k + 1). (2.3.22)

holds for k ∈ {0, 1, . . . , S − 1} (an explanation in words will be sufficient here).
(g) Using Relation (2.3.22), show that the probability

P(X1 = k + 1 | X0 = k and TS < T0)

of an upward step given that state S is reached first, is equal to

P(X1 = k + 1 | X0 = k and TS < T0) = p
P(TS < T0 | X0 = k + 1)

P(TS < T0 | X0 = k)
= p

pk+1

pk
, (2.3.23)

k = 1, 2, . . . , S − 1, to be computed explicitly from the result of Question (e).
How does this probability compare to the value of p?
No particular difficulty here, the proof should be a straightforward application
of the definition of conditional probabilities.

(h) Compute the probability

P(X1 = k − 1 | X0 = k and T0 < TS), k = 1, 2, . . . , S,

of a downward step given that state 0 is reached first, using similar arguments
to Question (g).

(i) Let
h(k) = IE[TS | X0 = k, TS < T0], k = 1, 2, . . . , S,

denote the expected time until the player wins, given that state 0 is never reached.
Using the transition probabilities (2.3.23), state the finite difference equations
satisfied by h(k), k = 1, 2, . . . , S − 1, and their boundary condition(s).
The derivation of the equation is standard, but you have to make a careful use of
conditional transition probabilities given {TS < T0}. There is an issue onwhether
and how h(0) should appear in the system of equations, but this point can actually
be solved.

(j) Solve the equation of Question (i) when p = 1/2 and compute h(k) for k =
1, 2, . . . , S. What can be said of h(0)?

There is actually a way to transform this equation using an homogeneous equa-
tion already solved in Sect. 2.3.

Problem 2.8 Let S ≥ 1. We consider a discrete-time process (Xn)n≥0 that models
the wealth of a gambler within {0, 1, . . . , S}, with the transition probabilities

P(Xn+1 = k + 2 | Xn = k) = p, P(Xn+1 = k − 1 | Xn = k) = 2p,
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and
P(Xn+1 = k | Xn = k) = r, k ∈ z,

for all n ∈ N = {0, 1, 2, . . .}, where p > 0, r ≥ 0, and 3p + r = 1. We let

τ := inf{n ≥ 0 : Xn ≤ 0 or Xn ≥ S}.

(a) Consider the probability

g(k) := P(Xτ ≥ S | X0 = k)

that the game ends with Player A winning the game, starting from X0 = k. Give
the values of g(0), g(S) and g(S + 1).

(b) Usingfirst step analysis,write down the difference equation satisfied by g(k), k =
1, 2, . . . , S − 1, and its boundary conditions, by taking overshoot into account.
We refer to this equation as the homogeneous equation.

(c) Solve the equation of Question (b) from its characteristic equation as in (2.2.15).
(d) Does the answer to Question (c) depend on p? Why?
(e) Consider the expected time

h(k) := IE[τ | X0 = k], k = 0, 1, . . . , S + 1,

spent until the end of the game. Give the values of h(0), h(S) and h(S + 1).
(f) Using first step analysis, write down the difference equation satisfied by h(k),

k = 1, 2, . . . , S − 1, and its boundary conditions.
(g) Find a particular solution of the equation of Question (e)
(h) Solve the equation of Question (2.1 c).

Hint: the general solution of the equation is the sum of a particular solution and
a solution of the homogeneous equation.

(i) How does the mean duration h(k) behave as p goes to zero? Is this compatible
with your intuition of the problem? Why?

(j) How do the values of g(k) and h(k) behave for fixed k ∈ {1, 2, . . . , S − 1} as S
tends to infinity?

Problem 2.9 Consider a gamblingprocess (Xn)n≥0 on the state spaceS = {0, 1, . . . , S},
with transition probabilities

P(Xn+1 = k + 1 | Xn = k) = p, P(Xn+1 = k − 1 | Xn = k) = q,

k = 1, 2, . . . , S − 1, with p + q = 1. Let

τ := inf{n ≥ 0 : Xn = 0 or Xn = S}
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denote the time until the process hits either state 0 or state S, and consider the second
moment

h(k) := IE
[
τ 2 | X0 = k

]
,

of τ after starting from k = 0, 1, 2, . . . , S.

(a) Give the values of h(0) and h(S).
(b) Using first step analysis, find an equation satisfied by h(k) and involving IE[τ |

X0 = k + 1] and IE[τ | X0 = k − 1], k = 1, 2, . . . , S − 1.
(c) From now on we take p = q = 1/2. Recall that in this case we have

IE[τ | X0 = k] = (S − k)k, k = 0, 1, . . . , S.

Show that the function h(k) satisfies the finite difference equation

h(k) = −1 + 2(S − k)k + 1

2
h(k + 1) + 1

2
h(k − 1), k = 1, 2, . . . , S − 1.

(2.3.24)
(d) Knowing that

k �−→ 2

3
k2 − 2S

3
k3 + k4

3

is a particular solution of the equation (2.3.24) of Question (c), and that the
solution of the homogeneous equation

f (k) = 1

2
f (k + 1) + 1

2
f (k − 1), k = 1, 2, . . . , S − 1,

takes the form
f (k) = C1 + C2k,

compute the value of the expectation h(k) solution of (2.3.24) for all k =
0, 1, . . . , S.

(e) Compute the variance

v(k) = IE
[
τ 2 | X0 = k

] − (
IE[τ | X0 = k])2

of the game duration starting from k = 0, 1, . . . , S.
(f) Compute v(1) when S = 2 and explain why the result makes pathwise sense.



Chapter 3
RandomWalks

In this chapter we consider our second important example of discrete-time stochastic
process, which is a random walk allowed to evolve over the set Z of signed integers
without any boundary restriction. Of particular importance are the probabilities of
return to a given state in finite time, as well as the corresponding mean return time.

3.1 Unrestricted RandomWalk

The simple unrestricted random walk (Sn)n≥0, also called Bernoulli random walk, is
defined by S0 = 0 and

Sn =
n∑

k=1

Xk = X1 + · · · + Xn, n ≥ 1,

where the randomwalk increments (Xk)k≥1 form a family of independent, {−1,+1}-
valued random variables.

We will assume in addition that the family (Xk)k≥1 is i.i.d., i.e. it is made of
independent and identically distributedBernoulli randomvariables, with distribution

⎧
⎨

⎩

P(Xk = +1) = p,

P(Xk = −1) = q, k ≥ 1,

with p + q = 1.
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3.2 Mean and Variance

In this case the mean and variance of Xn are given by

IE[Xn] = −1 × q + 1 × p = 2p − 1 = p − q,

and

Var[Xn] = IE[X2
n] − (IE[Xn])2

= 1 × q + 1 × p − (2p − 1)2

= 4p(1 − p) = 4pq.

As a consequence, we find that

IE[Sn | S0 = 0] = IE

[
n∑

k=1

Xk

]
=

n∑

k=1

IE [Xk] = n(2p − 1) = n(p − q),

and the variance can be computed by (1.6.12) as

Var[Sn | S0 = 0] = Var

[
n∑

k=1

Xk

]
=

n∑

k=1

Var[Xk] = 4npq,

where we used (1.6.12).

3.3 Distribution

First we note that in an even number of time steps, (Sn)n∈N can only reach an even
state in Z starting from 0 . Similarly, in an odd number of time steps, (Sn)n∈N can
only reach an odd state in Z starting from 0 . Indeed, starting from Sn = k the value
of Sn+2 after two time steps can only belong to {k − 2, k, k + 2}. Consequently, we
have ⎧

⎪⎪⎨

⎪⎪⎩

P(S2n = 2k + 1 | S0 = 0) = 0, k ∈ Z, n ∈ N,

P(S2n+1 = 2k | S0 = 0) = 0, k ∈ Z, n ∈ N,

(3.3.1)

and
P(Sn = k | S0 = 0) = 0, for k < −n or k > n, (3.3.2)

since S0 = 0. Next, let l denote the number of upwards steps between time 0 and
time 2n, whereas 2n − l will denote the number of downwards steps. If S2n = 2k we

https://doi.org/10.1007/978-981-13-0659-4_1
https://doi.org/10.1007/978-981-13-0659-4_1


3.3 Distribution 71

have
2k = l − (2n − l) = 2l − 2n,

hence there are l = n + k upwards steps and 2n − l = n − k downwards steps,−n ≤
k ≤ n. The probability of a given paths having l = n + k upwards steps and 2n − l =
n − k downwards steps is

pn+kqn−k

and in order to find P(S2n = 2k | S0 = 0)we need to multiply this probability by the
total number of paths leading from 0 to

�

�

�

�

2k in 2n steps. We find that this number
of paths is (

2n

n + k

)
=

(
2n

n − k

)

which represents the number of ways to arrange n + k upwards steps (or n − k
downwards steps) within 2n time steps.
Hence we have

P(S2n = 2k | S0 = 0) =
(

2n

n + k

)
pn+kqn−k, −n ≤ k ≤ n, (3.3.3)

in addition to (3.3.1) and (3.3.2). Figure3.1 shows one of the 120 =
(
10

7

)
=

(
10

2

)

possible paths corresponding to n = 5 and k = 2.

Fig. 3.1 Graph of 120 =
(
10

7

)
=

(
10

3

)
paths with n = 5 and k = 2
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Exercises:

(i) Show by a similar analysis that

P(S2n+1 = 2k + 1 | S0 = 0) =
(

2n + 1

n + k + 1

)
pn+k+1qn−k, −n ≤ k ≤ n,

(3.3.4)
i.e. (2n + 1 + S2n+1)/2 is a binomial random variable with parameter (2n +
1, p), and

P

(
2n + 1 + S2n+1

2
= k

∣∣∣S0 = 0

)
= P

(
S2n+1 = 2k − 2n − 1

∣∣∣S0 = 0
)

=
(
2n + 1

k

)
pkq2n+1−k,

k = 0, 1, . . . , 2n + 1.
(ii) Show that n + S2n/2 is a binomial1 random variable with parameter (2n, p), i.e.,

show that

P

(
n + S2n

2
= k

∣∣∣S0 = 0

)
= P

(
S2n = 2k − 2n

∣∣∣S0 = 0
)

=
(
2n

k

)
pkq2n−k, k = 0, 1, . . . , 2n.

3.4 First Return to Zero

Let
T r
0 := inf{n ≥ 1 : Sn = 0}

denote the time of first return to 0 of the random walk started at 0 , with the
convention inf ∅ = ∞.2 We are interested in particular in computing the mean time
IE[T r

0 | S0 = 0] it takes to return to state 0 after starting from state 0 (see Fig. 3.2).
We are interested in computing the distribution

g(n) = P(T r
0 = n | S0 = 0), n ≥ 1,

of the first return time T r
0 to 0 . It is easy to show by pathwise analysis that T r

0 can
only be even-valued starting from 0 , hence g(2k + 1) = 0 for all k ∈ N, and in
particular we have

1Note that S2n is always an even number after we start from S0 = 0.
2Recall that the notation “inf” stands for “infimum”, meaning the smallest n ≥ 0 such that Sn = 0,
with T r

0 = ∞ if no such n ≥ 0 exists.
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Fig. 3.2 Sample path of the random walk (Sn)n∈N

P(T r
0 = 1 | S0 = 0) = 0, P(T r

0 = 2 | S0 = 0) = 2pq, (3.4.1)

and
P(T r

0 = 4 | S0 = 0) = 2p2q2, (3.4.2)

by considering the twopaths leading from 0 to 0 in two steps and the only twopaths
leading from 0 to 0 in four steps without hitting 0 . However the computation
of P(T r

0 = 2n | S0 = 0) by this method is difficult to extend to all n ≥ 3.
In order to completely solve this problem we will rely on the computation of the

probability generating function GTr
0
of T r

0 , cf. (3.4.9) below.
This computation will use the following tools:

• convolution equation, see Relation (3.4.3) below,
• Taylor expansions, see Relation (3.4.22) below,
• probability generating functions.

First, we will need the following Lemma3.1 which will be used in the proof of
Lemma3.3 below.

Lemma 3.1 (Convolution equation). The function

g : {1, 2, 3, . . .} −→ [0, 1]
n �−→ g(n)

defined by
g(n) := P(T r

0 = n | S0 = 0), n ≥ 1,

satisfies the convolution equation

h(n) =
n−2∑

k=0

g(n − k)h(k), n ≥ 1, (3.4.3)
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Fig. 3.3 Last return to state 0 at time k = 10

with the initial condition g(1) = 0, where h(n) := P(Sn = 0 | S0 = 0) is given from
(3.3.3) by

h(2n) =
(
2n

n

)
pnqn, and h(2n + 1) = 0, n ∈ N. (3.4.4)

Proof We first partition the event {Sn = 0} into

{Sn = 0} =
n−2⋃

k=0

{Sk = 0, Sk+1 	= 0, . . . , Sn−1 	= 0, Sn = 0}, n ≥ 1,

according to all possible times k = 0, 1, . . . , n − 2 of last return to state 0 before
time n, with {S1 = 0} = ∅ since we are starting from S0 = 0 (see Fig. 3.3).

Then we have

h(n) := P(Sn = 0 | S0 = 0)

=
n−2∑

k=0

P
(
Sk = 0, Sk+1 	= 0, . . . , Sn−1 	= 0, Sn = 0 | S0 = 0

)

=
n−2∑

k=0

P
(
Sk+1 	= 0, . . . , Sn−1 	= 0, Sn = 0 | Sk = 0, S0 = 0

)
P(Sk = 0 | S0 = 0)

=
n−2∑

k=0

P
(
Sk+1 	= 0, . . . , Sn−1 	= 0, Sn = 0 | Sk = 0

)
P(Sk = 0 | S0 = 0) (3.4.5)

=
n−2∑

k=0

P
(
S1 	= 0, . . . , Sn−k−1 	= 0, Sn−k = 0 | S0 = 0

)
P(Sk = 0 | S0 = 0) (3.4.6)

=
n−2∑

k=0

P(T r
0 = n − k | S0 = 0)P(Sk = 0 | S0 = 0) (3.4.7)

=
n−2∑

k=0

h(k)g(n − k), n ≥ 1,
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where from (3.4.5) to (3.4.6) we applied a shift of k steps in time, from time k + 1
to time 1. �
We now need to solve the convolution equation (3.4.3) for g(n) = P(T r

0 = n | S0 =
0), n ≥ 1, knowing that g(1) = 0. For this we will derive a simple equation for the
probability generating function

GTr
0

: [−1, 1] −→ R

s �−→ GTr
0
(s)

of the random variable T r
0 , defined by

GTr
0
(s) := IE[sT r

0 1{T r
0 <∞} | S0 = 0] =

∞∑

n=0

snP(T r
0 = n | S0 = 0) =

∞∑

n=0

sng(n),

−1 ≤ s ≤ 1, cf. (1.7.3).
Recall that the knowledge of GTr

0
(s) provides certain information on the distri-

bution of T r
0 , such as the probability

P(T r
0 < ∞ | S0 = 0) = IE[1{T r

0 <∞} | S0 = 0] = GTr
0
(1)

and the expectation

IE[T r
0 1{T r

0 <∞} | S0 = 0] =
∞∑

n=1

nP(T r
0 = n | S0 = 0) = G ′

T r
0
(1).

In Lemma3.3 below we will compute GTr
0
(s) for all s ∈ [−1, 1]. First, let the func-

tion

H : R −→ R

s �−→ H(s)

be defined by

H(s) :=
∞∑

k=0

h(k)sk =
∞∑

k=0

skP(Sk = 0 | S0 = 0), −1 ≤ s ≤ 1.

In the following lemma we show that the function H(s) can be computed in closed
form.

Proposition 3.2 We have

H(s) = (1 − 4pqs2)−1/2, |s| < 1

2
√
pq

.

https://doi.org/10.1007/978-981-13-0659-4_1
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Proof By (3.4.4) and the fact that P(S2k+1 = 0 | S0 = 0) = 0, k ∈ N, we have

H(s) =
∞∑

k=0

skP(Sk = 0 | S0 = 0)

=
∞∑

k=0

s2kP(S2k = 0 | S0 = 0) =
∞∑

k=0

s2k
(
2k

k

)
pkqk

=
∞∑

k=0

(pq)ks2k
(2k)(2k − 1)(2k − 2)(2k − 3) × · · · × 4 × 3 × 2 × 1

(k(k − 1) × · · · × 2 × 1)2

=
∞∑

k=0

(4pq)ks2k
k(k − 1/2)(k − 2/2)(k − 3/2) × · · · × (4/2) × (3/2) × (2/2) × (1/2)

(k(k − 1) × · · · × 2 × 1)2

=
∞∑

k=0

(4pq)ks2k
(k − 1/2)(k − 3/2) × · · · × (3/2) × (1/2)

k(k − 1) × · · · × 2 × 1

=
∞∑

k=0

(−1)k(4pq)ks2k
(−1/2 − (k − 1))(3/2 − k) × · · · × (−3/2) × (−1/2)

k(k − 1) × · · · × 2 × 1

=
∞∑

k=0

(−4pqs2)k
(−1/2) × (−3/2) × · · · × (3/2 − k)(−1/2 − (k − 1))

k!
= (1 − 4pqs2)−1/2, (3.4.8)

|4pqs2| < 1.3 �

Remark We note that, taking s = 1, by (1.6.1) we have

H(1) =
∞∑

k=0

P(Sk = 0 | S0 = 0)

=
∞∑

k=0

IE[1{Sk=0} | S0 = 0]

= IE

[ ∞∑

k=0

1{Sk=0}
∣∣∣S0 = 0

]
,

hence H(1) = 1/
√
1 − 4pq represents the mean number of visits of the random

walk (Sn)n∈N to state 0.

Next, based on the convolution equation (3.4.3) of Lemma3.1 we computeGTr
0
(s) in

the next Lemma3.3 by deriving and solving an Eq. (3.4.13) for GTr
0
(s). This method

has some similarities with the z-transform method used in electrical engineering.

3We used the formula (1 + x)α =
∞∑

k=0

xk

k! α(α − 1) × · · · × (α − (k − 1)), cf. Relation (A.8).

https://doi.org/10.1007/978-981-13-0659-4_1
https://doi.org/10.1007/978-981-13-0659-4
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Lemma 3.3 The probability generating function GTr
0
of the first return time T r

0 to

0 is given by

GTr
0
(s) = 1 − 1

H(s)
= 1 −

√
1 − 4pqs2, 4pqs2 < 1. (3.4.9)

Proof We have, taking into account the relations g(1) = P(T r
0 = 1 | S0 = 0) = 0

and h(0) = 0,

GTr
0
(s)H(s) =

( ∞∑

n=1

sng(n)

)( ∞∑

k=0

skh(k)

)

=
∞∑

n=2

∞∑

k=0

sn+kg(n)h(k) =
∞∑

k=0

∞∑

n=2

sn+kg(n)h(k)

=
∞∑

l=2

sl
l−2∑

k=0

g(l − k)h(k)

=
∞∑

l=1

slh(l) (3.4.10)

=
∞∑

l=1

slP(Sl = 0 | S0 = 0) (3.4.11)

= −1 +
∞∑

l=0

slP(Sl = 0 | S0 = 0) = H(s) − 1, (3.4.12)

where from line (3.4.10) to line (3.4.11) we have applied the change of variable
(k, n) �−→ (k, l)with l = n + k, and from line (3.4.11) to line (3.4.12) we have used
the convolution equation (3.4.3) of Lemma3.1. This shows that GTr

0
(s) satisfies the

equation

GTr
0
(s)H(s) = H(s) − 1, 4pqs2 < 1. (3.4.13)

Solving (3.4.13) yields the value of GTr
0
(s) for all s such that 4pqs2 < 1. �

See Exercise3.4-(e) for another derivation of (3.4.9) based on first step analysis.4

4“Any good theorem should have several proofs, the more the better. For two reasons: usually,
different proofs have different strengths and weaknesses, and they generalise in different directions
- they are not just repetitions of each other. Some of them are good for this application, some are
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We will apply our knowledge of GTr
0
(s) to the computation of the first return time

distribution of T r
0 , the probability of return to 0 in finite time, and the mean return

time to 0 .

Probability of Return to Zero in Finite Time

The probability that the first return to 0 occurs within a finite time is

P(T r
0 < ∞ | S0 = 0) = IE[1{T r

0 <∞} | S0 = 0] = IE[1T r
0 1{T r

0 <∞} | S0 = 0]
= GTr

0
(1) = 1 − √

1 − 4pq

= 1 − |2p − 1| = 1 − |p − q| =
{
2q, p ≥ 1/2,
2p, p ≤ 1/2,

= 2min(p, q), (3.4.14)

hence

P(T r
0 = ∞ | S0 = 0) = |2p − 1| = |p − q|. (3.4.15)

Note that in (2.2.13) above we have shown that the probability of hitting state 0 in
finite time starting from any state k with k ≥ 1 is given by

P(T r
0 < ∞ | S0 = k) = min

(
1,

(
q

p

)k
)
, k ≥ 1, (3.4.16)

i.e.

P(T r
0 = ∞ | S0 = k) = max

(
0, 1 −

(
q

p

)k
)
, k ≥ 1,

cf. also Exercises3.2-(c) and 3.4-(c).
In the non-symmetric case p 	= q, Relation (3.4.14) shows that

P(T r
0 < ∞ | S0 = 0) < 1 and P(T r

0 = ∞ | S0 = 0) > 0,

whereas in the symmetric case (or fair game) p = q = 1/2 we find that

P(T r
0 < ∞ | S0 = 0) = 1 and P(T r

0 = ∞ | S0 = 0) = 0,

i.e. the random walk returns to 0 with probability one.
See Exercise3.4-(b) and 5.9-(a) for other derivations of (3.4.16).

good for that application. They all shed light on the area. If you cannot look at a problem from
different directions, it is probably not very interesting; the more perspectives, the better !” - Sir
Michael Atiyah.

https://doi.org/10.1007/978-981-13-0659-4_2
https://doi.org/10.1007/978-981-13-0659-4_5
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Mean Return Time to Zero

(i) In the non-symmetric case p 	= q, by (3.4.15), the time T r
0 needed to return to

state 0 is infinite with probability

P(T r
0 = ∞ | S0 = 0) = |p − q| > 0,

hence the expected value5

IE[T r
0 | S0 = 0] = ∞ × P(T r

0 = ∞ | S0 = 0) +
∞∑

k=1

kP(T r
0 = k | S0 = 0)

= ∞ (3.4.17)

is infinite in that case.6

Note that starting from S0 = k ≥ 1, by (2.3.12) we have found that the mean hitting
time of state 0 equals

IE[T r
0 | S0 = k] =

⎧
⎨

⎩

∞ if q ≤ p,
k

q − p
if q > p.

(3.4.18)

In particularwe haveP(T r
0 < ∞ | S0 = k) = 1whenq > p and k ≥ 1,which is con-

sistent with (3.4.16). See Exercise5.9-(b) for other derivations of (2.3.12)-(3.4.18)
using the probability generating function s �→ GTr

0
(s).

Remark By (3.4.9), the truncated expectation IE[T r
0 1{T r

0 <∞} | S0 = 0] satisfies

IE[T r
0 1{T r

0 <∞} | S0 = 0] =
∞∑

n=1

nP(T r
0 = n | S0 = 0)

= G ′
T r
0
(1)

= 4pqs√
1 − 4pqs2

∣∣∣s=1

= 4pq√
1 − 4pq

= 4pq

|p − q| , (3.4.19)

when p 	= q, which shows in particular from Lemma1.4 that

5Note that the summation
∑∞

k=1 = ∑
1≤k<∞ actually excludes the value k = ∞.

6We use the convention ∞ × 0 = 0.

https://doi.org/10.1007/978-981-13-0659-4_2
https://doi.org/10.1007/978-981-13-0659-4_5
https://doi.org/10.1007/978-981-13-0659-4_2
https://doi.org/10.1007/978-981-13-0659-4_1
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IE[T r
0 | T r

0 < ∞, S0 = 0] = 1

P(T r
0 < ∞ | S0 = 0)

IE[T r
0 1{T r

0 <∞} | S0 = 0]

= 1

min(p, q)

2pq

|p − q| = 2
max(p, q)

|p − q| .

(ii) In the symmetric case p = q = 1/2 we have P(T r
0 < ∞ | S0 = 0) = 1 and

IE[T r
0 | S0 = 0] = IE

[
T r
0 1{T r

0 <∞} | S0 = 0
] = G ′

T r
0
(1) = ∞ (3.4.20)

as the slope of s �→ GTr
0
(s) in Fig. 3.4b) is infinite at s = 1, or by taking the

limit as p, q → 1/2 in (3.4.19) or (3.4.18).

When p = q = 1/2 the random walk returns to state 0 with probability one
within a finite (random) time, while the average of this random time is infinite.
This yields another example of a random variable T r

0 which is almost surely
finite, while its expectation is infinite as in the St. Petersburg paradox.

This shows how even a fair game can be risky when the player’s wealth is
negative as it will take on average an infinite time to recover the losses.

First Return Time Distribution

Proposition3.4 can also be obtained from the path counting result of Exercise3.8.

Proposition 3.4 The probability distribution P(T r
0 = n | S0 = 0) of the first return

time T r
0 to 0 is given by

P(T r
0 = 2k | S0 = 0) = 1

2k − 1

(
2k

k

)
(pq)k, k ∈ N, (3.4.21)

with P(T r
0 = 2k + 1 | S0 = 0) = 0, k ∈ N.

Fig. 3.4 Probability generating functions of T r
0 for p = 0.35 and p = 0.5
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Proof By applying a Taylor expansion to s �−→ 1 − (1 − 4pqs2)1/2 in (3.4.9), we
get

GTr
0
(s) = 1 − (1 − 4pqs2)1/2

= 1 −
∞∑

k=0

1

k! (−4pqs2)k
(
1

2
− 0

) (
1

2
− 1

)
× · · · ×

(
1

2
− (k − 1)

)

= 1

2

∞∑

k=1

s2k
(4pq)k

k!
(
1 − 1

2

)
× · · · ×

(
k − 1 − 1

2

)
, (3.4.22)

where we used (13.9) for α = 1/2. By identification of (3.4.22) with the expansion

GTr
0
(s) =

∞∑

n=0

snP(T r
0 = n | S0 = 0), −1 ≤ s ≤ 1,

we obtain

P(T r
0 = 2k | S0 = 0) = g(2k)

= (4pq)k

k!
1

2

(
1 − 1

2

)
× · · · ×

(
k − 1 − 1

2

)

= (4pq)k

2k!
k−1∏

m=1

(
m − 1

2

)

= 1

2k − 1

(
2k

k

)
(pq)k, k ∈ N,

whileP(T r
0 = 2k + 1 | S0 = 0) = g(2k + 1) = 0, k ∈ N. This conclusion could also

be obtained using (1.7.8) from the relation

P(T r
0 = n | S0 = 0) = 1

n!
∂n

∂sn
GTr

0
(s)|s=0, n ∈ N.

�

Exercise: Check that the formula (3.4.21) recovers (3.4.1) and (3.4.2) when k =
0, 1, 2.

Using the independence of increments of the random walk (Sn)n∈N one can also
show that the probability generating function of the first passage time

Tk = inf{n ≥ 0 : Sn = k}

to any level k ≥ 1 is given by

GTk (s) =
(
1 − √

1 − 4pqs2

2qs

)k

, 4pqs2 < 1, q ≤ p, (3.4.23)

https://doi.org/10.1007/978-981-13-0659-4_1
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from which the distribution of Tk can be computed given the series expansion of
GTk (s), cf. Exercise3.4 below with k = −i .

The gambling process of Chap.2 and the standard random walk (Sn)n∈N will later
be reconsidered as particular cases in the general framework of Markov chains of
Chaps.4 and 5.

Exercises

Exercise 3.1 We consider the simple random walk (Sn)n∈N of Sect. 3.1 with inde-
pendent increments and started at S0 = 0, in which the probability of advance is p
and the probability of retreat is 1 − p.

(a) Enumerate all possible sample paths that conduct to S4 = 2 starting from S0 = 0.
(b) Show that

P(S4 = 2 | S0 = 0) =
(
4

3

)
p3(1 − p) =

(
4

1

)
p3(1 − p).

(c) Show that we have

P(Sn = k | S0 = 0)

=
⎧
⎨

⎩

(
n

(n + k)/2

)
p(n+k)/2(1 − p)(n−k)/2, n + k even and |k| ≤ n,

P(Sn = k | S0 = 0) = 0, n + k odd or |k| > n.
(3.4.24)

(d) Show, by a direct argument using a “last step” analysis at time n + 1 on random
walks, that pn,k := P(Sn = k | S0 = 0) satisfies the difference equation

pn+1,k = ppn,k−1 + qpn,k+1, (3.4.25)

under the boundary conditions p0,0 = 1 and p0,k = 0, k 	= 0.
(e) Confirm that pn,k = P(Sn = k | S0 = 0) given by (3.4.24) satisfies the equation

(3.4.25) and its boundary conditions.

Exercise 3.2 Consider a random walk (Sn)n∈N on Z with independent increments
and probabilities p, resp. q = 1 − p of moving up by one step, resp. down by one
step. Let

T0 = inf{n ≥ 0 : Sn = 0}

denote the hitting time of state 0 .

(a) Explain why for any k ≥ 1 we have

IE[T0 | S0 = k] = k IE[T0 | S0 = 1],

https://doi.org/10.1007/978-981-13-0659-4_2
https://doi.org/10.1007/978-981-13-0659-4_4
https://doi.org/10.1007/978-981-13-0659-4_5
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and compute IE[T0 | S0 = 1] using first step analysis when q > p. What can we
conclude when p ≥ q?

(b) Explain why, by the Markov property, we have

P(T0 < ∞ | S0 = k) = (P(T0 < ∞ | S0 = 1))k , k ≥ 1.

(c) Using first step analysis for random walks, show that α := P(T0 < ∞ | S0 = 1)
satisfies the quadratic equation

pα2 − α + q = p(α − q/p)(α − 1) = 0,

and give the values ofP(T0 < ∞ | S0 = 1) andP(T0 = ∞ | S0 = 1) in the cases
p < q and p ≥ q respectively.

Exercise 3.3 Consider the random walk

Sn := X1 + · · · + Xn, n ≥ 1,

with S0 = 0, where (Xk)k≥1 is a sequence of Bernoulli random variables with

P(Xk = 1) = p ∈ (0, 1), P(Xk = −1) = q ∈ (0, 1),

and p + q = 1. Recall that the probability generating function (PGF)

GTr
0
(s) =

∞∑

k=0

skP(T r
0 = k), s ∈ [−1, 1], (3.4.26)

of the first return time T r
0 := inf{Sn = 0 : n ≥ 1} to state 0 is given by

GTr
0
(s) = 1 −

√
1 − 4pqs2, s ∈ [−1, 1]. (3.4.27)

(a) Compute P(T r
0 = 0) and P(T r

0 < ∞) from GTr
0
.

(b) By differentiation of (3.4.26) and (3.4.27), compute P(T r
0 = 1), P(T r

0 = 2),
P(T r

0 = 3) and P(T r
0 = 4) using the PGF GTr

0
.

(c) Compute IE[T r
0 | T r

0 < ∞] using the PGF GTr
0
.

Exercise 3.4 Consider a simple random walk (Xn)n≥0 on Z with respective proba-
bilities p and q of increment and decrement. Let

T0 := inf{n ≥ 0 : Xn = 0}

denote the first hitting time of state 0 , and consider the probability generating
function

Gi (s) := IE
[
sT0 | X0 = i

]
, −1 < s < 1, i ∈ Z.
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(a) By a first step analysis argument, find the finite difference equation satisfied by
Gi (s), and its boundary condition(s) at i = 0 and i = ±∞.

(b) Find the value of Gi (s) for all i ∈ Z and s ∈ (0, 1), and recover the result of
(3.4.23) on the probability generating function of the hitting time T0 of 0
starting from state i .

(c) Recover Relation (2.2.13)–(3.4.16) using Gi (s).
(d) Recover Relation (2.3.12)–(3.4.18) by differentiation of s �→ Gi (s).
(e) Recover the result of (3.4.9) on the probability generating function of the return

time T r
0 to 0 .

Exercise 3.5 Using the probability distribution (3.4.21) of T r
0 , recover the fact that

IE[T r
0 1{T r

0 <∞} | S0 = 0] = ∞, when p = q = 1/2.

Exercise 3.6 Consider a sequence (Xk)k≥1 of independent Bernoulli random vari-
ables with

P(Xk = 1) = p, and P(Xk = −1) = q, k ≥ 1,

where p + q = 1, and let the process (Mn)n∈N be defined by M0 := 0 and

Mn :=
n∑

k=1

2k−1Xk, n ≥ 1.

(a) Compute IE[Mn] for all n ≥ 0.
(b) Consider the hitting time τ := inf{n ≥ 1 : Mn = 1} and the stopped process

Mmin(n,τ ) = Mn1{n<τ } + 1{τ≤n}, n ∈ N.

Determine the possible values of Mmin(n,τ ), and the probability distribution of
Mmin(n,τ ) at any time n ≥ 1.

(c) Give an interpretation of the stopped process (Mmin(n,τ ))n∈N in terms of strategy
in a game started at M0 = 0.

(d) Based on the result of part (b), compute IE[Mmin(n,τ )] for all n ≥ 1.

Exercise 3.7 Winning streaks. Consider a sequence (Xn)n≥1 of independent
Bernoulli random variables with the distribution

P(Xn = 1) = p, P(Xn = 0) = q, n ≥ 1,

with q := 1 − p. For somem ≥ 1, let T (m) denote the time of the first appearance of
m consecutive “1” in the sequence (Xn)n≥1. For example, for m = 4 the following
sequence

(

1
↓
0,

2
↓
1,

3
↓
1,

4
↓
0,

5
↓
1,

6
↓
1,

7
↓
1,

8
↓
1︸ ︷︷ ︸

4 times

, 0, 1, 1, 0, . . .)

yields T (4) = 8.

https://doi.org/10.1007/978-981-13-0659-4_2
https://doi.org/10.1007/978-981-13-0659-4_2
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(a) ComputeP(T (m) < m),P(T (m) = m),P(T (m) = m + 1), andP(T (m) = m + 2).
(b) Show that the probability generating function

GT (m) (s) := IE
[
sT

(m)

1{T (m)<∞}
]
, s ∈ (−1, 1),

satisfies

GT (m) (s) = pmsm +
m−1∑

k=0

pkqsk+1GT (m) (s), s ∈ (−1, 1). (3.4.28)

Hint: Look successively at all possible starting patterns of the form

(1, . . . , 1,

k
↓
1, 0, . . .),

where k = 0, 1, . . . ,m, compute their respective probabilities, and apply a “k-
step analysis” argument.

(c) From (3.4.28), compute the probability generating function GT (m) of T (m) for all
s ∈ (−1, 1).

Hint:We have
m−1∑

k=0

xk = 1 − xm

1 − x
, x ∈ (−1, 1).

(d) From the probability generating function GT (m) (s), compute IE[T (m)] for all
m ≥ 1.

Hint: It can be simpler to differentiate inside (3.4.28) and to use the relation

(1 − x)
m−1∑

k=0

(k + 1)xk + mxm = 1 − xm

1 − x
, x ∈ (−1, 1).

Exercise 3.8 Consider a random walk (Sn)n∈N on Z with increments ±1, started at
S0 = 0. Recall that the number of paths joining states 0 and

�

�

�

�

2k over 2m time
steps is (

2m

m + k

)
. (3.4.29)

(a) Compute the total number of paths joining S1 = 1 to S2n−1 = 1.
Hint: Apply the formula (3.4.29).

(b) Compute the total number of paths joining S1 = 1 to S2n−1 = −1.
Hint: Apply the formula (3.4.29).
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(c) Show that to every one path joining S1 = 1 to S2n−1 = 1 by crossing or hitting
0 we can associate one path joining S1 = 1 to S2n−1 = −1, in a one-to-one
correspondence.
Hint: Draw a sample path joining S1 = 1 to S2n−1 = 1, and reflect it in such a
way that the reflected path then joins S1 = 1 to S2n−1 = −1.

(d) Compute the total number of paths joining S1 = 1 to S2n−1 = 1 by crossing or
hitting 0 .
Hint: Combine the answers to part (b) and part (c).

(e) Compute the total number of paths joining S1 = 1 to S2n−1 = 1without crossing
or hitting 0 .
Hint: Combine the answers to part (a) and (d).

(f) Give the total number of paths joining S0 = 0 to S2n = 0 without crossing or
hitting 0 between time 1 and time 2n − 1.
Hint: Apply two times the answer to part (e). A drawing is recommended.

Exercise 3.9 Range process. Consider the random walk (Sn)n≥0 defined by S0 = 0
and

Sn := X1 + · · · + Xn, n ≥ 1,

where (Xk)k≥1 is an i.i.d.7 family of {−1,+1}-valued random variables with distri-
bution {

P(Xk = +1) = p,
P(Xk = −1) = q,

k ≥ 1, where p + q = 1. We let Rn denote the range of (S0, S1, . . . , Sn), i.e. the
(random) number of distinct values appearing in the sequence (S0, S1, . . . , Sn).

(a) Explain why

Rn = 1 +
(

sup
k=0,1,...,n

Sk

)
−

(
inf

k=0,1,...,n
Sk

)
,

and give the value of R0 and R1.
(b) Show that for all k ≥ 1, Rk − Rk−1 is a Bernoulli random variable, and that

P(Rk − Rk−1 = 1) = P(Sk − S0 	= 0, Sk − S1 	= 0, . . . , Sk − Sk−1 	= 0).

(c) Show that for all k ≥ 1 we have

P(Rk − Rk−1 = 1) = P(X1 	= 0, X1 + X2 	= 0, . . . , X1 + · · · + Xk 	= 0).

(d) Show why the telescoping identity Rn = R0 +
n∑

k=1

(Rk − Rk−1) holds for all

n ∈ N.
(e) Show that P(T r

0 = ∞) = limk→∞ P(T r
0 > k).

7Independent and identically distributed.
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Fig. 3.5 Illustration of the range process

(f) From the results of Questions (c) and (d), show that

IE[Rn] =
n∑

k=0

P(T r
0 > k), n ∈ N,

where T r
0 = inf{n ≥ 1 : Sn = 0} is the time of first return to 0 of the random

walk.
(g) From the results of Questions (e) and (f), show that

P(T r
0 = ∞) = lim

n→∞
1

n
IE[Rn].

(h) Show that

lim
n→∞

1

n
IE[Rn] = 0.

when p = 1/2, and that IE[Rn] n→∞ n|p − q|, when p 	= 1/2.8

In Fig. 3.5 the height at time n of the colored area coincides with Rn − 1.

8The meaning of f (n) n→∞ g(n) is limn→∞ f (n)/g(n) = 1, provided that g(n) 	= 0, n ≥ 1.



Chapter 4
Discrete-Time Markov Chains

In this chapter we start the general study of discrete-timeMarkov chains by focusing
on the Markov property and on the role played by transition probability matrices.
We also include a complete study of the time evolution of the two-state chain, which
represents the simplest example of Markov chain.

4.1 Markov Property

We consider a discrete-time stochastic process (Zn)n∈N taking values in a discrete
state space S, typically S = Z.

TheS-valued process (Zn)n∈N is said to beMarkov, or to have theMarkov property
if, for all n ≥ 1, the probability distribution of Zn+1 is determined by the state Zn

of the process at time n, and does not depend on the past values of Zk for k =
0, 1, . . . , n − 1.

In other words, for all n ≥ 1 and all i0, i1, . . . , in, j ∈ S we have

P(Zn+1 = j | Zn = in, Zn−1 = in−1, . . . , Z0 = i0) = P(Zn+1 = j | Zn = in).

In particular we have

P(Zn+1 = j | Zn = in, Zn−1 = in−1) = P(Zn+1 = j | Zn = in),

and
P(Z2 = j | Z1 = i1, Z0 = i0) = P(Z2 = j | Z1 = i1).

Note that this feature is apparent in the statement of Lemma 2.2. In addition, we have
the following facts.

© Springer Nature Singapore Pte Ltd. 2018
N. Privault, Understanding Markov Chains, Springer Undergraduate
Mathematics Series, https://doi.org/10.1007/978-981-13-0659-4_4
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1. The first order transition probabilities can be used for the complete computation
of the probability distribution of the process as

P(Zn = in, Zn−1 = in−1, . . . , Z0 = i0)

= P(Zn = in | Zn−1 = in−1, . . . , Z0 = i0)P(Zn−1 = in−1, . . . , Z0 = i0)

= P(Zn = in | Zn−1 = in−1)P(Zn−1 = in−1 | Zn−2 = in−2, . . . , Z0 = i0)

× P(Zn−2 = in−2, . . . , Z0 = i0)

= P(Zn = in | Zn−1 = in−1)P(Zn−1 = in−1 | Zn−2 = in−2)

× P(Zn−2 = in−2 | Zn−3 = in−3, . . . , Z0 = i0)P(Zn−3 = in−3, . . . , Z0 = i0)

= P(Zn = in | Zn−1 = in−1)P(Zn−1 = in−1 | Zn−2 = in−2)

× P(Zn−2 = in−2 | Zn−3 = in−3)P(Zn−3 = in−3, . . . , Z0 = i0),

which shows, reasoning by induction, that

P(Zn = in, Zn−1 = in−1, . . . , Z0 = i0) (4.1.1)

= P(Zn = in | Zn−1 = in−1) · · ·P(Z1 = i1 | Z0 = i0)P(Z0 = i0),

or

P(Zn = in, Zn−1 = in−1, . . . , Z1 = i1 | Z0 = i0) (4.1.2)

= P(Zn = in | Zn−1 = in−1) · · ·P(Z1 = i1 | Z0 = i0),

i0, i1, . . . , in ∈ S.
2. By the law of total probability (1.3.1) applied to the events Ak = {Z2 = i2 and

Z1 = k}, k ∈ S, under the probability measure P(· | Z0 = i0) we also have

P(Z2 = i2 | Z0 = i0) =
∑

i1∈S
P(Z2 = i2 and Z1 = i1 | Z0 = i0)

=
∑

i1∈S
P(Z2 = i2 | Z1 = i1)P(Z1 = i1 | Z0 = i0),

i0, i2 ∈ S, and

P(Z1 = i1) =
∑

i0∈S
P(Z1 = i1, Z0 = i0)

=
∑

i0∈S
P(Z1 = i1 | Z0 = i0)P(Z0 = i0), i1 ∈ S. (4.1.3)

Example

The random walk
Sn = X1 + X2 + · · · + Xn, n ∈ N, (4.1.4)

https://doi.org/10.1007/978-981-13-0659-4_1
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considered in Chap.3, where (Xn)n≥1 is a sequence of independentZ-valued random
increments, is a discrete-timeMarkovchainwith S = Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

Indeed, the value of Sn+1 depends only on Sn and on the value of the next increment
Xn+1. In other words, for all j, in, . . . , i1 ∈ Z we have (note that S0 = 0 here)

P(Sn+1 = j | Sn = in, Sn−1 = in−1, . . . , S1 = i1) (4.1.5)

= P(Sn+1 = j, Sn = in, Sn−1 = in−1, . . . , S1 = i1)

P(Sn = in, Sn−1 = in−1, . . . , S1 = i1)

= P(Sn+1 − Sn = j − in, Sn − Sn−1 = in − in−1, . . . , S2 − S1 = i2 − i1, S1 = i1)

P(Sn − Sn−1 = in − in−1, . . . , S2 − S1 = i2 − i1, S1 = i1)

= P(Xn+1 = j − in, Xn = in − in−1, . . . , X2 = i2 − i1, X1 = i1)

P(Xn = in − in−1, . . . , X2 = i2 − i1, X1 = i1)

= P(Xn+1 = j − in)P(Xn = in − in−1, . . . , X2 = i2 − i1, X1 = i1)

P(Xn = in − in−1, . . . , X2 = i2 − i1, X1 = i1)

= P(Xn+1 = j − in)

= P(Xn+1 = j − in)P(Xn + · · · + X1 = in)

P(X1 + · · · + Xn = in)

= P(Xn+1 = j − in, Xn + · · · + X1 = in)

P(X1 + · · · + Xn = in)

= P(Xn+1 = j − in and Sn = in)

P(Sn = in)
= P(Sn+1 = j and Sn = in)

P(Sn = in)

= P(Sn+1 = j | Sn = in).

In addition, the Markov chain (Sn)n∈N is time homogeneous if the random sequence
(Xn)n≥1 is identically distributed.

In particular we have

P(Sn+1 = j | Sn = i) = P(Xn+1 = j − i),

hence the transition probability from state i to state j of a random walk with inde-
pendent increments depends only on the difference j − i and on the distribution of
Xn+1.

More generally, all processes with independent increments areMarkov processes.
However, not all Markov chains have independent increments. In fact, the Markov
chains of interest in this chapter do not have independent increments.

4.2 Transition Matrix

As seen above, the random evolution of a Markov chain (Zn)n∈N is determined by
the data of

Pi, j := P(Z1 = j | Z0 = i), i, j ∈ S, (4.2.1)

https://doi.org/10.1007/978-981-13-0659-4_3
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which coincides with the probability P(Zn+1 = j | Zn = i) which is independent
of n ∈ N. In this case the Markov chain (Zn)n∈N is said to be time homogeneous.
This data can be encoded into a matrix indexed by S2 = S × S, called the transition
matrix of the Markov chain:

[
Pi, j

]
i, j∈S = [ P(Z1 = j | Z0 = i) ]i, j∈S ,

also written on S := Z as

P = [
Pi, j

]
i, j∈S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
...

...
... . .

.

· · · P−2,−2 P−2,−1 P−2,0 P−2,1 P−2,2 · · ·

· · · P−1,−2 P−1,−1 P−1,0 P−1,1 P−1,2 · · ·

· · · P0,−2 P0,−1 P0,0 P0,1 P0,2 · · ·

· · · P1,−2 P1,−1 P1,0 P1,1 P1,2 · · ·

· · · P2,−2 P2,−1 P2,0 P2,1 P2,2 · · ·
. .

. ...
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The notion of transition matrix is related to that of (weighted) adjacency matrix in
graph theory.

Note the inversion of the order of indices (i, j) between P(Zn+1 = j | Zn = i)
and Pi, j . In particular, the initial state i is a row number in the matrix, while the
final state j corresponds to a column number.

By the law of total probability (1.3.1) applied to the probability measure P(· |
Z0 = i) we have the relation

∑

j∈S
P(Z1 = j | Z0 = i) = P(∪ j∈S{Z1 = j} | Z0 = i) = P(Ω) = 1, i ∈ N,

(4.2.2)
i.e. the rows of the transition matrix satisfy the condition

∑

j∈S
Pi, j = 1,

for every row index i ∈ S.
Using the matrix notation P = (Pi, j )i, j∈S, and Relation (4.1.1) we find

P(Zn = in, Zn−1 = in−1, . . . , Z0 = i0) = Pin−1,in · · · Pi0,i1P(Z0 = i0),

i0, i1, . . . , in ∈ S, and we rewrite (4.1.3) as

https://doi.org/10.1007/978-981-13-0659-4_1
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P(Z1 = i) =
∑

j∈S
P(Z1 = i | Z0 = j)P(Z0 = j) =

∑

j∈S
Pj,iP(Z0 = j), i ∈ S.

(4.2.3)
A state k ∈ S is said to be absorbing if Pk,k = 1.

In the sequel we will often consider S = N = {0, 1, 2, . . .} and N-valued Markov
chains, inwhich case the transitionmatrix

[
P(Zn+1 = j | Zn = i)

]
i, j∈N of the chain

is written as

[
Pi, j

]
i, j∈N =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0,0 P0,1 P0,2 · · ·

P1,0 P1,1 P1,2 · · ·

P2,0 P2,1 P2,2 · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From (4.2.2) we have
∞∑

j=0

Pi, j = 1,

for all i ∈ N.

In case the Markov chain (Zk)k∈N takes values in the finite state space S =
{0, 1, . . . , N } its (N + 1) × (N + 1) transition matrix will simply have the form

[
Pi, j

]
0≤i, j≤N =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0,0 P0,1 P0,2 · · · P0,N

P1,0 P1,1 P1,2 · · · P1,N

P2,0 P2,1 P2,2 · · · P2,N

...
...

...
. . .

...

PN ,0 PN ,1 PN ,2 · · · PN ,N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Still on the finite state space S = {0, 1, . . . , N }, Relation (4.2.3) can be restated in
the language of matrix and vector products using the shorthand notation:

η = π P,

(4.2.4)

where
η = [P(Z1 = 0), . . . ,P(Z1 = N )] = [η0, η1, . . . , ηN ] ∈ R

N+1
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is the row vector “distribution of Z1”,

π = [P(Z0 = 0), . . . ,P(Z0 = N )] = [π0, . . . , πN ] ∈ R
N+1

is the row vector representing the probability distribution of Z0, and

[η0, η1, . . . , ηN ] = [π0, . . . , πN ] ×

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0,0 P0,1 P0,2 · · · P0,N

P1,0 P1,1 P1,2 · · · P1,N

P2,0 P2,1 P2,2 · · · P2,N

...
...

...
. . .

...

PN ,0 PN ,1 PN ,2 · · · PN ,N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.2.5)

Invariant Vectors

Arowvectorπ such thatπ = π P is said to be invariant or stationary by the transition
matrix P .

For example, in case the matrix P takes the form

P = [
Pi, j

]
0≤i, j≤N =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π0 π1 π2 π3 · · · πN

π0 π1 π2 π3 · · · πN

π0 π1 π2 π3 · · · πN

...
...

...
...

. . .
...

π0 π1 π2 π3 · · · πN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with all rows equal and π0 + π1 + · · · + πN = 1, then we have π = π P , i.e. π is an
invariant (or stationary) distribution for P .

4.3 Examples of Markov Chains

Thewide range of applications ofMarkov chains to engineering, physics and biology
has already beenmentioned in the introduction. Herewe consider somemore specific
examples.

(i) Random walk.

The transition matrix
[
Pi, j

]
i, j∈S of the unrestricted random walk (4.1.4)

is given by
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[
Pi, j

]
i, j∈S =

i − 2
i − 1
i

i + 1
i + 2 [ . . .

· · ·
· · ·
· · ·
· · ·
· · ·
. .

.

...

0
q
0
0
0
...

i − 1
...

p
0
q
0
0
...

i
...

0
p
0
q
0
...

i + 1
...

0
0
p
0
q
...

...

0
0
0
p
0
...

. .
.

· · ·
· · ·
· · ·
· · ·
· · ·
. . .

] . (4.3.1)

(ii) Gambling process.

The transitionmatrix
[
Pi, j

]
0≤i, j≤S of thegamblingprocess on {0, 1, . . . , S}

with absorbing states 0 and S is given by

P = [
Pi, j

]
0≤i, j≤S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · · · · 0 0 0 0
q 0 p 0 · · · · · · 0 0 0 0
0 q 0 p · · · · · · 0 0 0 0
...

...
...

. . .
. . .

. . .
. . .

...
...

...
...

...
...

...
. . .

. . .
. . .

. . .
...

...

0 0 0 0 · · · · · · q 0 p 0
0 0 0 0 · · · · · · 0 q 0 p
0 0 0 0 · · · · · · 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(iii) Credit rating.

[transition probabilities are expressed in %].

Rating at the start of a year Rating at the end of the year

AAA AA A BBB BB B CCC D N.R. Total
AAA 90.34 5.62 0.39 0.08 0.03 0 0 0 3.5 100
AA 0.64 88.78 6.72 0.47 0.06 0.09 0.02 0.01 3.21 100
A 0.07 2.16 87.94 4.97 0.47 0.19 0.01 0.04 4.16 100

BBB 0.03 0.24 4.56 84.26 4.19 0.76 0.15 0.22 5.59 100
BB 0.03 0.06 0.4 6.09 76.09 6.82 0.96 0.98 8.58 100
B 0 0.09 0.29 0.41 5.11 74.62 3.43 5.3 10.76 100

CCC 0.13 0 0.26 0.77 1.66 8.93 53.19 21.94 13.14 100
D 0 0 0 0 1.0 3.1 9.29 51.29 37.32 100

N.R. 0 0 0 0 0 0.1 8.55 74.06 17.07 100

We note that higher ratings are more stable since the diagonal coefficients of
the matrix go decreasing. On the other hand starting from the rating AA it is
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easier to be downgraded (probability 6.72%) than to be upgraded (probability
0.64%).

(iv) Ehrenfest chain.
Two volumes of air (left and right), containing a total of N balls, are connected
by a pipe.

At each time step, one picks a ball at random and moves it to the other side. Let
Zn ∈ {0, 1, . . . , N } denote the number of balls in the left side at time n. The
transition probabilities P(Zn+1 = j | Zn = i), 0 ≤ i, j ≤ N , are given by

P(Zn+1 = k + 1 | Zn = k) = N − k

N
, k = 0, 1, . . . , N − 1, (4.3.2)

and

P(Zn+1 = k − 1 | Zn = k) = k

N
, k = 1, 2, . . . , N , (4.3.3)

with

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · · · · 0 0
1/N 0 (N − 1)/N · · · · · · 0 0
0 2/N 0 · · · · · · 0 0
0 0 3/N · · · · · · 0 0
...

...
. . .

. . .
...

...
...

0 0 · · · . . . 3/N 0 0

0 0 · · · . . . 0 2/N 0
0 0 · · · · · · (N − 1)/N 0 1/N
0 0 · · · · · · 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

cf. Exercises6.7 and 7.3, Problem7.23 on modified Ehrenfest chains, and Exer-
cise4.9 on the Bernoulli–Laplace chain.

(v) Markov chains in music.
By a statistical analysis of note transitions, every type of music can be encoded
into a Markov chain. An example of such an analysis is presented in the next
transition matrix.

https://doi.org/10.1007/978-981-13-0659-4_6
https://doi.org/10.1007/978-981-13-0659-4_7
https://doi.org/10.1007/978-981-13-0659-4_7


4.3 Examples of Markov Chains 97

A A� B C D E F G G�

A 4/19 0 3/19 0 2/19 1/19 0 6/19 3/19
A� 1 0 0 0 0 0 0 0 0
B 7/15 0 1/15 4/15 0 3/15 0 0 0
C 0 0 6/15 3/15 6/15 0 0 0 0
D 0 0 0 3/11 3/11 5/11 0 0 0
E 4/19 1/19 0 3/19 0 5/19 4/19 1/19 1/19
F 0 0 0 1/5 0 0 1/5 0 3/5
G 1/5 0 1/5 2/5 0 0 0 1/5 0
G� 0 0 3/4 0 0 1/4 0 0 0

(vi) Text generation.
Markov chains can be used to generate sentences in a given language, based on
a statistical analysis on the transition between words in a sample text. The state
space of the Markov chain can be made of different word sequences.

Other applications of Markov chains include:

• Memory management in computer science,
• Logistics, supply chain management, and waiting queues,
• Modeling of insurance claims,
• Board games, e.g. Snakes and Ladders,
• Genetics, cf. the Wright–Fisher model.
• Random fields in imaging,
• Artificial intelligence, learning theory and machine learning.

Graph Representation

Whenever possiblewewill represent aMarkov chain using agraph, as in the following
example with transition matrix, see Fig. 4.1.

P =

⎡

⎢⎢⎢⎢⎣

0 0.2 0.8 0 0
0.4 0 0 0.6 0
0.5 0 0 0.5 0
0 0 0 0.4 0.6
0 0.4 0.6 0 0

⎤

⎥⎥⎥⎥⎦
. (4.3.4)

Fig. 4.1 Graph of a five-state Markov chain
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4.4 Higher-Order Transition Probabilities

As noted above, the transition matrix P is a convenient way to record P(Zn+1 = j |
Zn = i), i, j ∈ S, into an array of data.

However, it is much more than that, as already hinted at in Relation (4.2.4).
Suppose for example that we are interested in the two-step transition probability

P(Zn+2 = j | Zn = i).

This probability does not appear in the transition matrix P , but it can be computed
by first step analysis, applying the law of total probability (1.3.1) to the probability
measure P(· | Zn = i) as follows.
(i) 2-step transitions. Denoting by S the state space of the process, we have

P(Zn+2 = j | Zn = i) =
∑

l∈S
P(Zn+2 = j and Zn+1 = l | Zn = i)

=
∑

l∈S

P(Zn+2 = j, Zn+1 = l, Zn = i)

P(Zn = i)

=
∑

l∈S

P(Zn+2 = j, Zn+1 = l, Zn = i)

P(Zn+1 = l and Zn = i)

P(Zn+1 = l and Zn = i)

P(Zn = i)

=
∑

l∈S
P(Zn+2 = j | Zn+1 = l and Zn = i)P(Zn+1 = l | Zn = i)

=
∑

l∈S
P(Zn+2 = j | Zn+1 = l)P(Zn+1 = l | Zn = i)

=
∑

l∈S
Pi,l Pl, j

= [P2]i, j , i, j ∈ S,

where we used (4.2.1). In other words, using matrix product notation, we find

(P(Zn+2 = j | Zn = i))0≤i, j≤N

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0,0 P0,1 P0,2 · · · P0,N

P1,0 P1,1 P1,2 · · · P1,N

P2,0 P2,1 P2,2 · · · P2,N

...
...

...
. . .

...

PN ,0 PN ,1 PN ,2 · · · PN ,N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0,0 P0,1 P0,2 · · · P0,N

P1,0 P1,1 P1,2 · · · P1,N

P2,0 P2,1 P2,2 · · · P2,N

...
...

...
. . .

...

PN ,0 PN ,1 PN ,2 · · · PN ,N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

https://doi.org/10.1007/978-981-13-0659-4_1
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(i) k-step transitions. More generally, for all k ∈ N we have the recursion

P(Zn+k+1 = j | Zn = i) =
∑

l∈S
P(Zn+k+1 = j and Zn+k = l | Zn = i)

=
∑

l∈S

P(Zn+k+1 = j, Zn+k = l, Zn = i)

P(Zn = i)

=
∑

l∈S

P(Zn+k+1 = j, Zn+k = l, Zn = i)

P(Zn+k = l and Zn = i)

P(Zn+k = l and Zn = i)

P(Zn = i)

=
∑

l∈S
P(Zn+k+1 = j | Zn+k = l and Zn = i)P(Zn+k = l | Zn = i)

=
∑

l∈S
P(Zn+k+1 = j | Zn+k = l)P(Zn+k = l | Zn = i)

=
∑

l∈S
P(Zn+k = l | Zn = i)Pl, j .

We have just checked that the family of matrix

[
P(Zn+k = j | Zn = i)

]
i, j∈S , k ≥ 1,

satisfies the same induction relation as the matrix power Pk , i.e.

[Pk+1]i, j =
∑

l∈S
[Pk]i,l Pl, j ,

hence by induction on k ≥ 0 the equality

[
P(Zn+k = j | Zn = i)

]
i, j∈S = [ [Pk]i, j

]
i, j∈S = Pk

holds not only for k = 0 and k = 1, but also for all k ∈ N.
Note that in general we have [Pk]i, j �= (Pi, j )k , i, j ∈ S.

The matrix product relation

Pm+n = Pm Pn = Pn Pm,

which reads

[Pm+n]i, j =
∑

l∈S
[Pm]i,l[Pn]l, j =

∑

l∈S
[Pn]i,l[Pm]l, j , i, j ∈ S,
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can now be interpreted as

P(Zn+m = j | Z0 = i) =
∑

l∈S
P(Zm = j | Z0 = l)P(Zn = l | Z0 = i)

=
∑

l∈S
P(Zn = j | Z0 = l)P(Zm = l | Z0 = i),

i, j ∈ S, which is called the Chapman-Kolmogorov equation, cf. also the triple
(1.2.2).

Example The gambling process (Zn)n≥0.

Taking S = 4 and p = 40%, the transition matrix of the gambling process on S =
{0, 1, . . . , 4} of Chap.2 reads

P = [
Pi, j

]
0≤i, j≤4 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0.6 0 0.4 0 0

0 0.6 0 0.4 0

0 0 0.6 0 0.4

0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.4.1)

and we can check by hand that:

P2 = P × P

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0.6 0 0.4 0 0

0 0.6 0 0.4 0

0 0 0.6 0 0.4

0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0.6 0 0.4 0 0

0 0.6 0 0.4 0

0 0 0.6 0 0.4

0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0.6 0.24 0 0.16 0

0.36 0 0.48 0 0.16

0 0.36 0 0.24 0.4

0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Exercise: From the above matrix (4.4.1), check that

P(Z2 = 4 | Z0 = 2) = [P2]2,4 = 0.16,

P(Z2 = 1 | Z0 = 2) = [P2]2,1 = 0, and

P(Z2 = 2 | Z0 = 2) = [P2]2,2 = 0.48.

https://doi.org/10.1007/978-981-13-0659-4_1
https://doi.org/10.1007/978-981-13-0659-4_2
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Example. The fifth order transitions of the chain with Markov matrix (4.3.4) can be
computed from the fifth matrix power

P5 =

⎡

⎢⎢⎢⎢⎣

0.14352 0.09600 0.25920 0.30160 0.19968
0.15840 0.10608 0.24192 0.30400 0.18960
0.17040 0.10920 0.23280 0.30880 0.17880
0.17664 0.11520 0.22800 0.30928 0.17088
0.14904 0.09600 0.25440 0.30520 0.19536

⎤

⎥⎥⎥⎥⎦
.

Note that for large transition orders (for example 1000 time steps) we get

P1000 =

⎡

⎢⎢⎢⎢⎣

0.16273 0.10613 0.24056 0.30660 0.18396
0.16273 0.10613 0.24056 0.30660 0.18396
0.16273 0.10613 0.24056 0.30660 0.18396
0.16273 0.10613 0.24056 0.30660 0.18396
0.16273 0.10613 0.24056 0.30660 0.18396

⎤

⎥⎥⎥⎥⎦
,

which suggests a convergence phenomenon in large time for the Markov chain, see
Chap.7 for details.

Example For the simple randomwalk of Chap.3, computing the probability to travel

from 0 to
�

�

�

�

2k =
�

�

�

�

10 in 2n = 20 time steps involves a summation over

(
20

10 + 5

)
=

(
2n

n + k

)
= 15504 paths, which can be evaluated by computing

[
P20

]
0,10, cf. also

Fig. 3.1.

4.5 The Two-State Discrete-Time Markov Chain

The above discussion shows that there is some interest in computing the n-th order
transition matrix Pn . Although this is generally difficult, this is actually possible
when the number of states equals two, i.e. S = {0, 1}.

To close this chapter we provide a complete study of the two-state Markov chain,
whose transition matrix has the form

P =
⎡

⎣
1 − a a

b 1 − b

⎤

⎦ , (4.5.1)

with a ∈ [0, 1] and b ∈ [0, 1].

https://doi.org/10.1007/978-981-13-0659-4_7
https://doi.org/10.1007/978-981-13-0659-4_3
https://doi.org/10.1007/978-981-13-0659-4_3
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We also have

P(Zn+1 = 1 | Zn = 0) = a, P(Zn+1 = 0 | Zn = 0) = 1 − a,

and
P(Zn+1 = 0 | Zn = 1) = b, P(Zn+1 = 1 | Zn = 1) = 1 − b.

The power

Pn =
⎡

⎣
1 − a a

b 1 − b

⎤

⎦
n

of the transition matrix P is computed for all n ≥ 0 in the next Proposition4.1. We
always exclude the case a = b = 0 since it corresponds to the trivial case where
P = Id is the identity matrix (constant chain).

Proposition 4.1 We have

Pn = 1

a + b

⎡

⎣
b + a(1 − a − b)n a(1 − (1 − a − b)n)

b(1 − (1 − a − b)n) a + b(1 − a − b)n

⎤

⎦ , n ∈ N.

Proof This result will be proved by a diagonalization argument. The matrix P has
two eigenvectors ⎡

⎣
1

1

⎤

⎦ and

⎡

⎣
−a

b

⎤

⎦ ,

with respective eigenvalues λ1 = 1 and λ2 = 1 − a − b.

Hence P can be written in the diagonal form

P = M × D × M−1, (4.5.2)

i.e.

P =
⎡

⎣
1 −a

1 b

⎤

⎦ ×
⎡

⎣
λ1 0

0 λ2

⎤

⎦ ×

⎡

⎢⎢⎢⎣

b

a + b

a

a + b

− 1

a + b

1

a + b

⎤

⎥⎥⎥⎦ .

As a consequence of (4.5.2), we have

Pn = (M × D × M−1)n = (M × D × M−1) · · · (M × D × M−1)

= M × D × · · · × D × M−1 = M × Dn × M−1,
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where

Dn =
[
1 0
0 λn

2

]
, n ∈ N.

hence

Pn =
⎡

⎣
1 − a

1 b

⎤

⎦ ×
⎡

⎣
1 0

0 λn
2

⎤

⎦ ×

⎡

⎢⎢⎢⎣

b

a + b

a

a + b

− 1

a + b

1

a + b

⎤

⎥⎥⎥⎦

= 1

a + b

⎡

⎣
b a

b a

⎤

⎦ + λn
2

a + b

⎡

⎣
a − a

−b b

⎤

⎦

= 1

a + b

⎡

⎣
b + aλn

2 a(1 − λn
2)

b(1 − λn
2) a + bλn

2

⎤

⎦ . (4.5.3)

�
For an alternative proof of Proposition 4.1, see also Exercise1.4.1 p. 5 of [Nor98] in
which Pn is written as

Pn =
⎡

⎣
1 − an −an

bn 1 − bn

⎤

⎦

and the relation Pn+1 = P × Pn is used to find induction relations for an and bn , cf.
the solution of Exercise7.17 for a similar analysis.

From the result of Proposition 4.1 we may now compute the probabilities

P(Zn = 0 | Z0 = 0) = b + aλn
2

a + b
, P(Zn = 1 | Z0 = 0) = a(1 − λn

2)

a + b
(4.5.4)

and

P(Zn = 0 | Z0 = 1) = b(1 − λn
2)

a + b
, P(Zn = 1 | Z0 = 1) = a + bλn

2

a + b
. (4.5.5)

As an example, the value of P(Z3 = 0 | Z0 = 0) could also be computed using
pathwise analysis as

P(Z3 = 0 | Z0 = 0) = (1 − a)3 + ab(1 − b) + 2(1 − a)ab,

which coincides with (4.5.4), i.e.

https://doi.org/10.1007/978-981-13-0659-4_7
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P(Z3 = 0 | Z0 = 0) = b + a(1 − a − b)3

a + b
,

for n = 3. Under the condition

−1 < λ2 = 1 − a − b < 1,

which is equivalent to (a, b) �= (0, 0) and (a, b) �= (1, 1), we can let n go to infinity
in (4.5.3) to derive the large time behavior, or limiting distribution, of the Markov
chain:

lim
n→∞ Pn = lim

n→∞

⎡

⎣
P(Zn = 0 | Z0 = 0) P(Zn = 1 | Z0 = 0)

P(Zn = 0 | Z0 = 1) P(Zn = 1 | Z0 = 1)

⎤

⎦ = 1

a + b

⎡

⎣
b a

b a

⎤

⎦ .

Note that convergence will be faster when a + b is closer to 1.

Hence we have

lim
n→∞P(Zn = 1 | Z0 = 0) = lim

n→∞P(Zn = 1 | Z0 = 1) = a

a + b
(4.5.6)

and

lim
n→∞P(Zn = 0 | Z0 = 0) = lim

n→∞P(Zn = 0 | Z0 = 1) = b

a + b
. (4.5.7)

Consequently,

π = [π0, π1] :=
[

b

a + b
,

a

a + b

]
(4.5.8)

is a limiting distribution as n goes to infinity, provided that (a, b) �= (1, 1). In other
words, whatever the initial state Z0, the probability of being at 1 after a “large”
time becomes close to a/(a + b), while the probability of being at 0 becomes close
to b/(a + b).

In case a = b = 0, we have

P = Id =
⎡

⎣
1 0

0 1

⎤

⎦ ,

the chain is constant and it clearly admits its initial distribution as limiting distribu-
tion. In case a = b = 1, we have

P =
⎡

⎣
0 1

1 0

⎤

⎦ ,
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and there is no limiting distribution as the chain switches indefinitely between state
0 and 1
The notions of limiting and invariant (or stationary) distributions will be treated in

Chap.7 in the general framework of Markov chains, see for example Proposition7.7.

Remarks

(i) The limiting distribution π in (4.5.8) is invariant (or stationary) by P in the
sense that

π P = 1

a + b
[b, a]

[
1 − a a
b 1 − b

]
= 1

a + b

[
b(1 − a) + ab
ab + a(1 − b)

]T

= 1

a + b
[b, a] = π,

i.e. π is invariant (or stationary) with respect to P , and the invariance relation
(4.2.4):

π = π P,

which means that P(Z1 = k) = πk if P(Z0 = k) = πk , k = 0, 1. For example,
the distribution π = [1/2, 1/2] is clearly invariant (or stationary) for the swap-
ping chain with a = b = 1 and transition matrix

P =
⎡

⎣
0 1

1 0

⎤

⎦

while π := [1/3, 2/3] will not be invariant (or stationary) for this chain. This
is a two-state particular case of the circular chain of Example (7.2.4).

(ii) If a + b = 1, one sees that

Pn =
⎡

⎣
b a

b a

⎤

⎦ = P

for all n ∈ N and we find

P(Zn = 1 | Zk = 0) = P(Zn = 1 | Zk = 1) = P(Zn = 1) = a

and

P(Zn = 0 | Zk = 0) = P(Zn = 0 | Zk = 1) = P(Zn = 0) = b

for all k = 0, 1, . . . , n − 1, regardless of the initial distribution [P(Z0 = 0),
P(Z0 = 1)]. In this case, Zn is independent of Zk as we have
P(Zn = 1, Zk = j) = P(Zn = i | Zk = j)P(Zk = j) = P(Zn = i)P(Zk = j),

https://doi.org/10.1007/978-981-13-0659-4_7
https://doi.org/10.1007/978-981-13-0659-4_7
https://doi.org/10.1007/978-981-13-0659-4_7
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i, j = 0, 1, 0 ≤ k < n, and (Zn)n∈N is an i.i.d sequence of random variables
with distribution (1 − a, a) = (b, a) over {0, 1}.

(iii) A given proportion p = a/(a + b) ∈ (0, 1) of visits to state 1 in the long run
can be reached by anya ∈ (0, p] andb ∈ (0, 1 − p] satisfyinga = bp/(1 − p).
Smaller values of a and b will lead to increased stickiness. The case (a, b) =
(p, 1 − p) satisfies a + b = 1 and corresponds to minimal stickiness, i.e. to the
independence of the sequence (Zn)n∈N.

(iv) When a = b = 1 in (4.5.1) the limit limn→∞ Pn does not exist as we have

Pn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎣
1 0

0 1

⎤

⎦ , n = 2k,

⎡

⎣
0 1

1 0

⎤

⎦ , n = 2k + 1,

and the chain is indefinitely switching at each time step from one state to the
other.

In Figs. 4.2 and 4.3 we consider a simulation of the two-state random walk with
transition matrix

P =
⎡

⎣
0.8 0.2

0.4 0.6

⎤

⎦ ,

i.e. a = 0.2 and b = 0.4. Figure4.2 represents a sample path (xn)n=0,1,...,100 of the
chain, while Fig. 4.3 represents the sample average

yn = 1

n + 1
(x0 + x1 + · · · + xn), n = 0, 1, . . . , 100,

which counts the proportion of values of the chain in the state 1 . This proportion is
found to converge to a/(a + b) = 1/3. This is actually a consequence of the Ergodic
Theorem, cf. Theorem7.12 in Chap.7.

https://doi.org/10.1007/978-981-13-0659-4_7
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Fig. 4.2 Sample path of a two-state chain in continuous time with a = 0.2 and b = 0.4
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Fig. 4.3 The proportion of chain values at 1© tends to 1/3 = a/(a + b)

# Dimension of the transition matrix
d=2
# Parameter definition
a=0.2; b=0.4;
# Definition of the transition matrix
P=matrix(c(1−a,a,b,1−b),nrow=d,ncol=d,byrow=TRUE)
# Number of time steps
N=100
# Encoding of chain values
Z=array(N+1);
for(ll in seq(1,N)) {
Z[1]=sample(d,size=1,prob=P[2,])
# Random simulation of Z[j+1] given Z[j]
for (j in seq(1,N)) Z[j+1]=sample(d,size=1,prob=P[Z[j],])
Y=array(N+1);S=0;
# Computation of the average over the l first steps
for(l in seq(1,N+1)) { Z[l]=Z[l]−1; S=S+Z[l]; Y[l]=S/l; }
X=array(N+1); for(l in seq(1,N+1)) { X[l]=l−1; }
par(mfrow=c(2,1))
plot(X,Y,type="l",yaxt="n",xaxt="n",xlim=c(0,N),xlab="",
ylim=c(0,1),ylab="",xaxs="i",col="black",main="",bty="n")
segments(0,a/(a+b),N,a/(a+b))
axis(2,pos=0,at=c(0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0))
axis(1,pos=0,at=seq(0,N,10),outer=TRUE)
plot(X,Z,type="o",xlab="",ylab="",xlim=c(0,N),yaxt="n",
xaxt="n",xaxs="i",col="black",main="",pch=20,bty="n")
axis(1,pos=1,at=seq(0,N+1,10),outer=TRUE,padj=−4,tcl=0.5)
axis(1,pos=0,at=seq(0,N+1,10),outer=TRUE)
axis(2,las=2,at=0:1)
readline(prompt = "Pause. Press <Enter> to continue...")}
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Fig. 4.4 Convergence graph for the two-state Markov chain with a = 0.2 and b = 0.4

Fig. 4.5 Sample path of a five-state Markov chain

We close this chapter with two other sample paths of Markov chains in Figs. 4.4 and
4.5. In the next Fig. 4.4 we check again that the proportion of chain values in the
state 1 converges to 1/3 for a two-state Markov chain.

In Fig. 4.5 we draw a sample path of a five-state Markov chain.

Exercises

Exercise 4.1 Consider a symmetric random walk (Sn)n∈N on Z with independent
increments ±1 chosen with equal probability 1/2, started at S0 = 0.

(a) Is the process Zn := 2Sn + 1 a Markov chain?
(b) Is the process Zn := (Sn)2 a Markov chain?

Exercise 4.2 Consider the Markov chain (Zn)n≥0 with state space S = {1, 2} and
transition matrix
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P =
[ 1 2

1 0.4 0.6
2 0.8 0.2

]
.

(a) Compute P(Z7 = 1 and Z5 = 2 | Z4 = 1 and Z3 = 2).
(b) Compute IE[Z2 | Z1 = 1].
Exercise 4.3 Consider a transition probability matrix P of the form

P = [
Pi, j

]
0≤i, j≤N =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π0 π1 π2 π3 · · · πN

π0 π1 π2 π3 · · · πN

π0 π1 π2 π3 · · · πN

...
...

...
...

. . .
...

π0 π1 π2 π3 · · · πN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where π = [π0, π1, . . . , πN ] ∈ [0, 1]N+1 is a vector such that π0 + π1 + · · · +
πN = 1.

(a) Compute Pn for all n ≥ 2.
(b) Show that the vector π is an invariant (or stationary) distribution for P .
(c) Show that if P(Z0 = i) = πi , i = 0, 1, . . . , N , then Zn is independent of Zk

for all 0 ≤ k < n, and (Zn)n∈N is an i.i.d sequence of random variables with
distribution π = [π0, π1, . . . , πN ] over {0, 1, . . . , N }.

Exercise 4.4 Consider a {0, 1}-valued “hidden” two-state Markov chain (Xn)n∈N
with transition probability matrix

P =
⎡

⎣
P0,0 P0,1

P1,0 P1,1

⎤

⎦ =
⎡

⎣
P(X1 = 0 | X0 = 0) P(X1 = 1 | X0 = 0)

P(X1 = 0 | X0 = 1) P(X1 = 1 | X0 = 1)

⎤

⎦ ,

and initial distribution

π = [π0, π1] = [P(X0 = 0),P(X0 = 1)].

We observe a process (Ok)k∈N whose state Ok ∈ {a, b} at every time k ∈ N has a
conditional distribution given Xk ∈ {0, 1} denoted by

M =
[
m0,a m0,b

m1,a m1,b

]
=

[
P(Ok = a | Xk = 0) P(Ok = b | Xk = 0)
P(Ok = a | Xk = 1) P(Ok = b | Xk = 1)

]
,

called the emission probability matrix.
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(a) Using elements of π , P and M , compute P(X0 = 1, X1 = 1) and the probability

P((O0, O1) = (a, b) and (X0, X1) = (1, 1))

of observing the sequence (O0, O1) = (a, b) when (X0, X1) = (1, 1).
Hint: By independence, the conditional probability of observing (O0, O1) = (a, b)
given that (X0, X1) = (1, 1) splits as

P((O0, O1) = (a, b) | (X0, X1) = (1, 1)) = P(O0 = a | X0 = 1)P(O1 = b | X1 = 1).

(b) Find the probabilityP((O0, O1) = (a, b)) that the observed sequence is (a, b).
Hint: Use the law of total probability based on all possible values of (X0, X1).

(c) Compute the probabilities

P(X1 = 1 | (O0, O1) = (a, b)), and P(X1 = 0 | (O0, O1) = (a, b)).

Exercise 4.5 Consider a two-dimensional random walk (Sn)n∈N started at S0 =
(0, 0) on Z

2, where, starting from a location Sn = (i, j) the chain can move to
any of the points (i + 1, j + 1), (i + 1, j − 1), (i − 1, j + 1), (i − 1, j − 1) with
equal probability 1/4.

(a) Suppose in addition that the random walk cannot visit any site more
than once, as in a snake game. Is the resulting system a Markov
chain? Justify your answer.

(b) Let Sn = (Xn,Yn) denote the coordinates of Sn at time n and let Zn := X2
n + Y 2

n .
Is (Zn)n∈N a Markov chain? Justify your answer.

Hint: Use the fact that a same value of Zn may correspond to different locations of
(Xn,Yn) on the circle, for example (Xn,Yn) = (5, 0) and (Xn,Yn) = (4, 3) when
Zn = 25.

Questions (a) and (b) above are independent.

Exercise 4.6 The Elephant Random Walk (Sn)n∈N [ST08] is a discrete-time Z-
valued random walk

Sn := X1 + · · · + Xn, n ∈ N,

whose increments Xk = Sk − Sk−1, k ≥ 1, are recursively defined as follows:

• At time n = 1, X1 is a Bernoulli {−1,+1}-valued random variable with

P(X1 = +1) = p and P(X1 = −1) = q = 1 − p ∈ (0, 1).

• At any subsequent time n ≥ 2, one draws randomly an integer time index k ∈
{1, . . . , n − 1} with uniform probability, and lets Xn := Xk with probability p,
and Xn := −Xk with probability q := 1 − p.



Exercises 111

Does the Elephant Random Walk (Sn)n∈N have the Markov property?

Exercise 4.7 Consider a Markov chain (Xn)n≥0 with state space S = {0, 1} and
transition matrix

P =
[ 0 1

0 1 − a a
1 b 1 − b

]
,

where a, b > 0, and define a new stochastic process (Zn)n≥1 by Zn = (Xn−1, Xn),
n ≥ 1. Argue that (Zn)n≥1 is a Markov chain and write down its transition matrix.
Start by determining the state space of (Zn)n≥1.

Exercise 4.8 Given p ∈ [0, 1), consider theMarkov chain (Xn)n≥0 on the state space
{0, 1, 2} having the transition matrix

P =
⎡

⎣

0 1 2

0 p q 0
1 0 p q
2 0 0 1

⎤

⎦,

with q := 1 − p.

(a) Give the probability distribution of the first hitting time

T2 := inf
{
n ≥ 0 : Xn = 2

}
.

of state 2 starting from X0 = 0 .
Hint: The sum Z = X1 + · · · + Xn of n independent geometric random variables on
{1, 2, . . .} has the negative binomial distribution

P(Z = k | X0 = 1) =
(
k − 1

k − d

)
(1 − p)d pk−d , k ≥ d.

(b) Compute themean hitting time IE[T2 | X0 = 0] of state 2 starting from X0 = 0.
Hint: We have

∞∑

k=1

kpk−1 = 1

(1 − p)2
and

∞∑

k=2

k(k − 1)pk−2 = 2

(1 − p)3
, 0 ≤ p < 1.

Exercise 4.9 Bernoulli–Laplace chain. Consider two boxes and a total of 2N balls
made of N red balls and N green balls. At time 0, a number k = X0 of red balls and
a number N − k of green balls are placed in the first box, while the remaining N − k
red balls and k green balls are placed in the second box.
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At each unit of time, one ball is chosen randomly out of N in each box, and the
two balls are interchanged. Write down the transition matrix of the Markov chain
(Xn)n∈N with state space {0, 1, 2, . . . , N }, representing the number of red balls in
the first box. Start for example from N = 5.

Exercise 4.10 (a) After winning k dollars, a gambler either receives k + 1 dollars
with probability p, or has to quit the game and lose everything with probability
q = 1 − p. Starting from one dollar, find a model for the time evolution of the
wealth of the player using a Markov chain whose transition probability matrix
P will be described explicitly along with its powers Pn of all orders n ≥ 1.

(b) (Success runsMarkov chain). Wemodify the model of Question (a) by allowing
the gambler to start playing again and win with probability p after reaching state
0 . Write down the corresponding transition probability matrix P , and compute
Pn for all n ≥ 2.

Exercise 4.11 Let (Xk)k∈N be the Markov chain with transition matrix

P =

⎡

⎢⎢⎣

1/4 0 1/2 1/4
0 1/5 0 4/5
0 1 0 0
1/3 1/3 0 1/3

⎤

⎥⎥⎦ .

A new process is defined by letting

Zn :=
⎧
⎨

⎩

0 if Xn = 0 or Xn = 1,

Xn if Xn = 2 or Xn = 3,

i.e.
Zn = Xn1{Xn∈{2,3}}, n ≥ 0.

(a) Compute

P(Zn+1 = 2 | Zn = 0 and Zn−1 = 2) and P(Zn+1 = 2 | Zn = 0 and Zn−1 = 3),

n ≥ 1.
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(b) Is (Zn)n∈N a Markov chain?

Exercise 4.12 [OSA+09]
Abeokuta, one of the major towns of the defunct Western Region of Nigeria, has
recently seen an astronomic increase in vehicular activities. The intensity of vehicle
traffic at the Lafenwa intersection which consists of Ayetoro, Old Bridge and Ita-
Oshin routes, ismodeled according to three states L/M/H= {Low / Moderate / High}.
(a) During year 2005, low intensity incoming traffic has been observed at Lafenwa

intersection for ηL = 50% of the time, moderate traffic has been observed for
ηM = 40% of the time, while high traffic has been observed during ηH = 10%
of the time.

Given the correspondence table

incoming traffic vehicles per hour
L (low intensity) 360

M (medium intensity) 505
H (high intensity) 640

compute the average incoming traffic per hour in year 2005.
(b) The analysis of incoming daily traffic volumes at Lafenwa intersection between

years 2004 and 2005 shows that the probability of switching states within
{L, M, H} is given by the Markov transition probability matrix

P =
⎡

⎣
2/3 1/6 1/6
1/3 1/2 1/6
1/6 2/3 1/6

⎤

⎦ .

Based on the knowledge of P and η = [ηL , ηM , ηH ], give a projection of the
respective proportions of traffic in the states L/M/H for year 2006.

(c) Based on the result of Question (b), give a projected estimate for the average
incoming traffic per hour in year 2006.

(d) By solving the equation π = π P for the invariant (or stationary) probability
distribution π = [πL , πM , πH ], give a long term projection of steady traffic at
Lafenwa intersection. Hint: we have πL = 11/24.



Chapter 5
First Step Analysis

Starting with this chapter we introduce the systematic use of the first step analysis
technique, in a general framework that covers the examples of randomwalks already
treated in Chaps. 2 and 3. The main applications of first step analysis are the compu-
tation of hitting probabilities, mean hitting and absorption times, mean first return
times, and average number of returns to a given state.

5.1 Hitting Probabilities

Let us consider a Markov chain (Zn)n∈N with state space S, and let A ⊂ S denote a
subset of S. We are interested in the first time TA the chain hits the subset A, with

TA = inf{n ≥ 0 : Zn ∈ A}, (5.1.1)

with TA = 0 if Z0 ∈ A and

TA = ∞ if {n ≥ 0 : Zn ∈ A} = ∅,

i.e. if Zn /∈ A for all n ∈ N. Similarly to the gambling problem of Chap. 2, we would
like to compute the probabilities

gl(k) = P(ZTA = l | Z0 = k)

of hitting the set A ⊂ S through state l ∈ A starting from k ∈ S, where ZTA represents
the location of the chain (Zn)n∈N at the hitting time TA.

This computation can be achieved by first step analysis, using the law of total
probability (1.3.1) for the probability measure P(· | Z0 = k) and the Markov prop-
erty, as follows.

© Springer Nature Singapore Pte Ltd. 2018
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For all k ∈ S \ A we have TA ≥ 1 given that Z0 = k, hence we can write

gl(k) = P(ZTA = l | Z0 = k)

=
∑

m∈S
P(ZTA = l | Z1 = m and Z0 = k)P(Z1 = m | Z0 = k)

=
∑

m∈S
P(ZTA = l | Z1 = m)P(Z1 = m | Z0 = k)

=
∑

m∈S
Pk,mP(ZTA = l | Z1 = m)

=
∑

m∈S
Pk,mP(ZTA = l | Z0 = m)

=
∑

m∈S
Pk,mgl(m), k ∈ S \ A, l ∈ A,

where the relation

P(ZTA = l | Z1 = m) = P(ZTA = l | Z0 = m)

follows from the fact that the probability of ruin does not depend on the initial time
the counter is started, as in Lemma 2.2.

Hence we have

gl(k) =
∑

m∈S
Pk,mgl(m) = Pk,l +

∑

m∈S\A
Pk,mgl(m), (5.1.2)

k ∈ S, l ∈ A, under the boundary conditions

gl(k) = P(ZTA = l | Z0 = k) = 1{k=l} =
⎧
⎨

⎩

1 if k = l,

0 if k �= l,
k ∈ A, l ∈ S,

since TA = 0 whenever one starts from Z0 ∈ A. Equation (5.1.2) can be rewritten in
matrix form as

gl = Pgl , l ∈ A, (5.1.3)

where g is a column vector, under the boundary condition

gl(k) = P(ZTA = l | Z0 = k) = 1{l}(k) =
⎧
⎨

⎩

1, k = l,

0, k �= l,

for all k ∈ A and l ∈ S.
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In addition, the hitting probabilities gl(k) = P(ZTA = l | Z0 = k) satisfy the con-
dition

1 = P(TA = ∞ | Z0 = k) +
∑

l∈A

P(ZTA = l | Z0 = k)

= P(TA = ∞ | Z0 = k) +
∑

l∈A

gl(k), (5.1.4)

for all k ∈ S.
Note that we may have P(TA = ∞ | Z0 = k) > 0, for example in the following

chain with A = {0} and k = 1 we have

P(T0 = ∞ | Z0 = 1) = 0.2.

In case the transition matrix P satisfies

Pk,l = 1{k=l}

for all k, l ∈ A, the set A is said to be absorbing.

The next lemma will be used in Chap.8 on branching Processes.

Lemma 5.1 Assume that state j ∈ S is absorbing. Then for all i ∈ S we have

P(Tj < ∞ | Z0 = i) = lim
n→∞P(Zn = j | Z0 = i).

Proof We have
{Tj < ∞} =

⋃

n≥1

{Zn = j},

because the finiteness of Tj means that Zn becomes equal to j for some n ∈ N. In
addition, since j ∈ S is absorbing it holds that

{Zn = j} ⊂ {Zn+1 = j}, n ∈ N,

hence given that {Z0 = i}, by (1.2.3) we have

α1 = P(Tj < ∞ | Z0 = i) = P

(
⋃

n≥1

{Zn = j}
∣∣∣Z0 = i

)
(5.1.5)

= P

(
lim
n→∞{Zn = j}

∣∣∣Z0 = i
)

= lim
n→∞P({Zn = j} | Z0 = i). �
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Block Triangular Transition Matrices

Assume now that the state space is S = {0, 1, . . . , N } and the transition matrix P
has the form

P =
⎡

⎣
Q R

0 Id

⎤

⎦ , (5.1.6)

where Q is a square (r + 1) × (r + 1)matrix, R is a (r + 1) × (N − r)matrix, and

Id =

⎡

⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

⎤

⎥⎥⎥⎥⎥⎦

is the (N − r) × (N − r) identity matrix, in which case the states in {r + 1, r +
2, . . . , N } are absorbing.

If the set A := {r + 1, r + 2, . . . , N } is made of the absorbing states of the chain,
we have the boundary conditions

gl(m) = 1{m=l}, l = 0, 1, . . . , N , m = r + 1, r + 2, . . . , N , (5.1.7)

hence the Eq. (5.1.2) can be rewritten as

gl(k) =
N∑

m=0

Pk,mgl(m)

=
r∑

m=0

Pk,mgl(m) +
N∑

m=r+1

Pk,mgl(m)

=
r∑

m=0

Pk,mgl(m) + Pk,l

=
r∑

m=0

Qk,mgl(m) + Rk,l , k = 0, 1, . . . , r, l = r + 1, . . . , N ,

from (5.1.7) and since Pk,l = Rk,l , k = 0, 1, . . . , r , l = r + 1, . . . , N . Hence we
have

gl(k) =
r∑

m=0

Qk,mgl(m) + Rk,l , k = 0, 1, . . . , r, l = r + 1, . . . , N .
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Remark In the case of the two-state Markov chain with transition matrix (4.5.1) and
A = {0} we simply find g0(0) = 1 and

g0(1) = b + (1 − b) × g0(1),

hence g0(1) = 1 if b > 0 and g0(1) = 0 if b = 0.

Examples Consider aMarkov chain on {0, 1, 2, 3}with transition matrix of the form

P =

⎡

⎢⎢⎣

1 0 0 0
a b c d
α β γ η
0 0 0 1

⎤

⎥⎥⎦ . (5.1.8)

Let A = {0, 3} denote the absorbing states of the chain, and let

T0,3 = inf{n ≥ 0 : Xn = 0 or Xn = 3}

and compute the probabilities

g0(k) = P(XT0,3 = 0 | X0 = k)

of hitting state 0 first within {0, 3} starting from k = 0, 1, 2, 3. The chain has the
following graph:

(5.1.9)

Noting that 0 and 3 are absorbing states, and writing the relevant rows of the first
step analysis matrix equation g = Pg, we have

⎧
⎪⎪⎨

⎪⎪⎩

g0(0) = 1
g0(1) = a × 1 + bg0(1) + cg0(2) + d × 0
g0(2) = α × 1 + βg0(1) + γg0(2) + η × 0
g0(3) = 0,
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i.e. ⎧
⎪⎪⎨

⎪⎪⎩

g0(0) = 1
g0(1) = a + bg0(1) + cg0(2)
g0(2) = α + βg0(1) + γg0(2)
g0(3) = 0,

which has for solution

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

g0(0) = 1

g0(1) = cα + a(1 − γ)

(1 − b)(1 − γ) − cβ

g0(2) = aβ + α(1 − b)

(1 − b)(1 − γ) − cβ
g0(3) = 0.

(5.1.10)

We have gl(0) = gl(3) = 0 for l = 1, 2, and by a similar analysis, letting

g3(k) := P(XT0,3 = 3 | X0 = k), k = 0, 1, 2, 3,

we find ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

g3(0) = 0

g3(1) = cη + d(1 − γ)

(1 − b)(1 − γ) − cβ

g3(2) = βd + η(1 − b)

(1 − b)(1 − γ) − cβ
g3(3) = 1,

and we note that

g0(1) + g3(1) = cα + a(1 − γ)

(1 − b)(1 − γ) − cβ
+ cη + d(1 − γ)

(1 − b)(1 − γ) − cβ
= 1,

since α + η = 1 − γ − β and a + d = 1 − b − c, and similarly

g0(2) + g3(2) = aβ + α(1 − b)

(1 − b)(1 − γ) − cβ
+ βd + η(1 − b)

(1 − b)(1 − γ) − cβ
= 1.

We also check that in case a = d and α = η we have

g0(1) = cα + a(β + 2α)

(c + 2a)(β + 2α) − cβ
= cα + aβ + 2aα

2cα + 2aβ + 4aα
= g0(2) = 1

2
,

and

g0(1) = g3(1) = g0(2) = g3(2) = 1

2
.
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Note that, letting

T0 := inf{n ≥ 0 : Xn = 0} and T3 := inf{n ≥ 0 : Xn = 0},

we also have

g0(k) = P(XT0,3 = 0 | X0 = k) = P(T0 < ∞ | X0 = k)

and
g3(k) = P(XT0,3 = 3 | X0 = k) = P(T3 < ∞ | X0 = k)

k = 0, 1, 2, 3.

5.2 Mean Hitting and Absorption Times

We are now interested in the mean hitting time

hA(k) := E[TA | Z0 = k]

it takes for the chain to hit the set A ⊂ S starting from a state k ∈ S. In case the set
A is absorbing we refer to hA(k) as the mean absorption time into A starting from
the state k .

Clearly, since TA = 0 whenever X0 = k ∈ A, we have

hA(k) = 0, for all k ∈ A.

In addition, for all k ∈ S \ A, by first step analysis using the law of total expectation
(1.6.11) applied to the probability measure P(· | Z0 = l), the Markov property and
Lemma 1.4 we have

hA(k) = E[TA | Z0 = k]
=

∑

l∈S
E

[
TA1{Z1=l} | Z0 = k

]

= 1

P(Z0 = k)

∑

l∈S
E

[
TA1{Z1=l}1{Z0=k}

]

= 1

P(Z0 = k)

∑

l∈S
E

[
TA1{Z1=l and Z0=k}

]

=
∑

l∈S
E

[
TA | Z1 = l and Z0 = k

]P(Z1 = l and Z0 = k)

P(Z0 = k)
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=
∑

l∈S
E[TA | Z1 = l and Z0 = k]P(Z1 = l | Z0 = k)

=
∑

l∈S
E[1 + TA | Z0 = l]P(Z1 = l | Z0 = k)

=
∑

l∈S
(1 + E[TA | Z0 = l])P(Z1 = l | Z0 = k)

=
∑

l∈S
P(Z1 = l | Z0 = k) +

∑

l∈S
P(Z1 = l | Z0 = k)E[TA | Z0 = l]

= 1 +
∑

l∈S
P(Z1 = l | Z0 = k)E[TA | Z0 = l]

= 1 +
∑

l∈S
Pk,l h A(l), k ∈ S \ A,

where the relation

E[TA | Z1 = l, Z0 = k] = 1 + E[TA | Z0 = l]

can be justified as in the proof of Lemma 2.3.

Hence we have

hA(k) = 1 +
∑

l∈S
Pk,l h A(l) = 1 +

∑

l∈S\A
Pk,l h A(l), k ∈ S \ A, (5.2.1)

under the boundary conditions

hA(k) = E[TA | Z0 = k] = 0, k ∈ A, (5.2.2)

Condition (5.2.2) implies that (5.2.1) becomes

hA(k) = 1 +
∑

l∈S\A
Pk,l h A(l), k ∈ S \ A.

This equation can be rewritten in matrix form as

hA =
⎡

⎢⎣
1
...

1

⎤

⎥⎦ + PhA,
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by considering only the rows with index k ∈ S \ A, under the boundary conditions

hA(k) = 0, k ∈ A.

Block Triangular Transition Matrices

When the transition matrix P has the form (5.1.6) and A = {r + 1, r + 2, . . . , N },
Eq. (5.2.1) rewrites as

hA(k) = 1 +
N∑

l=0

Pk,l h A(l)

= 1 +
r∑

l=0

Pk,l h A(l) +
N∑

l=r+1

Pk,l h A(l)

= 1 +
r∑

l=0

Pk,l h A(l), 0 ≤ k ≤ r,

since hA(l) = 0, l = r + 1, r + 2, . . . , N , i.e.

hA(k) = 1 +
r∑

l=0

Pk,l h A(l), 0 ≤ k ≤ r,

with hA(k) = 0, k = r + 1, . . . , n.

Two-State Chain

In the case of the two-state Markov chain with transition matrix (4.5.1) with A = {0}
we simply find h{0}(0) = 0 and

h{0}(1) = b × 1 + (1 − b)(1 + h{0}(1)) = 1 + (1 − b)h{0}(1), (5.2.3)

with solution

h{0}(1) = b
∞∑

k=1

k(1 − b)k = 1

b
,

and similarly we find

h{1}(0) = a
∞∑

k=1

k(1 − a)k = 1

a
,

with h{0}(0) = h{1}(1) = 0, cf. also (5.3.3) below.
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Utility Functionals

The above can be generalized to derive an equation for an expectation of the form

hA(k) := E

[
TA∑

i=0

f (Xi )

∣∣∣X0 = k

]
, k = 0, 1, . . . , N ,

where f (·) is a given utility function, as follows:

hA(k) = E

[
TA∑

i=0

f (Xi )

∣∣∣X0 = k

]

=
r∑

m=0

Pk,m

(
f (k) + E

[
TA∑

i=1

f (Xi )

∣∣∣X1 = m

])

=
r∑

m=0

Pk,m f (k) +
r∑

m=0

Pk,mE

[
TA∑

i=1

f (Xi )

∣∣∣X1 = m

]

= f (k)
r∑

m=0

Pk,m +
r∑

m=0

Pk,mE

[
TA∑

i=0

f (Xi )

∣∣∣X0 = m

]

= f (k) +
r∑

m=0

Pk,mhA(m), k ∈ Ac := {0, 1, . . . , r},

with A := {r + 1, . . . , N }, hence

hA(k) = f (k) +
r∑

m=0

Pk,mhA(m), k ∈ Ac = {0, 1, . . . , r},

with the boundary condition

hA(k) = 0, k ∈ A = {r + 1, . . . , n},

see also Exercise 5.20.

Examples

• When f = 1Ac = 1{0,1,...,r} is the indicator function over the set Ac, i.e.

f (Xi ) = 1Ac(Xi ) =
⎧
⎨

⎩

1 if Xi /∈ A,

0 if Xi ∈ A,

the quantity hA(k) coincides with the mean hitting time of the set A starting from
k . In particular, when A = {m} this recovers the equation



5.2 Mean Hitting and Absorption Times 125

h{m}(k) = 1 +
∑

l∈S
l �=m

Pk,l h{m}(l), k ∈ S \ {m}, (5.2.4)

with h{m}(m) = 1.

• When f is the indicator function f = 1{l}, i.e.

f (Xi ) = 1{l}(Xi ) =
⎧
⎨

⎩

1 if Xi = l,

0 if Xi �= l,

with l ∈ Ac, the quantity hA(k) will yield the mean number of visits to state 1
starting from k before hitting the set A.

• See Exercises 5.19, 5.20, and also Problem 5.22 for a complete solution in case
f (k) = k and (Xk)k≥0 is the gambling process of Chap. 2.

Examples Consider the Markov chain whose transition probability matrix is given
by

P = [
Pi, j

]
0≤i, j≤3 =

⎡

⎢⎢⎣

α 0 β 0
α 0 0 β
α β 0 0
0 0 0 1

⎤

⎥⎥⎦ ,

where α,β ≥ 0 and α + β = 1. Taking A := {3}, determine the mean time it takes
to reach state 3 starting from state 0 . We observe that state 3 is absorbing:

Let

h3(k) = E[T3 | X0 = k]

denote themean (hitting) time to reach state 3 , after starting from state k = 0, 1, 2, 3.
We get
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

h3(0) = α(1 + h3(0)) + β(1 + h3(2)) = 1 + αh3(0) + βh3(2)

h3(1) = α(1 + h3(0)) + β(1 + h3(3)) = 1 + αh3(0)

h3(2) = α(1 + h3(0)) + β(1 + h3(1)) = 1 + αh3(0) + βh3(1)

h3(3) = 0,

which, using the relation α = 1 − β, yields

h3(3) = 0, h3(1) = 1

β3
, h3(2) = 1 + β

β3
, h3(0) = 1 + β + β2

β3
.

Since state 3 can only be reached from state 1 with probability β, it is nat-
ural that the hitting times go to infinity as β goes to zero. We also check that
h3(3) < h3(1) < h3(2) < h3(0), as can be expected from the above graph. In addi-
tion, (h3(1), h3(2), h3(0)) converge to (1, 2, 3) as β goes to 1, as can be expected.

5.3 First Return Times

Consider now the first return time T r
j to state j ∈ S, defined by

T r
j := inf{n ≥ 1 : Xn = j},

with
T r
j = ∞ if Xn �= j for all n ≥ 1.

Note that in contrast with the definition (5.1.1) of the hitting time Tj , the infimum
is taken here for n ≥ 1 as it takes at least one step out of the initial state in order to
return to state j . Nevertheless we have Tj = T r

j if the chain is started from a state
i different from j .
Denote by

μ j (i) = E[T r
j | X0 = i] ≥ 1

the mean return time to state j ∈ S after starting from state i ∈ S.
Mean return times can also be computed by first step analysis. We have

μ j (i) = E[T r
j | X0 = i]

= 1 × P(X1 = j | X0 = i)

+
∑

l∈S
l �= j

P(X1 = l | X0 = i)(1 + E[T r
j | X0 = l])
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= Pi, j +
∑

l∈S
l �= j

Pi,l(1 + μ j (l))

= Pi, j +
∑

l∈S
l �= j

Pi,l +
∑

l∈S
l �= j

Pi,lμ j (l)

=
∑

l∈S
Pi,l +

∑

l∈S
l �= j

Pi,lμ j (l)

= 1 +
∑

l∈S
l �= j

Pi,lμ j (l),

hence
μ j (i) = 1 +

∑

l∈S
l �= j

Pi,lμ j (l), i, j ∈ S. (5.3.1)

Hitting Times Versus Return Times

Note that the mean return time equation in (5.3.1) does not include any boundary
condition, in contrast with the mean hitting time Eq. (5.2.4) in Sect. 5.2. In addition,
the time T r

i to return to state i is always at least one by construction, henceμi (i) ≥ 1
cannot vanish,whilewealwayshavehi (i) = 0, i ∈ S.On theother hand, bydefinition
we have

hi ( j) = E[T r
i | X0 = j] = E[Ti | X0 = j] = μi ( j),

for all i �= j , and for i = j the mean return time μ j ( j) can be computed from the
hitting times h j (l), l �= j , by first step analysis as

μ j ( j) =
∑

l∈S
Pj,l(1 + h j (l))

= Pj, j +
∑

l �= j

Pj,l(1 + h j (l))

=
∑

l∈S
Pj,l +

∑

l �= j

Pj,l h j (l)

= 1 +
∑

l �= j

Pj,l h j (l), j ∈ S, (5.3.2)

which in agreement with (5.3.1) when i = j .
In practice we may prefer to compute first the hitting times hi ( j) = 0 under the

boundary conditions hi (i) = 0, and then to recover the return timeμi (i) from (5.3.2),
i, j ∈ S.
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Examples

(i) Mean return times for the two-state Markov chain.
The mean return time μ0(i) = E[T r

0 | X0 = i] to state 0 starting from state
i ∈ {0, 1} satisfies

⎧
⎨

⎩

μ0(0) = (1 − a) × 1 + a(1 + μ0(1)) = 1 + aμ0(1)

μ0(1) = b × 1 + (1 − b)(1 + μ0(1)) = 1 + (1 − b)μ0(1)

which yields

μ0(0) = 1 + a

b
and μ0(1) = h0(1) = 1

b
, (5.3.3)

cf. also (5.2.3) above for the computation of μ0(1) = h0(1) = 1/b as a mean
hitting time. In the two-state case, the distribution of T r

0 given X0 = 0 is given
by

f (n)0,0 := P(T r
0 = n | X0 = 0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if n = 0,

1 − a if n = 1,

ab(1 − b)n−2 if n ≥ 2,

(5.3.4)

hence (5.3.3) can be directly recovered as1

μ0(0) =E[T r
0 | X0 = 0]

=
∞∑

n=0

nP(T r
0 = n | X0 = 0)

=
∞∑

n=0

n f (n)0,0

=1 − a + ab
∞∑

n=2

n(1 − b)n−2

=1 − a + ab
∞∑

n=0

(n + 2)(1 − b)n

=1 − a + ab(1 − b)
∞∑

n=0

n(1 − b)n−1 + 2ab
∞∑

n=0

(1 − b)n

=a + b

b
= 1 + a

b
, (5.3.5)

1We are using the identities
∞∑

k=0

rk = (1 − r)−1 and
∞∑

k=1

krk−1 = (1 − r)−2, cf. (A.3) and (A.4).
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where we used the identity (A.4).
Similarly we check that

⎧
⎨

⎩

μ1(0) = 1 + (1 − a)μ1(0)

μ1(1) = 1 + bμ1(0),

which yields

μ1(0) = h1(0) = 1

a
and μ1(1) = 1 + b

a
,

and can be directly recovered by

μ1(1) = 1 − b + ab
∞∑

n=0

(n + 2)(1 − a)n = a + b

a
= 1 + b

a
, (5.3.6)

as in (5.3.3) and (5.3.5) above, by swapping a with b and state 0 with state 1 .

(ii) Maze problem.
Mazes provide natural examples ofMarkovian systems as their users tend rely on
their current positions and to forget past information.More generally,Markovian
systems can be used as an approximation of a non-Markovian reality.

Consider a fish placed in an aquarium with 9 compartments:

(5.3.7)

The fish moves randomly: at each time step it changes compartments and if it finds
k ≥ 1 exit doors from one compartment, it will choose one of them with probability
1/k, i.e. the transition matrix is

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0
1/2 0 1/2 0 0 0 0 0 0
0 1/2 0 0 0 1/2 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1/2 0 1/2 0
0 0 1/2 0 1/2 0 0 0 0
0 0 0 1/2 0 0 0 1/2 0
0 0 0 0 1/3 0 1/3 0 1/3
0 0 0 0 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Find the average time to come back to state 1 starting from state 1 .

Letting
T r
l = inf{n ≥ 1 : Xn = l}

denote the first return time to state 1 , and defining

μ1(k) := E[T r
1 | X0 = k]

the mean return time to state 1 starting from k , we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ1(1) = 1 + μ1(2)

μ1(2) = 1

2
(1 + 0) + 1

2
(1 + μ1(3)) = 1 + 1

2
μ1(3)

μ1(3) = 1

2
(1 + μ1(2)) + 1

2
(1 + μ1(6)) = 1 + 1

2
μ1(2) + 1

2
μ1(6)

μ1(4) = 1 + μ1(7)

μ1(5) = 1

2
(1 + μ1(8)) + 1

2
(1 + μ1(6)) = 1 + 1

2
μ1(8) + 1

2
μ1(6)

μ1(6) = 1

2
(1 + μ1(3)) + 1

2
(1 + μ1(5)) = 1 + 1

2
μ1(3) + 1

2
μ1(5)

μ1(7) = 1 + 1

2
μ1(4) + 1

2
μ1(8) = 1

2
(1 + μ1(4)) + 1

2
(1 + μ1(8))

μ1(8) = 1

3
(1 + μ1(7)) + 1

3
(1 + μ1(5)) + 1

3
(1 + μ1(9))

= 1 + 1

3
(μ1(7) + μ1(5) + μ1(9))

μ1(9) = 1 + μ1(8),

or
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

μ1(1) = 1 + μ1(2), μ1(2) = 1 + 1

2
μ1(3), μ1(3) = 2 + 2

3
μ1(6),

μ1(4) = 1 + μ1(7), μ1(5) = 1 + 1

2
μ1(8) + 1

2
μ1(6), 0 = 30 + 3μ1(8) − 5μ1(6),

μ1(7) = 3 + μ1(8), 0 = 80 + 5μ1(6) − 5μ1(8), μ1(9) = 1 + μ1(8),
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Fig. 5.1 Mean return times to state 0 on the maze (5.3.7)

which yields

μ1(1) = 16, μ1(2) = 15, μ1(3) = 28, μ1(4) = 59, μ1(5) = 48, (5.3.8)

μ1(6) = 39, μ1(7) = 58, μ1(8) = 55, μ1(9) = 56.

Consequently, it takes on average 16 steps to come back to 1 starting from 1 , and
59 steps to reach 1 starting from 4 . This data is illustrated in the following picture
in which the numbers represent the average time it takes to return to 1 starting from
a given state.

The next Fig. 5.1 represents the mean return times to state 0 according to the initial
state on the maze (5.3.7).

5.4 Mean Number of Returns

Return Probabilities

In the sequel we let

pi j = P(T r
j < ∞ | X0 = i) = P(Xn = j for some n ≥ 1 | X0 = i)
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denote the probability of return to state j in finite time2 starting from state i . The
probability pii of return to state i within a finite time starting from state i can be
computed as follows:

pii = P(Xn = i for some n ≥ 1 | X0 = i)

= P

( ⋃

n≥1

{
Xn = i}

∣∣∣X0 = i
)

=
∞∑

n=1

P(Xn = i, Xn−1 �= i, . . . , X1 �= i | X0 = i)

=
∞∑

n=1

f (n)i,i , (5.4.1)

where

f (n)i, j := P(T r
j = n | X0 = i) = P(Xn = j, Xn−1 �= j, . . . , X1 �= j | X0 = i),

i, j ∈ S, is the probability distribution of T r
j given that X0 = i , with

f (0)i,i = P(T r
i = 0 | X0 = i) = 0.

Note that we have

f (1)i,i = P(X1 = i | X0 = i) = Pi,i , i ∈ S.

Convolution Equation

By conditioning on the first return time k ≥ 1, the return time probability distribution
f (k)i,i = P(T r

i = k | X0 = i) satisfies the convolution equation

[Pn]i,i = P(Xn = i | X0 = i)

=
n∑

k=1

P(Xk = i, Xk−1 �= i, . . . , X1 �= i | X0 = i)P(Xn = i | Xk = i)

=
n∑

k=1

P(Xk = i, Xk−1 �= i, . . . , X1 �= i | X0 = i)P(Xn−k = i | X0 = i)

=
n∑

k=1

f (k)i,i [Pn−k]i,i ,

which extends the convolution equation (3.4.7) from random walks to the more
general setting of Markov chains.

2When i �= j , pi j is the probability of visiting state j in finite time after starting from state i .
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The return probabilities pi j will be used below to compute the average number of
returns to a given state, and the distribution f (k)i, j , k ≥ 1, of T r

j given that X0 = i will
be useful in Sect. 6.4 on positive and null recurrence.

Number of Returns

Let

R j :=
∞∑

n=1

1{Xn= j} (5.4.2)

denote the number of returns3 to state j by the chain (Xn)n∈N. The next proposition
shows that, given {X0 = i}, R j has a zero-modified geometric distributionwith initial
mass 1 − pi j .

The next proposition shows that, given {X0 = i}, R j has a zero-modified geomet-
ric distribution with initial mass 1 − pi j .

Proposition 5.1 The probability distribution of the number of returns R j to state j
given that {X0 = i} is given by

P(R j = m | X0 = i) =
⎧
⎨

⎩

1 − pi j , m = 0,

pi j × (p j j )
m−1 × (1 − p j j ), m ≥ 1,

Proof When the chain never visits state j starting from X0 = i we have R j = 0,
and this happens with probability

P(R j = 0 | X0 = i) = P(T r
j = ∞ | X0 = i)

= 1 − P(T r
j < ∞ | X0 = i)

= 1 − pi j .

Next, when the chain (Xn)n∈N makes a number R j = m ≥ 1 of visits to state j
starting from state i , it makes a first visit to state j with probability pi, j and then
makes m − 1 returns to state j , each with probability p j j . After those m visits,
it never returns to state j , and this event occurs with probability 1 − p j j . Hence,
given that {X0 = i} we have

P(R j = m | X0 = i) =
⎧
⎨

⎩

pi j × (p j j )
m−1 × (1 − p j j ), m ≥ 1,

1 − pi j , m = 0,

by the same argument as in (5.3.4) above.

In case i = j , Ri is simply the number of returns to state i starting from state i ,
and it has the geometric distribution

3Here, R j is called a number of returns because the time counter is started at n = 1 and excludes
the initial state.
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P(Ri = m | X0 = i) = (1 − pii )(pii )
m, m ≥ 0.

Proposition 5.2 We have

P(R j < ∞ | X0 = i) =
⎧
⎨

⎩

1 − pi j , if p j j = 1,

1, if p j j < 1.

Proof We note that

P(R j < ∞ | X0 = i) = P(R j = 0 | X0 = i) +
∞∑

m=1

P(R j = m | X0 = i)

= 1 − pi j + pi j (1 − p j j )

∞∑

m=1

(p j j )
m−1

=
⎧
⎨

⎩

1 − pi j , if p j j = 1,

1, if p j j < 1.

�

We also have

P(R j = ∞ | X0 = i) =
⎧
⎨

⎩

pi j , if p j j = 1,

0, if p j j < 1.

In particular if p j j = 1, i.e. state j is recurrent, we have

P(R j = m | X0 = i) = 0, m ≥ 1,

and in this case,

⎧
⎨

⎩

P(R j < ∞ | X0 = i) = P(R j = 0 | X0 = i) = 1 − pi j ,

P(R j = ∞ | X0 = i) = 1 − P(R j < ∞ | X0 = i) = pi j .

On the other hand, when i = j , by (1.5.13) we find
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P(Ri < ∞ | X0 = i) =
∞∑

m=0

P(Ri = m | X0 = i)

= (1 − pii )
∞∑

m=0

(pii )
m

=
⎧
⎨

⎩

0, if pii = 1,

1, if pii < 1,
(5.4.3)

hence

P(Ri = ∞ | X0 = i) =
⎧
⎨

⎩

1, if pii = 1,

0, if pii < 1,
(5.4.4)

i.e. the number of returns to a recurrent state is infinite with probability one.

Mean Number of Returns

The notion of mean number of returns will be needed for the classification of states
of Markov chains in Chap.6. By (A.4), when p j j < 1 we have P(R j < ∞ | X0 =
i) = 1 and4

E[R j | X0 = i] =
∞∑

m=0

mP(R j = m | X0 = i) (5.4.5)

= (1 − p j j )pi j

∞∑

m=1

m(p j j )
m−1

= pi j
1 − p j j

, (5.4.6)

hence
E[R j | X0 = i] < ∞ if p j j < 1.

If p j, j = 1 then E[R j | X0 = i] = ∞ unless pi, j = 0, in which case P(R j = 0 |
X0 = i) = 1 and E[R j | X0 = i] = 0. In particular, when i = j we find the next
proposition.

Proposition 5.3 The mean number of returns to state i is given by

E[Ri | X0 = i] = pii
1 − pii

,

and it is finite, i.e. E[Ri | X0 = i] < ∞, if and only if pii < 1.

4We are using the identity
∞∑

k=1

krk−1 = (1 − r)−2, cf. (A.4).
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More generally, by (5.4.2) we can also write

E[R j | X0 = i] = E

[ ∞∑

n=1

1{Xn= j} | X0 = i

]

=
∞∑

n=1

E[1{Xn= j} | X0 = i]

=
∞∑

n=1

P(Xn = j | X0 = i)

=
∞∑

n=1

[
Pn

]
i, j . (5.4.7)

The above quantity coincides with

E[R j | X0 = i] = −1{i= j} + [
(Id − P)−1

]
i, j ,

where (Id − P)−1 is the matrix inverse of Id − P , by analogy with (A.3). Finally, if
m is the only absorbing state, we can also write

E[Tm | X0 = i] = 1 +
∑

j∈S
j �=m

E[R j | X0 = i] =
∑

j∈S
j �=m

[
(Id − P)−1]

i, j , i �= m.

See [AKS93] for an application of this formula to the Snakes and Ladders game.

Exercises

Exercise 5.1 Consider a Markov chain (Xn)n∈N with state space S = {0, 1, 2, 3}
and transition probabilities

P(X1 = 0 | X0 = 0) = 1, P(X1 = 3 | X0 = 3) = 1,
P(X1 = 0 | X0 = 1) = 1/2, P(X1 = 2 | X0 = 1) = 1/2,
P(X1 = 1 | X0 = 2) = 1/3, P(X1 = 3 | X0 = 2) = 2/3.

(a) Draw the graph of the chain and write down its transition matrix.
(b) Compute α := P(T3 < ∞ | X0 = 1) and β := P(T3 < ∞ | X0 = 2), where

T3 := inf{n ≥ 0 : Xn = 3}.

(c) Letting
T0,3 := inf{n ≥ 0 : Xn = 0 or Xn = 3},
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compute E[T0,3 | X0 = 1] and E[T0,3 | X0 = 2].
Exercise 5.2 Consider a Markov chain (Xn)n≥0 with state space S = {0, 1} and
transition matrix

P =
⎡

⎣
0.4 0.6

0.8 0.2

⎤

⎦ .

Compute the mean duration between two visits to state 1 .

Exercise 5.3 Consider the Markov chain (Xn)n≥0 on S = {0, 1, 2} whose transition
probability matrix P is given by

P =[
0 1 20 1 0 01 1/3 0 2/32 0 1 0

]
.

(a) Draw a graph of the chain and find the probability g0(k) that the chain is absorbed
into state 0 given that it started from states k = 0, 1, 2.

(b) Determine the mean time h0(k) it takes until the chain is absorbed into state 0 ,
after starting from k = 0, 1, 2.

Exercise 5.4 Consider the Markov chain with the graph

(5.4.8)

and let
T r
k := inf{n ≥ 1 : Xn = k}

denote the return time to state k = 0, 1, 2, 3.

(a) Find the probabilities

pk,2 := P(T r
2 < ∞ | X0 = k),

for k = 0, 1, 2, 3.
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(b) Find the probabilities

pk,1 := P(T r
1 < ∞ | X0 = k), k = 0, 1, 2, 3.

Exercise 5.5 Consider a Markov chain (Xn)n∈N with state space S = {0, 1, 2, 3}
and transition probability matrix given by

[
Pi, j

]
0≤i, j≤3 =

⎡

⎢⎢⎣

1 0 0 0
0.3 0 0.7 0
0 0.3 0 0.7
0 0 0 1

⎤

⎥⎥⎦ .

(a) What are the absorbing states of the chain (Xn)n∈N?
(b) Given that the chain starts at 1 , find its probability of absorption g0(k) = P(T0 <

∞ | X0 = k) into state 0 for k = 0, 1, 2, 3.
(c) Find the mean hitting times h1(k) = E[T1 | X0 = k] of state 1 starting from

state k , for k = 0, 1, 2, 3.

Exercise 5.6 Consider a random walk with Markov transition matrix given by

[
Pi, j

]
0≤i, j≤3 =

⎡

⎢⎢⎣

0.5 0 0.5 0
0.5 0 0 0.5
0.5 0.5 0 0
0 0 0 1

⎤

⎥⎥⎦ .

Compute the average time it takes to reach state 3 given that the chain is started at
state 0 .

Exercise 5.7 Consider the Markov chain (Xn)n≥0 on {0, 1, 2, 3} whose transition
probability matrix P is given by

P =

⎡

⎢⎢⎣

1 0 0 0
0.5 0 0.5 0
0 0.5 0 0.5
0 0 0 1

⎤

⎥⎥⎦ .

(a) Draw the graph of this chain.
(b) Find the probability g0(k) that the chain is absorbed into state 0 given that it

started from state k = 0, 1, 2, 3.
(c) Determine the mean time h(k) it takes until the chain hits an absorbing state,

after starting from k = 0, 1, 2, 3.
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Exercise 5.8 Consider a discrete-time homogeneous Markov chain
(Xn)n∈N on a state space S, and the first hitting time

TA = inf{n ≥ 0 : Zn ∈ A},

of a subset A ⊂ of S. Show that (Xn)n∈N has the strongMarkov propertywith respect
to TA, i.e. show that for all n,m ≥ 0, j ∈ S, and (ik)k∈N ⊂ S we have

P(XTA+n = j | XTA = i0, . . . , X0 = iTA and TA < +∞) = P(Xn = j | X0 = i0).

Exercise 5.9 We consider the simple random walk (Sn)n∈N of Chap.3.

(a) Using first step analysis, recover the formula (3.4.16) for the probability P(T0 <
∞ | S0 = k) of hitting state 0 in finite time starting from any state k ≥ 0 when
q < p.

(b) Using first step analysis, recover the formula (3.4.18) giving the mean hitting
time E[T0 | S0 = k] of state 0 from any state k ≥ 0 when q > p.

Exercise 5.10 A player tosses a fair six-sided die and records the number appearing
on the uppermost face. The die is then tossed again and the second result is added to
the first one. This procedure is repeated until the sum of all results becomes strictly
greater than 10. Compute the probability that the game finishes with a cumulative
sum equal to 13.

Exercise 5.11 A fish is put into the linear maze as shown, and its state at time n is
denoted by Xn ∈ {0, 1, . . . , 5}:

Starting from any state k ∈ {1, 2, 3, 4}, the fish moves to the right with probability p
and to the left with probability q such that p + q = 1 and p ∈ (0, 1). Consider the
hitting times

T0 = inf{n ≥ 0 : Xn = 0}, and T5 = inf{n ≥ 0 : Xn = 5},

and g(k) = P(T5 < T0 | X0 = k), k = 0, 1, . . . , 5.

(a) Using first step analysis, write down the equation satisfied by g(k), k = 0, 1,
. . . , 5, and give the values of g(0) and g(5).

(b) Assume that the fish is equally likely to move right or left at each step. Compute
the probability that starting from state k it finds the food before getting shocked,
for k = 0, 1, . . . , 5.

Exercise 5.12 Starting from a state m ≥ 1 at time k, the next state of a random
device at time k + 1 is uniformly distributed among {0, 1, . . . ,m − 1}, with 0 as
an absorbing state.
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(a) Model the time evolution of this system using a Markov chain whose transition
probability matrix will be given explicitly.

(b) Let h0(m) denote the mean time until the system reaches the state zero for the
first time after starting from state m . Using first step analysis, write down the
equation satisfied by h0(m), m ≥ 1 and give the values of h0(0) and h0(1).

(c) Show that h0(m) is given by h0(m) = h0(m − 1) + 1

m
, m ≥ 1, and that

h0(m) =
m∑

k=1

1

k
,

for all m ∈ N.

Exercise 5.13 An individual is placed in a castle tower having three exits. Exit A
leads to a tunnel that returns to the tower after three days of walk. Exit B leads to
a tunnel that returns to the tower after one day of walk. Exit C leads to the outside.
Since the inside of the tower is dark, each exit is chosen at random with probability
1/3. The individual decides to remain outside after exiting the tower, and you may
choose the number of steps it takes from Exit C to the outside of the tower, e.g. take
it equal to 0 for simplicity.

(a) Show that this problem can be modeled using aMarkov chain (Xn)n∈N with four
states. Draw the graph of the chain (Xn)n∈N.

(b) Write down the transition matrix of the chain (Xn)n∈N.
(c) Starting from inside the tower, find the average time it takes to exit the tower.

Exercise 5.14 A mouse is trapped in a maze. Initially it has to choose one of two
directions. If it goes to the right, then it will wander around in the maze for three
minutes and will then return to its initial position. If it goes to the left, then with
probability 1/3 it will depart the maze after two minutes of travelling, and with
probability 2/3 it will return to its initial position after five minutes of travelling.
Assuming that the mouse is at all times equally likely to go to the left or to the right,
what is the expected number of minutes that it will remain trapped in the maze?

Exercise 5.15 This exercise is a particular case of (5.1.8). Consider the Markov
chain whose transition probability matrix P is given by

P =

⎡

⎢⎢⎣

1 0 0 0
0.1 0.6 0.1 0.2
0.2 0.3 0.4 0.1
0 0 0 1

⎤

⎥⎥⎦ .

(a) Find the probability that the chain finishes at 0 given that it was started at state
1 .

(b) Determine the mean time it takes until the chain reaches an absorbing state.
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Exercise 5.16 Consider the Markov chain on {0, 1, 2} with transition matrix

⎡

⎣
1/3 1/3 1/3
1/4 3/4 0
0 0 1

⎤

⎦ .

(a) Compute the probability P(T2 < ∞ | X0 = 1) of hitting state 2 in finite time
starting from state 1 , and the probability P(T r

1 < ∞ | X0 = 1) of returning to
state 1 in finite time.

(b) Compute the mean return time μ1(1) = E[T r
1 | X0 = 1] to state 1 and the mean

hitting time h2(1) = E[T2 | X0 = 1] of state 2 starting from state 1 .

Exercise 5.17 Taking N := {0, 1, 2, . . .}, consider the random walk
(Zk)k∈N = (Xk,Yk)k∈N on N × N with the transition probabilities

P(Xk+1 = x + 1, Yk+1 = y | Xk = x, Yk = y)

= P(Xk+1 = x, Yk+1 = y + 1 | Xk = x, Yk = y)

= 1

2
,

k ≥ 0, and let
A = {

(x, y) ∈ N × N : x ≥ 2, y ≥ 2
}
.

Let also
TA := inf{n ≥ 0 : Xn ≥ 2 and Yn ≥ 2}

denote the hitting time of the set A by the random walk (Zk)k∈N, and consider the
mean hitting times

μA(x, y) := E[TA | X0 = x, Y0 = y], x, y ∈ N.

(a) Give the value of μA(x, y) when x ≥ 2 and y ≥ 2.
(b) Show that μA(x, y) solves the equation

μA(x, y) = 1 + 1

2
μA(x + 1, y) + 1

2
μA(x, y + 1), x, y ∈ N. (5.4.9)

(c) Show that μA(1, 2) = μA(2, 1) = 2 and μA(0, 2) = μA(2, 0) = 4.
(d) In each round of a game, a coin is thrown to two cans in such a way that each

can has exactly 50% chance to receive the coin. Compute the mean time it takes
until both cans contain at least $2.

Exercise 5.18 Let N := {0, 1, 2, . . .} and consider a random walk
(Zk)k∈N = (Xk,Yk)k∈N on N × N with the transition probabilities
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P
(
(Xk+1,Yk+1) = (x + 1, y) | (Xk,Yk) = (x, y)

)

= P
(
(Xk+1,Yk+1) = (x, y + 1) | (Xk,Yk) = (x, y)

) = 1

2
, (x, y) ∈ N × N,

k ≥ 0, and let
A := {

(x, y) ∈ N × N : x ≥ 3 or y ≥ 3
}
.

Let also
TA := inf

{
n ≥ 0 : (Xn,Yn) ∈ A

}

denote the first hitting time of the set A by the random walk (Zk)k∈N = (Xk,Yk)k∈N,
and consider the mean hitting times

μA(x, y) := E
[
TA | (X0,Y0) = (x, y)

]
, (x, y) ∈ N × N.

(a) Give the values of μA(x, y) when (x, y) ∈ A.
(b) By applying first step analysis, find an equation satisfied by μA(x, y) for 0 ≤

x, y ≤ 3.
(c) Find the values of μA(x, y) for all x, y ≤ 3 by solving the equation of part (b).
(d) Two players compete in a fair game in which only one of the two players will

earn $1 at each round. How many rounds does it take on average until the gain
of one of the players reaches $3, given that both of them started from zero?

Exercise 5.19 Let (Xn)n≥0 be a Markov chain with state space S and transition
probability matrix (Pi j )i, j∈S. Our goal is to compute the expected value of the infinite
discounted series

h(i) := E

[ ∞∑

n=0

βnc(Xn)

∣∣∣X0 = i

]
, i ∈ S,

where β ∈ (0, 1) is the discount coefficient and c(·) is a utility function, starting from
state i . Show, by a first step analysis argument, that h(i) satisfies the equation

h(i) = c(i) + β
∑

j∈S
Pi j h( j)

for every state i ∈ S.

Exercise 5.20 Consider aMarkov Decision Process (MDP) on a state space S, with
set of actions A and family (Pa)a∈A of transition probability matrices

P : S × S × A → [0, 1],
(k, l, a) 
−→ Pa

k,l ,
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and a policy π : S → A giving the action chosen at every given state in S. By first
step analysis, derive the Bellman equation for the optimal value function

V ∗(k) = max
π

E

[ ∞∑

n=0

γn R(Xn)

∣∣∣X0 = k

]
,

where γ ∈ (0, 1) is a discount factor and R : S → R is a reward function.

Problem 5.21 Let (Xn)n∈N be a Markov chain on {0, 1, . . . , N }, N ≥ 1, with tran-
sition matrix P = [

Pi, j
]
0≤i, j≤N .

(a) Consider the hitting times

T0 = inf{n ≥ 0 : Xn = 0}, TN = inf{n ≥ 0 : Xn = N },

and
g(k) = P(T0 < TN | X0 = k), k = 0, 1, . . . , N .

What are the values of g(0) and g(N )?
(b) Show, using first step analysis, that the function g satisfies the relation

g(k) =
N∑

l=0

Pk,lg(l), k = 1, . . . , N − 1. (5.4.10)

(c) In this question and the following ones we consider theWright-Fisher stochastic
model in population genetics, in which the state Xn denotes the number of
individuals in the population at time n, and

Pk,l = P(Xn+1 = l | Xn = k) =
(
N

l

)(
k

N

)l (
1 − k

N

)N−l

,

k, l = 0, 1, . . . , N . Write down the transition matrix P when N = 3.
(d) Show, from Question (b), that given that the solution to (5.4.10) is unique, we

have

P(T0 < TN | X0 = k) = N − k

N
, k = 0, 1, . . . , N .

(e) Let
T0,N = inf{n ≥ 0 : Xn = 0 or Xn = N },

and
h(k) = E[T0,N | X0 = k], k = 0, 1, . . . , N .

What are the values of h(0) and h(N )?
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(f) Show, using first step analysis, Show, using first step analysis, that the function
h satisfies the relation

h(k) = 1 +
N∑

l=0

Pk,l h(l), k = 1, 2, . . . , N − 1.

(g) Assuming that N = 3, compute

h(k) = E[T0,3 | X0 = k], k = 0, 1, 2, 3.

Problem 5.22 Consider a gamblingprocess (Xn)n≥0 on the state space {0, 1, . . . , N },
with transition probabilities

P(Xn+1 = k + 1 | Xn = k) = p, P(Xn+1 = k − 1 | Xn = k) = q,

k = 1, 2, . . . , N − 1, with p + q = 1. Let

τ := inf{n ≥ 0 : Xn = 0 or Xn = N }

denote the time until the process hits either state 0 or state N , and consider the
expectation

h(k) := E

[
τ−1∑

i=0

Xi

∣∣∣X0 = k

]
,

of the random sum
∑

0≤i<τ

Xi of all chain values visited before the process hits 0 or N

after starting from k = 0, 1, 2, . . . , N .

(a) Give the values of h(0) and h(N ).5

(b) Show, by first step analysis, that h(k) satisfies the equations

h(k) = k + ph(k + 1) + qh(k − 1), k = 1, 2, . . . , N − 1. (5.4.11)

From now on we take p = q = 1/2.
(c) Find a particular solution of Eq. (5.4.11).
(d) Knowing that the solution of the homogeneous equation

f (k) = 1

2
f (k + 1) + 1

2
f (k − 1), k = 1, 2, . . . , N − 1,

5We apply the convention
−1∑

i=0

=
∑

0≤i<0

= 0.
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takes the form f (k) = C1 + C2k, show that the expectation h(k) solution of
(5.4.11) is given by

h(k) = k
N 2 − k2

3
, k = 0, 1, . . . , N .

(e) Compute h(1) when N = 2 and explain why this result makes pathwise sense.
(f) Suppose that you start a business with initial monthly income of $4K. Every

month the income you receive from that business may increase or decrease by
$1K with equal probabilities (1/2, 1/2). You decide to stop that business as soon
as your monthly income hits the levels 0 or $70K, whichever comes first.

(i) Compute the expected duration of your business (in number of months).6

(ii) Compute your expected accumulated wealth until the month before you stop
your business.

(iii) Compute your expected accumulated wealth under the assumption that your
monthly income remains constant equal to $4K over the samemean duration
as in Question (f-i) above.

(iv) Any comment?

6Recall that E[T0,N | X0 = k] = k(N − k), k = 0, 1, . . . , N .



Chapter 6
Classification of States

In this chapter we present the notions of communicating, transient and recurrent
states, as well as the concept of irreducibility of a Markov chain. We also examine
the notions of positive and null recurrence, periodicity, and aperiodicity of such
chains. Those topics will be important when analysing the long-run behavior of
Markov chains in the next chapter.

6.1 Communicating States

Definition 6.1 A state j ∈ S is to be accessible from another state i ∈ S, and we
write i �−→ j , if there exists a finite integer n ≥ 0 such that

[Pn]i, j = P(Xn = j | X0 = i) > 0.

In other words, it is possible to travel from i to j with non-zero probability in a
certain (random) number of steps. We also say that state i leads to state j , and
when i �= j we have

P(T r
j < ∞ | X0 = i) ≥ P(T r

j ≤ n | X0 = i) ≥ P(Xn = j | X0 = i) > 0.

Remark 6.1 Since P0 = Id and [P0]i, j = P(X0 = j | X0 = i) = 1{i = j} the def-
inition of accessibility states implicitly that any state i is always accessible from
itself (in zero time steps) even if Pi,i = 0.

In case i �−→ j and j �−→ i we say that i and j communicate1 and we
write i ←→ j .

The binary relation “←→” is a called an equivalence relation as it satisfies the
following properties:

1In graph theory, one says that i and i are strongly connected.
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(a) Reflexivity:
For all i ∈ S we have i ←→ i .

(b) Symmetry:
For all i, j ∈ S we have that i ←→ j is equivalent to j ←→ i .

(c) Transitivity:
For all i, j, k ∈ S such that i ←→ j and j ←→ k , we have i ←→ k .

Proof It is clear that the relation ←→ is reflexive and symmetric. The proof of
transitivity can be stated as follows. If i �−→ j and j �−→ k , there exists a ≥ 1
and b ≥ 1 such that

[Pa]i, j > 0, [Pb] j,k > 0.

Next, by (4.1.2), for all n ≥ a + b we have

P(Xn = k | X0 = i)

=
∞∑

l,m∈S
P(Xn = k, Xn−b = l, Xa = m | X0 = i)

=
∞∑

l,m∈S
P(Xn = k | Xn−b = l)P(Xn−b = l | Xa = m)P(Xa = m | X0 = i)

≥ P(Xn = k | Xn−b = j)P(Xn−b = j | Xa = j)P(Xa = j | X0 = i)

= [Pa]i, j [Pn−a−b] j, j [Pb] j,k (6.1.1)

≥ 0.

The conclusion follows by taking n = a + b, in which case we have

P(Xn = k | X0 = i) ≥ [Pa]i, j [Pb] j,k > 0.

�

The equivalence relation ‘←→” induces a partition of S into disjoint classes
A1, A2, . . . , Am such that S = A1 ∪ · · · ∪ Am , and

(a) we have i ←→ j for all i, j ∈ Aq , and

(b) we have i �←→ j whenever i ∈ Ap and j ∈ Aq with p �= q.

The sets A1, A2, . . . , Am are called the communicating classes of the chain.

Definition 6.2 A Markov chain whose state space is made of a unique communi-
cating class is said to be irreducible, otherwise the chain is said to be reducible.

The R package “markovchain” can be used to the irreducibility of a given chain.
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install.packages("markovchain")
library (markovchain)
statesNames <− c("0", "1")
mcA <− new("markovchain",
transitionMatrix = matrix(c(0.7,0.3,0.1,0.9),
byrow = TRUE, nrow = 2,dimnames = list(statesNames, statesNames)))
is.irreducible(mcA)

Clearly, all states in S communicate when (Xn)n∈N is irreducible. In case the i th
column of a transition matrix P vanishes, i.e. Pk,i = 0, i ∈ S, then state i cannot
be reached from any other state and i becomes a communicating class on its own,
as is the case of state 1 in Exercise4.10 for n ≥ 2, or in Exercise7.12. The same is
true of absorbing states. However, having a returning loop with probability strictly
lower than one is not sufficient to turn a given state into a communicating class on
its own. Clearly, the existence of at least one absorbing state i with Pi,i = 1 makes
a chain reducible.

Exercise: Find the communicating classes of theMarkov chain with transitionmatrix
(5.4.8) for the equivalence relation “←→”.

The above state space S = {0, 1, 2, 3} is partitioned into two communicating classes
which are {0, 1, 2} and {3}.

6.2 Recurrent States

Definition 6.3 A state i ∈ S is said to be recurrent if, starting from state i , the
chain will return to state i within a finite (random) time, with probability 1, i.e.,

pi,i := P(T r
i < ∞ | X0 = i) = P(Xn = i for some n ≥ 1 | X0 = i) = 1. (6.2.1)

The next Proposition6.4 uses the mean number of returns Ri to state i defined in
(5.4.2).

Proposition 6.4 For any state i ∈ S, the following statements are equivalent:

(i) the state i ∈ S is recurrent, i.e. pi,i = 1,
(ii) the number of returns to i ∈ S is a.s.2 infinite, i.e.

2almost surely.
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P(Ri = ∞ | X0 = i) = 1, i.e. P(Ri < ∞ | X0 = i) = 0, (6.2.2)

(iii) the mean number of returns to i ∈ S is infinite, i.e.

IE[Ri | X0 = i] = ∞, (6.2.3)

(iv) we have
∞∑

n=1

f (n)i,i = 1, (6.2.4)

where f (n)i,i := P(T r
i = n | X0 = i), n ≥ 1, is the distribution of T r

i .

Proof Part (i) follows by the definition (6.2.1) of recurrent states.

(ii) Relation (6.2.2) is equivalent to (6.2.1) by (5.4.3) and (5.4.4).
(iii) Relation (6.2.3) is equivalent to (6.2.1) by (5.4.5).
(iv) Relation (6.2.4) is equivalent to (6.2.1) by (5.4.1).

�

For example, state 0 is recurrent for the randomwalk of Chap.3 when p = q = 1/2,
while it is not recurrent if p �= q as by (3.4.14) we have

p0,0 = P(T0 < ∞) = 2min(p, q). (6.2.5)

As a consequence of (6.2.3), we have the following result.

Corollary 6.5 A state i ∈ S is recurrent if and only if

∞∑

n=1

[Pn]i,i = ∞,

i.e. the above series diverges.

Proof For all i, j ∈ S, by (5.4.7) we have

IE[R j | X0 = i] = IE

[ ∞∑

n=1

1{Xn= j}
∣∣∣X0 = i

]
=

∞∑

n=1

IE[1{Xn= j} | X0 = i]

=
∞∑

n=1

P(Xn = j | X0 = i) =
∞∑

n=1

[Pn]i, j , (6.2.6)

as in (5.4.7). To conclude we let j = i and apply (6.2.3). �

Corollary6.5 admits the following consequence, which shows that any state com-
municating with a recurrent state is itself recurrent. In other words, recurrence is a
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class property, as all states in a given communicating class are recurrent as soon as
one of them is recurrent.

Corollary 6.6 Let j ∈ S be a recurrent state. Then any state i ∈ S that commu-
nicates with state j is also recurrent.

Proof By definition, since i �−→ j and j �−→ i , there exists a ≥ 1 and b ≥ 1
such that

[Pa]i, j > 0 [Pb] j,i > 0,

and from (6.1.1) applied with k = i we find

∞∑

n=a+b

[Pn]i,i =
∞∑

n=a+b

P(Xn = i | X0 = i)

≥ [Pa]i, j [Pb] j,i
∞∑

n=a+b

Pn−a−b
j, j

= [Pa]i, j [Pb] j,i
∞∑

n=0

[Pn] j, j
= ∞,

which shows that state i is recurrent from Corollary6.5 and the assumption that
state j is recurrent. �
A communicating class A ⊂ S is therefore recurrent if any of its states is recurrent.

6.3 Transient States

A state i ∈ S is said to be transient when it is not recurrent, i.e., by (6.2.1),

pi,i = P(T r
i < ∞ | X0 = i) = P(Xn = i for some n ≥ 1 | X0 = i) < 1, (6.3.1)

or
P(T r

i = ∞ | X0 = i) > 0.

Proposition 6.7 For any state i ∈ S, the following statements are equivalent:

(i) the state i ∈ S is transient, i.e. pi,i < 1,
(ii) the number of returns to i ∈ S is a.s.3 finite, i.e.

P(Ri = ∞ | X0 = i) = 0, i.e. P(Ri < ∞ | X0 = i) = 1, (6.3.2)

3almost surely.
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(iii) the mean number of returns to i ∈ S is finite, i.e.

IE[Ri | X0 = i] < ∞, (6.3.3)

(iv) we have
∞∑

n=1

f (n)i,i < 1. (6.3.4)

where f (n)i,i := P(T r
i = n | X0 = i), n ≥ 1, is the distribution of T r

i .

Proof This is a direct consequence of Proposition6.4 and the definition (6.3.1) of
transience. Regarding point (ii) and the Condition (6.3.2) we also note that the state
i ∈ S is transient if and only if

P(Ri = ∞ | X0 = i) < 1,

which, by (5.4.4) is equivalent to P(Ri = ∞ | X0 = i) = 0. �

In other words, a state i ∈ S is transient if and only if

P(Ri < ∞ | X0 = i) > 0,

which by (5.4.3) is equivalent to

P(Ri < ∞ | X0 = i) = 1,

i.e. the number of returns to state i ∈ S is finite with a non-zero probability which
is necessarily equal to one. As a consequence of Corollary6.5 we also have the
following result.

Corollary 6.8 A state i ∈ S is transient if and only if

∞∑

n=1

[Pn]i,i < ∞,

i.e. the above series converges.

By Corollary6.8 and the relation

∞∑

n=0

[
Pn

]
i, j = [

(Id − P)−1
]
i, j , i, j ∈ S,

wefind that a chainwith finite state space is transient if thematrix Id − P is invertible.
Clearly, any absorbing state is recurrent, and any state that leads to an absorbing

state is transient.
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In addition, if a state i ∈ S communicates with a transient state j then i is
also transient (otherwise the state j would be recurrent by Corollary6.6). In other
words, transience is a class property, as all states in a given communicating class are
transient as soon as one of them is transient.

Example

For the two-state Markov chain of Sect. 4.5, Relations (4.5.4) and (4.5.5) show that

∞∑

n=1

[Pn]0,0 =
∞∑

n=1

b + aλn
2

a + b
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞, if b > 0,

∞∑

n=1

(1 − a)n < ∞, if b = 0 and a > 0,

hence state 0 is transient if b = 0 and a > 0, and recurrent otherwise. Similarly we
have

∞∑

n=1

[Pn]1,1 =
∞∑

n=1

a + bλn
2

a + b
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞, if a > 0,

∞∑

n=1

(1 − b)n < ∞, if a = 0 and b > 0,

hence state 1 is transient if a = 0 and b > 0, and recurrent otherwise.
The above results can be recovered by a simple first step analysis for gi ( j) =

P(Ti < ∞ | X0 = j), i, j ∈ {0, 1}, i.e.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0(0) = ag0(1) + 1 − a

g0(1) = b + (1 − b)g0(1)

g1(0) = (1 − a)g1(0) + a

g1(1) = bg1(0) + 1 − b,

which shows that g0(0) = 1 if b > 0 and g1(1) = 1 if a > 0.
We close this section with the following result for Markov chains with finite state
space.

Theorem 6.9 Let (Xn)n∈N be aMarkov chainwithfinite state spaceS. Then (Xn)n∈N
has at least one recurrent state.

Proof Recall that from (5.4.5) we have

IE[R j | X0 = i] = pi, j (1 − p j, j )

∞∑

n=1

n(p j, j )
n−1 = pi, j

1 − p j, j
,
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for any states i , j ∈ S. Assuming that the state j ∈ S is transient we have p j, j < 1
by (6.3.1), hence

IE[R j | X0 = i] =
∞∑

n=1

[Pn]i, j < ∞,

by (6.3.3) which implies4 that

lim
n→∞[Pn]i, j = 0

for all transient states j ∈ S. In case all states in S were transient, since S is finite,
by the law of total probability (4.2.2) we would have

0 =
∑

j∈S
lim
n→∞[Pn]i, j = lim

n→∞
∑

j∈S
[Pn]i, j = lim

n→∞ 1 = 1,

which is a contradiction. Hence not all states can be transient, and there exists at least
one recurrent state. �

Exercises:

(i) Find which states are transient and recurrent in the chain (5.4.8).

State 3 is clearly recurrent since we have T r
3 = 1 with probability one when

X0 = 3. State 2 is transient because

1 − p2,2 = P(T r
2 = ∞ | X0 = 2) = 4

7
≥ P(X1 = 3 | X0 = 2) = 0.5 > 0,

(6.3.5)
and state 1 is transient because

P(T r
1 = ∞ | X0 = 1) = 0.8 ≥ P(X1 = 3 | X0 = 1) = 0.6, (6.3.6)

see the Exercise5.4 for the computations of

p1,1 = P(T r
2 < ∞ | X0 = 2) = 0.8

4For any sequence (an)n≥0 of nonnegative real numbers,
∞∑

n=0

an < ∞ implies limn→∞ an = 0.
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and

p2,2 = P(T r
2 < ∞ | X0 = 2) = 3

7
.

By Corollary6.6, the states 0 and 1 are transient because they communicate
with state 2 .

(ii) Which are the recurrent states in the simple random walk (Sn)n∈N of Chap.3 on
S = Z?

First, we note that this random walk is irreducible as all states communicate
when p ∈ (0, 1). The simple random walk (Sn)n∈N on S = Z has the transition
matrix

Pi,i+1 = p, Pi,i−1 = q = 1 − p, i ∈ Z.

We have
[Pn]i,i = P(Sn = i | S0 = i) = P(Sn = 0 | S0 = 0),

with

P(S2n = 0) =
(
2n

n

)
pnqn and P(S2n+1 = 0) = 0, n ∈ N.

Hence

∞∑

n=0

[Pn]0,0 =
∞∑

n=0

P(Sn = 0 | S0 = 0) =
∞∑

n=0

P(S2n = 0 | S0 = 0)

=
∞∑

n=0

(
2n

n

)
pnqn = H(1) = 1√

1 − 4pq
,

and

IE[R0 | S0 = 0] =
∞∑

n=1

P(Sn = 0 | S0 = 0) = 1√
1 − 4pq

− 1,

where H(s) is defined in (3.4.8).
Consequently, by Corollary6.5, all states i ∈ Z are recurrent when p = q =
1/2, whereas by Corollary6.8 they are all transient when p �= q, cf. Corol-
lary6.6.
Alternatively we could reach the same conclusion by directly using (3.4.14) and
(6.2.1) which state that

P(T r
i < ∞ | X0 = i) = 2min(p, q).



156 6 Classification of States

6.4 Positive Versus Null Recurrence

The expected time of return (or mean recurrence time) to a state i ∈ S is given by

μi (i) : = IE[T r
i | X0 = i]

=
∞∑

n=1

nP(T r
i = n | X0 = i)

=
∞∑

n=1

n f (n)i,i .

Recall that when state i is recurrent we have P(T r
i < ∞ | X0 = i) = 1, i.e. the

random return time T r
i is almost surely finite starting from state i , nevertheless this

yields no information on the finiteness of its expectation μi (i) = IE[T r
i | X0 = i],

cf. the example (1.6.5).

Definition 6.10 A recurrent state i ∈ S is said to be:

(a) positive recurrent if the mean return time to i is finite, i.e.

μi (i) = IE[T r
i | X0 = i] < ∞,

(b) null recurrent if the mean return time to i is infinite, i.e.

μi (i) = IE[T r
i | X0 = i] = ∞.

Exercise: Which states are positive/null recurrent in the simple randomwalk (Sn)n∈N
of Chap.3 on S = Z?

From (3.4.20) and (3.4.17) we know that IE[T r
i | S0 = i] = ∞ for all values of

p ∈ (0, 1), hence all states of the random walk on Z are null recurrent when
p = 1/2, while all states are transient when p �= 1/2 due to (3.4.14).

The following Theorem6.11 shows in particular that a Markov chain with finite state
space cannot have any null recurrent state, cf. e.g. Corollary2.3 in [Kij97], and also
Corollary3.7 in [Asm03].

Theorem 6.11 Assume that the state space S of a Markov chain (Xn)n∈N is finite.
Then all recurrent states in S are also positive recurrent.

As a consequence of Definition 6.2, Corollary6.6, and Theorems6.9 and 6.11 we
have the following corollary.

Corollary 6.12 Let (Xn)n∈N be an irreducible Markov chain with finite state space
S. Then all states of (Xn)n∈N are positive recurrent.
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6.5 Periodicity and Aperiodicity

Given a state i ∈ S, consider the sequence

{n ≥ 1 : [Pn]i,i > 0}

of integers which represent the possible travel times from state i to itself.

Definition 6.13 The period of the state i ∈ S is the greatest common divisor of the
sequence

{n ≥ 1 : [Pn]i,i > 0}.

A state having period 1 is said to be aperiodic, which is the case in particular if
Pi,i > 0, i.e. when a state admits a returning loop with nonzero probability.

In particular, any absorbing state is both aperiodic and recurrent. A recurrent state
i ∈ S is said to be ergodic if it is both positive recurrent and aperiodic.

If [Pn]i,i = 0 for all n ≥ 1 then the set {n ≥ 1 : [Pn]i,i > 0} is empty and by
convention the period of state i is defined to be 0. In this case, state i is also
transient.

Note also that if
{n ≥ 1 : [Pn]i,i > 0}

contains two distinct numbers that are relatively prime to each other (i.e. their greatest
common divisor is 1) then state i aperiodic.

Proposition6.14 shows that periodicity is a class property, as all states in a given
communicating class have same periodicity.

Proposition 6.14 All states that belong to a same communicating class have the
same period.

Proof Assume that state i has period di , that j communicates with i , and let
n ∈ {m ≥ 1 : [Pm] j, j > 0}. Since i and j communicate, there exists k, l ≥ 1
such that [Pk]i, j > 0 and [Pl ] j,i > 0, hence by (6.1.1) we have [Pk+l]i,i > 0 hence
k + l is a multiple of di . Similarly by (6.1.1) we also have [Pn+k+l]i,i > 0, hence
n + k + l and n are multiples of di , which implies d j ≥ di . Exchanging the roles of
i and j we obtain similarly that di ≥ d j . �

A Markov chain is said to be aperiodic when all of its states are aperiodic. Note
that any state that communicates with an aperiodic state becomes itself aperiodic. In
particular, if a communicating class contains an aperiodic state then the whole class
becomes aperiodic.
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Examples

(i) The chain

clearly has periodicity equal to 4.
(ii) Consider the following chain:

Here we have

{n ≥ 1 : [Pn]0,0 > 0} = {2, 4, 6, 8, 10, . . .},
{n ≥ 1 : [Pn]1,1 > 0} = {2, 4, 6, 8, 10, . . .},
{n ≥ 1 : [Pn]2,2 > 0} = {4, 6, 8, 10, 12, . . .},
{n ≥ 1 : [Pn]3,3 > 0} = {4, 6, 8, 10, 12, . . .},

hence all states have period 2, and this is also consequence of Proposition6.14.
(iii) Consider the following chain:

(6.5.1)
Here we have

{n ≥ 1 : [Pn]0,0 > 0} = {4, 5, 6, 7, . . .},
{n ≥ 1 : [Pn]1,1 > 0} = {4, 5, 6, 7, . . .},
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{n ≥ 1 : [Pn]2,2 > 0} = {4, 5, 6, 7, . . .},
{n ≥ 1 : [Pn]3,3 > 0} = {4, 5, 6, 7, . . .},

hence all states have period 1, see also Proposition6.14.
(iv) Next, consider the modification of (6.5.1):

Here the chain is aperiodic since we have

{n ≥ 1 : [Pn]0,0 > 0} = {2, 3, 4, 5, 6, 7, . . .},
{n ≥ 1 : [Pn]1,1 > 0} = {2, 3, 4, 5, 6, 7, . . .},
{n ≥ 1 : [Pn]2,2 > 0} = {3, 4, 5, 6, 7, 8, . . .},
{n ≥ 1 : [Pn]3,3 > 0} = {4, 6, 7, 8, 9, 10, . . .},

hence all states have period 1.

Exercises:

(i) What is the periodicity of the simple randomwalk (Sn)n∈N of Chap.3 on S = Z?

By (3.3.3) We have

[P2n]i,i =
(
2n

n

)
pnqn > 0 and [P2n+1]i,i = 0, n ∈ N,

hence
{n ≥ 1 : [Pn]i,i > 0} = {2, 4, 6, 8, . . .},

and the chain has period 2.
(ii) Find the periodicity of the chain (5.4.8).

States 0 , 1 , 2 and 3 have period 1, hence the chain is aperiodic.
(iii) The chain of Fig. 4.1 is aperiodic since it is irreducible and state 3 has a

returning loop.
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Exercises

Exercise 6.1 Consider a Markov chain (Xn)n≥0 on the state space {0, 1, 2, 3}, with
transition matrix ⎡

⎢⎢⎣

1/3 1/3 1/3 0
0 0 0 1
0 1 0 0
0 0 1 0

⎤

⎥⎥⎦ .

(a) Draw the graph of this chain and find its communicating classes. Is this Markov
chain reducible? Why?

(b) Find the periods of states 0 , 1 , 2 , and 3 .
(c) Compute P(T0 < ∞ | X0 = 0), P(T0 = ∞ | X0 = 0), and P(R0 < ∞ | X0 =

0).
(d) Which state(s) is (are) absorbing, recurrent, and transient?

Exercise 6.2 Consider the Markov chain on {0, 1, 2} with transition matrix

⎡

⎣
1/3 1/3 1/3
1/4 3/4 0
0 0 1

⎤

⎦ .

(a) Is the chain irreducible? Give its communicating classes.
(b) Which states are absorbing, transient, recurrent, positive recurrent?
(c) Find the period of every state.

Exercise 6.3 Consider a Markov chain (Xn)n≥0 on the state space {0, 1, 2, 3, 4},
with transition matrix ⎡

⎢⎢⎢⎢⎣

0 1/4 1/4 1/4 1/4
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

⎤

⎥⎥⎥⎥⎦
.

(a) Draw the graph of this chain.
(b) Find the periods of states 0 , 1 , 2 , and 3 .
(c) Which state(s) is (are) absorbing, recurrent, and transient?
(d) Is the Markov chain reducible? Why?

Exercise 6.4 Consider the Markov chain with transition matrix

[
Pi, j

]
0≤i, j≤5 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1/2 0 1/4 0 0 1/4
1/3 1/3 1/3 0 0 0
0 0 0 0 1 0
1/6 1/2 1/6 0 0 1/6
0 0 1 0 0 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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(a) Is the chain reducible? If yes, find its communicating classes.
(b) Determine the transient and recurrent states of the chain.
(c) Find the period of each state.

Exercise 6.5 Consider the Markov chain with transition matrix
⎡

⎢⎢⎣

0.8 0 0.2 0
0 0 1 0
1 0 0 0
0.3 0.4 0 0.3

⎤

⎥⎥⎦ .

(a) Is the chain irreducible? If not, give its communicating classes.
(b) Find the period of each state. Which states are absorbing, transient, recurrent,

positive recurrent?

Exercise 6.6 In the following chain, find:

(a) the communicating class(es),
(b) the transient state(s),
(c) the recurrent state(s),
(d) the positive recurrent state(s),
(e) the period of every state.

Exercise 6.7 Consider two boxes containing a total of N balls. At each unit of time
one ball is chosen randomly among N and moved to the other box.

(a) Write down the transition matrix of the Markov chain (Xn)n∈N with state space
{0, 1, 2, . . . , N }, representing the number of balls in the first box.

(b) Determine the periodicity, transience and recurrence of the Markov chain.

Exercise 6.8

(a) Is the Markov chain of Exercise4.10-(a) recurrent? positive recurrent?
(b) Find the periodicity of every state.
(c) Same questions for the success runs Markov chain of Exercise4.10-(b).

Problem 6.9 Let α > 0 and consider the Markov chain with state space N and
transition matrix given by
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Pi,i−1 = 1

α + 1
, Pi,i+1 = α

α + 1
, i ≥ 1.

and a reflecting barrier at 0, such that P0,1 = 1. Compute the mean return times
IE[T r

k | X0 = k] for k ∈ N, and show that the chain is positive recurrent if and only
if α < 1.



Chapter 7
Long-Run Behavior of Markov Chains

This chapter is concerned with the large time behavior of Markov chains, including
the computation of their limiting and stationary distributions. Here the notions of
recurrence, transience, and classification of states introduced in the previous chapter
play a major role.

7.1 Limiting Distributions

Definition 7.1 A Markov chain (Xn)n∈N is said to admit a limiting probability
distribution if the following conditions are satisfied:

(i) the limits
lim
n→∞P(Xn = j | X0 = i) (7.1.1)

exist for all i, j ∈ S, and
(ii) they form a probability distribution on S, i.e.

∑

j∈S
lim
n→∞P(Xn = j | X0 = i) = 1, (7.1.2)

for all i ∈ S.

Note that Condition (7.1.2) is always satisfied if the limits (7.1.1) exist and the state
space S is finite.

As remarked in (4.5.6) and (4.5.7) above, the two-stateMarkov chain has a limiting
distribution given by

[π0,π1] =
[

b

a + b
,

a

a + b

]
, (7.1.3)
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provided that (a, b) �= (0, 0) and (a, b) �= (1, 1), while the corresponding mean
return times are given from (5.3.3) by

(μ0(0),μ1(1)) =
(
1 + a

b
, 1 + b

a

)
,

i.e. the limiting probabilities are given by the inverses

[π0,π1] =
[

b

a + b
,

a

a + b

]
=

[
1

μ0(0)
,

1

μ1(1)

]
=

[
μ1(0)

μ0(1) + μ1(0)
,

μ0(1)

μ0(1) + μ1(0)

]
.

This fact is not a simple coincidence, and it is actually a consequence of the following
more general result, which shows that the longer it takes on average to return to a
state, the smaller the probability is to find the chain in that state. Recall that a chain
(Xn)n∈N is said to be recurrent, resp. aperiodic, if all its states are recurrent, resp.
aperiodic.

Theorem 7.2 (Theorem IV.4.1 in [KT81]) Consider a Markov chain (Xn)n∈N sat-
isfying the following 3 conditions:

(i) recurrence,
(ii) aperiodicity, and
(iii) irreducibility.

Then we have

lim
n→∞P(Xn = j | X0 = i) = 1

μ j ( j)
, i, j ∈ S, (7.1.4)

independently of the initial state i ∈ S, where

μ j ( j) = IE[T r
j | X0 = j] ∈ [1,∞]

is the mean return time to state j ∈ S.

InTheorem7.2, Condition (i), resp. Condition (i i), is satisfied fromProposition 6.14,
resp. fromProposition 6.6, provided that at least one state is aperiodic, resp. recurrent,
since the chain is irreducible.

The conditions stated in Theorem 7.2 are sufficient, but they are not all necessary.
For example, a Markov chain may admit a limiting distribution when the recurrence
and irreducibility Conditions (i) and (i i i) above are not satisfied.

Note that the limiting probability (7.1.4) is independent of the initial state i , and
it vanishes whenever the state i is transient or null recurrent, cf. Proposition 7.4
below. In the case of the two-state Markov chain this result in consistent with (4.5.6),
(4.5.7), and (7.1.3). However it does not apply to e.g. the simple random walk of
Chap. 3 which is not recurrent when p �= q from (6.2.5), and has period 2.

https://doi.org/10.1007/978-981-13-0659-4_5
https://doi.org/10.1007/978-981-13-0659-4_6
https://doi.org/10.1007/978-981-13-0659-4_6
https://doi.org/10.1007/978-981-13-0659-4_4
https://doi.org/10.1007/978-981-13-0659-4_4
https://doi.org/10.1007/978-981-13-0659-4_3
https://doi.org/10.1007/978-981-13-0659-4_6
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For an aperiodic chain with finite state space, we can show that the limit
limn→∞ P(Xn = i | X0 = j) exists for all i, j ∈ S by breaking the chain into com-
municating classes, however it may depend on the initial state j . This however does
not apply to the random walk of Chap. 3 which is not aperiodic and has an infinite
state space, although it can be turned into an aperiodic chain by allowing a draw as
in Exercise 2.1.

The following sufficient condition is a consequence of Theorem IV.1.1 in [KT81].

Proposition 7.3 Consider a Markov chain (Xn)n∈N with finite state space
S = {0, 1, . . . , N }, whose transition matrix P is regular, i.e. there exists n ≥ 1 such
that all entries of the power matrix Pn are non-zero. Then (Xn)n∈N admits a limiting
probability distribution π = (πi )i=0,1,...,N given by

π j = lim
n→∞P(Xn = j | X0 = i), 0 ≤ i, j ≤ N , (7.1.5)

A chain with finite state space is regular if it is aperiodic and irreducible, cf.
Proposition 1.7 of [LPW09].

We close this section with the following proposition, whose proof uses an argu-
ment similar to that of Theorem 6.9.

Proposition 7.4 Let (Xn)n∈N be a Markov chain with a transient state j ∈ S. Then
we have

lim
n→∞P(Xn = j | X0 = i) = 0,

for all i ∈ S.

Proof Since j is a transient state, the probability p j j of return to j in finite time
satisfies p j j < 1 by definition, hence by Relation (5.4.5) p. 133, the expected number
of returns to j starting from state j is finite1:

IE[R j | X0 = i] = IE

[ ∞∑

n=1

1{Xn= j}
∣∣∣X0 = i

]

=
∞∑

n=1

IE
[
1{Xn= j} | X0 = i

]

=
∞∑

n=1

P(Xn = j | X0 = i)

= pi j
1 − p j j

< ∞.

1The exchange of infinite sums and expectation is valid in particular for nonnegative series.

https://doi.org/10.1007/978-981-13-0659-4_3
https://doi.org/10.1007/978-981-13-0659-4_2
https://doi.org/10.1007/978-981-13-0659-4_6
https://doi.org/10.1007/978-981-13-0659-4_5
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The convergence of the above series implies the convergence to 0 of its general
term, i.e.

lim
n→∞P(Xn = j | X0 = i) = 0

for all i ∈ S, which is the expected conclusion. �

7.2 Stationary Distributions

Definition 7.5 A probability distribution on S is any a family π = (πi )i∈S in [0, 1]
such that ∑

i∈S
πi = 1.

Next, we state the definition of stationary distribution.

Definition 7.6 A probability distribution π on S is said to be stationary if, starting
X0 at time 0 with the distribution (πi )i∈S, it turns out that the distribution of X1 is
still (πi )i∈S at time 1.
In other words, (πi )i∈S is stationary for the Markov chain with transition matrix P
if, letting

P(X0 = i) := πi , i ∈ S,

at time 0, implies
P(X1 = i) = P(X0 = i) = πi , i ∈ S,

at time 1. This also means that

π j = P(X1 = j) =
∑

i∈S
P(X1 = j | X0 = i)P(X0 = i) =

∑

i∈S
πi Pi, j , j ∈ S,

i.e. the distributionπ is stationary if and only if the vectorπ is invariant (or stationary)
by the matrix P , that means

π = πP. (7.2.1)

Note that in contrast with (5.1.3), the multiplication by P in (7.2.1) is on the right
hand side and not on the left. The relation (7.2.1) can be rewritten as the balance
condition ∑

i∈S
πi Pi,k = πk = πk

∑

j∈S
Pk, j =

∑

j∈S
πk Pk, j , (7.2.2)

which can be illustrated as follows (Fig. 7.1):

https://doi.org/10.1007/978-981-13-0659-4_5
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Fig. 7.1 Global balance condition (discrete time)

We also note that the stationarity and limiting properties of distributions are quite
different concepts. If the chain is started in the stationary distribution then it will
remain in that distribution at any subsequent time step (which is stronger than saying
that the chainwill reach that distribution after an infinite number of time steps). On the
other hand, in order to reach the limiting distribution the chain can be started from any
given initial distribution or even from any fixed given state, and it will converge to the
limiting distribution if it exists. Nevertheless, the limiting and stationary distribution
may coincide in some situations as in Theorem 7.8 below.

More generally, assuming that Xn has the invariant (or stationary) distribution π
at time n, i.e. P(Xn = i) = πi , i ∈ S, we have

P(Xn+1 = j) =
∑

i∈S
P(Xn+1 = j | Xn = i)P(Xn = i)

=
∑

i∈S
Pi, jP(Xn = i) =

∑

i∈S
Pi, jπi

= [πP] j = π j , j ∈ S,

since the transition matrix of (Xn)n∈N is time homogeneous, hence

P(Xn = j) = π j , j ∈ S, =⇒ P(Xn+1 = j) = π j , j ∈ S.

By induction on n ≥ 0, this yields

P(Xn = j) = π j , j ∈ S, n ≥ 1,

i.e. the chain (Xn)n∈N remains in the same distribution π at all times n ≥ 1, provided
that it has been started with the stationary distribution π at time n = 0.
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Proposition 7.7 Assume that S = {0, 1, . . . , N } is finite and that the limiting dis-
tribution (7.1.5)

π(i)
j := lim

n→∞P(Xn = j | X0 = i)

exists for all i, j ∈ S, i.e. we have

lim
n→∞ Pn =

⎡

⎢⎢⎢⎣

π(0)
0 π(0)

1 · · · π(0)
N

π(1)
0 π(1)

1 · · · π(1)
N

...
...

. . .
...

π(N )
0 π(N )

1 · · · π(N )
N

⎤

⎥⎥⎥⎦ .

Then for every i = 0, 1, . . . , N, the vector π(i) := (π(i)
j ) j∈{0,1,...,N } is a stationary

distribution and we have
π(i) = π(i)P, (7.2.3)

i.e. π(i) is invariant (or stationary) by P, i = 0, 1, . . . , N.

Proof We have

π(i)
j : = lim

n→∞P(Xn = j | X0 = i)

= lim
n→∞P(Xn+1 = j | X0 = i)

= lim
n→∞

∑

l∈S
P(Xn+1 = j | Xn = l)P(Xn = l | X0 = i)

= lim
n→∞

∑

l∈S
Pl, jP(Xn = l | X0 = i)

=
∑

l∈S
Pl, j lim

n→∞P(Xn = l | X0 = i)

=
∑

l∈S
π(i)
l Pl, j , i, j ∈ S,

where we exchanged limit and summation because the state space S is assumed to
be finite, which shows that

π(i) = π(i)P,

i.e. (7.2.3) holds and π(i) is a stationary distribution, i = 0, 1, . . . , N . �
Proposition 7.7 can be applied in particular when the limiting distribution π j :=

limn→∞ P(Xn = j | X0 = i) does not depend on the initial state i , i.e.
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lim
n→∞ Pn =

⎡

⎢⎢⎢⎣

π0 π1 · · · πN

π0 π1 · · · πN
...

...
. . .

...

π0 π1 · · · πN

⎤

⎥⎥⎥⎦ .

For example, the limiting distribution (7.1.3) of the two-state Markov chain is also
an invariant distribution, i.e. it satisfies (7.2.1). In particular we have the following
result.

Theorem 7.8 (Theorem IV.4.2 in [KT81]) Assume that the Markov chain (Xn)n∈N
satisfies the following 3 conditions:

(i) positive recurrence,
(ii) aperiodicity, and
(iii) irreducibility.

Then the chain (Xn)n∈N admits a limiting distribution

πi := lim
n→∞P(Xn = i | X0 = j) = lim

n→∞[Pn] j,i = 1

μi (i)
, i, j ∈ S,

which also forms a stationary distribution (πi )i∈S = (1/μi (i))i∈S, uniquely deter-
mined by the equation

π = πP.

In Theorem 7.8 above, Condition (i i), is satisfied from Proposition 6.14, provided
that at least one state is aperiodic, since the chain is irreducible.

See Exercise 7.21 for an application of Theorem 7.8 on an infinite state space.
In the following trivial example of a finite circular chain, Theorems 7.2 and 7.8

cannot be applied since the chain is not aperiodic, and it clearly does not admit a lim-
iting distribution. However, Theorem 7.10 below applies and the chain admits a sta-
tionary distribution: one can easily check that μk(k) = n and πk = 1/n = 1/μk(k),
k = 1, 2, . . . , n, with n = 7.

(7.2.4)

In view of Theorem 6.11, we have the following corollary of Theorem 7.8:

https://doi.org/10.1007/978-981-13-0659-4_6
https://doi.org/10.1007/978-981-13-0659-4_6
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Corollary 7.9 Consider an irreducible aperiodic Markov chain with finite state
space. Then the limiting probabilities

πi := lim
n→∞P(Xn = i | X0 = j) = 1

μi (i)
, i, j ∈ S,

exist and form a stationary distribution which is uniquely determined by the equation

π = πP.

Corollary 7.9 can also be applied separately to derive a stationary distribution on
each closed component of a reducible chain.

The convergence of the two-state chain to its stationary distribution has been
illustrated in Fig. 4.4. Before proceeding further we make some comments on the
assumptions of Theorems 7.2 and 7.8.

Remarks

• Irreducibility.
The irreducibility assumption on the chain inTheorems 7.2 and 7.8 is truly required
in general, as a reducible chain may have a limiting distribution that depends on
the initial state as in the following trivial example on the state space {0, 1, 2}:

in which the chain is aperiodic and positive recurrent, but not irreducible. Note that
the sub-chain {1, 2} admits [π1,π2] = [1/1.6, 0.6/1.6] as stationary and limiting
distribution, however any vector of the form (1 − α,απ1,απ2) is also a stationary
distribution on S = {0, 1, 2} for any α ∈ [0, 1], showing the non uniqueness of the
stationary distribution.
More generally, in case the chain is not irreducible we can split it into subchains
and consider the subproblems separately. For example, when the state space S

is a finite set it admits at least one communicating class A ⊂ S that leads to no
other class, and admits a stationary distribution πA by Corollary 7.11 since it is
irreducible, hence a chain with finite state space S admits at least one stationary
distribution of the form (0, 0, . . . , 0,πA).
Similarly, the constant two-state Markov chain with transition matrix P = Id is
reducible, it admits an infinity of stationary distributions, and a limiting distribu-
tion which is dependent on the initial state.

• Aperiodicity.
The conclusions of Theorems 7.2, 7.8 and Corollary 7.9 ensure the existence of the
limiting distribution by requiring the aperiodicity of theMarkov chain. Indeed, the
limiting distribution may not exist when the chain is not aperiodic. For example,
the two-state Markov chain with transition matrix

https://doi.org/10.1007/978-981-13-0659-4_4
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P =
[
0 1
1 0

]

is not aperiodic (both states have period 2) and it has no limiting distribution
because2

P(X2n = 1 | X0) = 1 and P(X2n+1 = 1 | X0) = 0, n ∈ N.

The chain does have an invariant (or stationary) distribution π solution of π = πP ,
and given by

π = [π0,π1] =
[
1

2
,
1

2

]
.

• Positive recurrence.
Theorems 7.8 and 7.10 below, and Corollary 7.9 do not apply to the unrestricted
random walk (Sn)n∈N of Chap. 3, because this chain is not positive recurrent, cf.
Relations (3.4.20) and (3.4.17), and admits no stationary distribution.
If a stationary distribution π = (πi )i∈Z existed it would satisfy the equation π =
πP which, according to (4.3.1), would read

πi = pπi−1 + qπi+1, i ∈ Z,

i.e.
(p + q)πi = pπi−1 + qπi+1, i ∈ Z,

or
πi+1 − πi = p

q
(πi − πi−1), i ∈ Z.

As in the direct solution method of p. 48, this implies

πi+1 − πi =
(
p

q

)i

(π1 − π0), i ∈ N,

so that by a telescoping summation argument we have

πk = π0 +
k−1∑

i=0

(πi+1 − πi )

= π0 + (π1 − π0)

k−1∑

i=0

(
p

q

)i

= π0 + (π1 − π0)
1 − (p/q)k

1 − p/q
, k ∈ N,

2This two-state chain is a particular case of the circular chain (7.2.4) for n = 2.

https://doi.org/10.1007/978-981-13-0659-4_3
https://doi.org/10.1007/978-981-13-0659-4_3
https://doi.org/10.1007/978-981-13-0659-4_3
https://doi.org/10.1007/978-981-13-0659-4_4
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which cannot satisfy the condition
∑

k∈Z
πk = 1, with p �= q. When p = q = 1/2

we similarly obtain

πk = π0 +
k−1∑

i=0

(πi+1 − πi ) = π0 + k(π1 − π0), k ∈ Z,

and in this case as well, the sequence (πk)k∈N cannot satisfy the condition
∑

k∈Z
πk =

1, and we conclude that the chain does not admit a stationary distribution. Hence
the stationary distribution of a Markov chain may not exist at all.
In addition, it follows from (3.3.3) and the Stirling approximation formula that

lim
n→∞P(S2n = 2k | S0 = 0) = lim

n→∞
(2n)!

(n + k)!(n − k)! p
n+kqn−k

≤ lim
n→∞

(2n)!
22nn!2

= lim
n→∞

1√
πn

= 0, k ∈ N,

so that the limiting distribution does not exist as well. Here, Theorem 7.2 cannot be
applied because the chain is not aperiodic (it has period 2), however aperiodicity
and irreducibility are not sufficient in general when the state space is infinite, cf.
e.g. the model of Exercise 2.1.

The following theorem gives sufficient conditions for the existence of a stationary
distribution, without requiring aperiodicity or finiteness of the state space. As noted
above, the limiting distribution may not exist in this case.

Theorem 7.10 ([BN96], Theorem4.1) Consider aMarkov chain (Xn)n∈N satisfying
the following two conditions:

(i) positive recurrence, and
(ii) irreducibility.

Then the probabilities

πi = 1

μi (i)
, i ∈ S,

form a stationary distribution which is uniquely determined by the equation π = πP.

Note that the conditions stated in Theorem 7.10 are sufficient, but they are not all
necessary. For example, Condition (i i) is not necessary as the trivial constant chain,
whose transition matrix P = Id is reducible, does admit a stationary distribution.

Note that the positive recurrence assumption in Theorem 7.2 is required in general
on infinite state spaces. For example, the process in Exercise 7.21 is positive recurrent
for α < 1 only, whereas no stationary distribution exists when α ≥ 1.

https://doi.org/10.1007/978-981-13-0659-4_3
https://doi.org/10.1007/978-981-13-0659-4_2
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As a consequence of Corollary 6.12 we have the following corollary of
Theorem 7.10, which does not require aperiodicity for the stationary distribution
to exist.

Corollary 7.11 ([BN96]) Let (Xn)n∈N be an irreducible Markov chain with finite
state space S. Then the probabilities

πk = 1

μk(k)
, k ∈ S,

form a stationary distribution which is uniquely determined by the equation

π = πP.

According to Corollary 7.11, the limiting distribution and stationary distribution both
exist (and coincide) when the chain is irreducible aperiodic with finite state space,
and in this case we have πk > 0 for all k ∈ S by Corollaries 6.12 and 7.11. When the
chain is irreducible it is usually easier to compute the stationary distribution, which
will give us the limiting distribution.

Under the assumptions of Theorem 7.8, if the stationary and limiting distributions
both exist then they are equal and in this case we only need to compute one of them.
However, in some situations only the stationary distribution might exist. According
to Corollary 7.11 above the stationary distribution always exists when the chain is
irreducible with finite state space, nevertheless the limiting distribution may not exist
if the chain is not aperiodic, consider for example the two-state switching chain with
a = b = 1.

Finding a Limiting Distribution

In summary:

• We usually attempt first to compute the stationary distribution whenever possible,
and this also gives the limiting distribution when it exists. For this, we first check
whether the chain is positive recurrent, aperiodic and irreducible, in which case the
limiting distribution can be found by solving π = πP according to Theorem 7.8.

• In case the above properties are not satisfied we need to compute the limiting
distribution by taking the limit limn→∞ Pn of the powers Pn of the transition
matrix, if possible by decomposing the state space in communicating classes as
in e.g. Exercise 7.11. This can turn out to be much more complicated and done
only in special cases. If the chain has period d ≥ 2 we may need to investigate the
limits limn→∞ Pnd instead, see e.g. Exercise 7.3 and (7.2.5)–(7.2.6) below.

To further summarize, we note that by Theorem 7.2 we have

(a) irreducible + recurrent + aperiodic =⇒ existence of a limiting distribution, by
Theorem 7.8 we get

https://doi.org/10.1007/978-981-13-0659-4_6
https://doi.org/10.1007/978-981-13-0659-4_6
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(b) irreducible + positive recurrent + aperiodic =⇒ existence of a limiting distri-
bution which is also stationary, and by Theorem 7.10 we get

(c) irreducible + positive recurrent =⇒ existence of a stationary distribution.

In addition, the limiting or stationary distribution π = (πi )i∈S satisfies

πi = 1

μi (i)
, i ∈ S,

in all above cases (a), (b) and (c).

The Ergodic Theorem

The Ergodic Theorem, cf. e.g. Theorem 1.10.2 of [Nor98] states the following.

Theorem 7.12 Assume that the chain (Xn)n∈N is irreducible. Then the sample aver-
age time spent at to state i converges almost surely to 1/μi (i), i.e.

lim
n→∞

1

n

n∑

k=1

1{Xk=i} = 1

μi (i)
, i ∈ S.

In case (Xn)n∈N is also positive recurrent, Theorem 7.10 shows that we also have

lim
n→∞

1

n

n∑

k=1

1{Xk=i} = πi , i ∈ S,

where (πi )i∈S is the stationary distribution of (Xn)n∈N. We refer to Fig. 4.4 for an
illustration of convergence in the setting of the Ergodic Theorem 7.12.

Example. Consider the maze random walk (5.3.7) with transition matrix

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0
1/2 0 1/2 0 0 0 0 0 0
0 1/2 0 0 0 1/2 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1/2 0 1/2 0
0 0 1/2 0 1/2 0 0 0 0
0 0 0 1/2 0 0 0 1/2 0
0 0 0 0 1/3 0 1/3 0 1/3
0 0 0 0 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

https://doi.org/10.1007/978-981-13-0659-4_4
https://doi.org/10.1007/978-981-13-0659-4_5
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The equation π = πP yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1 = 1

2
π2

π2 = π1 + 1

2
π3

π3 = 1

2
π2 + 1

2
π6

π4 = 1

2
π7

π5 = 1

2
π6 + 1

3
π8

π6 = 1

2
π3 + 1

2
π5

π7 = π4 + 1

3
π8

π8 = 1

2
π5 + 1

2
π7 + π9

π9 = 1

3
π8,

hence

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1 = 1

2
π2

π2 = π3

π3 = π6

π4 = 1

2
π3

1

2
π7 = 1

3
π8

π6 = π5

π6 = π7

π9 = 1

3
π8,

and

1 = π1 + π2 + π3 + π4 + π5 + π6 + π7 + π8 + π9

= π1 + 2π1 + 2π1 + π1 + 2π1 + 2π1 + 2π1 + 3π1 + π1

= 16π1,

hence

π1 = 1

16
, π2 = 2

16
, π3 = 2

16
, π4 = 1

16
,

π5 = 2

16
, π6 = 2

16
, π7 = 2

16
, π8 = 3

16
, π9 = 1

16
,

cf. Figs. 7.3 and 7.2, and we check that since μ1(1) = 16 by (5.3.8), we indeed have

π1 = 1

μ1(1)
= 1

16
,

according to Corollary 7.11.

https://doi.org/10.1007/978-981-13-0659-4_5
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 0

 0.1

 0.2

Fig. 7.2 Stationary distribution on the maze (5.3.7)

Fig. 7.3 Stationary distribution by state numbering

Fig. 7.4 Simulated stationary distribution

The stationary probability distribution of Figs. 7.3 and 7.2 can be compared to
the proportions of time spent at each state simulated in Fig. 7.4.

Note that this chain has period 2 and the matrix powers (Pn)n∈N do not converge
as n tends to infinity, i.e. it does not admit a limiting distribution. In fact, using the
following Matlab/Octave commands:

https://doi.org/10.1007/978-981-13-0659-4_5
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P = [0,1,0,0,0,0,0,0,0;
1/2,0,1/2,0,0,0,0,0,0;
0,1/2,0,0,0,1/2,0,0,0;
0,0,0,0,0,0,1,0,0;
0,0,0,0,0,1/2,0,1/2,0;
0,0,1/2,0,1/2,0,0,0,0;
0,0,0,1/2,0,0,0,1/2,0;
0,0,0,0,1/3,0,1/3,0,1/3;
0,0,0,0,0,0,0,1,0]
mpower(P,1000)
mpower(P,1001)

we see that

lim
n→∞ P2n =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/8 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0
1/8 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0
1/8 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0
1/8 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0
1/8 0 1/4 0 1/4 0 1/4 0 1/8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7.2.5)

and

lim
n→∞ P2n+1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1/4 0 1/8 0 1/4 0 3/8 0
1/8 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0
1/8 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0
1/8 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0
1/8 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7.2.6)

which shows that, although (Pn)n≥1 admits two converging subsequences, limn→∞
Pn does not exist, therefore the chain does not admit a limiting distribution.
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7.3 Markov Chain Monte Carlo

The goal of the Markov Chain Monte Carlo (MCMC) method, or Metropolis algo-
rithm, is to generate random samples according to a target distribution π = (πi )i∈S
via a Markov chain that admits π as limiting and stationary distribution. It applies in
particular in the setting of huge state spaces S.

A Markov chain (Xk)k∈N with transition matrix P on a state space S is said to
satisfy the detailed balance (or reversibility) condition with respect to the probability
distribution π = (πi )i∈S if

πi Pi, j = π j Pj,i , i, j ∈ S. (7.3.1)

See Fig. 7.5. Note that the detailed balance condition (7.3.1) implies the global
balance condition (7.2.2) as, by summation over i ∈ S in (7.3.1) we have

∑

i∈S
πi Pi, j =

∑

i∈S
π j Pj,i = π j

∑

i∈S
Pj,i = π j , j ∈ S,

which shows that πP = π, i.e. π is a stationary distribution for P , cf. e.g. Prob-
lem 7.23-(c).

If the transition matrix P satisfies the detailed balance condition with respect to
π then the probability distribution of Xn will naturally converge to the stationary
distribution π in the long run, e.g. under the hypotheses of Theorem 7.8, i.e. when
the chain (Xk)k∈N is positive recurrent, aperiodic, and irreducible.

In general, however, the detailed balance (or reversibility) condition (7.3.1) may
not be satisfied by π and P . In this case one can construct amodified transitionmatrix
P̃ that will satisfy the detailed balance condition with respect to π. This modified
transition matrix P̃ is defined by

Fig. 7.5 Detailed balance condition (discrete time)
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P̃i, j := Pi, j × min

(
1,

π j Pj,i

πi Pi, j

)
=

⎧
⎪⎨

⎪⎩

Pj,i
π j

πi
if π j Pj,i < πi Pi, j ,

Pi, j if π j Pj,i ≥ πi Pi, j ,

for i �= j , and

P̃i,i = 1 −
∑

k �=i∈S
P̃i,k = Pi,i +

∑

i �=k∈S
Pi,k

(
1 − min

(
1,

π j Pj,i

πi Pi, j

))
, i ∈ S.

Clearly, we have P̃ = P when the detailed balance (or reversibility) condition (7.3.1)
is satisfied. In the general case, we can check that for i �= j we have

πi P̃i, j =
⎧
⎨

⎩

Pj,iπ j = π j P̃j,i if π j Pj,i < πi Pi, j ,

πi Pi, j = π j P̃j,i if π j Pj,i ≥ πi Pi, j ,

⎫
⎬

⎭ = π j P̃j,i ,

hence P̃ satisfies the detailed balance condition with respect to π (the condition
is obviously satisfied when i = j). Therefore, the random simulation of (X̃n)n∈N
according to the transition matrix P̃ will provide samples of the distribution π in the
long run as n tends to infinity, provided that the chain (X̃n)n∈N is positive recurrent,
aperiodic, and irreducible.

In Table 7.1 we summarize the definitions introduced in this chapter and in
Chap.6.

Table 7.1 Summary of Markov chain properties

Property Definition

Absorbing (state) Pi,i = 1

Recurrent (state) P(T r
i < ∞ | X0 = i) = 1

Transient (state) P(T r
i < ∞ | X0 = i) < 1

Positive recurrent (state) Recurrentand IE[T r
i | X0 = i] < ∞

Null recurrent (state) Recurrentand IE[T r
i | X0 = i] = ∞

Aperiodic (state or chain) Period(s) = 1

Ergodic (state or chain) Positive recurrent and aperiodic

Irreducible (chain) All states communicate

Regular (chain) All coefficients of Pn are > 0 for some n ≥ 1

Stationary distribution π Obtained from solving π = πP

https://doi.org/10.1007/978-981-13-0659-4_6
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Exercises

Exercise 7.1 We consider the Markov chain of Exercise 4.10-(a).

(a) Is the chain irreducible, aperiodic, recurrent, positive recurrent?
(b) Does it admit a stationary distribution?
(c) Does it admit a limiting distribution?

Exercise 7.2 We consider the success runs Markov chain of Exercise 4.10-(b).

(a) Is the success runs chain irreducible, aperiodic, recurrent, positive recurrent?
(b) Does it admit a stationary distribution?
(c) Does it admit a limiting distribution?

Exercise 7.3 We consider the Ehrenfest chain (4.3.2)–(4.3.3).

(a) Is the Ehrenfest chain irreducible, aperiodic, recurrent, positive recurrent?
(b) Does it admit a stationary distribution?
(c) Does it admit a limiting distribution?

Hint: Try a binomial distribution.

Exercise 7.4 Consider the Bernoulli–Laplace chain (Xn)n∈N of Exercise 4.9 with
state space {0, 1, 2, . . . , N } and transition matrix

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · · · · 0 0
1/N 2 2(N − 1)/N 2 (N − 1)2/N 2 0 · · · · · · 0 0
0 22/N 2 4(N − 2)/N 2 (N − 2)2/N 2 · · · · · · 0 0
0 0 32/N 2 0 · · · · · · 0 0

.

.

.

.

.

.

.

.

.
.
.
.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.
.
.

.

.

.

.

.

.

.

.

.

0 0 · · ·
.
.
. 0 32/N 2 0 0

0 0 · · · 0 (N − 2)2/N 2 4(N − 2)/N 2 22/N 2 0
0 0 · · · 0 0 (N − 1)2/N 2 2(N − 1)/N 2 1/N 2

0 0 · · · 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

i.e.

Pk,k−1 = k2

N 2
, Pk,k = 2k(N − k)2

N 2
, Pk,k+1 = (N − k)2

N 2
, k = 1, 2, . . . , N − 1.

(a) Is the Bernoulli–Laplace chain irreducible, aperiodic, recurrent, positive recur-
rent?

(b) Does it admit a stationary distribution?
(c) Does it admit a limiting distribution?

https://doi.org/10.1007/978-981-13-0659-4_4
https://doi.org/10.1007/978-981-13-0659-4_4
https://doi.org/10.1007/978-981-13-0659-4_4
https://doi.org/10.1007/978-981-13-0659-4_4
https://doi.org/10.1007/978-981-13-0659-4_4


Exercises 181

Exercise 7.5 Consider a robot evolving in the following circular maze, moving from
one room to the other according to a Markov chain with equal probabilities.

Let Xn ∈ {0, 1, 2, 3} denote the state of the robot at time n ∈ N.

(a) Write down the transition matrix P of the chain.
(b) By first step analysis, compute the mean return times μ0(k) from state k =

0, 1, 2, 3 to state 0 .3

(c) Guess an invariant (or stationary) probability distribution [π0,π1,π2,π3] for the
chain, and show that it does satisfy the condition π = πP .

Exercise 7.6 A signal processor is analysing a sequence of signals that can be either
distorted or non-distorted. It turns out that on average, 1 out of 4 signals following a
distorted signal are distorted, while 3 out of 4 signals are non-distorted following a
non-distorted signal.

(a) Let Xn ∈ {D, N } denote the state of the nth signal being analysed by the pro-
cessor. Show that the process (Xn)n≥1 can be modeled as a Markov chain and
determine its transition matrix.

(b) Compute the stationary distribution of (Xn)n≥1.
(c) In the long run, what fraction of analysed signals are distorted?
(d) Given that the last observed signalwas distorted, how long does it take on average

until the next non-distorted signal?
(e) Given that the last observed signal was non-distorted, how long does it take on

average until the next distorted signal?

Exercise 7.7 Consider a Markov chain (Xn)n≥0 on the state space {0, 1, 2, 3} with
transition probability matrix P given by

P =

⎡

⎢⎢⎣

0 1 0 0
0.2 0 0.8 0
0.3 0 0.7 0
0.4 0.6 0 0

⎤

⎥⎥⎦ .

(a) Draw the graph of this chain. Is the chain reducible?
(b) Find the recurrent, transient, and absorbing state(s) of this chain.
(c) Compute the fraction of time spent at state 0 in the long run.
(d) On the average, how long does it take to reach state 0 after starting from state

2 ?

3You may use the symmetry of the problem to simplify the calculations.
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Exercise 7.8 Consider the transition probability matrix

P = [
Pi, j

]
0≤i, j≤3 =

⎡

⎢⎢⎣

0 1 0 0
0.1 0.4 0.2 0.3
0.2 0.2 0.5 0.1
0.3 0.3 0.4 0

⎤

⎥⎥⎦ .

(a) Compute the limiting distribution [π0,π1,π2,π3] of this Markov chain.
(b) Compute the average time μ0(1) it takes to the chain to travel from state 1 to

state 0 .
Hint: The data of the first row of the matrix P should play no role in the com-
putation of μ0(k), k = 0, 1, 2, 3.

(c) Prove by direct computation that the relation π0 = 1/μ0(0) holds, where μ0(0)
represents the mean return time to state 0 for this chain.

Exercise 7.9 Consider the Markov chain with transition probability matrix

[
Pi, j

]
0≤i, j≤3 =

⎡

⎢⎢⎣

0 1/2 0 1/2
1/4 0 3/4 0
0 1/3 0 2/3
1/2 0 1/2 0

⎤

⎥⎥⎦ .

(a) Show that the chain is periodic4 and compute its period.
(b) Determine the stationary distribution of this chain.

Exercise 7.10 The lifetime of a given component of a machine is a discrete random
variable T with distribution

P(T = 1) = 0.1, P(T = 2) = 0.2, P(T = 3) = 0.3, P(T = 4) = 0.4.

The component is immediately replaced with a new component upon failure, and the
machine starts functioning with a new component. Compute the long run probability
of finding the machine about to fail at the next time step.

Exercise 7.11 Suppose that a Markov chain has the one-step transition probability
matrix P on the state space {A, B,C, D, E} given by

P =

⎡

⎢⎢⎢⎢⎣

0.6 0.4 0 0 0
0.3 0.7 0 0 0
0.2 0 0.4 0 0.4
0.2 0.2 0.2 0.2 0.2
0 0 0 0 1

⎤

⎥⎥⎥⎥⎦
.

Find limn→∞ P(Xn = A | X0 = C).

4A chain is periodic when all states have the same period.
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Exercise 7.12 Consider a Markov chain (Xn)n≥0 on the state space {0, 1, 2, 3, 4}
with transition probability matrix P given by

P =

⎡

⎢⎢⎢⎢⎣

1/3 2/3 0 0 0
1/2 1/2 0 0 0
0 0 1 0 0
0 0 1/7 6/7 0
1 0 0 0 0

⎤

⎥⎥⎥⎥⎦
.

(a) Draw the graph of this chain.
(b) Identify the communicating class(es).
(c) Find the recurrent, transient, and absorbing state(s) of this chain.
(d) Find limn→∞ P(Xn = 0 | X0 = 4).

Exercise 7.13 Three out of 4 trucks passing under a bridge are followed by a car,
while only 1 out of every 5 cars passing under that same bridge is followed by a
truck. Let Xn ∈ {C, T } denote the nature of the nth vehicle passing under the bridge,
n ≥ 1.

(a) Show that the process (Xn)n≥1 can be modeled as a Markov chain and write
down its transition matrix.

(b) Compute the stationary distribution of (Xn)n≥1.
(c) In the long run, what fraction of vehicles passing under the bridge are trucks?
(d) Given that the last vehicle seen was a truck, how long does it take on average

until the next truck is seen under that same bridge?

Exercise 7.14 Consider a discrete-time Markov chain (Xn)n∈N on S = {1, 2,
. . . , N }, whose transition matrix P = (Pi, j )1≤i, j≤N is assumed to be symmetric,
i.e. Pi, j = Pj,i , 1 ≤ i, j ≤ N ,

(a) Find an invariant (or stationary) distribution of the chain.
Hint: The equation πP = π admits an easy solution.

(b) Assume further that Pi,i = 0, 1 ≤ i ≤ N , and that Pi, j > 0 for all 1 ≤ i < j ≤
N . Find the period of every state.

Exercise 7.15 Consider the Markov chain with transition matrix
⎡

⎢⎢⎢⎢⎣

q p 0 0 0
q 0 p 0 0
q 0 0 p 0
q 0 0 0 p
1 0 0 0 0

⎤

⎥⎥⎥⎥⎦
,

where p, q ∈ (0, 1) satisfy p + q = 1.

(a) Compute the stationary distribution [π0,π1,π2,π3,π4] of this chain.
(b) Compute the limiting distribution of the chain.
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Exercise 7.16 Four players A, B,C, D are connected by the following network,
and play by exchanging a token.

At each step of the game, the player who holds the token chooses another player he
is connected to, and sends the token to that player.

(a) Assuming that the player choices aremade at random and are equally distributed,
model the states of the token as a Markov chain (Xn)n≥1 on {A, B,C, D} and
give its transition matrix.

(b) Compute the stationary distribution [πA,πB,πC ,πD] of (Xn)n≥1.
Hint: To simplify the resolution, start by arguing that we have πA = πD .

(c) Compute the mean return times μD(i), i ∈ {A, B,C, D}. On average, how long
does player D have to wait to recover the token?

(d) In the long run, what is the probability that player D holds the token?

Exercise 7.17 Consider the Markov chain with transition probability matrix

⎡

⎣
1 0 0
0 1 0
a b c

⎤

⎦ ,

with a + b + c = 1.

(a) Compute the power Pn for all n ≥ 2.
(b) Does the chain admit a limiting distribution? If yes, compute this distribution.
(c) Does the chain admit a stationary distribution? Compute this distribution if it

exists.

Exercise 7.18 Consider a game server that can become offline with probability p
and can remain online with probability q = 1 − p on any given day. Assume that
the random time N it takes to fix the server has the geometric distribution

P(N = k) = β(1 − β)k−1, k ≥ 1,

with parameter β ∈ (0, 1). We let Xn = 1 when the server is online on day n, and
Xn = 0 when it is offline.

(a) Show that the process (Xn)n∈N can be modeled as a discrete-time Markov chain
and write down its transition matrix.

(b) Compute the probability that the server is online in the long run, in terms of the
parameters β and p.
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Exercise 7.19 Let (Xn)n∈N be an irreducible aperiodic Markov chain on the finite
state space S = {1, 2, . . . , N }.
(a) Show that there exists a state i ∈ {1, 2, . . . , N } such that the mean return time

μi (i) from state i to itself is lower or equal to N , i.e. μi (i) ≤ N .
(b) Show that there exists a state i ∈ {1, 2, . . . , N } such that the mean return time

μi (i) from state i to itself is higher or equal to N , i.e. μi (i) ≥ N .

Exercise 7.20 Consider a Markov chain on the state space {1, 2, . . . , N }. For any
i ∈ {2, . . . , N − 1}, the chain has probability p ∈ (0, 1) to switch from state i to
state

�

�

�

�

i+1 , and probability q = 1 − p to switch from i to
�

�

�

�

i-1 . When the chain
reaches state i = 1 it rebounds to state 2 with probability p or stays at state 1
with probability q. Similarly, after reaching state N it rebounds to state

�

�

�

�

N-1 with
probability q, or remains at N with probability p.

(a) Write down the transition probability matrix of this chain.
(b) Is the chain reducible?
(c) Determine the absorbing, transient, recurrent, and positive recurrent states of

this chain.
(d) Compute the stationary distribution of this chain.
(e) Compute the limiting distribution of this chain.

Exercise 7.21 (Problem 6.9 continued). Let α > 0 and consider the Markov chain
with state space N and transition matrix given by

Pi,i−1 = 1

α + 1
, Pi,i+1 = α

α + 1
, i ≥ 1.

and a reflecting barrier at 0, such that P0,1 = 1.

(a) Show that when α < 1 this chain admits a stationary distribution of the form

πk = αk−1(1 − α2)/2, k ≥ 1,

where the value of π0 has to be determined.
(b) Does the chain admit a stationary distribution when α ≥ 1?
(c) Show that the chain is positive recurrent when α < 1.

Exercise 7.22 Consider two discrete-time stochastic processes (Xn)n∈N and (Yn)n∈N
on a state space S, such that

Xn = Yn, n ≥ τ ,

where τ is a random time called the coupling time of (Xn)n∈N and (Yn)n∈N.

(a) Show that for all x ∈ S and n ∈ N we have

P(Xn = x) ≤ P(Yn = x) + P(τ > n) x ∈ S, n ∈ N.

https://doi.org/10.1007/978-981-13-0659-4_6
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Hint: Use the law of total probability as P(A) = P(A ∩ {τ ≤ n}) + P(A ∩ {τ >

n}).
(b) Show that for all n ∈ N we have

sup
x∈S

|P(Xn = x) − P(Yn = x)| ≤ P(τ > n), n ∈ N.

Problem 7.23 Reversibility is a fundamental issue in physics as it is akin to the idea
of “traveling backward in time”. This problem studies the reversibility of Markov
chains, and applies it to the computation of stationary and limiting distributions.
Given N ≥ 1 and (Xk)k=0,1,...,N a Markov chain with transition matrix P on a state
space S, we let

Yk := XN−k, k = 0, 1, . . . , N ,

denote the time reversal of (Xk)k=0,1,...,N .

(a) Assume that Xk has same distribution π = (πi )i∈S for every k = 0, 1, . . . , N ,
i.e.

P(Xk = i) = πi , i ∈ S, k = 0, 1, . . . , N .

Show that the process (Yk)k=0,1,...,N is a (forward) Markov chain ( i.e.
(Xk)k=0,1,...,N has the backwardMarkov property), and find the transition matrix

[P(Yn+1 = j | Yn = i)]i, j
in terms of P and π.
Hint: Use the basic definition of conditional probabilities to compute

[P(Yn+1 = j | Yn = i)]i, j ,

and then show that (Yn)n=0,1,...,N has the Markov property

P(Yn+1 = j | Yn = in, . . . ,Y0 = i0) = P(Yn+1 = j | Yn = in).

(b) We say that (Xk)k=0,1,...,N is reversible for π when (Xk)k=0,1,...,N and
(Yk)k=0,1,...,N have same transition probabilities.
Write down this reversibility condition in terms of P and π. From now on we
refer to that condition as the detailed balance condition, which can be stated
independently of N .
Hint: By “same transition probabilities” we mean

P(Xn+1 = j | Xn = i) = P(Yn+1 = j | Yn = i).

(c) Show that if (Xk)k∈N is reversible for π, then π is also a stationary distribution
for (Xk)k∈N.
Hint: The fact that

∑
i Pj,i = 1 plays a role here.
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(d) Show that if an irreducible positive recurrent aperiodicMarkov chain is reversible
for its stationary distribution π then we have

Pk1,k2 Pk2,k3 · · · Pkn−1,kn Pkn ,k1 = Pk1,kn Pkn ,kn−1 · · · Pk3,k2 Pk2,k1 (7.3.2)

for all sequences {k1, k2, . . . , kn} of states and n ≥ 2.
Hint: This is a standard algebraic manipulation.

(e) Show that conversely, if an irreducible positive recurrent aperiodicMarkov chain
satisfies Condition (7.3.2) for all sequences {k1, k2, . . . , kn} of states, n ≥ 2, then
it is reversible for its stationary distribution π.
Hint: This question is more difficult and here you need to apply Theorem 7.8.

(f) From now on we assume that S = {0, 1, . . . ,M} and that P is the transition
matrix

Pi,i+1 = 1

2
− i

2M
, Pi,i = 1

2
, Pi,i−1 = i

2M
, 1 ≤ i ≤ M − 1,

of the modified Ehrenfest chain, with P0,0 = P0,1 = PM,M−1 = PM,M = 1/2.
Find a probability distribution π for which the chain (Xk)k∈N is reversible.
Hint: The reversibility condition will yield a relation that can be used to compute
π by induction. Remember to make use of the condition

∑
i πi = 1.

(g) Confirm that the distribution of Question (f) is invariant (or stationary) by check-
ing explicitly that the equality

π = πP

does hold.
(h) Show, by quoting the relevant theorem, that π is also the limiting distribution of

the modified Ehrenfest chain (Xk)k≥0.
(i) Show, by the result of Question (h), that

lim
n→∞ IE[Xn | X0 = i] = M

2
,

for all i = 0, 1, . . . ,M .
(j) Show, using first step analysis and induction on n ≥ 0, that we have

IE

[
Xn − M

2

∣∣∣X0 = i

]
=

(
i − M

2

) (
1 − 1

M

)n

, n ≥ 0,

for all i = 0, 1, . . . ,M , and that this relation can be used to recover the result of
Question (i).
Hint: Letting

hn(i) = IE

[
Xn − M

2

∣∣∣X0 = i

]
, n ≥ 0,
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in order to prove the formula by induction one has to

(i) show that the formula holds for h0(i) when n = 0;
(ii) show that assuming that the formula holds for hn(i), it then holds for

hn+1(i).

It can help to start by proving the formula for h1(i) when n = 1 by first step
analysis.



Chapter 8
Branching Processes

Abstract Branching processes are used as a tool formodeling in genetics, biomolec-
ular reproduction, population growth, genealogy, disease spread, photomultiplier
cascades, nuclear fission, earthquake triggering, queueing models, viral phenomena,
social networks, neuroscience, etc. This chapter mainly deals with the computation
of probabilities of extinction and explosion in finite time for branching processes.

8.1 Construction and Examples

Consider a time-dependent population made of a number Xn of individuals at gener-
ation n ≥ 0. In the branching process model, each of these Xn individuals may have
a random number of descendants born at time n + 1.

For each k = 1, 2, . . . , Xn we let Yk denote the number of descendants of indi-
vidual no k. That means, we have X0 = 1, X1 = Y1, and at time n + 1, the new
population size Xn+1 will be given by

Xn+1 = Y1 + · · · + YXn =
Xn∑

k=1

Yk, (8.1.1)

where the (Yk)k≥1 form a sequence of independent, identically distributed, nonneg-
ative integer valued random variables which are assumed to be almost surely finite,
i.e.

P(Yk < ∞) =
∞∑

n=0

P(Yk = n) = 1.

Note that in this model the Xn individuals of generation n “die” at time n + 1 as they
are not considered in the sum (8.1.1). In order to keep them at the next generation
we would have to modify (8.1.1) into

© Springer Nature Singapore Pte Ltd. 2018
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Xn+1 = Xn + Y1 + · · · + YXn ,

however we will not adopt this convention, and we will rely on (8.1.1) instead.
As a consequence of (8.1.1), the branching process (Xn)n∈N is a Markov process

with state space S = N and transition matrix given by

P = [
Pi, j

]
i, j∈N =

⎡

⎢⎢⎢⎢⎢⎣

1 0 0 · · ·
P(Y1 = 0) P(Y1 = 1) P(Y1 = 2) · · ·

P2,0 P2,1 P2,2 · · ·
P3,0 P3,1 P3,2 · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎦
. (8.1.2)

Note that state 0 is absorbing since by construction we always have

P0,0 = P(Xn+1 = 0 | Xn = 0) = 1, n ∈ N.

Figure8.1 represents an example of branching process with X0 = 1 and Y1 = 6,
hence

X1 = YX0 = Y1 = 6,

then successively

(Yk)k=1,2,...,X1 = (Y1,Y2,Y3,Y4,Y5,Y6) = (0, 4, 1, 2, 2, 3)

Fig. 8.1 Example of branching process
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Fig. 8.2 Sample graph of a branching process

and

X2 = Y1 + · · · + YX1

= Y1 + Y2 + Y3 + Y4 + Y5 + Y6
= 0 + 4 + 1 + 2 + 2 + 3

= 12,

then

(Yk)k=1,2,...,X2 = (Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10,Y11,Y12)

= (0, 2, 0, 0, 0, 4, 2, 0, 0, 2, 0, 1),

and

X3 = Y1 + · · · + YX2

= Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7 + Y8 + Y9 + Y10 + Y11 + Y12
= 0 + 2 + 0 + 0 + 0 + 4 + 2 + 0 + 0 + 2 + 0 + 1

= 11.

The next Fig. 8.2 presents another sample tree for the path of a branching process.
In Fig. 8.2 above the branching process starts from X0 = 2, with X1 = 3, X2 = 5,

X3 = 9, X4 = 9, X5 = 9. However, in the sequel and except if otherwise specified,
all branching processes will start from X0 = 1.

See [SSB08] and [IM11] for results on the modeling of the offspring distribution
of Y1 based on social network and internet data and the use of power tail distribu-
tions. The use of power tail distributions leads to probability generating functions of
polylogarithmic form.
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8.2 Probability Generating Functions

Let now G1(s) denote the probability generating function of X1 = Y1, defined as

G1(s) := IE[sX1 | X0 = 1] = IE[sY1] =
∞∑

k=0

skP(Y1 = k), −1 ≤ s ≤ 1,

cf. (1.7.3), denote the probability generating function of the (almost surely finite)
random variable X1 = Y1, with

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

G1(0) = P(Y1 = 0),

G1(1) =
∞∑

n=0

P(Y1 = n) = P(Y1 < ∞) = 1,

μ := G ′
1(1) =

∞∑

k=0

kP(Y1 = k) = IE[X1 | X0 = 1] = IE[Y1]. (8.2.1a)

More generally, letting Gn(s) denote the probability generating function of Xn ,
defined as

Gn(s) := IE[sXn | X0 = 1] =
∞∑

k=0

skP(Xn = k | X0 = 1), −1 ≤ s ≤ 1,

n ∈ N, we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G0(s) = s, −1 ≤ s ≤ 1,

Gn(0) = P(Xn = 0 | X0 = 1), n ∈ N, (8.2.2a)

μn := IE[Xn | X0 = 1] = G ′
n(1) =

∞∑

k=0

kP(Xn = k | X0 = 1), (8.2.2b)

cf. (1.7.5).When X0 = kwecanview the branching tree as the union of k independent
trees started from X0 = 1 and we can write Xn as the sum of independent random
variables

Xn =
k∑

l=1

X (l)
n , n ∈ N,

where X (l)
n denotes the size of the tree nol at time n, with X (l)

n = 1, l = 1, 2, . . . , k.
In this case, we have
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IE
[
sXn | X0 = k

] = IE
[
s
∑k

l=1 X
(k)
n

∣∣∣X (1)
0 = 1, . . . , X (k)

0 = 1
]

=
k∏

l=1

IE
[
sX

(l)
n | X (l)

0 = 1
]

= (
IE
[
sXn | X0 = 1

])k

= (Gn(s))
k, −1 ≤ s ≤ 1, n ∈ N.

The next proposition provides an algorithm for the computation of the probability
generating function Gn .

Proposition 8.1 We have the recurrence relation

Gn+1(s) = Gn(G1(s)) = G1(Gn(s)), −1 ≤ s ≤ 1, n ∈ N. (8.2.3)

Proof By the identity (1.6.13) on random products we have

Gn+1(s) = IE[sXn+1 | X0 = 1]
= IE[sY1+···+YXn | X0 = 1]

= IE

[
Xn∏

l=1

sYl
∣∣∣X0 = 1

]

=
∞∑

k=0

IE

[
Xn∏

l=1

sYl
∣∣∣Xn = k

]
P(Xn = k | X0 = 1)

=
∞∑

k=0

IE

[
k∏

l=1

sYl
∣∣∣Xn = k

]
P(Xn = k | X0 = 1)

=
∞∑

k=0

IE

[
k∏

l=1

sYl

]
P(Xn = k | X0 = 1)

=
∞∑

k=0

(
k∏

l=1

IE
[
sYl
]
)
P(Xn = k | X0 = 1)

=
∞∑

k=0

(IE[sY1])kP(Xn = k | X0 = 1)

= Gn(IE[sY1])
= Gn(G1(s)), −1 ≤ s ≤ 1.

�

Instead of (8.2.3) we may also write

Gn(s) = G1(G1(· · · (G1(s), · · · )), −1 ≤ s ≤ 1, (8.2.4)
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and
Gn(s) = G1(Gn−1(s)) = Gn−1(G1(s)), −1 ≤ s ≤ 1.

Mean Population Size

In case the random variable Yk is equal to a deterministic constant μ ∈ N, the popula-
tion size at generation n ≥ 0 will clearly be equal to μn . The next proposition shows
that for branching processes, this property admits a natural extension to the random
case.

Proposition 8.2 The mean population size μn at generation n ≥ 0 is given by

μn = IE[Xn | X0 = 1] = (IE[X1 | X0 = 1])n = μn, n ≥ 1, (8.2.5)

where μ = IE[Y1] is given by (8.2.1a).

Proof By (8.2.4), (8.2.2b) and the chain rule of derivation we have

μn = G ′
n(1)

= d

ds
G1(Gn−1(s))|s=1

= G ′
n−1(1)G

′
1(Gn−1(1))

= G ′
n−1(1)G

′
1(1)

= μ × μn−1,

hence μ1 = μ, μ2 = μ × μ1 = μ2, μ3 = μ × μ2 = μ3, and by induction on n ≥ 1
we obtain (8.2.5). �

Similarly we find

IE[Xn | X0 = k] = k IE[Xn | X0 = 1] = kμn, n ≥ 1,

hence starting from X0 = k ≥ 1, the average of Xn goes to infinity when μ > 1. On
the other hand, μn converges to 0 when μ < 1.

Examples

(i) Supercritical case. When μ > 1 the average population size μn = μn grows to
infinity as n tends to infinity, and we say that the branching process (Xn)n∈N is
supercritical.
This condition holds in particular when P(Y1 ≥ 1) = 1 and Y1 is not almost
surely equal to 1, i.e. P(Y1 = 1) < 1. Indeed, under those conditions we have
P(Y1 ≥ 2) > 0 and
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μ = IE[Y1] =
∞∑

n=1

nP(Y1 = n)

≥ P(Y1 = 1) + 2
∞∑

n=2

P(Y1 = n)

= P(Y1 = 1) + P(Y1 ≥ 2)

> P(Y1 ≥ 1)

= 1,

hence μ > 1.
(ii) Critical case. When μ = 1 we have μn = (μ)n = 1 for all n ∈ N, and we say

that the branching process (Xn)n∈N is critical.
(iii) Subcritical case. In case μ < 1, the average population size μn = μn tends

to 0 as n tends to infinity and we say that the branching process (Xn)n∈N is
subcritical. In this case we necessarily have P(Y1 = 0) > 0 as

1 > μ = IE[Y1] =
∞∑

n=1

nP(Y1 = n)

≥
∞∑

n=1

P(Y1 = n)

= P(Y1 ≥ 1)

= 1 − P(Y0 = 0),

although the converse is not true in general.

The variance σ2
n = Var[Xn | X0 = 1] of Xn given that X0 = 1 can be shown in a

similar way to satisfy the recurrence relation

σ2
n+1 = σ2μn + μ2σ2

n,

cf. also Relation (1.7.6), where σ2 = Var[Y1], which shows by induction that

σ2
n = Var[Xn | X0 = 1] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nσ2, μ = 1,

σ2μn−1 1 − μn

1 − μ
= σ2

n−1∑

k=0

μn+k−1, μ �= 1,

n ≥ 1 cf. e.g. pages 180–181 of [KT81], and Exercise 8.3-(a) for an application. We
also have

Var[Xn | X0 = k] = kVar[Xn | X0 = 1] = kσ2
n, k, n ∈ N,

due to Relation (1.6.12) for the variance of a sum of independent random variables.
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8.3 Extinction Probabilities

Here we are interested in the time to extinction1

T0 := inf{n ≥ 0 : Xn = 0},

and in the extinction probability

αk := P(T0 < ∞ | X0 = k)

within a finite time, after starting from X0 = k. Note that the word “extinction” can
have negative as well as positive meaning, for example when the branching process
is used to model the spread of an infection.

Proposition 8.3 The probability distribution of T0 can be expressed using the prob-
ability generating function Gn as

P(T0 = n | X0 = 1) = Gn(0) − Gn−1(0) = G1(Gn−1(0)) − Gn−1(0), n ≥ 1,

with P(T0 = 0 | X0 = 1) = 0.

Proof By the relation {Xn−1 = 0} ⊂ {Xn = 0}, we have
{
T0 = n

} = {
Xn = 0

} ∩ {Xn−1 ≥ 1
} = {

Xn = 0
} \ {Xn−1 = 0

}

and

P(T0 = n | X0 = 1) = P({Xn = 0} ∩ {Xn−1 ≥ 1} | X0 = 1)

= P({Xn = 0} \ {Xn−1 = 0} | X0 = 1)

= P({Xn = 0}) − P({Xn−1 = 0} | X0 = 1)

= Gn(0) − Gn−1(0)

= G1(Gn−1(0)) − Gn−1(0), n ≥ 1,

where we applied Proposition8.1. �
First, we note that by the independence assumption, starting from X0 = k ≥ 2

independent individuals, we have

αk = P(T0 < ∞ | X0 = k) = (P(T0 < ∞ | X0 = 1))k = (α1)
k, k ≥ 1. (8.3.1)

Indeed, given k individuals at generation 0, each of them will start independently a
new branch of offsprings, and in order to have extinction of the whole population, all
of k branches should become extinct. Since the k branches behave independently, αk

1We normally start from X0 ≥ 1.
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is the product of the extinction probabilities for each branch,which yieldsαk = (α1)
k

since these extinction probabilities are all equal to α1 and there are k of them.
The next proposition is a consequence of Lemma5.1.

Proposition 8.4 We have
α1 = lim

n→∞ Gn(0).

Proof Since state 0 is absorbing, by Lemma5.1 with j = 0 and i = 1 we find

α1 = P(T0 < ∞ | X0 = 1) = lim
n→∞P(Xn = 0 | X0 = 1) = lim

n→∞ Gn(0).

�
The next proposition shows that the extinction probability α1 can be computed as

the solution of an equation.

Proposition 8.5 The extinction probability

α1 := P(T0 < ∞ | X0 = 1)

is a solution of the equation
α = G1(α). (8.3.2)

Proof By first step analysis we have

α1 = P(T0 < ∞ | X0 = 1)

= P(X1 = 0 | X0 = 1) +
∞∑

k=1

P(T0 < ∞ | X1 = k)P(X1 = k | X0 = 1)

= P(Y1 = 0) +
∞∑

k=1

P(T0 < ∞ | X0 = k)P(Y1 = k)

=
∞∑

k=0

(α1)
k
P(Y1 = k)

= G1(α1),

hence the extinction probability α1 solves (8.3.2). �
Note that from the above proof we find

α1 ≥ P(X1 = 0 | X0 = 1) = P(Y1 = 0), (8.3.3)

which shows that the extinction probability is non-zero whenever P(Y1 = 0) > 0.
On the other hand, any solution α of (8.3.2) also satisfies

α = G1(G1(α)), α = G1(G1(G1(α))),
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and more generally
α = Gn(α), n ≥ 1, (8.3.4)

by Proposition8.1. On the other hand the solution of (8.3.2) may not be unique, for
exampleα = 1 is always solution of (8.3.2) sinceG1(1) = 1, and it may not be equal
to the extinction probability. The next proposition clarifies this point.

Proposition 8.6 The extinction probability

α1 := P(T0 < ∞ | X0 = 1)

is the smallest solution of the equation α = G1(α).

Proof By Proposition8.4 we have α1 = limn→∞ Gn(0). Next, we note that the func-
tion s �−→ G1(s) is increasing because

G ′
1(s) = IE[Y1sY1−1] > 0, s ∈ [0, 1).

Hence s �−→ Gn(s) is also increasing by Proposition8.1, and for any solution α ≥ 0
of (8.3.2) we have, by (8.3.4),

0 ≤ Gn(0) ≤ Gn(α) = α, n ≥ 1,

and taking the limit in this inequality as n goes to infinity we get

0 ≤ α1 = lim
n→∞ Gn(0) ≤ α,

by (5.1.5) and Proposition8.4, hence the extinction probability α1 is always smaller
than any solution α of (8.3.2). This fact can also be recovered from Proposition8.4
and

α = lim
n→∞ Gn(α)

= lim
n→∞

(
Gn(0) +

∞∑

k=1

αk
P(Xn = k | X0 = 1)

)

≥ lim
n→∞ Gn(0)

= α1.

Therefore α1 is the smallest solution of (8.3.2). �

Since G1(0) = P(Y1 = 0) we have

P(Y1 = 0) = G1(0) ≤ G1(α1) = α1,

which recovers (8.3.3).
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On the other hand, if P(Y1 ≥ 1) = 1 then we have G1(0) = 0, which implies
α1 = 0 by Proposition8.6.

Note that from Lemma5.1, Proposition8.4, and (8.3.1), the transition matrix
(8.1.2) satisfies

lim
n→∞

([Pn]i,0
)
i∈N =

⎡

⎢⎢⎢⎢⎢⎣

1
α1

α2

α3
...

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

1
α1

(α1)
2

(α1)
3

...

⎤

⎥⎥⎥⎥⎥⎦
.

Examples

(i) Assume that Y1 has a Bernoulli distribution with parameter p ∈ (0, 1), i.e.

P(Y1 = 1) = p, P(Y1 = 0) = 1 − p.

Compute the extinction probability of the associated branching process.

In this case the branching process is actually a two-state Markov chain with tran-
sition matrix

P =
[

1 0
1 − p p

]
,

and we have

Gn(0) = P(Xn = 0 | X0 = 1) = (1 − p)
n−1∑

k=0

pk = 1 − pn, (8.3.5)

where we used the geometric series (A.2), hence as in (5.15) the extinction prob-
ability α1 is given by

α1 = P(T0 < ∞ | X0 = 1) = P

(⋃

n≥1

{Xn = 0}
∣∣∣X0 = 1

)

= lim
n→∞P(Xn = 0 | X0 = 1)

= lim
n→∞ Gn(0) = 1,

provided that p = IE[Y1] < 1, otherwise we have α1 = 0 when p = 1. The value
of α1 can be recovered using the generating function

G1(s) = IE[sY1] =
∞∑

k=0

skP(Y1 = k) = 1 − p + ps, (8.3.6)

for which the unique solution of G1(α) = α is the extinction probability α1 = 1,
as shown in the next Fig. 8.3.
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Fig. 8.3 Generating function of Y1 with p = 0.65

From (8.2.4) and (8.3.6) we can also show by induction on n ≥ 1 as in Exercise 8.2
that

Gn(s) = pns + (1 − p)
n−1∑

k=0

pk = 1 − pn + pns,

which recovers (8.3.5) from (1.7.5) or (8.2.2a) as

P(Xn = 0 | X0 = 1) = Gn(0) = 1 − pn.

We also have IE[Xn] = pn , n ≥ 0.

(ii) Same question as in (i) above for

P(Y1 = 2) = p, P(Y1 = 0) = q = 1 − p.

Here, we will directly use the probability generating function

G1(s) = IE[sY1] =
∞∑

k=0

skP(Y1 = k)

= s0P(Y1 = 0) + s2P(Y1 = 2) = 1 − p + ps2.

We check that the solutions of

G1(α) = 1 − p + pα2 = α,

i.e.2

pα2 − α + q = p(α − 1)(α − q/p) = 0, (8.3.7)

2Remark that (8.3.7) is identical to the characteristic Eq. (2.2.15).
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with q = 1 − p, are given by

{
1 + √

1 − 4pq

2p
,
1 − √

1 − 4pq

2p

}
=
{
1,

q

p

}
, p ∈ (0, 1]. (8.3.8)

Hence the extinction probability is α1 = 1 if q ≥ p, and it is equal to α1 = q/p <

1 if q < p, or equivalently if IE[Y1] > 1, due to the relation IE[Y1] = 2p.

(iii) Assume that Y1 has the geometric distribution with parameter p ∈ (0, 1), i.e.

P(Y1 = n) = (1 − p)pn, n ≥ 0,

with μ = IE[Y1] = p/q. We have

G1(s) = IE[sY1] =
∞∑

n=0

snP(Y1 = n) = (1 − p)
∞∑

n=0

pnsn = 1 − p

1 − ps
. (8.3.9)

The equation G1(α) = α reads

1 − p

1 − pα
= α,

i.e.
pα2 − α + q = p(α − 1)(α − q/p) = 0,

which is identical to (2.2.15) and (8.3.7) with q = 1 − p, and has for solutions
(8.3.8). Hence the finite time extinction probability is

α1 = P(T0 < ∞ | X0 = 1)

= min

(
1,

q

p

)
=

⎧
⎪⎨

⎪⎩

q

p
, p ≥ 1/2, (super)critical case,

1, p ≤ 1/2, (sub)critical case.

Note that we have α1 < 1 if and only if IE[Y1] > 1, due to the equality IE[Y1] =
p/q. As can be seen from Figs. 8.4 and 8.5, the extinction probability α1 is
equal to 1 when p ≤ 1/2, meaning that extinction within a finite time is certain
in that case. Note that we also find
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Fig. 8.4 Generating function of Y1 with p = 3/8 < 1/2 and α1 = 1

Fig. 8.5 Generating function of Y1 with p = 1/2 and α1 = 1

P(T0 < ∞ | X0 = k) = min

(
1,

(
q

p

)k
)

=

⎧
⎪⎪⎨

⎪⎪⎩

(
q

p

)k

, p ≥ 1/2, (super)critical case,

1, p ≤ 1/2, (sub)critical case.

which incidentally coincides with the finite time hitting probability found in
(3.4.16) for the simple random walk started from k ≥ 1.
Next in Fig. 8.5 is a graph of the generating function s �−→ G1(s) for p = 1/2.
The graph of generating function in Fig. 8.6 corresponds to p = 3/4.
We also have μn = (IE[Y1])n = (p/q)n , n ≥ 1.

(iv) Assume now that Y1 is the sum of two independent geometric variables with
parameter 1/2, i.e. it has the negative binomial distribution

P(Y1 = n) =
(
n + r − 1

r − 1

)
qr pn = (n + 1)qr pn = (n + 1)q2 pn, n ≥ 0,

with r = 2, cf. (1.5.12).
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Fig. 8.6 Generating function of Y1 with p = 3/4 > 1/2 and α1 = q/p = 1/3

In this case we have3

G1(s) = IE[sY1] =
∞∑

n=0

snP(Y1 = n)

= q2
∞∑

n=0

(n + 1)pnsn =
(

1 − p

1 − ps

)2

, −1 ≤ s ≤ 1.

When p = 1/2 we check that G1(α) = α reads

s3 − 4s2 + 4s − 1 = 0,

which is an equation of degree 3 in the unknown s. Now, since α = 1 is solution of
this equation we can factorise it as follows:

(s − 1)(s2 − 3s + 1) = 0,

and we check that the smallest nonnegative solution of this equation is given by

α1 = 1

2
(3 − √

5)  0.382

which is the extinction probability, as illustrated in the next Fig. 8.7. Here we have
IE[Y1] = 2.

The next graph illustrates the extinction of a branching process in finite time when
Y1 has the geometric distribution with p = 1/2, in which case there is extinction
within finite time with probability 1 (Fig. 8.8).

In Table8.1 we summarize some questions and their associated solution methods
introduced in this chapter and the previous ones.

3Here, Y1 is the sum of two independent geometric random variables, and G1 is the square of the
generating function (8.3.9) of the geometric distribution.
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Fig. 8.7 Probability generating function of Y1

Fig. 8.8 Sample path of a branching process (Xn)n≥0

Table 8.1 Summary of computing methods

How to compute Method

The expected value IE[X ] Sum the values of X weighted by their
probabilities

Uses of GX (s) GX (0) = P(X = 0)

GX (1) = P(X < ∞)

G ′
X (1) = IE[X ]

The hitting probabilities g(k) Solvea g = Pg for g(k)

The mean hitting times h(k) Solvea h = 1 + Ph for h(k)

The stationary distribution π Solveb π = πP for π

The extinction probability α1 Solve G1(α) = α for α and choose the
smallest solution

lim
n→∞

⎛

⎜⎝

⎡

⎢⎣
1 − a a

b 1 − b

⎤

⎥⎦

⎞

⎟⎠

n
⎡

⎢⎢⎢⎣

b

a + b

a

a + b

b

a + b

a

a + b

⎤

⎥⎥⎥⎦

aBe sure to write only the relevant rows of the system under the appropriate boundary conditions
b Remember that the values of π(k)have to add up to 1
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Exercises

Exercise 8.1 A parent particle can be divided into 0, 1 or 2 particles with probabil-
ities 1/5, 3/5, and 1/5, respectively. It disappears after splitting. Starting with one
particle, the ancestor, let us denote by Xn the size of the corresponding branching
process at the nth generation.

(a) Find P(X2 > 0).
(b) Find P(X2 = 1).
(c) Find the probability that X1 = 2 given that X2 = 1.

Exercise 8.2 Each individual in a population has a random number Y of offsprings,
with

P(Y = 0) = 1/2, P(Y = 1) = 1/2.

Let Xn denote the size of the population at time n ∈ N, with X0 = 1.

(a) Compute the generating function G1(s) = IE[sY ] of Y for s ∈ R+.
(b) Let Gn(s) = IE

[
sXn

]
denote the generating function of Xn . Show that

Gn(s) = 1 − 1

2n
+ s

2n
, s ∈ R. (8.3.10)

(c) Compute the probability P(Xn = 0 | X0 = 1) that the population is extinct at
time n.

(d) Compute the average size E[Xn | X0 = 1] of the population at step n.
(e) Compute the extinction probability of the population starting fromone individual

at time 0.

Exercise 8.3 Each individual in a population has a random number ξ of offsprings,
with distribution

P(ξ = 0) = 0.2, P(ξ = 1) = 0.5, P(ξ = 2) = 0.3.

Let Xn denote the number of individuals in the population at the nth generation, with
X0 = 1.

(a) Compute the mean and variance of X2.
(b) Give the probability distribution of the random variable X2.
(c) Compute the probability that the population is extinct by the fourth generation.
(d) Compute the expected number of offsprings at the tenth generation.
(e) What is the probability of extinction of this population?
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Exercise 8.4 Each individual in a population has a random number Y of offsprings,
with

P(Y = 0) = c, P(Y = 1) = b, P(Y = 2) = a,

where a + b + c = 1.

(a) Compute the generating function G1(s) of Y for s ∈ [−1, 1].
(b) Compute the probability that the population is extinct at time 2, starting from 1

individual at time 0.
(c) Compute the probability that the population is extinct at time 2, starting from 2

individuals at time 0.
(d) Show that when 0 < c ≤ a the probability of eventual extinction of the popula-

tion, starting from 2 individuals at time 0, is (c/a)2.
(e) What is this probability equal to when 0 < a < c?

Exercise 8.5 Consider a branching process (Zn)n≥0 in which the offspring distribu-
tion at each generation is binomial with parameter (2, p), i.e.

P(Y = 0) = q2, P(Y = 1) = 2pq, P(Y = 2) = p2,

with q := 1 − p.

(a) Compute the probability generating function GY of Y .
(b) Compute the extinction probability of this process, starting from Z0 = 1.
(c) Compute the probability that the population becomes extinct for the first time in

the second generation (n = 2), starting from Z0 = 1.
(d) Suppose that the initial population size Z0 is a Poisson random variable with

parameter λ > 0. Compute the extinction probability in this case.

Exercise 8.6 A cell culture is started with one red cell at time 0. After one minute
the red cell dies and two new cells are born according to the following probability
distribution:

Color configuration Probability
2 red cells 1/4
1 red cell + 1 white cell 2/3

2 white cells 1/12

The above procedure is repeated minute after minute for any red cell present in the
culture. On the other hand, the white cells can only live for oneminute, and disappear
after that without reproducing. We assume that the cells behave independently.

(a) What is the probability that no white cells have been generated until time n
included?

(b) Compute the extinction probability of the whole cell culture.
(c) Same questions as above for the following probability distribution:
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Color configuration Probability
2 red cells 1/3
1 red cell + 1 white cell 1/2

2 white cells 1/6

Exercise 8.7 Using first step analysis, show that if (Xn)n≥0 is a subcritical branch-
ing process, i.e. μ = IE[Y1] < 1, the time to extinction T0 := inf{n ≥ 0 : Xn = 0}
satisfies IE[T0 | X0 = 1] < ∞.

Exercise 8.8 Consider a branching process (Xn)n≥0 started at X0 = 1, in which the
numbers Yk of descendants of individual nok form an i.i.d. sequencewith the negative
binomial distribution

P(Yk = n) = (n + 1)q2 pn, n ≥ 0, k ≥ 1,

where 0 < q = 1 − p < 1.

(a) Compute the probability generating function

G1(s) := IE
[
sYk
] =

∞∑

n=0

snP(Y1 = n)

of Yk , k ≥ 1.
b) Compute the extinction probabilityα1 := P(T0 < ∞ | X0 = 1) of the branching

process (Xn)n≥0 in finite time.

Exercise 8.9 Families in a given society have children until the birth of the first
girl, after which the family stops having children. Let X denote the number of male
children of a given husband.

(a) Assuming that girls and boys are equally likely to be born, compute the proba-
bility distribution of X .

(b) Compute the probability generating function GX (s) of X .
(c) What is the probability that a given man has no male descendant (patrilineality)

by the time of the third generation?
(d) Suppose now that one fourth of the married couples have no children at all while

the others continue to have children until the first girl, and then cease childbear-
ing. What is the probability that the wife’s female line of descent (matrilineality)
will cease to exist by the third generation?

Exercise 8.10 Consider a branching process (Zk)k∈N with Z0 = 1 and offspring
distribution given by

P(Z1 = 0) = 1 − p − q

1 − p
and P(Z1 = k) = qpk−1, k = 1, 2, 3, . . . ,

where 0 ≤ p < 1 and 0 ≤ q ≤ 1 − p.



208 8 Branching Processes

(a) Find the probability generating function of Z1.
(b) Compute IE[Z1].
(c) Find the value of q for which IE[Z1] = 1, known as the critical value.
(d) Using the critical value of q, show by induction that determine the probability

generating function of Zk is given by

GZk (s) = kp − (kp + p − 1)s

1 − p + kp − kps
, −1 < s < 1,

for all k ≥ 1.

Problem 8.11 Consider a branching process with i.i.d. offspring sequence (Yk)k≥1.
The number of individuals in the population at generation n + 1 is given by the
relation Xn+1 = Y1 + · · · + YXn , with X0 = 1.

(a) Let

Zn =
n∑

k=1

Xk,

denote the total number of individuals generated from time 1 to n. Compute
IE[Zn] as a function of μ = IE[Y1].

(b) Let Z =
∞∑

k=1

Xk . denote the total number of individuals generated from time 1

to infinity. Compute IE[Z ] and show that it is finite when μ < 1.

In the sequel we work under the condition μ < 1.
(c) Let

H(s) = IE
[
sZ
]
, −1 ≤ s ≤ 1,

denote the generating function of Z .

Show, by first step analysis, that the relation

H(s) = G1(sH(s)), 0 ≤ s ≤ 1,

holds, where G1(x) is the probability generating function of Y1.
(d) In the sequel we assume that Y1 has the geometric distributionP(Y1 = k) = qpk ,

k ∈ N, with p ∈ (0, 1) and q = 1 − p. Compute H(s) for s ∈ [0, 1].
(e) Using the expression of the generating function H(s) computed in Question (d),

check that we have H(0) = lims↘0 H(s), where H(0) = P(Z = 0) = P(Y1 =
0) = G1(0).

(f) Using the generating function H(s) computed in Question (d), recover the value
of IE[Z ] found in Question (b).
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(g) Assume that each of the Z individuals earns an income Uk , k = 1, 2, . . . , Z ,
where (Uk)k≥1 is an i.i.d. sequence of random variables with finite expectation
IE[U ] and distribution function F(x) = P(U ≤ x).

Compute the expected value of the sum of gains of all the individuals in the
population.

(h Compute the probability that none of the individuals earns an income higher
than x > 0.

(i) Evaluate the results of Questions (g) and (h) when Uk has the exponential dis-
tribution with F(x) = 1 − e−x , x ∈ R+.



Chapter 9
Continuous-Time Markov Chains

In this chapter we start the study of continuous-time stochastic processes, which are
families (Xt )t∈R+ of random variables indexed by R+. Our aim is to make the tran-
sition from discrete to continuous-time Markov chains, the main difference between
the two settings being the replacement of the transition matrix with the continuous-
time infinitesimal generator of the process. We will start with the two fundamental
examples of the Poisson and birth and death processes, followed by the construction
of continuous-time Markov chains and their generators in more generality. From
the point of view of simulations, the use of continuous-time Markov chains does
not bring any special difficulty as any continuous-time simulation is actually based
on discrete-time samples. From a theoretical point of view, however, the rigorous
treatment of the continuous-time Markov property is much more demanding than its
discrete-time counterpart, notably due to the use of the strongMarkov property. Here
we focus on the understanding of the continuous-time case by simple calculations,
and we will refer to the literature for the use of the strong Markov property.

9.1 The Poisson Process

The standard Poisson process (Nt )t∈R+ is a continuous-time counting process, i.e.
(Nt )t∈R+ has jumps of size+1 only, and its paths are constant (and right-continuous)
in between jumps. The next Fig. 9.1 represents a sample path of a Poisson process.
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Fig. 9.1 Sample path of a Poisson process (Nt )t∈R+

We denote by (Tk)k≥1 the increasing sequence of jump times of (Nt )t∈R+ , which
can be defined from the (right-continuous) Poisson process path (Nt )t∈R+ by noting
that Tk is the first hitting time of state k, i.e.

Tk = inf{t ∈ R+ : Nt = k}, k ≥ 1,

with
lim
k→∞ Tk = ∞.

The value Nt at time t of the Poisson process can be recovered from its jump times
(Tk)k≥1 as

Nt =
∞∑

k=1

k1[Tk ,Tk+1)(t) =
∞∑

k=1

1[Tk ,∞)(t), t ∈ R+,

where

1[Tk ,∞)(t) =
⎧
⎨

⎩

1 if t ≥ Tk,

0 if 0 ≤ t < Tk,

and

1[Tk ,Tk+1)(t) =
⎧
⎨

⎩

1 if Tk ≤ t < Tk+1, k ≥ 0,

0 if 0 ≤ t < Tk or t ≥ Tk+1, k ≥ 0.

with T0 = 0.
In addition, (Nt )t∈R+ is assumed to satisfy the following conditions:

(i) Independence of increments: for all 0 ≤ t0 < t1 < · · · < tn and n ≥ 1 the incre-
ments

Nt1 − Nt0 , . . . , Ntn − Ntn−1 ,
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over the disjoint time intervals [t0, t1), [t1, t2), . . ., [tn−2, tn−1), [tn−1, tn] are
mutually independent random variables.

(ii) Stationarity of increments: Nt+h − Ns+h has the same distribution as Nt − Ns

for all h > 0 and 0 ≤ s ≤ t .

The meaning of the above stationarity condition is that for all fixed k ∈ N we have

P(Nt+h − Ns+h = k) = P(Nt − Ns = k),

for all h > 0 and 0 ≤ s ≤ t .
The stationarity of increments means that for all k ∈ N, the probability P(Nt+h −

Ns+h = k) does not depend on h > 0.
Based on the above assumption, a natural question arises:

what is the distribution of Nt at time t?

We already know that Nt takes values inN and therefore it has a discrete distribution
for all t ∈ R+. It is a remarkable fact that the distribution of the increments of
(Nt )t∈R+ , can be completely determined from the above conditions, as shown in the
following theorem.

As seen in the next result, the randomvariable Nt − Ns has thePoissondistribution
with parameter λ(t − s).

Theorem 9.1 Assume that the counting process (Nt )t∈R+ satisfies the independence
and stationarity Conditions (i) and (i i) above. Then we have

P(Nt − Ns = k) = e−λ(t−s) (λ(t − s))k

k! , k ∈ N, 0 ≤ s ≤ t,

for some constant λ > 0.

Theorem 9.1 shows in particular that

IE[Nt − Ns] = λ(t − s) and Var[Nt − Ns] = λ(t − s),

0 ≤ s ≤ t , cf. Relations (14.4) and (14.5) in the solution of Exercise 1.3-(a).
The parameter λ > 0 is called the intensity of the process and it can be recovered

given from P(Nh = 1) = λhe−λh as the limit

λ = lim
h↘0

1

h
P(Nh = 1). (9.1.1)

Proof of Theorem 9.1. We only quote the main steps of the proof and we refer
to [BN96] for the complete argument. Using the independence and stationarity of
increments, we show that the probability generating function

Gt (u) := IE[uNt ], −1 ≤ u ≤ 1,
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satisfies
Gt (u) := (G1(u))

t , −1 ≤ u ≤ 1,

which implies that
Gt (u) := e−t f (u), −1 ≤ u ≤ 1,

for some function f (u) of u. Still relying on the independence and stationarity of
increments, it can be shown that f (u) takes the form

f (u) = λ × (1 − u), −1 ≤ u ≤ 1,

where λ > 0 is given by (9.1.1). �
In particular, given that N0 = 0, the random variable Nt has a Poisson distribution

with parameter λt :

P(Nt = k) = (λt)k

k! e−λt , t ∈ R+.

From (9.1.1) above we see that1

⎧
⎨

⎩

P(Nh = 0) = e−λh = 1 − λh + o(h), h ↘ 0,

P(Nh = 1) = hλe−λh � λh, h ↘ 0,

and more generally that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(Nt+h − Nt = 0) = e−λh = 1 − λh + o(h), h ↘ 0,

P(Nt+h − Nt = 1) = λhe−λh � λh, h ↘ 0,

P(Nt+h − Nt = 2) = h2
λ2

2
e−λh � h2

λ2

2
, h ↘ 0,

(9.1.2a)

(9.1.2b)

(9.1.2c)

for all t ∈ R+. This means that within “short” time intervals [kh, (k + 1)h] of length
h = t/n > 0, the increments N(k+1)h − Nkh can be approximated by independent
Bernoulli random variables Xkh with parameter λh, whose sum

n−1∑

k=0

Xkh �
n−1∑

k=0

(N(k+1)h − Nkh) = Nt − N0 = Nt

1The notation f (h) � hk means limh→0 f (h)/hk = 1, and f (h) = o(h) means limh→0 f (h)/
h = 0.
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converges in distribution as n goes to infinity to the Poisson random variable Nt with
parameter λt . This remark can be used for the random simulation of Poisson process
paths.

More generally, we have

P(Nt+h − Nt = k) � hk
λk

k! , h ↘ 0, t > 0.

In order to determine the distribution of the first jump time T1 we note that we have
the equivalence

{T1 > t} ⇐⇒ {Nt = 0},

which implies
P(T1 > t) = P(Nt = 0) = e−λt , t ≥ 0,

i.e. T1 has an exponential distribution with parameter λ > 0.
In order to prove the next proposition we note that more generally, we have the

equivalence
{Tn > t} = {Nt < n}, t ≥ 0, n ≥ 1.

Indeed, stating that the nth jump time Tn is strictly larger that t is equivalent to saying
that at most n − 1 jumps of the Poisson process have occurred over the interval [0, t],
i.e. Nt ≤ n − 1. The next proposition shows that Tn has a gamma distribution with
parameter (λ, n) for n ≥ 1, also called the Erlang distribution in queueing theory.

Proposition 9.2 The randomvariable Tn has the gammaprobability density function

x �−→ λne−λx xn−1

(n − 1)!
x ∈ R+, n ≥ 1.

Proof For n = 1 we have

P(T1 > t) = P(Nt = 0) = e−λt , t ∈ R+,

and by induction on n ≥ 1, assuming that

P(Tn−1 > t) = λ

∫ ∞

t
e−λs (λs)

n−2

(n − 2)!ds,
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at the rank n − 1 with n ≥ 2, we obtain

P(Tn > t) = P(Tn > t ≥ Tn−1) + P(Tn−1 > t)

= P(Nt = n − 1) + P(Tn−1 > t)

= e−λt (λt)
n−1

(n − 1)! + λ

∫ ∞

t
e−λs (λs)

n−2

(n − 2)!ds

= λ

∫ ∞

t
e−λs (λs)

n−1

(n − 1)!ds, t ∈ R+,

which proves the desired relation at the rank n, where we applied an integration by
parts on R+ to derive the last line. �

Let now
τk = Tk+1 − Tk, k ≥ 1,

denote the time spent in state k ∈ N, with T0 = 0. In addition to Proposition 9.2 we
could show the following proposition which is based on the strong Markov property,
see e.g. Theorem 6.5.4 of [Nor98], (9.2.4) below and Exercise5.8 in discrete time.

Proposition 9.3 The random inter-jump times

τk := Tk+1 − Tk

spent in state k ∈ N form a sequence of independent identically distributed random
variables having the exponential distribution with parameter λ > 0, i.e.

P(τ0 > t0, τ1 > t1, . . . , τn > tn) = e−λ(t0+t1+···+tn), t0, t1, . . . , tn ∈ R+.

Random samples of Poisson process jump times can be generated using the following
R code.

lambda = 2.0
n = 10
for (k in 1:n){tauk <− rexp(n)/lambda; Ti <− cumsum(tauk)}
tauk
Ti

Similarly, random samples of Poisson process paths can be generated using the
following code.

n<−100
x<−cumsum(rexp(50,rate=0.5))
y<−cumsum(c(0,rep(1,50)))
plot(stepfun(x,y),xlim = c(0,10),do.points = F,main="L=0.5")
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In other words, we have

P(τ0 > t0, τ1 > t1, . . . , τn > tn) = P(τ0 > t0) × · · · × P(τn > tn) (9.1.3)

=
n∏

k=0

e−λtk

= e−λ(t0+···+tn),

for all t0, t1, . . . , tn ∈ R+. In addition, from Proposition 9.2 the sum

Tk = τ0 + τ1 + · · · + τk−1, k ≥ 1,

has a gamma distribution with parameter (λ, k), cf. also Exercise 9.12 for a proof in
the particular case k = 2.

As the expectation of the exponentially distributed randomvariable τk with param-
eter λ > 0 is given by

IE[τk] = λ

∫ ∞

0
xe−λxdx = 1

λ
,

we can check that the higher the intensity λ (i.e. the higher the probability of having
a jump within a small interval), the smaller is the time spent in each state k ∈ N on
average. Poisson random samples on arbitrary spaces will be considered in Chap. 11.

9.2 Continuous-Time Markov Chains

A S-valued continuous-time stochastic process (Xt )t∈R+ is said to be Markov, or to
have the Markov property if, for all t ∈ [s,∞), the probability distribution of Xt

given the past of the process up to time s is determined by the state Xs of the process
at time s, and does not depend on the past values of Xu for u < s. In other words,
for all

0 < s1 < · · · < sn−1 < s < t

we have

P(Xt = j | Xs = in, Xsn−1 = in−1, . . . , Xs1 = i0) = P(Xt = j | Xs = in).
(9.2.1)

In particular we have

P(Xt = j | Xs = in and Xsn−1 = in−1) = P(Xt = j | Xs = in).

Example

The Poisson process (Nt )t∈R+ considered in Sect. 9.1 is a continuous-timeMarkov
chain because it has independent increments by Condition (i) p. 212. The birth
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and death processes discussed below are also continuous-time Markov chains,
although they may not have independent increments.

More generally, any continuous-time process (Xt )t∈R+ with independent increments
has the Markov property. Indeed, for all j, in, . . . , i1 ∈ S we have (note that X0 = 0
here)

P(Xt = j | Xs = in, Xsn−1 = in−1, . . . , Xs1 = i1)

= P(Xt = j, Xs = in, Xsn−1 = in−1, . . . , Xs1 = i1)

P(Xs = in, Xsn−1 = in−1, . . . , Xs1 = i1)

= P(Xt − Xs = j − in, Xs = in, . . . , Xs2 = i2, Xs1 = i1)

P(Xs = in, , . . . , Xs2 = i2, Xs1 = i1)

= P(Xt − Xs = j − in)P(Xs = in, Xsn−1 = in−1, . . . , Xs2 = i2, Xs1 = i1)

P(Xs = in, Xsn−1 = in−1, . . . , Xs2 = i2, Xs1 = i1)

= P(Xt − Xs = j − in) = P(Xt − Xs = j − in)P(Xs = in)

P(Xs = in)

= P(Xt − Xs = j − in and Xs = in)

P(Xs = in)

= P(Xt = j and Xs = in)

P(Xs = in)
= P(Xt = j | Xs = in),

cf. (4.1.5) for the discrete-time version of this argument. Hence, continuous-time pro-
cesses with independent increments areMarkov chains. However, not all continuous-
time Markov chains have independent increments, and in fact the continuous-time
Markov chains of interest in this chapter will not have independent increments.

Birth Process

The pure birth process behaves similarly to the Poisson process, by making the
parameter of every exponential inter-jump time dependent on the current state of the
process.

In other words, a continuous-time Markov chain (Xb
t )t∈R+ such that2

P(Xb
t+h = i + 1 | Xb

t = i) = P(Xb
t+h − Xb

t = 1 | Xb
t = i)

� λi h, h ↘ 0, i ∈ S,

and

P(Xb
t+h = Xb

t | Xb
t = i) = P(Xb

t+h − Xb
t = 0 | Xb

t = i)

= 1 − λi h + o(h), h ↘ 0, i ∈ S, (9.2.2)

is called apure birth processwith (possibly) state-dependent birth ratesλi ≥ 0, i ∈ S,
see Fig. 9.2. Its inter-jump times (τk)k≥0 form a sequence of exponential independent
random variables with state-dependent parameters.

2Recall that by definition f (h) � g(h), h → 0, if and only if limh→0 f (h)/g(h) = 1.
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Fig. 9.2 Sample path of a birth process (Xb
t )t∈R+

This process is stationary in time because the rates λi , i ∈ N, are independent of
time t . The Poisson process (Nt )t∈R+ is a pure birth process with state-independent
birth rates λi = λ > 0, i ∈ N.

As a consequence of (9.2.2) we can recover the fact that the time τi,i+1 spent in
state i by the pure birth process (Xb

t )t∈R+ started at state i at time 0 before it

moves to state
�

�

�

�

i+1 has an exponential distribution with parameter λi . Indeed we
have, using the Markov property in continuous time,

P(τi,i+1 > t + h |τi,i+1 > t and Xb
0 = i) = P(τi,i+1 > t + h | Xb

0 = i)

P(τi,i+1 > t | Xb
0 = i)

= P(Xb
t+h = i | Xb

0 = i)

P(Xb
t = i | Xb

0 = i)

= P(Xb
t+h = i and Xb

0 = i)P(Xb
0 = i)

P(Xb
t = i and Xb

0 = i)P(Xb
0 = i)

= P(Xb
t+h = i and Xb

0 = i)

P(Xb
t = i and Xb

0 = i)

= P(Xb
t+h = i, Xb

t = i, Xb
0 = i)

P(Xb
t = i and Xb

0 = i)

= P(Xb
t+h = i | Xb

t = i and Xb
0 = i)

= P(Xb
t+h = i | Xb

t = i)

= P(Xb
h = i | Xb

0 = i)

= P(τi,i+1 > h | Xb
0 = i)

= 1 − λi h + o(h), (9.2.3)

which is often referred to as the memoryless property of Markov processes. In other
words, since the above ratio is independent of t > 0 we get

P(τi,i+1 > t + h | τi,i+1 > t and Xb
0 = i) = P(τi,i+1 > h | Xb

0 = i),
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which means that the distribution of the waiting time after time t does not depend
on t , cf. (12.1.1) in Chap.12 for a similar argument.

From (9.2.3) we have

P(τi,i+1 > t + h | Xb
0 = i) − P(τi,i+1 > t | Xb

0 = i)

hP(τi,i+1 > t | Xb
0 = i)

= P(τi,i+1 > t + h | Xb
0 = i)

hP(τi,i+1 > t | Xb
0 = i)

− 1

= P(τi,i+1 > t + h | τi,i+1 > t and Xb
0 = i) − 1

� −λi , h → 0,

which can be read as the differential equation

d

dt
logP(τi,i+1 > t | Xb

0 = i) = −λi ,

where “log” denotes the natural logarithm “ln”, with solution

P(τi,i+1 > t | Xb
0 = i) = e−λi t , t ∈ R+, (9.2.4)

i.e. τi,i+1 is an exponentially distributed random variable with parameter λi , and the
mean time spent at state i before switching to state

�

�

�

�

i+1 is given by

IE[τi,i+1 | Xb
0 = i] = 1

λi
, i ∈ S,

see (9.4.9) below for the general case of continuous-time Markov chains. More
generally, and similarly to (9.1.3) it can also be shown as a consequence of the
strongMarkov property that the sequence (τ j, j+1) j≥i is made of independent random
variables which are respectively exponentially distributed with parameters λ j , j ≥ i .

Letting T b
i, j = τi,i+1 + · · · + τ j−1, j denote the hitting time of state j starting

from state i by the birth process (Xb
t )t∈R+ , we have the representation

Xb
t = i +

∑

i< j<∞
1[T b

i, j ,∞)(t), t ∈ R+.

Note that since the pure birth process has stationary increments, by Theorem 9.1 it
can have independent increments only when the rates λi = λ are state independent,
i.e. when (Xb

t )t∈R+ is a standard Poisson process with intensity λ > 0.
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Fig. 9.3 Sample path of a death process (Xd
t )t∈R+

Death Process

A continuous-time Markov chain (Xd
t )t∈R+ such that

⎧
⎨

⎩

P(Xd
t+h − Xd

t = −1 | Xd
t = i) � μi h, h ↘ 0, i ∈ S,

P(Xd
t+h − Xd

t = 0 | Xd
t = i) = 1 − μi h + o(h), h ↘ 0, i ∈ S,

is called a pure death processwith (possibly) state-dependent death rates μi ≥ 0, i ∈
S. Its inter-jump times (τk)k≥0 form a sequence of exponential independent random
variables with state-dependent parameters (Fig. 9.3).

In the case of a pure death process (Xd
t )t∈R+ we denote by τi,i−1 the time spent in

state i by (Xd
t )t∈R+ before it moves to state

�

�

�

�

i-1 . Similarly to the pure birth process,
that the sequence (τ j, j−1) j≤i is made of independent random variables which are
exponentially distributed with parameter μ j , j ≤ i , which

P(τ j, j−1 > t) = e−μ j t , t ∈ R+,

and

IE[τi,i−1] = 1

μi
, i ∈ S.

Letting T d
i, j = τi,i−1 + · · · + τ j+1, j denote the hitting time of state j starting from

state i by the death process (Xd
t )t∈R+ we have the representation

Xd
t = i −

∑

−∞< j<i

1[T d
i, j ,∞)(t), t ∈ R+.

When (Nt )t∈R+ is a Poisson process, the process (−Nt )t∈R+ is a pure death process
with state-independent death rates μn = λ > 0, n ∈ N.
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Fig. 9.4 Sample path of a birth and death process (Xt )t∈R+

Birth and Death Process

A continuous-time Markov chain (Xt )t∈R+ such that, for all i ∈ S,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P(Xt+h − Xt = 1 | Xt = i) � λi h, h ↘ 0,

P(Xt+h − Xt = −1 | Xt = i) � μi h, h ↘ 0, and

P(Xt+h − Xt = 0 | Xt = i) = 1 − (λi + μi )h + o(h), h ↘ 0,

(9.2.5a)

(9.2.5b)

is called a birth and death processwith (possibly) state-dependent birth rates λi ≥ 0
and death rates μi ≥ 0, i ∈ S (Fig. 9.4).

The birth and death process (Xt )t∈R+ can be built as

Xt = Xb
t + Xd

t , t ∈ R+,

in which case the time τi spent in state i by (Xt )t∈R+ satisfies the identity in
distribution

τi = min(τi,i+1, τi,i−1)

i.e. τi is an exponentially distributed random variable with parameter λi + μi and

IE[τi ] = 1

λi + μi
.

Indeed, since τi,i+1 and τi,i−1 are two independent exponentially distributed random
variables with parameters λi and μi , we have

P(min(τi,i+1 and τi,i−1) > t) = P(τi,i+1 > t and τi,i−1 > t)

= P(τi,i+1 > t)P(τi,i−1 > t)

= e−t (λi+μi ), t ∈ R+,
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hence τi = min(τi,i+1, τi,i−1) is an exponentially distributed random variable with
parameter λi + μi , cf. also (1.5.8) in Chap.1.

9.3 Transition Semigroup

The transition semigroup of the continuous time Markov process (Xt )t∈R+ is the
family (P(t))t∈R+ of matrices determined by

Pi, j (t) := P(Xt+s = j | Xs = i), i, j ∈ S, s, t ∈ R+,

where we assume that the probability P(Xt+s = j | Xs = i) does not depend on
s ∈ R+. In this case the Markov process (Xt )t∈R+ is said to be time homogeneous.

Definition 9.4 A continuous-time Markov chain (Xt )t∈R+ is irreducible if for all
t > 0, P(t) is the transition matrix of an irreducible discrete-time chain.

Note that we always have
P(0) = Id.

This data can be recorded as a time-dependent matrix indexed by S2 = S × S, called
the transition semigroup of the Markov process:

[
Pi, j (t)

]
i, j∈S = [

P(Xt+s = j | Xs = i)
]
i, j∈S ,

also written as

[
Pi, j (t)

]
i, j∈S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
...

...
... . .

.

· · · P−2,−2(t) P−2,−1(t) P−2,0(t) P−2,1(t) P−2,2(t) · · ·

· · · P−1,−2(t) P−1,−1(t) P−1,0(t) P−1,1(t) P−1,2(t) · · ·

· · · P0,−2(t) P0,−1(t) P0,0(t) P0,1(t) P0,2(t) · · ·

· · · P1,−2(t) P1,−1(t) P1,0(t) P1,1(t) P1,2(t) · · ·

· · · P2,−2(t) P2,−1(t) P2,0(t) P2,1(t) P2,2(t) · · ·
. .
. ...

...
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As in the discrete-time case, note the inversion of the order of indices (i, j) between
P(Xt+s = j | Xs = i) and Pi, j (t). In particular, the initial state i correspond to a
row number in the matrix P(t), while the final state j corresponds to a column
number.
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Due to the relation

∑

j∈S
P(Xt+s = j | Xs = i) = 1, i ∈ S, (9.3.1)

all rows of the transition matrix semigroup (P(t))t∈R+ satisfy the condition

∞∑

j∈S
Pi, j (t) = 1,

for i ∈ S. In the sequel we will only consider N-valued Markov process, and in this
case the transition semigroup (P(t))t∈R+ of the Markov process is written as

P(t) = [
Pi, j (t)

]
i, j∈N =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0,0(t) P0,1(t) P0,2(t) · · ·

P1,0(t) P1,1(t) P1,2(t) · · ·

P2,0(t) P2,1(t) P2,2(t) · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From (9.3.1) we have
∞∑

j=0

Pi, j (t) = 1,

for all i ∈ N and t ∈ R+.
Exercise: Write down the transition semigroup

[
Pi, j (t)

]
i, j∈N of the Poisson process

(Nt )t∈R+ .

We can show that

[
Pi, j (t)

]
i, j∈N =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−λt λte−λt λ2t2

2
e−λt · · ·

0 e−λt λte−λt · · ·

0 0 e−λt · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Indeed we have

Pi, j (t) = P(Ns+t = j | Ns = i) = P(Ns+t = j and Ns = i)

P(Ns = i)

= P(Ns+t − Ns = j − i and Ns = i)

P(Ns = i)
= P(Ns+t − Ns = j − i)P(Ns = i)

P(Ns = i)

= P(Ns+t − Ns = j − i) =

⎧
⎪⎪⎨

⎪⎪⎩

e−λt (λt)
j−i

( j − i)! if j ≥ i,

0 if j < i.

In case theMarkovprocess (Xt )t∈R+ takes values in thefinite state space {0, 1, . . . , N }
its transition semigroup will simply have the form

P(t) = [
Pi, j (t)

]
0≤i, j≤N

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0,0(t) P0,1(t) P0,2(t) · · · P0,N (t)

P1,0(t) P1,1(t) P1,2(t) · · · P1,N (t)

P2,0(t) P2,1(t) P2,2(t) · · · P2,N (t)

...
...

...
. . .

...

PN ,0(t) PN ,1(t) PN ,2(t) · · · PN ,N (t)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As noted above, the semigroup matrix P(t) is a convenient way to record the values
of P(Xt+s = j | Xs = i) in a table.

Proposition 9.5 The family (P(t))t∈R+ satisfies the relation

P(s + t) = P(s)P(t) = P(t)P(s), (9.3.2)

which is called the semigroup property.

Proof Using the Markov property and denoting by S the state space of the process,
by standard arguments based on the law of total probability (1.3.1) for the probability
measure P(· | X0 = i) and the Markov property (9.2.1), we have
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Pi, j (t + s) = P(Xt+s = j | X0 = i)

=
∑

l∈S
P(Xt+s = j and Xs = l | X0 = i) =

∑

l∈S

P(Xt+s = j, Xs = l, X0 = i)

P(X0 = i)

=
∑

l∈S

P(Xt+s = j, Xs = l, X0 = i)

P(Xs = l and X0 = i)

P(Xs = l and X0 = i)

P(X0 = i)

=
∑

l∈S
P(Xt+s = j | Xs = l and X0 = i)P(Xs = l | X0 = i)

=
∑

l∈S
P(Xt+s = j | Xs = l)P(Xs = l | X0 = i) =

∑

l∈S
Pi,l(s)Pl, j (t)

= [P(s)P(t)]i, j ,

i, j ∈ S, s, t ∈ R+. We have shown the relation

Pi, j (s + t) =
∑

l∈S
Pi,l(s)Pl, j (t),

which leads to (9.3.2). �
From (9.3.2) property one can check in particular that the matrices P(s) and P(t)
commute, i.e. we have

P(s)P(t) = P(t)P(s), s, t ∈ R+.

Example

For the transition semigroup (P(t))t∈R+ of the Poisson process we can check by
hand computation that

P(s)P(t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−λs λse−λs λ2

2
s2e−λs · · ·

0 e−λs λse−λs · · ·

0 0 e−λs · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−λt λte−λt λ2

2
t2e−λt · · ·

0 e−λt λte−λt · · ·

0 0 e−λt · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−λ(s+t) λ(s + t)e−λ(s+t) λ2

2
(s + t)2e−λ(s+t) · · ·

0 e−λ(s+t) λ(s + t) e−λ(s+t) · · ·

0 0 e−λ(s+t) · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

= P(s + t).
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The above identity can be recovered by the following calculation, for all 0 ≤ i ≤ j ,
which amounts to saying that the sum of two independent Poisson random variables
with parameters s and t has a Poisson distribution with parameter s + t , cf. (14.7) in
the solution of Exercise 1.6-(a). We have Pi, j (s) = 0, i > j , and Pl, j (t) = 0, l > j ,
hence

[P(s)P(t)]i, j =
∞∑

l=0

Pi,l(s)Pl, j (t) =
j∑

l=i

Pi,l(s)Pl, j (t)

= e−λs−λt
j∑

l=i

(λs)l−i

(l − i)!
(λt) j−l

( j − l)! = e−λs−λt 1

( j − i)!
j∑

l=i

(
j − i

l − i

)
(λs)l−i (λt) j−l

= e−λs−λt 1

( j − i)!
j−i∑

l=0

(
j − i

l

)
(λs)l(λt) j−i−l = e−λ(s+t) 1

( j − i)! (λs + λt) j−i

= Pi, j (s + t), s, t ∈ R+.

9.4 Infinitesimal Generator

The infinitesimal generator of a continuous-timeMarkov process allows us to encode
all properties of the process (Xt )t∈R+ in a single matrix.

By differentiating the semigroup relation (9.3.2) with respect to t we get, by
componentwise differentiation and assuming a finite state space S,

P ′(t) = lim
h↘0

P(t + h) − P(t)

h
= lim

h↘0

P(t)P(h) − P(t)

h

= P(t) lim
h↘0

P(h) − P(0)

h
= P(t)Q,

where

Q := P ′(0) = lim
h↘0

P(h) − P(0)

h

is called the infinitesimal generator of (Xt )t∈R+ .
When S = {0, 1, . . . , N } we will denote by λi, j , i, j ∈ S, the entries of the

infinitesimal generator matrix Q = (λi, j )i, j∈S, i.e.
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Q = dP(t)

dt |t=0
= [

λi, j
]
0≤i, j≤N =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ0,0 λ0,1 λ0,2 · · · λ0,N

λ1,0 λ1,1 λ1,2 · · · λ1,N

λ2,0 λ2,1 λ2,2 · · · λ2,N

...
...

...
. . .

...

λN ,0 λN ,1 λN ,2 · · · λN ,N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9.4.1)

Denoting Q = [λi, j ]i, j∈S, for all i ∈ S we have

∑

j∈S
λi, j =

∑

j∈S
P ′
i, j (0) = d

dt

∑

j∈S
Pi, j (t)|t=0 = d

dt
1|t=0 = 0,

hence the rows of the infinitesimal generator matrix Q = [λi, j ]i, j∈S always add up
to 0, i.e. ∑

l∈S
λi,l = λi,i +

∑

l =i

λi,l = 0,

or

λi,i = −
∑

l =i

λi,l . (9.4.2)

Note that a state i such that λi, j = 0 for all j ∈ S is absorbing.

P ′(t) = P(t)Q, t > 0, (9.4.3)

is called the forward Kolmogorov equation, cf. (1.2.2). In a similar way we can show
that

P ′(t) = QP(t), t > 0, (9.4.4)

which is called the backward Kolmogorov equation.
The forward and backward Kolmogorov equations (9.4.3)–(9.4.4) can be solved

either using the matrix exponential etQ defined as

exp(t Q) :=
∞∑

n=0

tn

n!Q
n = Id +

∞∑

n=1

tn

n!Q
n, (9.4.5)

or by viewing the Kolmogorov equations (9.4.3)–(9.4.4) component by component
as systems of differential equations.
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In (9.4.5) above, Q0 = Id is the identity matrix, written as

Id =

⎡

⎢⎢⎢⎢⎣

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

⎤

⎥⎥⎥⎥⎦

when the state space is S = {0, 1, . . . , N }. Using matrix exponentials, the solution
of (9.4.3) is given by

P(t) = P(0) exp(t Q) = exp(t Q), t ∈ R+.

We will often use the first order approximation in h → 0 of

P(h) = exp(hQ) = Id +
∞∑

n=1

hn

n! Q
n = Id + hQ + h2

2! Q
2 + h3

3! Q
3 + h4

4! Q
4 + · · · ,

given by
P(h) = Id + hQ + o(h), h ↘ 0, (9.4.6)

where o(h) is a function such that limh→0 o(h)/h = 0, i.e.

P(h) =

⎡

⎢⎢⎢⎢⎣

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

⎤

⎥⎥⎥⎥⎦
+ h

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ0,0 λ0,1 λ0,2 · · · λ0,N

λ1,0 λ1,1 λ1,2 · · · λ1,N

λ2,0 λ2,1 λ2,2 · · · λ2,N

...
...

...
. . .

...

λN ,0 λN ,1 λN ,2 · · · λN ,N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ o(h), h ↘ 0.

Relation (9.4.6) yields the transition probabilities over a small time interval of length
h > 0, as:

P(Xt+h = j | Xt = i) = Pi, j (h) =
⎧
⎨

⎩

λi, j h + o(h), i = j, h ↘ 0,

1 + λi,i h + o(h), i = j, h ↘ 0,

and by (9.4.2) we also have
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P(Xt+h = j | Xt = i) = Pi, j (h) =

⎧
⎪⎪⎨

⎪⎪⎩

λi, j h + o(h), i = j, h ↘ 0,

1 − h
∑

l =i

λi,l + o(h), i = j, h ↘ 0.

(9.4.7)
For example, in the case of a two-state continuous-time Markov chain we have

Q =
⎡

⎣
−α α

β −β

⎤

⎦ ,

with α,β ≥ 0, and

P(h) = Id + hQ + o(h)

=
⎡

⎣
1 0

0 1

⎤

⎦ + h

⎡

⎣
−α α

β −β

⎤

⎦ + o(h)

=
⎡

⎣
1 − αh αh

βh 1 − βh

⎤

⎦ + o(h), (9.4.8)

as h ↘ 0. In this case, P(h) above has the same form as the transition matrix (4.5.1)
of a discrete-timeMarkov chain with “small” time step h > 0 and “small” transition
probabilities hα and hβ, namely hα is the probability of switching from state 0 to
state 1 , and hβ is the probability of switching from state 1 to state 0 within a
short period of time h > 0.

We note that since

P(Xt+h = j | Xt = i) � λi, j h, h ↘ 0, i = j,

and
P(Xt+h = j | Xt = i) = 1 − λi, j h + o(h), h ↘ 0, i = j,

the transition of the process (Xt )t∈R+ from state i to state j behaves identically
to that of a Poisson process with intensity λi, j , cf. (9.1.2a)–(9.1.2b) above. Similarly
to the Poisson, birth and death processes, the relation

P(Xt+h = j | Xt = i) = λi, j h + o(h), h ↘ 0, i = j,

shows that the time τi, j spent in state i “before moving to state j = i ”, i.e. given
the first jump is to state j , is an exponentially distributed random variable with
parameter λi, j , i.e.

P(τi, j > t) = e−λi, j t , t ∈ R+, (9.4.9)
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and we have

IE[τi, j ] = λi, j

∫ ∞

0
te−tλi, j dt = 1

λi, j
, i = j.

When i = j we have

P(Xt+h = i | Xt = i) � h
∑

l =i

λi,l = −λi,i h, h ↘ 0,

and

P(Xt+h = i | Xt = i) = 1 − h
∑

l =i

λi,l + o(h) = 1 + λi,i h + o(h), h ↘ 0,

hence, by the same Poisson process analogy, the time τi spent in state i before the
next transition to a different state is an exponentially distributed random variable
with parameter

∑

j =i

λi, j , i.e.

P(τi > t) = exp

⎛

⎝−t
∑

j =i

λi, j

⎞

⎠ = etλi,i , t ∈ R+.

In other words, we can also write the time τi spent in state i as

τi = min
j∈S
j =i

τi, j ,

and this recovers the fact that τi is an exponential random variable with parameter∑

j =i

λi, j , since

P(τi > t) = P

(
min
j∈S
j =i

τi, j > t

)

=
∏

j∈S
j =i

P(τi, j > t)

= exp

⎛

⎝−t
∑

j =i

λi, j

⎞

⎠ = etλi,i , t ∈ R+.
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cf. (1.5.8) in Chap.1. In addition we have

IE[τi ] =
∑

l =i

λi,l

∫ ∞

0
t exp

⎛

⎝−t
∑

l =i

λi,l

⎞

⎠ dt = 1
∑

l =i

λi,l

= − 1

λi,i
,

and the times (τk)k∈S spent in each state k ∈ S form a sequence of independent
random variables.

Examples

(i) Two-state continuous-time Markov chain.
For the two-state continuous-time Markov chain with generator

Q =
⎡

⎣
−α α

β −β

⎤

⎦ ,

the mean time spent at state 0 is 1/α, whereas the mean time spent at state
1 is 1/β. We will come back to this example in more detail in the following
Sect. 9.5.

(ii) Poisson process.
The generator of the Poisson process is given by λi, j = 1{ j=i+1}λ, i = j , i.e.

Q = [
λi, j

]
i, j∈N =

⎡

⎢⎢⎢⎢⎢⎢⎣

−λ λ 0 · · ·

0 − λ λ · · ·

0 0 − λ · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎦
.

From the relation P(h) = Id + hQ + o(h) we recover the infinitesimal transi-
tion probabilities of the Poisson process as

P(Nt+h − Nt = 1) = P(Nt+h = i + 1 | Nt = i) � λh,

h ↘ 0, i ∈ N, and

P(Nt+h − Nt = 0) = P(Nt+h = i | Nt = i) = 1 − λh + o(h),

h ↘ 0, i ∈ N.



9.4 Infinitesimal Generator 233

(iii) Pure birth process.
The generator of the pure birth process on N = {0, 1, 2, . . .} is

Q = [
λi, j

]
i, j∈N =

⎡

⎢⎢⎢⎢⎢⎢⎣

−λ0 λ0 0 · · ·

0 − λ1 λ1 · · ·

0 0 − λ2 · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎦
,

in which the rate λi is (possibly) state-dependent. From the relation

P(h) = Id + hQ + o(h), h ↘ 0,

i.e.

P(h) =

⎡

⎢⎢⎣

1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
...

. . .

⎤

⎥⎥⎦ + h

⎡

⎢⎢⎢⎢⎢⎢⎣

−λ0 λ0 0 · · ·

0 − λ1 λ1 · · ·

0 0 − λ2 · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎦
+ o(h), h ↘ 0,

we recover the infinitesimal transition probabilities of the pure birth process as

P(Xt+h − Xt = 1 | Xt = i) = P(Xt+h = i + 1 | Xt = i) � λi h,

h ↘ 0, i ∈ N, and

P(Xt+h − Xt = 0 | Xt = i) = P(Xt+h = i | Xt = i) = 1 − λi h + o(h),

h ↘ 0, i ∈ N.
(iv) Pure death process.

The generator of the pure death process on −N = {. . . ,−2,−1, 0} is

Q = [
λi, j

]
i, j≤0 =

⎡

⎢⎢⎢⎢⎢⎢⎣

· · · 0 μ0 −μ0

· · · μ1 −μ1 0

· · · −μ2 0 0

. .
. ...

...
...

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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From the relation

P(h) =

⎡

⎢⎢⎣

· · · 0 0 1
· · · 0 1 0
· · · 1 0 0

. .
. ...

...
...

⎤

⎥⎥⎦ + h

⎡

⎢⎢⎢⎢⎢⎢⎣

· · · 0 μ0 −μ0

· · · μ1 −μ1 0

· · · −μ2 0 0

. .
. ...

...
...

⎤

⎥⎥⎥⎥⎥⎥⎦
+ o(h), h ↘ 0,

we recover the infinitesimal transition probabilities

P(Xt+h − Xt = −1 | Xt = i) = P(Xt+h = i − 1 | Xt = i) � μi h, h ↘ 0,

i ∈ S, and

P(Xt+h = i | Xt = i) = P(Xt+h − Xt = 0 | Xt = i) = 1 − μi h + o(h), h ↘ 0,

i ∈ S, of the pure death process.
(v) Birth and death process on {0, 1, . . . , N }.

By (9.2.5a)–(9.2.5b) and (9.4.7), the generator of the birth and death process
on {0, 1, . . . , N } is

[
λi, j

]
0≤i, j≤N =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ0 λ0 0 0 · · · · · · · · · 0 0
μ1 −λ1 − μ1 λ1 0 · · · · · · · · · 0 0
...

. . .
. . .

. . .
. . .

...
...

...
...

...
...

. . .
. . .

. . .
. . .

...
...

...
...

...
...

. . .
. . .

. . .
. . .

...
...

...
...

...
...

. . .
. . .

. . .
...

...

0 0 0 0 · · · 0 μN−1 −λN−1 − μN−1 λN−1
0 0 0 0 · · · 0 0 μN −μN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with μ0 = λN = 0.

From the Relation (9.4.6) we have

P(h) = Id + hQ + o(h), h ↘ 0,

and we recover the infinitesimal transition probabilities

P(Xt+h − Xt = 1 | Xt = i) � λi h, h ↘ 0, i = 0, 1, . . . , N ,

and

P(Xt+h − Xt = −1 | Xt = i) � μi h, h ↘ 0, i = 0, 1, . . . , N ,

and
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P(Xt+h − Xt = 0 | Xt = i) = 1 − (λi + μi )h + o(h), h ↘ 0, i = 0, 1, . . . , N ,

of the birth and death process on {0, 1, . . . , N }, with μ0 = λN = 0.
Recall that the time τi spent in state i is an exponentially distributed random
variable with parameter λi + μi and we have

Pi,i (t) ≥ P(τi > t) = e−t (λi+μi ), t ∈ R+,

and

IE[τi ] = 1

λi + μi
.

In the case of a pure birth process we find

Pi,i (t) = P(τi > t) = e−tλi , t ∈ R+,

and similarly for a pure death process. This allows us in particular to compute
the diagonal entries in the matrix exponential P(t) = exp(t Q), t ∈ R+.
When S = {0, 1, . . . , N } with λi = λ and μi = μ, i = 1, 2, . . . , N − 1, and
λ0 = μN = 0, the above birth and death process becomes a continuous-time
analog of the discrete-time gambling process.

9.5 The Two-State Continuous-Time Markov Chain

In this section we consider a continuous-time Markov process with state space
S = {0, 1}, in the same way as in Sect. 4.5 which covered the two-state Markov
chain in discrete time.

In this case the infinitesimal generator Q of (Xt )t∈R+ has the form

Q =
⎡

⎣
−α α

β −β

⎤

⎦ , (9.5.1)

with α,β ≥ 0. The forward Kolmogorov equation (9.4.3) reads

P ′(t) = P(t) ×
⎡

⎣
−α α

β −β

⎤

⎦ , t > 0, (9.5.2)

i.e. ⎡

⎣
P ′
0,0(t) P ′

0,1(t)

P ′
1,0(t) P ′

1,1(t)

⎤

⎦ =
⎡

⎣
P0,0(t) P0,1(t)

P1,0(t) P1,1(t)

⎤

⎦ ×
⎡

⎣
−α α

β −β

⎤

⎦ , t > 0,



236 9 Continuous-Time Markov Chains

or
⎧
⎨

⎩

P ′
0,0(t) = −αP0,0(t) + βP0,1(t), P ′

0,1(t) = αP0,0(t) − βP0,1(t),

P ′
1,0(t) = −αP1,0(t) + βP1,1(t), P ′

1,1(t) = αP1,0(t) − βP1,1(t),

t > 0, which is a system of four differential equations with initial condition

P(0) =
⎡

⎣
P0,0(0) P0,1(0)

P1,0(0) P1,1(0)

⎤

⎦ =
⎡

⎣
1 0

0 1

⎤

⎦ = Id.

The solution of the forward Kolmogorov equation (9.5.2) is given by the matrix
exponential

P(t) = P(0) exp(t Q) = exp(t Q) = exp

⎛

⎝t

⎡

⎣
−α α

β −β

⎤

⎦

⎞

⎠ ,

which is computed in the next Proposition 9.6.

Proposition 9.6 The solution P(t) of the forward Kolmogorov equation (9.5.2) is
given by

P(t) =
⎡

⎣
P0,0(t) P0,1(t)

P1,0(t) P1,1(t)

⎤

⎦ (9.5.3)

=

⎡

⎢⎢⎢⎣

β

α + β
+ α

α + β
e−t (α+β) α

α + β
− α

α + β
e−t (α+β)

β

α + β
− β

α + β
e−t (α+β) α

α + β
+ β

α + β
e−t (α+β)

⎤

⎥⎥⎥⎦ ,

t ∈ R+.

Proof Wewill compute the matrix exponential etQ by the diagonalization technique.
The matrix Q has two eigenvectors

⎡

⎣
1

1

⎤

⎦ and

⎡

⎣
−α

β

⎤

⎦ ,

with respective eigenvalues λ1 = 0 and λ2 = −α − β. Hence it can be put in the
diagonal form

Q = M × D × M−1
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as follows:

Q =
⎡

⎣
1 −α

1 β

⎤

⎦ ×
⎡

⎣
λ1 0

0 λ2

⎤

⎦ ×

⎡

⎢⎢⎢⎣

β

α + β

α

α + β

− 1

α + β

1

α + β

⎤

⎥⎥⎥⎦ .

Consequently we have

P(t) = exp(t Q) =
∞∑

n=0

tn

n!Q
n =

∞∑

n=0

tn

n! (M × D × M−1)n

=
∞∑

n=0

tn

n!M × Dn × M−1 = M ×
( ∞∑

n=0

tn

n!D
n

)
× M−1

= M × exp(t D) × M−1

=
⎡

⎣
1 −α

1 β

⎤

⎦ ×
⎡

⎣
etλ1 0

0 etλ2

⎤

⎦ ×

⎡

⎢⎢⎢⎣

β

α + β

α

α + β

− 1

α + β

1

α + β

⎤

⎥⎥⎥⎦

=
⎡

⎣
1 −α

1 β

⎤

⎦ ×
⎡

⎣
1 0

0 e−t (α+β)

⎤

⎦ ×

⎡

⎢⎢⎢⎣

β

α + β

α

α + β

− 1

α + β

1

α + β

⎤

⎥⎥⎥⎦

= 1

α + β

⎡

⎣
β α

β α

⎤

⎦ + e−t (α+β)

α + β

⎡

⎣
α −α

−β β

⎤

⎦

=

⎡

⎢⎢⎢⎣

β

α + β
+ α

α + β
e−t (α+β) α

α + β
− α

α + β
e−t (α+β)

β

α + β
− β

α + β
e−t (α+β) α

α + β
+ β

α + β
e−t (α+β)

⎤

⎥⎥⎥⎦ ,

t > 0. �

From Proposition 9.6 we obtain the probabilities
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(Xh = 0 | X0 = 0) = β + αe−(α+β)h

α + β
,

P(Xh = 1 | X0 = 0) = α

α + β
(1 − e−(α+β)h),

P(Xh = 0 | X0 = 1) = β

α + β
(1 − e−h(α+β)h),

P(Xh = 1 | X0 = 1) = α + βe−(α+β)h

α + β
, h ∈ R+.

In other words, (9.5.3) can be rewritten as

P(h) =

⎡

⎢⎢⎢⎣

1 − α

α + β
(1 − e−(α+β)h)

α

α + β
(1 − e−(α+β)h)

β

α + β
(1 − e−(α+β)h) 1 − β

α + β
(1 − e−(α+β)h)

⎤

⎥⎥⎥⎦ , h > 0,

(9.5.4)
hence, since

1 − e−(α+β)h � h(α + β), h ↘ 0,

the expression (9.5.4) above recovers (9.4.8) as h ↘ 0, i.e. we have

P(h) =
⎡

⎣
1 − hα hα

hβ 1 − hβ

⎤

⎦ + o(h) = Id + hQ + o(h), h ↘ 0,

which recovers (9.5.1).
From these expressions we can determine the large time behavior of the

continuous-time Markov chain by taking limits as t goes to infinity:

lim
t→∞ P(t) = lim

t→∞

⎡

⎣
P(Xt = 0 | X0 = 0) P(Xt = 1 | X0 = 0)

P(Xt = 0 | X0 = 1) P(Xt = 1 | X0 = 1)

⎤

⎦ = 1

α + β

⎡

⎣
β α

β α

⎤

⎦ ,

whenever α > 0 or β > 0, whereas if α = β = 0 we simply have

P(t) =
⎡

⎣
1 0

0 1

⎤

⎦ = Id, t ∈ R+,

and the chain is constant. Note that in continuous time the limiting distribution of
the two-state chain always exists (unlike in the discrete-time case), and convergence
will be faster when α + β is larger. Hence we have
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lim
t→∞P(Xt = 1 | X0 = 0) = lim

t→∞P(Xt = 1 | X0 = 1) = α

α + β

and

lim
t→∞P(Xt = 0 | X0 = 0) = lim

t→∞P(Xt = 0 | X0 = 1) = β

α + β

and

π = [π0,π1] =
(

β

α + β
,

α

α + β

)
=

(
1/α

1/α + 1/β
,

1/β

1/α + 1/β

)

appears as a limiting distribution as t goes to infinity, provided that (α,β) = (0, 0).
This means that whatever the starting point X0, the probability of being at 1 after
a “large” time is close to α/(α + β), while the probability of being at 0 is close to
β/(α + β).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

Fig. 9.5 Sample path of a continuous-time two-state chain with α = 20 and β = 40
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0
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0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 9.6 The proportion of process values in the state 1 converges to 1/3 = α/(α + β)
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Next we consider a simulation of the two-state continuous Markov chain with
infinitesimal generator

Q =
⎡

⎣
−20 20

40 −40

⎤

⎦ ,

i.e.α = 20 andβ = 40. Figure9.5 represents a sample path (xt )t∈R+ of the continuous-
time chain, while Fig. 9.6 represents the sample average

yt = 1

t

∫ t

0
xsds, t ∈ [0, 1],

which counts the proportion of values of the chain in the state 1 . This proportion is
found to converge to α/(α + β) = 1/3, as a consequence of the Ergodic Theorem
in continuous time, see (9.6.4) below.

9.6 Limiting and Stationary Distributions

A probability distribution π = (πi )i∈S is said to be stationary for P(t) if it satisfies
the equation

πP(t) = π, t ∈ R+.

In the next proposition we show that the notion of stationary distribution admits a
simpler characterization.

Proposition 9.7 The probability distribution π = (πi )i∈S is stationary if and only if
it satisfies the equation

πQ = 0.

Proof Assuming that πQ = 0, we have

πP(t) = π exp(t Q) = π

∞∑

n=0

tn

n!Q
n

= π

(
Id +

∞∑

n=1

tn

n!Q
n

)

= π +
∞∑

n=1

tn

n!πQ
n

= π,

since πQn = πQQn−1 = 0, n ≥ 1. Conversely, the relation π = πP(t) shows, by
differentiation at t = 0, that

0 = πP ′(0) = πQ.
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Fig. 9.7 Global balance condition (continuous time)

�

When S = {0, 1, . . . , N } and the generator Q has the form (9.4.1) the relation πQ =
0 reads

π0λ0, j + π1λ1, j + · · · + πNλN , j = 0, j = 0, 1, . . . , N ,

i.e.,
N∑

i=0
i = j

πiλ j,i = −π jλ j, j , j = 0, 1, . . . , N ,

hence from (9.4.2) we find the balance condition

N∑

i=0
i = j

πiλi, j =
N∑

k=0
k = j

π jλ j,k,

which can be interpreted by stating the equality between incoming and outgoing
“flows” into and from state j are equal for all j = 0, 1, . . . , N (Fig. 9.7).

Next is the continuous-time analog of Proposition 7.7 in Sect. 7.2.

Proposition 9.8 Consider a continuous-timeMarkov chain (Xt )t∈R+ on afinite state
space, which admits a limiting distribution given by

π j := lim
t→∞P(Xt = j | X0 = i) = lim

t→∞ Pi, j (t), j ∈ S, (9.6.1)

independent of the initial state i ∈ S. Then we have

πQ = 0, (9.6.2)

i.e. π is a stationary distribution for the chain (Xt )t∈R+ .
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Proof TakingS = {0, 1, . . . , N }wenote that by (9.6.1) since the limitingdistribution
is independent of the initial state it satisfies

lim
t→∞ P(t) =

⎡

⎢⎢⎣

lim
t→∞ P0,0(t) · · · lim

t→∞ P0,N (t)
...

. . .
...

lim
t→∞ PN ,0(t) · · · lim

t→∞ PN ,N (t)

⎤

⎥⎥⎦

=
⎡

⎣
π0 π1 · · · πN
...

...
. . .

...

π0 π1 · · · πN

⎤

⎦ =
⎡

⎣
π
...

π

⎤

⎦ ,

where π is the row vector
π = [π0,π1, . . . ,πn].

By the forward Kolmogorov equation (9.4.3) and (9.6.1) we find that the limit of
P ′(t) exists as t → ∞ since

lim
t→∞ P ′(t) = lim

t→∞ P(t)Q =
⎡

⎣
π
...

π

⎤

⎦ Q.

On the other hand, since P ′(t) converges as t → ∞ we should have

lim
t→∞ P ′(t) = 0,

for the integral

P(t) = P(0) +
∫ t

0
P ′(s)ds (9.6.3)

to converge as t → ∞. This shows that

⎡

⎣
πQ
...

πQ

⎤

⎦ =
⎡

⎣
π
...

π

⎤

⎦ Q = 0

by (9.4.3), hence we have πQ = 0, or
∑

i∈S
πiλi, j = 0, j ∈ S. �

Equation (9.6.2) is actually equivalent to

π = π(Id + hQ), h > 0,

which yields the stationary distribution of a discrete-time Markov chain with transi-
tion matrix P(h) = Id + hQ + o(h) on “small” discrete intervals of length h ↘ 0.
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Proposition 9.8 admits the following partial converse. More generally it can be
shown, cf. Corollary 6.2 of [Lal], that an irreducible continuous-time Markov chain
admits its stationary distribution π as limiting distribution, similarly to the discrete-
time Theorem 7.8, cf. also Proposition 1.1 p. 9 of [Sig] in the positive recurrent case.

Proposition 9.9 Consider an irreducible, continuous-time Markov chain (Xt )t∈R+
on a finite state space, with stationary distribution π, i.e.

πQ = 0,

and assume that the matrix Q is diagonalizable. Then (Xt )t∈R+ admits π as limiting
distribution, i.e.

lim
t→∞ Pi, j (t) = lim

t→∞P(Xt = j | X0 = i) = π j , j ∈ S,

which is independent of the initial state i ∈ S.

Proof Bye.g. Theorem2.1 inChap.10 of [KT81], since the chain is irreducible,λ1 =
0 is an eigenvalue of Q with multiplicity one and eigenvector u(1) = (1, 1, . . . , 1). In
addition, the remaining eigenvectors u(2), . . . , u(n) ∈ R

n with eigenvaluesλ2, . . . ,λn

are orthogonal to the invariant (or stationary) distribution [π1,π2, . . . ,πn]of (Xt )t∈R+
as we have λk〈u(k),π〉Rn = 〈Qu(k),π〉Rn = 〈u(k), QTπ〉Rn = πT Qu(k) = 0,
k = 2, . . . , n. Hence by diagonalization we have Q = M−1DM where the matri-
ces M and M−1 take the form

M =

⎡

⎢⎢⎣

π1 · · · πn

M2,1 · · · M2,n
...

. . .
...

Mn,1 · · · Mn,n

⎤

⎥⎥⎦ and M−1 =

⎡

⎢⎢⎢⎣

1 u(2)1 · · · u(n)1

1 u(2)2 · · · u(n)2
...

...
. . .

...

1 u(2)n · · · u(n)n

⎤

⎥⎥⎥⎦ ,

and D is the diagonal matrix D = diag(λ1,λ2, . . . ,λn). This allows us to compute
the transition probabilities of (Xt )t∈R+ as

Pi, j (t) = P(Xt = j | X0 = i) = [exp(t Q)]i, j = [M−1 exp(t D)M]i, j
where exp(t D) is the diagonal matrix

exp(t D) = diag(1, etλ2 , . . . , e−tλn ),

and the eigenvalues λ2, . . . ,λn have to be strictly negative, hence we have
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lim
t→∞ [P(Xt = j | X0 = i)]1≤i, j≤n = lim

t→∞[M−1 exp(t D)M]1≤i, j≤n

=

⎡

⎢⎢⎢⎢⎣

1 u(2)1 · · · u(n)1
1 u(2)2 · · · u(n)2
...

...
. . .

...

1 u(2)n · · · u(n)n

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎣

1 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

π1 · · · πn
M2,1 · · · M2,n
...

. . .
...

Mn,1 · · · Mn,n

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

1 0 · · · 0
1 0 · · · 0
...

...
. . .

...

1 0 · · · 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

π1 · · · πn
M2,1 · · · M2,n
...

. . .
...

Mn,1 · · · Mn,n

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

π1 · · · πn
π1 · · · πn
...

. . .
...

π1 · · · πn

⎤

⎥⎥⎦ .

�

The discrete-time Ergodic Theorem 7.12 also admits a continuous-time version with
a similar proof, stating that if the chain (Xt )t∈R+ is irreducible then the sample
average of the number of visits to state i converges almost surely to πi , i.e.,

lim
t→∞

1

t

∫ t

0
1{Xt=i}dt = πi , i ∈ S. (9.6.4)

Examples

(i) Two-state Markov chain.
Consider the two-state Markov chain with infinitesimal generator

Q =
⎡

⎣
−α α

β −β

⎤

⎦ ,

the limiting distribution solves πQ = 0, i.e.

⎧
⎨

⎩

0 = −απ0 + βπ1

0 = απ0 − βπ1,

with π0 + π1 = 1, i.e.

π = [π0,π1] =
[

β

α + β
,

α

α + β

]
. (9.6.5)
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(ii) Birth and death process on N.
Next, consider the birth and death process on N with infinitesimal generator

Q = [
λi, j

]
i, j∈N =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−λ0 λ0 0 0 0 · · ·
μ1 −λ1 − μ1 λ1 0 0 · · ·
0 μ2 −λ2 − μ2 λ2 0 · · ·
0 0 μ3 −λ3 − μ3 λ3 · · ·
...

...
...

. . .
. . .

. . .
...

...
...

...
. . .

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

the stationary distribution solves πQ = 0, i.e.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = −λ0π0 + μ1π1

0 = λ0π0 − (λ1 + μ1)π1 + μ2π2

0 = λ1π1 − (λ2 + μ2)π2 + μ3π3
...

0 = λ j−1π j−1 − (λ j + μ j )π j + μ j+1π j+1,
...

i.e.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1 = λ0
μ1

π0

π2 = −λ0
μ2

π0 + λ1 + μ1
μ2

π1 = −λ0
μ2

π0 + λ1 + μ1
μ2

λ0
μ1

π0 = λ1
μ2

λ0
μ1

π0

π3 = −λ1
μ3

π1 + λ2 + μ2
μ3

π2 = −λ1
μ3

λ0
μ1

π0 + λ2 + μ2
μ3

λ1
μ2

λ0
μ1

π0 = λ2
μ3

λ1
μ2

λ0
μ1

π0

...

π j+1 = λ j · · · λ0
μ j+1 · · · μ1 π0.

...

Using the convention

λ j−1 · · · λ0 =
j−1∏

l=0

λl = 1 and μ j · · · μ1 =
j∏

l=1

μl = 1

in the case j = 0, we have
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1 =
∞∑

j=0

π j = π0 + π0

∞∑

j=0

λ j · · ·λ0

μ j+1 · · · μ1
= π0 + π0

∞∑

j=1

λ j−1 · · ·λ0

μ j · · · μ1

= π0

∞∑

i=0

λ0 · · ·λi−1

μ1 · · · μi
,

hence

π0 = 1
∞∑

i=0

λ0 · · · λi−1

μ1 · · ·μi

,

and

π j = λ0 · · ·λ j−1

μ1 · · ·μ j

∞∑

i=0

λ0 · · ·λi−1

μ1 · · · μi

, j ∈ N.

When λi = λ, i ∈ N, and μi = μ, i ≥ 1, this gives

π j = λ j

μ j

∞∑

i=0

(λ/μ)i
=

(
1 − λ

μ

) (
λ

μ

) j

, j ∈ N.

provided that λ < μ, hence in this case the stationary distribution is the geo-
metric distribution with parameter λ/μ, otherwise the stationary distribution
does not exist.

(iii) Birth and death process on S = {0, 1, . . . , N }.
The birth and death process onS = {0, 1, . . . , N } has the infinitesimal generator

Q = [
λi, j

]
0≤i, j≤N =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ0 λ0 0 · · · · · · 0 0 0 0
μ1 −λ1 − μ1 λ1 · · · · · · 0 0 0 0

0 . . .
. . .

. . .
...

... 0 0 0
...

...
. . .

. . .
. . .

...
...

...
...

...
...

...
. . .

. . .
. . .

...
...

...
...

...
...

...
. . .

. . .
. . .

...
...

0 0 0
...

...
. . .

. . .
. . . 0

0 0 0 · · · · · · 0 μN−1 −λN−1 − μN−1 λN−1
0 0 0 · · · · · · 0 0 μN −μN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

we can apply (1.6.6) withλ j = 0, j ≥ N , andμ j = 0, j ≥ N + 1, which yields

π j = λ j−1 · · · λ0

μ j · · · μ1

N∑

i=0

λi−1 · · · λ0

μi · · ·μ1

, j ∈ {0, 1, . . . , N },
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and coincides with (9.6.5) when N = 1.
When λi = λ, i ∈ N, and μi = μ, i ≥ 1, this gives

π j = 1 − λ/μ

1 − (λ/μ)N+1

(
λ

μ

) j

, j = 0, 1, . . . , N ,

which is a truncated geometric distribution since π j = 0 for all j > N and any
λ,μ > 0.

9.7 The Discrete-Time Embedded Chain

Consider the sequence (Tn)n∈N the sequence of jump times of the continuous-time
Markov process (Xt )t∈R+ , defined recursively by T0 = 0, then

T1 = inf{t > 0 : Xt = X0},

and
Tn+1 = inf{t > Tn : Xt = XTn }, n ∈ N.

The embedded chain of (Xt )t∈R+ is the discrete-timeMarkov chain (Zn)n∈N defined
by Z0 = X0 and

Zn := XTn , n ≥ 1.

The next Fig. 9.8 shows the graph of the embedded chain of a birth and death process.
The results of Chaps. 2–8 can nowbe applied to the discrete-time embedded chain.

The next Fig. 9.9 represents the discrete-time embedded chain associated to the path
of Fig. 9.8, in which we have Z0 = 0, Z1 = 1, Z2 = 2, Z3 = 3, Z4 = 4, Z5 = 3,
Z6 = 4, Z7 = 3, . . .

0
1

2
3

4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 9.8 Birth and death process (Xt )t∈R+ with its embedded chain (Zn)n∈N
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0
1

2
3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 9.9 Discrete-time embedded chain (Zn)n∈N based on the path of Fig. 9.8

For example, if λ0 > 0 and μ0 > 0, the embedded chain of the two-state
continuous-time Markov chain has the transition matrix

P =
[
0 1
1 0

]
, (9.7.1)

which switches permanently between the states 0 and 1 .
In case one of the states {0, 1} is absorbing the transition matrix becomes

P =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 0
1 0

]
, λ0 = 0, μ1 > 0,

[
0 1
0 1

]
, λ0 > 0, μ1 = 0,

[
1 0
0 1

]
, λ0 = 0, μ1 = 0.

Birth and Death Embedded Chain

More generally, consider now the birth and death process with infinitesimal generator

Q = [
λi, j

]
0≤i, j≤N =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ0 λ0 0 · · · · · · 0 0 0 0
μ1 − λ1 − μ1 λ1 · · · · · · 0 0 0 0

0 . . .
. . .

. . .
...

... 0 0 0
...

...
. . .

. . .
. . .

...
...

...
...

...
...

...
. . .

. . .
. . .

...
...

...
...

...
...

...
. . .

. . .
. . .

...
...

0 0 0
...

...
. . .

. . .
. . . 0

0 0 0 · · · · · · 0 μN−1 − λN−1 − μN−1 λN−1
0 0 0 · · · · · · 0 0 μN −μN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Given that a transition occurs from state i in a “short” time interval [t, t + h], the
probability that the chain switches to state

�

�

�

�

i+1 is given by

P(Xt+h = i + 1 | Xt = i and Xt+h − Xt = 0) = P(Xt+h = i + 1 and Xt = i)

P(Xt+h − Xt = 0 and Xt = i)

= P(Xt+h = i + 1 and Xt = i)

P(Xt+h − Xt = 0 | Xt = i)P(Xt = i)

= P(Xt+h = i + 1 | Xt = i)

P(Xt+h − Xt = 0 | Xt = i)

= P(Xt+h − Xt = 1 | Xt = i)

P(Xt+h − Xt = 0 | Xt = i)

� λi h

λi h + μi h

= λi

λi + μi
, h ↘ 0, i ∈ S,

where we applied (9.4.7), hence the transition matrix of the embedded chain satisfies

Pi,i+1 = lim
h↘0

P(Xt+h = i + 1 | Xt = i and Xt+h − Xt = 0) = λi

λi + μi
, i ∈ S.

(9.7.2)
This result can also be obtained from (1.5.9) which states that

P(τi,i+1 < τi,i−1) = λi

λi + μi
. (9.7.3)

Similarly the probability that a given transition occurs from i to
�

�

�

�

i-1 is

P(Xt+h = i − 1 | Xt = i and Xt+h − Xt = 0) = μi

λi + μi
, h ↘ 0, i ∈ S,

which can also be obtained from (1.5.9) which states that

P(τi,i−1 < τi,i+1) = μi

λi + μi
.

Hence we have

Pi,i−1 = lim
h↘0

P(Xt+h = i − 1 | Xt = i and Xt+h − Xt = 0) = μi

λi + μi
, i ∈ S,

and the embedded chain (Zn)n∈N has the transition matrix
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P = [
Pi, j

]
i, j∈S

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0 0 0 0
μ1

λ1 + μ1
0

λ1

λ1 + μ1
0 · · · 0 0 0 0

0 . . .
. . .

. . .
...

... 0 0 0
...

...
. . .

. . .
. . .

...
...

...
...

...
...

...
. . .

. . .
. . .

...
...

...
...

...
...

...
. . .

. . .
. . .

...
...

0 0 0
...

...
. . .

. . .
. . . 0

0 0 0 0 · · · 0
μN−1

λN−1 + μN−1
0

λN−1

λN−1 + μN−1
0 0 0 0 · · · 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

provided that λ0 > 0 and μN > 0. When N = 1, this coincides with (9.7.1). In case
λ0 = μN = 0, states 0 and N are both absorbing since the birth rate starting from

0 and the death rate starting from N are both 0, hence the transition matrix of the
embedded chain can be written as

P = [
Pi, j

]
0≤i, j≤N

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0 0 0 0
μ1

λ1 + μ1
0

λ1

λ1 + μ1
0 · · · 0 0 0 0

0 . . .
. . .

. . .
...

... 0 0 0
...

...
. . .

. . .
. . .

...
...

...
...

...
...

...
. . .

. . .
. . .

...
...

...
...

...
...

...
. . .

. . .
. . .

...
...

0 0 0
...

...
. . .

. . .
. . . 0

0 0 0 0 · · · 0
μN−1

λN−1 + μN−1
0

λN−1

λN−1 + μN−1
0 0 0 0 · · · 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which is the transition matrix of a gambling type process on {0, 1, . . . , N }. When
N = 1 this yields P = Id, which is consistent with the fact that a two-state Markov
chain with two absorbing states is constant.

For example, for a continuous-time chain with infinitesimal generator

Q = [
λi, j

]
0≤i, j≤4 =

⎡

⎢⎢⎢⎢⎣

−10 10 0 0 0
10 −20 10 0 0
0 10 −30 20 0
0 0 10 −40 30
0 0 0 20 −20

⎤

⎥⎥⎥⎥⎦
,

the transition matrix of the embedded chain is
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P = [
Pi, j

]
0≤i, j≤4 =

⎡

⎢⎢⎢⎢⎣

0 1 0 0 0
1/2 0 1/2 0 0
0 1/3 0 2/3 0
0 0 1/4 0 3/4
0 0 0 1 0

⎤

⎥⎥⎥⎥⎦
.

In case the states 0 and 4 are absorbing, i.e.

Q = [
λi, j

]
0≤i, j≤4 =

⎡

⎢⎢⎢⎢⎣

0 0 0 0 0
10 −20 10 0 0
0 10 −30 20 0
0 0 10 −40 30
0 0 0 0 0

⎤

⎥⎥⎥⎥⎦
,

the transition matrix of the embedded chain becomes

P = [
Pi, j

]
0≤i, j≤4 =

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0
1/2 0 1/2 0 0
0 1/3 0 2/3 0
0 0 1/4 0 3/4
0 0 0 0 1

⎤

⎥⎥⎥⎥⎦
.

More generally, by (9.4.7) and (9.4.2) we could also show that the embedded chain
of a continuous-time Markov chain with generator Q of the form (9.4.1) has the
transition matrix

P = [
Pi, j

]
i, j∈S

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −λ0,1

λ0,0
−λ0,2

λ0,0
· · · · · · −λ0,N−1

λ0,0
−λ0,N

λ0,0

−λ1,0

λ1,1
0 −λ1,2

λ1,1
· · · · · · −λ1,N−1

λ1,1
−λ1,N

λ1,1
...

. . .
...

...
...

. . .
...

...
. . .

...
...

...
. . .

...
...

. . .
...

...
...

. . .
...

− λN−1,0

λN−1,N−1
− λN−1,1

λN−1,N−1
· · · · · · · · · 0 − λN−1,N

λN−1,N−1

− λN ,0

λN ,N
− λN ,1

λN ,N
· · · · · · · · · −λN ,N−1

λN ,N
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

provided that λi,i > 0, i = 0, 1, . . . , N .
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9.8 Mean Absorption Time and Probabilities

Absorption Probabilities

The absorption probabilities of the continuous-time process (Xt )t∈R+ can be com-
puted based on the behaviour of the embedded chain (Zn)n∈N. In fact the continuous
waiting time between two jumps has no influence on the absorption probabilities.
Here we consider only the simple example of birth and death processes, which can
be easily generalized to more complex situations.

The basic idea is to perform a first step analysis on the underlying discrete-time
embedded chain. Assume that state 0 is absorbing, i.e. λ0 = 0, and let

T0 = inf{t ∈ R+ : Xt = 0}

denote the absorption time of the chain into state 0 . Let now

g0(k) = P(T0 < ∞ | X0 = k), k = 0, 1, . . . , N ,

denote the probability of absorption in 0 starting from state k ∈ {0, 1, . . . , N }.
We have the boundary condition g0(0) = 1, and by first step analysis on the chain
(Zn)n≥1 we get

g0(k) = λk

λk + μk
g0(k + 1) + μk

λk + μk
g0(k − 1), k = 1, 2, . . . , N − 1.

When the rates λk = λ and μk = μ are independent of k ∈ {1, 2, . . . , N − 1}, this
equation becomes

g0(k) = pg0(k + 1) + qg0(k − 1), k = 1, 2, . . . , N − 1,

which is precisely Eq. (2.2.6) for the gambling process with

p = λ

λ + μ
and q = μ

λ + μ
.

When λ0 = μN = 0 we have the boundary conditions

g0(0) = 1 and g0(N ) = 0

since the state N becomes absorbing, and the solution becomes

g0(k) = (μ/λ)k − (μ/λ)N

1 − (μ/λ)N
, k = 0, 1, . . . , N ,

when λ = μ, according to (2.2.11). When λ = μ, Relation (2.2.12) shows that
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g0(k) = N − k

N
= 1 − k

N
, k = 0, 1, . . . , N .

Mean Absorption Time

Wemay still use the embedded chain (Zn)n∈N to compute the mean absorption time,
using the mean inter-jump times. Here, unlike in the case of absorption probabilities,
the random time spent by the continuous-time process (Xt )t∈R+ should be taken into
account in the calculation. We consider a birth and death process on {0, 1, . . . , N }
with absorbing states 0 and N .

Recall that the the mean time spent at state i , given that the next transition is
from i to

�

�

�

�

i+1 , is equal to

IE[τi,i+1] = 1

λi
, i = 1, 2, . . . , N − 1,

and the mean time spent at state i , given that the next transition is from i to
�

�

�

�

i-1 ,
is equal to

IE[τi,i−1] = 1

μi
, i = 1, 2, . . . , N − 1.

We associate aweighted graph to theMarkov chain (Zn)n∈N that includes the average

IE[τi ] = 1

λi + μi

of the time τi = min(τi,i−1, τi,i+1) spent in state i before the next transition,
i = 1, 2, . . . , N − 1. In the next graph, which is drawn for N = 4, the weights are
underlined:

with λ0 = μ4 = 0.

Proposition 9.10 The mean absorption times

h0,N (i) = IE
[
T0,N | X0 = i

]
, i = 0, 1, . . . , N ,

into states {0, N } starting from state i ∈ {0, 1, . . . , N } satisfy the boundary condi-
tions h0,N (0) = h0,N (N ) = 0 the first step analysis equation

h0,N (i) = 1

λi + μi
+ μi

λi + μi
h0,N (i − 1) + λi

λi + μi
h0,N (i + 1),

i = 1, 2, . . . , N − 1.
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Proof By first step analysis on the discrete-time embedded chain (Zn)n≥1 with tran-
sition matrix

P = [
Pi, j

]
i, j∈S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0 0 0
μ1

λ1 + μ1
0

λ1

λ1 + μ1
0 · · · 0 0 0

0 . . .
. . .

. . .
...

... 0 0
...

...
. . .

. . .
. . .

...
...

...
...

...
...

...
. . .

. . .
. . .

...

0 0 0
...

...
. . .

. . . 0

0 0 0 0 · · · 0 0
λN−1

λN−1 + μN−1
0 0 0 0 · · · 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

we have

h0,N (i) = μi

λi + μi

(
IE[τi ] + h0,N (i − 1)

) + λi

λi + μi

(
IE[τi ] + h0,N (i + 1)

)

= μi

λi + μi

(
1

λi + μi
+ h0,N (i − 1)

)
+ λi

λi + μi

(
1

λi + μi
+ h0,N (i + 1)

)
,

(9.8.1)

i = 1, 2, . . . , N − 1. �

Note that by conditioning on the independent exponential random variables τi,i−1

and τi,i+1 we can also show that

IE[τi | τi,i−1 < τi,i+1] = IE[τi | τi,i+1 < τi,i−1] = IE[τi ] = 1

λi + μi
,

i = 1, 2, . . . , N − 1, cf. (1.7.9) in Exercise 1.4-(a), hence (9.8.1) can be rewritten
as

h0,N (i) = μi

λi + μi

(
IE[τi | τi,i−1 < τi,i+1] + h0,N (i − 1)

)

+ λi

λi + μi

(
IE[τi | τi,i+1 < τi,i−1] + h0,N (i + 1)

)
.

When the rates λi = λ and μi = μ are independent of i ∈ {1, 2, . . . , N − 1}, this
equation becomes

h0,N (i) = 1

λ + μ
+ λ

λ + μ
h0,N (i + 1) + μ

λ + μ
h0,N (i − 1),

i = 1, 2, . . . , N − 1, which is a modification of Eq. (2.3.6), by replacing the discrete
time step by the average time 1/(λ + μ) spent at any state. Rewriting the equation
as
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h0,N (i) = 1

λ + μ
+ ph0,N (i + 1) + qh0,N (i − 1),

i = 1, 2, . . . , N − 1, or

(λ + μ)h0,N (i) = 1 + p(λ + μ)h0,N (i + 1) + q(λ + μ)h0,N (i − 1),

i = 1, 2, . . . , N − 1, with

p = λ

λ + μ
and q = μ

λ + μ
,

we find from (2.3.11) that, with r = q/p = μ/λ,

(λ + μ)h0,N (k) = 1

q − p

(
k − N

1 − rk

1 − r N

)
,

i.e.

h0,N (k) = 1

μ − λ

(
k − N

1 − (μ/λ)k

1 − (μ/λ)N

)
, k = 0, 1, . . . , N , (9.8.2)

when λ = μ. In the limit λ → μ we find by (2.3.17) that

h0,N (k) = 1

2μ
k(N − k), k = 0, 1, . . . , N .

This solution is similar to that of the gambling problem with draw Exercise 2.1 as we
multiply the solution of the gambling problem in the fair case by the average time
1/(2μ) spent in any state in {1, 2, . . . , N − 1}.

The mean absorption time for the embedded chain (Zn)n∈N can be recovered by
dividing (9.8.2) by the mean time IE[τi ] = 1/(λ + μ) between two jumps, as

λ + μ

μ − λ

(
k − N

1 − (μ/λ)k

1 − (μ/λ)N

)
, k = 0, 1, . . . , N , (9.8.3)

which coincides with (2.3.11) in the non-symmetric case with p = λ/(λ + μ) and
p = μ/(λ + μ), and recovers (2.3.17), i.e.

k(N − k), k = 0, 1, . . . , N ,

in the symmetric case λ = μ.
In Table9.1 we gather some frequent questions and their corresponding solution

methods.
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Table 9.1 Summary of computing methods

How to compute Method

The infinitesimal generator Q = (λi, j )i, j∈S Q = dP(t)

dt |t=0
= P ′(0)

The semigroup (P(t))t∈R+ P(t) = exp(t Q), t ∈ R+,
P(h) = Id + hQ + o(h), h ↘ 0

The stationary distribution π Solve∗ πQ = 0 for π

The probability distribution of the time τi, j
spent in i → j

Exponential distribution (λi, j )

The probability distribution of the time τi spent
at state i

Exponential distribution

⎛

⎝
∑

l =i

λi,l

⎞

⎠

lim
t→∞ exp

⎛

⎜⎝t

⎡

⎢⎣
−α α

β −β

⎤

⎥⎦

⎞

⎟⎠

⎡

⎢⎢⎢⎢⎣

β

α + β

α

α + β

β

α + β

α

α + β

⎤

⎥⎥⎥⎥⎦

Hitting probabilities Solve† g = Pg for the embedded chain

Mean hitting times Use the embedded chain with weighted links
using mean inter-jump times

∗Remember that the values of π(k) have to add up to 1
†Be sure to write only the relevant rows of the system under the appropriate boundary conditions

Exercises

Exercise 9.1 Aworkshop has fivemachines and one repairman. Eachmachine func-
tions until it fails at an exponentially distributed random time with rate μ = 0.20 per
hour. On the other hand, it takes a exponentially distributed random time with (rate)
λ = 0.50 per hour to repair a given machine. We assume that the machines behave
independently of one another, and that

(i) up to five machines can operate at any given time,
(ii) at most one can be under repair at any time.

Compute the proportion of time the repairman is idle in the long run.

Exercise 9.2 Two types of consultations occur at a database according to two inde-
pendent Poisson processes: “read” consultations arrive at the rate (or intensity) λR

and “write” consultations arrive at the rate (or intensity) λW .

(a) What is the probability that the time interval between two consecutive “read”
consultations is larger than t > 0?

(b) What is the probability that during the time interval [0, t], at most three “write”
consultations arrive?

(c) What is theprobability that thenext arriving consultation is a “read” consultation?
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(d) Determine the distribution of the number of arrived “read” consultations during
[0, t], given that in this interval a total number of n consultations occurred.

Exercise 9.3 Consider two machines, operating simultaneously and independently,
where bothmachines have an exponentially distributed time to failurewithmean 1/μ.
There is a single repair facility, and the repair times are exponentially distributedwith
rate λ.

(a) In the long run, what is the probability that no machines are operating when
λ = μ = 1?

(b) We now assume that at most onemachine can operate at any time. Namely, while
onemachine is working, the other onemay be either under repair or already fixed
and waiting to take over. How does this modify your answer to question (a)?

Exercise 9.4 Passengers arrive at a cable car station according to a Poisson process
with intensity λ > 0. Each car contains at most 4 passengers, and a cable car arrives
immediately and leaves with 4 passengers as soon as there are at least 4 people in
the queue. We let (Xt )t∈R+ denote the number of passengers in the waiting queue at
time t ≥ 0.

(a) Explain why (Xt )t∈R+ is a continuous-time Markov chain with state space S =
{0, 1, 2, 3}, and give its matrix infinitesimal generator Q.

(b) Compute the limiting distribution π = [π0,π1,π2,π3] of (Xt )t∈R+ .
(c) Compute the mean time between two departures of cable cars.

Exercise 9.5 [MT15] We consider a stock whose prices can only belong to the
following five ticks:

$10.01; $10.02; $10.03; $10.04; $10.05,

numbered k = 1, 2, 3, 4, 5.
At time t , the order book for this stock contains exactly N (k)

t sell orders at the price
tick nok, k = 1, 2, 3, 4, 5, where (N (k)

t )t∈R+ are independent Poisson processes with
same intensity λ > 0. In addition,

• any sell order can be cancelled after an exponentially distributed random time with
parameter μ > 0,

• buy market orders are submitted according to another Poisson process with inten-
sity θ > 0, and are filled instantly at the lowest order price present in the book.

Order cancellations can occur as a result of various trading algorithms such as, e.g.,
“spoofing”, “layering”, or “front running”.

(a) Show that the total number of sell orders Lt in the order book at time t forms a
continuous-time Markov chain, and write down its infinitesimal generator Q.

(b) It is estimated that 95% percent of high-frequency trader orders are later can-
celled. What relation does this imply between μ and λ?
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Exercise 9.6 The size of a fracture in a rock formation is modeled by a continuous-
time pure birth process with parameters

λk = (1 + k)ρ, k ≥ 1,

i.e. the growth rate of the fracture is a power of 1 + k, where k is the current fracture
length. Show that when ρ > 1, the mean time for the fracture length to grow to
infinity is finite. Conclude that the time to failure of the rock formation is almost-
surely finite.3

Exercise 9.7 Customers arrive at a processing station according to a Poisson pro-
cess with rate λ = 0.1, i.e. on average one customer per ten minutes. Processing of
customer queries starts as soon as the third customer enters the queue.

(a) Compute the expected time until the start of the customer service.
(b) Compute the probability that no customer service occurs within the first hour.

Exercise 9.8 Suppose that customers arrive at a facility according to a Poisson
process having rate λ = 3. Let Nt be the number of customers that have arrived up
to time t and let Tn be the arrival time of the nth customer, n = 1, 2, . . . Determine
the following (conditional) probabilities and (conditional) expectations, where 0 <

t1 < t2 < t3 < t4.

(a) P(Nt3 = 5 | Nt1 = 1).
(b) IE[Nt1Nt4(Nt3 − Nt2)].
(c) IE[Nt2 | T2 > t1].
Exercise 9.9 Let (Xt )t∈R+ be a birth and death process on {0, 1, 2} with birth and
death parameters λ0 = 2α, λ1 = α, λ2 = 0, and μ0 = 0, μ1 = β, μ2 = 2β. Deter-
mine the stationary distribution of (Xt )t∈R+ .

Exercise 9.10 Let (Xt )t∈R+ be a birth and death process on 0, 1, . . . , N with birth
and death parameters λn = α(N − n) and μn = βn, respectively. Determine the sta-
tionary distribution of (Xt )t∈R+ .

Exercise 9.11 Consider a pure birth processwith birth ratesλ0 = 1,λ1 = 3,λ2 = 2,
λ3 = 5. Compute P0,n(t) for n = 0, 1, 2, 3.

Exercise 9.12 Consider a pure birth process (Xt )t∈R+ started at X0 = 0, and let Tk
denote the time until the kth birth. Show that

P(T1 > t and T2 > t + s) = P0,0(t)(P0,0(s) + P0,1(s)).

Determine the joint probability density function of (T1, T2), and then the joint density
of (τ0, τ1) := (T1, T2 − T1).

3Recall that a finite-valued random variable may have an infinite mean.
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Exercise 9.13 Cars pass a certain street location with identical speeds, according to
a Poisson process with rate λ > 0. A woman at that location needs T units of time
to cross the street, i.e. she waits until it appears that no car will cross that location
within the next T time units.

(a) Find the probability that her waiting time is 0.
(b) Find her expected waiting time.
(c) Find the total average time it takes to cross the street.
(d) Assume that, due to other factors, the crossing time in the absence of cars is an

independent exponentially distributed random variable with parameter μ > 0.
Find the total average time it takes to cross the street in this case.

Exercise 9.14 Amachine is maintained at random times, such that the inter-service
times (τk)k≥0 are i.i.d.with exponential distribution of parameterμ > 0. Themachine
breaks down if it has not received maintenance for more than T units of time. After
breaking down it is automatically repaired.

(a) Compute the probability that the machine breaks down before its first mainte-
nance after it is started.

(b) Find the expected time until the machine breaks down.
(c) Assuming that the repair time is exponentially distributed with parameter λ > 0,

find the proportion of time the machine is working.

Exercise 9.15 A system consists of twomachines and two repairmen. Eachmachine
can work until failure at an exponentially distributed random time with parameter
0.2. A failedmachine can be repaired only by one repairman, within an exponentially
distributed random time with parameter 0.25. We model the number Xt of working
machines at time t ∈ R+ as a continuous-time Markov process.

(a) Complete the missing entries in the matrix

Q =
⎡

⎣
� 0.5 0
0.2 � �
0 � −0.4

⎤

⎦

of its generator.
(b) Calculate the long-run probability distribution [π0,π1,π2] of Xt .
(c) Compute the average number of working machines in the long run.
(d) Given that a workingmachine can produce 100 units every hour, howmany units

can the system produce per hour in the long run?
(e) Assume now that in case a single machine is under failure then both repairmen

can work on it, therefore dividing the mean repair time by a factor 2. Complete
the missing entries in the matrix

Q =
⎡

⎣
−0.5 � �
� −0.7 �
� � −0.4

⎤

⎦
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of the modified generator and calculate the long run probability distribution
[π0,π1,π2] for Xt .

Exercise 9.16 Let X1(t) and X2(t) be two independent two-state Markov chains on
{0, 1} and having the same infinitesimal matrix

[−λ λ
μ − μ

]
.

Argue that Z(t) := X1(t) + X2(t) is a Markov chain on the state space S = {0, 1, 2}
and determine the transition semigroup P(t) of Z(t).

Exercise 9.17 Consider a two-state discrete-time Markov chain (ξn)n≥0 on {0, 1}
with transition matrix [

0 1
1 − α α

]
. (9.8.4)

Let (Nt )t∈R+ be a Poisson process with parameter λ > 0, and let the

Xt = ξNt , t ∈ R+,

i.e. (Xt )t∈R+ is a two-state birth and death process.

(a) Compute the mean return time E[T r
0 | X0 = 0] of Xt to state 0 , where T r

0 is
defined as

T r
0 = inf{t > T1 : Xt = 0}

and
T1 = inf{t > 0 : Xt = 1}

is the first hitting time of state 1 . Note that the return time
(b) Compute the mean return time E[T r

1 | X0 = 1] of Xt to state 1 , where T r
1 is

defined as
T r
1 = inf{t > T0 : Xt = 1}

and
T0 = inf{t > 0 : Xt = 0}

is the first hitting time of state 0 . The return time T r
1 to 1 starting from 1 is

evaluated by switching first to state 0 before returning to state 1 .
(c) Show that (Xt )t∈R+ is a two-state birth and death process and determine its

generator matrix Q in terms of α and λ.
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Problem 9.18 Let (N 1
t )t∈R+ and (N 2

t )t∈R+ be two independent Poisson processes
with intensities λ1 > 0 and λ2 > 0.

(a) Show that (N 1
t + N 2

t )t∈R+ is a Poisson process and find its intensity.
(b) Consider the difference

Mt = N 1
t − N 2

t , t ∈ R+,

and that (Mt )t∈R+ has stationary independent increments.
(c) Find the distribution of Mt − Ms , 0 < s < t .
(d) Compute

lim
t→∞P(|Mt | ≤ c)

for any c > 0.
(e) Suppose that N 1

t denotes the number of clients arriving at a taxi station during
the time interval [0, t], and that N 2

t denotes the number of taxis arriving at that
same station during the same time interval [0, t].
How do you interpret the value of Mt depending on its sign?
How do you interpret the result of Question (d)?

Problem 9.19 We consider a birth and death process (Xt )t∈R+ on {0, 1, . . . , N }with
transition semigroup (P(t))t∈R and birth and death rates

λn = (N − n)λ, μn = nμ, n = 0, 1, . . . , N .

This process is used for the modeling of membrane channels in neuroscience.

(a) Write down the infinitesimal generator Q of (Xt )t∈R+ .
(b) From the forward Kolmogorov equation P ′(t) = P(t)Q, show that for all n =

0, 1, . . . , N we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P ′
n,0(t) = −λ0Pn,0(t) + μ1Pn,1(t),

P ′
n,k(t) = λk−1Pn,k−1(t) − (λk + μk)Pn,k(t) + μk+1Pn,k+1(t),

P ′
n,N (t) = λN−1Pn,N−1(t) − μN Pn,N (t),

k = 1, 2, . . . , N − 1.
(c) Let

Gk(s, t) = IE
[
sXt | X0 = k

] =
N∑

n=0

snP(Xt = n | X0 = k) =
N∑

n=0

sn Pk,n(t)

denote the generating function of Xt given that X0 = k ∈ {0, 1, . . . , N }. From
the result of Question (b), show that Gk(s, t) satisfies the partial differential
equation
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∂Gk

∂t
(s, t) = λN (s − 1)Gk(s, t) + (μ + (λ − μ)s − λs2)

∂Gk

∂s
(s, t), (9.8.5)

with Gk(s, 0) = sk , k = 0, 1, . . . , N .
(d) Verify that the solution of (9.8.5) is given by

Gk(s, t) = 1

(λ + μ)N
(μ + λs + μ(s − 1)e−(λ+μ)t )k(μ + λs − λ(s − 1)e−(λ+μ)t )N−k ,

k = 0, 1, . . . , N .
(e) Show that

IE[Xt | X0 = k] = k

(λ + μ)N
(λ + μe−(λ+μ)t )(μ + λ)k−1(μ + λ)N−k

+ N − k

(λ + μ)N
(μ + λ)k(λ − λe−(λ+μ)t )(μ + λ)N−k−1.

(f) Compute
lim
t→∞ IE[Xt | X0 = k]

and show that it does not depend on k ∈ {0, 1, . . . , N }.



Chapter 10
Discrete-Time Martingales

As mentioned in the introduction, stochastic processes can be classified into two
main families, namely Markov processes on the one hand, and martingales on the
other hand. Markov processes have been our main focus of attention so far, and in
this chapter we turn to the notion of martingale. In particular we will give a precise
mathematical meaning to the description of martingales stated in the introduction,
which says thatwhen (Xn)n∈N is amartingale, the best possible estimate at time n ∈ N

of the future value Xm at timem > n is Xn itself. Themain application ofmartingales
will be to recover in an elegant way the previous results on gambling processes of
Chap.2. Before that, let us state many recent applications of stochastic modeling are
relying on the notion of martingale. In financial mathematics for example, the notion
of martingale is used to characterize the fairness and equilibrium of a market model.

10.1 Filtrations and Conditional Expectations

Before dealing with martingales we need to introduce the important notion of filtra-
tion generated by a discrete-time stochastic process (Xn)n∈N. The filtration (Fn)n∈N
generated by a stochastic process (Xn)n∈N taking its values in a state space S, is the
family of σ-algebras

Fn := σ(X0, X1, . . . , Xn), n ≥ 0,

which denote the collections of events generated by X0, X1, . . . , Xn . Examples of
such events include

{X0 ≤ a0, X1 ≤ a1, . . . , Xn ≤ an}

for a0, a1, . . . , an a given fixed sequence of real numbers. Note that we have the
inclusion Fn ⊂ Fn+1, n ∈ N.
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One refers to Fn as the information generated by (Xk)k∈N up to time n, and to
(Fn)n∈N as the information flow generated by (Xn)n∈N.We say that a random variable
is Fn-measurable whenever F can be written as a function F = f (X0, X1, . . . , Xn)

of (X0, X1, . . . , Xn).
Consider for example the simple random walk

Sn := X1 + X2 + · · · + Xn, n ∈ N,

where (Xk)k≥1 is a sequence of independent, identically distributed {−1, 1} valued
random variables. The filtration (or information flow) (Fn)n∈N generated by (Sn)n∈N
is given by F0 = {∅,Ω

}
,

F1 = {∅, {X1 = 1}, {X1 = −1},Ω}
,

and

F2 = σ
({∅, {X1 = 1, X2 = 1}, {X1 = 1, X2 = −1}, {X1 = −1, X2 = 1},

{X1 = −1, X2 = −1},Ω})
.

The notation Fn is useful to represent a quantity of information available at time n,
and various sub σ-algebras of Fn can be defined such as e.g.

G2 := {∅, {X1 = 1, X2 = −1} ∪ {X1 = −1, X2 = 1},
{X1 = 1, X2 = 1} ∪ {X1 = −1, X2 = −1},Ω}

,

which contains less information than F2, as it only tells whether the increments X1,
X2 have same signs.

We now review the definition of conditional expectation, cf. also Sect. 1.6. Given
F a random variable with finite mean the conditional expectation IE[F | Fn] refers
to

IE[F | X0, X1, . . . , Xn] = IE[F | X0 = k0, . . . , Xn = kn]k0=X0,...,kn=Xn ,

given that X0, X1, . . . , Xn are respectively equal to k0, k1, . . . , kn ∈ S.
The conditional expectation IE[F | Fn] is itself a random variable that depends

only on the values of X0, X1, . . . , Xn , i.e. on the history of the process up to time
n ∈ N. It can also be interpreted as the best possible estimate of F in mean square
sense, given the values of X0, X1, . . . , Xn , cf. (1.6.17).

A stochastic process (Zn)n∈N is said to be Fn-adapted if the value of Zn depends
on no more than the information available up to time n in Fn , that means, the value
of Zn is some function of X0, X1, . . . , Xn , n ∈ N.

In particular, any Fn-adapted process (Zn)n∈N satisfies

IE[Zn | Fn] = Zn, n ∈ N.
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10.2 Martingales - Definition and Properties

We now turn to the definition of martingale.

Definition 10.1 An integrable,1 discrete-time stochastic process (Zn)n∈N is a mar-
tingale with respect to (Fn)n∈N if (Zn)n∈N is Fn-adapted and satisfies the property

IE[Zn+1 | Fn] = Zn, n ∈ N. (10.2.1)

The process (Zn)n∈N is a martingale with respect to (Fn)n∈N if, given the information
Fn known up to time n, the best possible estimate of Zn+1 is simply Zn .
Exercise. Using the tower property of conditional expectations, show that Defini-
tion (10.2.1) can be equivalently stated by saying that

IE[Mn | Fk] = Mk, 0 ≤ k < n.

A particular property of martingales is that their expectation is constant over time.

Proposition 10.2 Let (Zn)n∈N be a martingale. We have

IE[Zn] = IE[Z0], n ∈ N.

Proof From the tower property (1.6.10) we have:

IE[Zn+1] = IE[IE[Zn+1 | Fn]] = IE[Zn], n ∈ N,

hence by induction on n ∈ N we have

IE[Zn+1] = IE[Zn] = IE[Zn−1] = · · · = IE[Z1] = IE[Z0], n ∈ N.

�
Examples of Martingales

1. Any centered2 integrable process (Sn)n∈N with independent increments is a mar-
tingale with respect to the filtration (Fn)n∈N generated by (Sn)n∈N.

Indeed, in this case we have

IE[Sn+1 | Fn] = IE[Sn | Fn] + IE
[
Sn+1 − Sn | Fn

]

= IE[Sn | Fn] + IE[Sn+1 − Sn]
= IE[Sn | Fn] = Sn, n ∈ N.

1Integrable means IE[|Zn |] < ∞ for all n ∈ N.
2A random variable Xn is said to be centered if IE[Xn] = 0.
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In addition to being a martingale, a process (Xn)n∈N with centered independent
increments is also a Markov process, cf. Sect. 4.1. However, not all martingales
have the Markov property, and not all Markov processes are martingales. In addi-
tion, there are martingales and Markov processes which do not have independent
increments.

2. Given F ∈ L2(Ω) a square-integrable random variable and (Fn)n∈N a filtration,
the process (Xn)n∈N defined by Xn := IE[F | Fn] is an (Fn)n∈N-martingale under
the probability measure P, as follows from the tower property:

IE[Xn+1 | Fn] = IE[IE[F | Fn+1] | Fn] = IE[F | Fn] = Xn, n ∈ N,

(10.2.2)
from the tower property (1.6.10).

10.3 Stopping Times

Next, we turn to the definition of stopping time. If an event occurs at a (random)
stopping time, it should be possible, at any time n ∈ N, to determine whether the
event has already occured, based on the information available at time n. This idea is
formalized in the next definition.

Definition 10.3 A stopping time is a random variable τ : Ω −→ N such that

{τ > n} ∈ Fn, n ∈ N. (10.3.1)

The meaning of Relation (10.3.1) is that the knowledge of {τ > n} depends only on
the information present inFn up to time n, i.e. on the knowledge of X0, X1, . . . , Xn .

Note that condition (10.3.1) is equivalent to the condition

{τ ≤ n} ∈ Fn, n ∈ N,

since Fn is stable by complement and {τ ≤ n} = {τ > n}c.
Not every N-valued random variable is a stopping time, however, hitting times

provide natural examples of stopping times.

Proposition 10.4 The first hitting time

Tx := inf{k ≥ 0 : Xk = x}

of x ∈ S is a stopping time.

Proof We have

{Tx > n} = {X0 
= x, X1 
= x, . . . , Xn 
= x}
= {X0 
= x} ∩ {X1 
= x} ∩ · · · ∩ {Xn 
= x} ∈ Fn, n ∈ N,
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since

{X0 
= x} ∈ F0 ⊂ Fn, {X1 
= x} ∈ F1 ⊂ Fn, . . . , {Xn 
= x} ∈ Fn, n ∈ N.

�

On the other hand, the first time

T = inf

{
k ≥ 0 : Xk = max

l=0,1,...,N
Xl

}

the process (Xk)k∈N reaches its maximum over {0, 1, . . . , N } is not a stopping time.
Indeed, it is not possible to decide whether {T ≤ n}, i.e. the maximum has been
reached before time n, based on the information available at time n.
Exercise: Show that the minimum τ ∧ ν = min(τ , ν) of two stopping times is a
stopping time.

Definition 10.5 Given (Zn)n∈N a stochastic process and τ : Ω −→ N a stopping
time, the stopped process

(Zτ∧n)n∈N = (Zmin(τ ,n))n∈N

is defined as

Zτ∧n = Zmin(τ ,n) =
⎧
⎨

⎩

Zn if n < τ ,

Zτ if n ≥ τ ,

Using indicator functions we may also write

Zτ∧n = Zn1{n<τ } + Zτ1{n≥τ }, n ∈ N.

The following Fig. 10.1 is an illustration of the path of a stopped process.

Fig. 10.1 Stopped process
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The following Theorem 10.6 is called the stopping time theorem, it is due to
J.L. Doob (1910-2004).

Theorem 10.6 Assume that (Mn)n∈N is a martingale with respect to (Fn)n∈N. Then
the stopped process (Mτ∧n)n∈N is also a martingale with respect to (Fn)n∈N.

Proof Writing

Mn = M0 +
n∑

l=1

(Ml − Ml−1) = M0 +
∞∑

l=1

1{l≤n}(Ml − Ml−1),

we find

Mτ∧n = M0 +
τ∧n∑

l=1

(Ml − Ml−1) = M0 +
n∑

l=1

1{l≤τ }(Ml − Ml−1),

and for k ≤ n we find

IE
[
Mτ∧n | Fk

] = M0 +
n∑

l=1

IE
[
1{l≤τ }(Ml − Ml−1) | Fk

]

= M0 +
k∑

l=1

IE
[
1{l≤τ }(Ml − Ml−1) | Fk

] +
n∑

l=k+1

IE
[
1{l≤τ }(Ml − Ml−1) | Fk

]

= M0 +
k∑

l=1

(Ml − Ml−1)IE
[
1{l≤τ } | Fk

]

+
n∑

l=k+1

IE
[
IE

[
(Ml − Ml−1)1{l−1<τ } | Fl−1

] | Fk
]

= M0 +
k∑

l=1

(Ml − Ml−1)1{l≤τ }

+
n∑

l=k+1

IE
[
1{l−1<τ } IE

[
(Ml − Ml−1) | Fl−1

]

︸ ︷︷ ︸
=0

| Fk
]

= M0 +
τ∧k∑

l=1

(Ml − Ml−1)

= Mτ∧k,

k = 0, 1, . . . , n, where we used the tower property and the fact that

{τ ≥ l} = {τ > l − 1} ∈ Fl−1 ⊂ Fl ⊂ Fk, 1 ≤ l ≤ k.

�
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By Theorem 10.6we know that the stopped process (Mτ∧n)n∈N is amartingale, hence
its expectation is constant by Proposition 10.2. As a consequence, if τ is a stopping
time bounded by a constant N > 0, i.e. τ ≤ N , we have

IE[Mτ ] = IE[Mτ∧N ] = IE[Mτ∧0] = IE[M0]. (10.3.2)

As a consequence of (10.3.2), if (Mn)n∈N is a martingale and τ ≤ N and ν ≤ N are
two bounded stopping times bounded by a constant N > 0, we have

IE[Mτ ] = IE[Mν] = IE[M0]. (10.3.3)

In case τ is only a.s. finite, i.e. P(τ < ∞) = 1, we may also write

IE[Mτ ] = IE
[
lim
n→∞ Mτ∧n

]
= lim

n→∞ IE[Mτ∧n] = IE[M0],

provided that the limit and expectation signs can be exchanged, however this may not
be always the case. In some situations the exchange of limit and expectation signs
can be difficult to justify, nevertheless the exchange is possible when the stopped
process (Mτ∧n)n∈N is bounded in absolute value, i.e. |Mτ∧n| ≤ K a.s., n ∈ N, for
some constant K > 0.

Analog statements can be proved for submartingales, cf. Exercise 10.2 for this
notion.

10.4 Ruin Probabilities

In the sequel we will show that, as an application of the stopping time theorem, the
ruin probabilities computed for simple random walks in Chap. 2 can be recovered in
a simple and elegant way.

Consider the standard randomwalk (or gamblingprocess) (Sn)n∈N on {0, 1, . . . , B}
with independent {−1, 1}-valued increments with

P(Sn+1 − Sn = +1) = p and P(Sn+1 − Sn = −1) = q, n ∈ N,

as introduced in Sect. 2.1. Let
T0,B : Ω −→ N

be the first hitting time of the boundary {0, B}, defined by

τ := T0,B := inf{n ≥ 0 : Sn = B or Sn = 0}.
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One checks easily that the event {τ > n} depends only on the history of (Sk)k∈N up
to time n since for k ∈ {1, 2, . . . , B − 1} we have

{τ > n} = {0 < S0 < B} ∩ {0 < S1 < B} ∩ · · · ∩ {0 < Sn < B},

hence τ is a stopping time.

We will recover the ruin probabilities

P(Sτ = 0 | S0 = k), k = 0, 1, . . . , B,

computed in Chap. 2 in three steps, first in the unbiased case p = q = 1/2 (note that
the hitting time τ can be shown to be a.s. finite, cf. e.g. the identity (2.2.29)).

Step 1. The process (Sn)n∈N is a martingale.

We note that the process (Sn)n∈N has independent increments, and in the unbiased
case p = q = 1/2 those increments are centered:

IE[Sn+1 − Sn] = 1 × p + (−1) × q = 1 × 1

2
+ (−1) × 1

2
= 0, (10.4.1)

hence (Sn)n∈N is a martingale by Point 1 p. 265.

Step 2. The stopped process (Sτ∧n)n∈N is also a martingale, as a consequence of
Theorem 10.6.

Step 3. Since the stopped process (Sτ∧n)n∈N is a martingale by Theorem 10.6, we
find that its expectation IE[Sτ∧n | S0 = k] is constant in n ∈ N by Proposition 10.2,
which gives

k = IE[S0 | S0 = k] = IE[Sτ∧n | S0 = k], k = 0, 1, . . . , B.

Letting n go to infinity we get

IE[Sτ | S0 = k] = IE
[
lim
n→∞ Sτ∧n | S0 = k

]

= lim
n→∞ IE[Sτ∧n | S0 = k] = k,

where the exchange between limit and expectation is justified by the boundedness
|Sτ∧n| ≤ B a.s., n ∈ N. Hence we have

⎧
⎨

⎩

0 × P(Sτ = 0 | S0 = k) + B × P(Sτ = B | S0 = k) = IE[Sτ | S0 = k] = k

P(Sτ = 0 | S0 = k) + P(Sτ = B | S0 = k) = 1,
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which shows that

P(Sτ = B | S0 = k) = k

B
and P(Sτ = 0 | S0 = k) = 1 − k

B
,

k = 0, 1, . . . , B, which recovers (2.2.21) without use of boundary conditions, and
with short calculations. Namely, the solution has been obtained in a simple waywith-
out solving any finite difference equation, demonstrating the power of the martingale
approach.

Next, let us turn to the biased case where p 
= q. In this case the process (Sn)n∈N
is no longer a martingale, and in order to use Theorem 10.6 we need to construct a
martingale of a different type. Here we note that the process

Mn :=
(
q

p

)Sn

, n ∈ N,

is a martingale with respect to (Fn)n∈N.

Step 1. The process (Mn)n∈N is a martingale.

Indeed, we have

IE[Mn+1 | Fn] = IE

[(
q

p

)Sn+1 ∣∣∣Fn

]

= IE

[(
q

p

)Sn+1−Sn (
q

p

)Sn ∣∣∣Fn

]

=
(
q

p

)Sn

IE

[(
q

p

)Sn+1−Sn ∣∣∣Fn

]

=
(
q

p

)Sn

IE

[(
q

p

)Sn+1−Sn
]

=
(
q

p

)Sn
(
q

p
P(Sn+1 − Sn = 1) +

(
q

p

)−1

P(Sn+1 − Sn = −1)

)

=
(
q

p

)Sn
(

p
q

p
+ q

(
q

p

)−1
)

=
(
q

p

)Sn

(q + p) =
(
q

p

)Sn

= Mn,

n ∈ N. In particular, the expectation of (Mn)n∈N is constant over time by Proposi-
tion 10.2 since it is a martingale, i.e. we have

(
q

p

)k

= IE[M0 | S0 = k] = IE[Mn | S0 = k], k = 0, 1, . . . , B, n ∈ N.
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Step 2. The stopped process (Mτ∧n)n∈N is also a martingale, as a consequence of
Theorem 10.6.

Step 3. Since the stopped process (Mτ∧n)n∈N remains a martingale by Theorem 10.6,
its expected value IE[Mτ∧n | S0 = k] is constant in n ∈ N by Proposition 10.2. This
gives (

q

p

)k

= IE[M0 | S0 = k] = IE[Mτ∧n | S0 = k].

Next, letting n go to infinity we find

(
q

p

)k

= IE[M0 | S0 = k] = lim
n→∞ IE[Mτ∧n | S0 = k]

= IE
[
lim
n→∞ Mτ∧n | S0 = k

]

= IE[Mτ | S0 = k],

hence

(
q

p

)k

= IE[Mτ | S0 = k]

=
(
q

p

)B

P

(

Mτ =
(
q

p

)B

| S0 = k

)

+
(
q

p

)0

P

(

Mτ =
(
q

p

)0

| S0 = k

)

=
(
q

p

)B

P

(

Mτ =
(
q

p

)B

| S0 = k

)

+ P(Mτ = 1 | S0 = k).

Solving the system of equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
q

p

)k

=
(
q

p

)B

P

(

Mτ =
(
q

p

)B

| S0 = k

)

+ P(Mτ = 1 | S0 = k)

P

(

Mτ =
(
q

p

)B ∣∣∣S0 = k

)

+ P(Mτ = 1 | S0 = k) = 1,

gives

P(Sτ = B | S0 = k) = P

(

Mτ =
(
q

p

)B ∣∣∣S0 = k

)

(10.4.2)

= (q/p)k − 1

(q/p)B − 1
, k = 0, 1, . . . , B,
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and

P(Sτ = 0 | S0 = k) = P(Mτ = 1 | S0 = k)

= 1 − (q/p)k − 1

(q/p)B − 1
,

= (q/p)B − (q/p)k

(q/p)B − 1
,

k = 0, 1, . . . , B, which recovers (2.2.11).

10.5 Mean Game Duration

In this section we show that the mean game durations IE[τ | S0 = k] computed in
Sect. 2.3 can also be recovered as a second application of the stopping time theorem.

In the case of a fair game p = q = 1/2 the martingale method can be used by
noting that (S2n − n)n∈N is also a martingale.

Step 1. The process (S2n − n)n∈N is a martingale.

We have

IE[S2n+1 − (n + 1) | Fn] = IE[(Sn + Sn+1 − Sn)
2 − (n + 1) | Fn]

= IE[S2n + (Sn+1 − Sn)
2 + 2Sn(Sn+1 − Sn) − (n + 1) | Fn]

= IE[S2n − n − 1 | Fn] + IE[(Sn+1 − Sn)
2 | Fn] + 2IE[Sn(Sn+1 − Sn) | Fn]

= S2n − n − 1 + IE[(Sn+1 − Sn)
2 | Fn] + 2SnIE[Sn+1 − Sn | Fn]

= S2n − n − 1 + IE[(Sn+1 − Sn)
2] + 2SnIE[Sn+1 − Sn]

= S2n − n − 1 + IE[(Sn+1 − Sn)
2]

= S2n − n, n ∈ N.

Step 2. The stopped process (S2τ∧n − τ ∧ n)n∈N is also amartingale, as a consequence
of Theorem 10.6.

Step 3. Since the stopped process (S2τ∧n − τ ∧ n)n∈N is also a martingale, its expec-
tation IE[S2τ∧n − τ ∧ n | S0 = k] is constant in n ∈ N by Proposition 10.2, hence we
have

k2 = IE
[
S20 − 0 | S0 = k

] = IE
[
S2τ∧n − τ ∧ n | S0 = k

]
,

and after taking the limit as n goes to infinity,
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k2 = lim
n→∞ IE

[
S2τ∧n − τ ∧ n | S0 = k

]

= IE
[
lim
n→∞ S2τ∧n − lim

n→∞ τ ∧ n | S0 = k
]

= IE[S2τ − τ | S0 = k],

since S2τ∧n ∈ [0, B2] for all n ∈ N and n −→ τ ∧ n is nondecreasing, and this
gives3, 4

k2 = IE[S2τ − τ | S0 = k]
= IE[S2τ | S0 = k] − IE[τ | S0 = k]
= B2

P(Sτ = B | S0 = k) + 02 × P(Sτ = 0 | S0 = k) − IE[τ | S0 = k],

i.e.

IE[τ | S0 = k] = B2
P(Sτ = B | S0 = k) − k2

= B2 k

B
− k2

= k(B − k),

k = 0, 1, . . . , B, which recovers (2.3.17).

Finally we show how to recover the value of the mean game duration, i.e. the mean
hitting time of the boundaries {0, B} in the non-symmetric case p 
= q.

Step 1. The process Sn − (p − q)n is a martingale.

In this case we note that although (Sn)n∈N does not have centered increments and is
not a martingale, the compensated process

Sn − (p − q)n, n ∈ N,

is a martingale because, in addition to being independent, its increments are centered
random variables:

IE[Sn − Sn−1 − (p − q)] = IE[Sn − Sn−1] − (p − q) = 0,

by (10.4.1).

Step 2. The stopped process (Sτ∧n − (p − q)(τ ∧ n))n∈N is also a martingale, as a
consequence of Theorem 10.6.

3By application of the dominated convergence theorem.
4By application of the monotone convergence theorem.
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Step 3. The expectation IE[Sτ∧n − (p − q)(τ ∧ n) | S0 = k] is constant in n ∈ N.

Step 4. Since the stopped process (Sτ∧n − (p − q)(τ ∧ n))n∈N is a martingale, we
have

k = IE[S0 − 0 | S0 = k] = IE[Sτ∧n − (p − q)(τ ∧ n) | S0 = k],

and after taking the limit as n goes to infinity,

k = lim
n→∞ IE[Sτ∧n − (p − q)(τ ∧ n) | S0 = k]

= IE
[
lim
n→∞ Sτ∧n − (p − q) lim

n→∞ τ ∧ n | S0 = k
]

= IE[Sτ − (p − q)τ | S0 = k],

which gives

k = IE[Sτ − (p − q)τ | S0 = k]
= IE[Sτ | S0 = k] − (p − q)IE[τ | S0 = k]
= B × P(Sτ = B | S0 = k) + 0 × P(Sτ = 0 | S0 = k) − (p − q)IE[τ | S0 = k],

i.e.

(p − q)IE[τ | S0 = k] = B × P(Sτ = B | S0 = k) − k

= B
(q/p)k − 1

(q/p)B − 1
− k,

from (10.4.2), hence

IE[τ | S0 = k] = 1

p − q

(
B

(q/p)k − 1

(q/p)B − 1
− k

)
, k = 0, 1, . . . , B,

which recovers (2.3.11).
In Table10.1 we summarize the family of martingales used to treat the above

problems.

Table 10.1 List of
martingales

Probabilities

Problem Unbiased Biased

Ruin probability Sn

(
q

p

)Sn

Mean game
duration

S2n − n Sn − (p − q)n
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Exercises

Exercise 10.1 Consider a sequence (Xn)n≥1 of independent Bernoulli random vari-
ables with

P(Xn = 1) = P(Xn = −1) = 1/2, n ≥ 1,

and the process (Mn)n∈N defined by M0 := 0 and

Mn :=
n∑

k=1

2k−1Xk, n ≥ 1.

See (Fig. 10.2), Note that when X1 = X2 = · · · = Xn−1 = −1 and Xn = 1, we have

Mn = −
n−1∑

k=1

2k−1 + 2n−1 = −1 − 2n−1

1 − 2
+ 2n−1 = 1, n ≥ 1.

(a) Show that the process (Mn)n∈N is a martingale.
(b) Is the random time

τ := inf{n ≥ 1 : Mn = 1}

a stopping time?
(c) Consider the stopped process

Mτ∧n := Mn1{n<τ } + 1{τ≤n} =
⎧
⎨

⎩

Mn = 1 − 2n if n < τ ,

Mτ = 1 if n ≥ τ ,

n ∈ N, See (Fig. 10.3). Give an interpretation of (Mn∧τ )n∈N in terms of betting
strategy for a gambler starting a game at M0 = 0.

(d) Determine the two possible values of Mτ∧n and the probability distribution of
Mτ∧n at any time n ≥ 1.

(e) Show, using the result of Question (d), that we have

IE[Mτ∧n] = 0, n ∈ N.

(f) Show that the result of Question (e) can be recovered using the stopping time
theorem.

Exercise 10.2 Let (Mn)n∈N be a discrete-time submartingale with respect to a fil-
tration (Fn)n∈N, with F0 = {∅,Ω}, i.e. we have

Mn ≤ IE[Mn+1 | Fn], n ≥ 0.
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Fig. 10.2 Possible paths of
the process (Mn)n∈N

Fig. 10.3 Possible paths of
the stopped process
(Mτ∧n)n∈N

(a) Show that we have IE[Mn+1] ≥ IE[Mn], n ≥ 0, i.e. a submartingale has an
increasing expectation.

(b) Show that independent increment processes whose increments have nonnegative
expectation are examples of submartingales.

(c) (Doob-Meyer decomposition) Show that there exists two processes (Nn)n∈N
and (An)n∈N such that

(i) (Nn)n∈N is a martingale with respect to (Fn)n∈N,

(ii) (An)n∈N is non-decreasing, i.e. An ≤ An+1, a.s., n ∈ N,

(iii) (An)n∈N is predictable in the sense that An isFn−1-measurable, n ∈ N, and

(iv) Mn = Nn + An , n ∈ N.
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Hint: Let A0 = 0 and

An+1 := An + IE[Mn+1 − Mn | Fn], n ≥ 0,

and define (Nn)n∈N in such a way that it satisfies the four required properties.

(d) Show that for all bounded stopping times σ and τ such that σ ≤ τ a.s., we have

IE[Mσ] ≤ IE[Mτ ].

Hint: Use the Doob stopping time Theorem 10.6 for martingales and (10.3.3).

Exercise 10.3 Consider an asset price (Sn)n=0,1,...,N which is a martingale under the
risk-neutral measure P

∗, with respect to the filtration (Fn)n∈N. Given the (convex)
function φ(x) := (x − K )+, show that the price of an Asian option with payoff

φ

(
S1 + S2 + · · · + SN

N

)

is upper bounded by the price of the European call option with maturity N , i.e. show
that

IE∗
[
φ

(
S1 + S2 + · · · + SN

N

)]
≤ IE∗[φ(SN )].

Hint: Use in the following order:

(i) the convexity inequality

φ

(
x1 + x2 + · · · + xn

n

)
≤ φ(x1) + φ(x2) + · · · + φ(xn)

n
,

(ii) the martingale property of (Sk)k∈N,
(iii) the conditional Jensen inequality φ(IE[F | G]) ≤ IE[φ(F) | G],
(iv) the tower property of conditional expectations.

Exercise 10.4 A process (Mn)n∈N is a submartingale if it satisfies

Mk ≤ IE[Mn | Fk], k = 0, 1, . . . , n.

(a) Show that the expectation IE[Mn] of a submartingale increases with time n ∈ N.
(b) Consider the random walk given by S0 := 0 and

Sn :=
n∑

k=1

Xk = X1 + X2 + · · · + Xn, n ≥ 1,
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where (Xn)n≥1 is an i.i.d. Bernoulli sequence of {0, 1}-valued random variables
with P(Xn = 1) = p, n ≥ 1. Under which condition on α ∈ R is the process
(Sn − αn)n∈N a submartingale?

Exercise 10.5 Recall that a process (Mn)n∈N is a submartingale if it satisfies

Mk ≤ IE[Mn | Fk], k = 0, 1, . . . , n.

(a) Show that any convex function (φ(Mn))n∈N of a martingale (Mn)n∈N is itself a
submartingale. Hint: Use Jensen’s inequality.

(b) Show that any convexnondecreasing functionφ(Mn)of a submartingale (Mn)n∈N
remains a submartingale.

Problem 10.6 (a) Consider (Mn)n∈N a nonnegative martingale. For any x > 0, let

τx := inf{n ≥ 0 : Mn ≥ x}.

Show that the random time τx is a stopping time.
(b) Show that for all n ≥ 0 we have

P

(
max

k=0,1,...,n
Mk ≥ x

)
≤ IE[Mn]

x
. (10.5.1)

Hint: Use the Markov inequality and the Doob stopping time Theorem 10.6 for
the stopping time τx .

(c) Show that (10.5.1) remains valid when (Mn)n∈N is a nonnegative submartingale.
Hint:Use theDoob stopping time theorem for submartingales as inExercise 10.2-
(d).

(d) Show that for any n ≥ 0 we have

P

(
max

k=0,1,...,n
Mk ≥ x

)
≤ IE[(Mn)

2]
x2

, x > 0.

(e) Show that more generally we have

P

(
max

k=0,1,...,n
Mk ≥ x

)
≤ IE[|Mn|p]

x p
, x > 0,

for all n ≥ 0 and p ≥ 1.
(f) Given (Yn)n≥1 a sequence of centered independent random variables with same

mean IE[Yn] = 0 and variance σ2 = Var[Yn], n ≥ 1, consider the random walk
Sn = Y1 + Y2 + · · · + Yn , n ≥ 1, with S0 = 0.
Show that for all n ≥ 0 we have

P

(
max

k=0,1,...,n
|Sk | ≥ x

)
≤ nσ2

x2
, x > 0.
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(g) Show that for any (not necessarily nonnegative) submartingale we have

P

(
max

k=0,1,...,n
Mk ≥ x

)
≤ IE[M+

n ]
x

, x > 0,

where z+ = max(z, 0), z ∈ R.
(h) A process (Mn)n∈N is a supermartingale5 if it satisfies

IE[Mn | Fk] ≤ Mk, k = 0, 1, . . . , n.

Show that for any nonnegative supermartingale we have

P

(
max

k=0,1,...,n
Mk ≥ x

)
≤ IE[M0]

x
, x > 0.

(i) Show that for any nonnegative submartingale (Mn)n∈N and any convex nonde-
creasing nonnegative function φ we have

P

(
max

k=0,1,...,n
φ(Mk) ≥ x

)
≤ IE[φ(Mn)]

x
, x > 0.

Hint: Consider the stopping time

τφ
x := inf{n ≥ 0 : Mn ≥ x}.

(j) Give an example of a nonnegative supermartingale which is not a martingale.

5“This obviously inappropriate nomenclature was chosen under the malign influence of the noise
level of radio’s SUPERman program, a favorite supper-time program of Doob’s son during the
writing of [Doo53]”, cf. [Doo84], historical notes, p. 808.



Chapter 11
Spatial Poisson Processes

Spatial Poisson process are typically used to model the random scattering of config-
uration points within a plane or a three-dimensional space X . In case X = R+ is the
real half line, these random points can be identified with the jump times (Tk)k≥1 of
the standard Poisson process (Nt )t∈R+ introduced in Sect. 9.1. However, in contrast
with the previous chapter, no time ordering is a priori imposed here on the index
set X .

11.1 Spatial Poisson (1781–1840) Processes

In this section we present the construction of spatial Poisson processes on a space of
configurations of X ⊂ R

d , d ≥ 1. The set

Ω X := {
ω := (xi )

N
i=1 ⊂ X, N ∈ N ∪ {∞}} ,

is called the space of configurations on X ⊂ R
d . The next figure illustrates a given

configuration ω ∈ Ω X .
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Given A a (measurable) subset of X , we let

ω(A) = #{x ∈ ω : x ∈ A} =
∑

x∈ω

1A(x)

denote the number of configuration points in ω that are contained in the set A.
Given ρ : X −→ R+ a nonnegative function, the Poisson probability measure

P
X
σ with intensity σ(dx) = ρ(x)dx on X is the only probability measure on Ω X

satisfying

(i) For any (measurable) subset A of X such that

σ(A) =
∫

A
ρ(x)dx =

∫

Rd

1A(x)ρ(x)dx < ∞,

the number ω(A) of configuration points contained in A is a Poisson random
variable with intensity σ(A), i.e.

P
X
σ (ω ∈ Ω X : ω(A) = n) = e−σ(A) (σ(A))n

n! , n ∈ N.

(ii) In addition, if A1, A2, . . . , An are disjoint subsets of X with σ(Ak) < ∞,
k = 1, 2, . . . , n, the Nn-valued random vector

ω �−→ (ω(A1), . . . ,ω(An)), ω ∈ Ω X ,

is made of independent random variables for all n ≥ 1.

In the remaining of this chapter we will assume that σ(X) < ∞ for simplicity.
The Poisson measure PX

σ can also be defined as

IEPX
σ
[F] = e−σ(X)

∞∑

n=0

1

n!
∫

Xn

fn(x1, x2, . . . , xn)σ(dx1) · · · σ(dxn) (11.1.1)

for F written as

F(ω) =
∞∑

n=0

1{ω(X)=n} fn(x1, x2, . . . , xn)

where fn is a symmetric integrable function ofω = {x1, x2, . . . , xn}whenω(X) = n,
n ≥ 1, cf. e.g. Proposition6.1.3 and Sect. 6.1 in [Pri09].

By applying the above to

F(ω) = 1{ω(X)=n}1An (x1, x2, . . . , xn),
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we find that the conditional distribution of ω = {x1, x2, . . . , xn} given that ω(X) = n
is given by the formula

P
X
σ ({x1, . . . , xn} ⊂ A | ω(X) = n) = P

X
σ ({x1, . . . , xn} ⊂ A and ω(X) = n)

PX
σ (ω(X) = n)

= 1

PX
σ (ω(X) = n)

IEPX
σ
[1{ω(X)=n}1An (x1, x2, . . . , xn)]

=
(

σ(A)

σ(X)

)n

. (11.1.2)

In many applications the intensity function ρ(x) will be constant, i.e. ρ(x) = λ > 0,
x ∈ X , where λ > 0 is called the intensity parameter, and

σ(A) = λ

∫

A
dx = λ

∫

X
1A(x)dx

represents the surface or volume of A in R
d . In this case, (11.1.2) can be used to

show that the random points {x1, . . . , xn} are uniformly distributed on An given that
{ω(A) = n}.

11.2 Poisson Stochastic Integrals

In the next proposition we consider the Poisson stochastic integral defined as

∫

X
f (x)ω(dx) :=

∑

x∈ω

f (x),

for f an integrable function on X , andwe compute its first and second ordermoments
and cumulants via its characteristic function.

Proposition 11.1 Let f be an integrable function on X. We have

IEPX
σ

[
exp

(
i
∫

X
f (x)ω(dx)

)]
= exp

(∫

X
(ei f (x) − 1)σ(dx)

)
.

Proof We assume that σ(X) < ∞. By (11.1.1) we have

IE
PX

σ

[
exp

(
i
∫

X
f (x)ω(dx)

)]

= e−σ(X)
∞∑

n=0

1

n!
∫

X
· · ·

∫

X
ei( f (x1)+···+ f (xn))σ(dx1) · · · σ(dxn).
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= e−σ(X)
∞∑

n=0

1

n!
(∫

X
ei f (x)σ(dx)

)n

= exp

(∫

X
(ei f (x) − 1)σ(dx)

)
. �

The characteristic function allows us to compute the expectation of
∫
X f (x)ω(dx), as

IEPX
σ

[∫

X
f (x)ω(dx)

]
= −i

d

dε
IEPX

σ

[
exp

(
iε

∫

X
f (x)ω(dx)

)]

|ε=0

= −i
d

dε
exp

(∫

X
(eiε f (x) − 1)σ(dx)

)

|ε=0

=
∫

X
f (x)σ(dx),

for f an integrable function on X . As a consequence, the compensated Poisson
stochastic integral ∫

X
f (x)ω(dx) −

∫

X
f (x)σ(dx)

is a centered random variable, i.e. we have

IEPX
σ

[∫

X
f (x)ω(dx) −

∫

X
f (x)σ(dx)

]
= 0.

The variance can be similarly computed as

IEPX
σ

[(∫

X
f (x)(ω(dx) − σ(dx))

)2
]

=
∫

X
| f (x)|2σ(dx),

for all f in the space L2(X,σ) of functions which are square-integrable on X with
respect to σ(dx).

More generally, the logarithmic generating function

log IEPX
σ

[
exp

(∫

X
f (x)ω(dx)

)]
=

∫

X
(e f (x) − 1)σ(dx) =

∞∑

n=1

1

n!
∫

X
f n(x)σ(dx),

shows that the cumulants of
∫
X f (x)ω(dx) are given by

κn =
∫

X
f n(x)σ(dx), n ≥ 1. (11.2.1)
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11.3 Transformations of Poisson Measures

Consider a mapping τ : (X,σ) −→ (Y,μ), and let

τ∗ : Ω X −→ ΩY

be the transformed configuration defined by

τ∗(ω) := {τ (x) : x ∈ ω}, ω ∈ Ω X ,

as illustrated in the following figure.

Proposition 11.2 The random configuration

Ω X : −→ ΩY

ω �−→ τ∗(ω)

has the Poisson distribution PY
μ with intensity μ on Y , where μ is defined by

μ(A) :=
∫

X
1A(τ (x))σ(dx) =

∫

X
1τ−1(A)(x)σ(dx) = σ(τ−1(A)),

for A a (measurable) subset of X.

Proof We have

P
X
σ (τ∗ω(A) = n) = P

X
σ (ω(τ−1(A)) = n)

= e−σ(τ−1(A)) (σ(τ−1(A)))n

n!
= e−μ(A) (μ(A))n

n! .
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More generally we can check that for all families A1, A2, . . . , An of disjoint subsets
of X and k1, k2, . . . , kn ∈ N, we have

P
X
σ ({ω ∈ Ω X : τ∗ω(A1) = k1, . . . , τ∗ω(An) = kn})

=
n∏

i=1

P
X
σ ({τ∗ω(Ai ) = ki })

=
n∏

i=1

P
X
σ ({ω(τ−1(Ai )) = ki })

= exp

(

−
n∑

i=1

σ(τ−1(Ai ))

)
n∏

i=1

(σ(τ−1(Ai )))
ki

ki !

= exp

(

−
n∑

i=1

μ(Ai )

)
n∏

i=1

(μ(Ai ))
ki

ki !

=
n∏

i=1

P
Y
μ ({ω(Ai ) = ki })

= P
Y
μ ({ω(A1) = k1, . . . ,ω(An) = kn}).

�

The next figure illustrates the transport of measure in the case of Gaussian intensities
on X = R.

For example in the case of a flat intensity ρ(x) = λ on X = R+ the intensity becomes
doubled under the mapping τ (x) = x/2, since

P
X
σ (τ∗ω([0, t]) = n) = P

X
σ (ω(τ−1([0, t])) = n)

= e−σ(τ−1([0,t])) (σ(τ−1([0, t])))n
n!

= e−2λt (2λt)n/n!.
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Exercises

Exercise 11.1 Consider a standard Poisson process (Nt )t∈R+ on R+ with intensity
λ = 2 and jump times (Tk)k≥1. Compute

IE[T1 + T2 + T3 | N2 = 2].

Exercise 11.2 Consider a spatial Poisson process on R2 with intensity λ = 0.5 per
square meter. What is the probability that there are 10 events within a circle of radius
3m.

Exercise 11.3 Some living organisms are distributed in space according to a Poisson
process of intensity θ = 0.6 units per mm3. Compute the probability that more than
two living organisms are found within a 10mm3 volume.

Exercise 11.4 Defects are present over a piece of fabric according to a Poisson
process with intensity of one defect per piece of fabric. Both halves of the piece is
checked separately. What is the probability that both inspections record at least one
defect?

Exercise 11.5 Letλ > 0 and suppose that N points are independently and uniformly
distributed over the interval [0, N ]. Determine the probability distribution for the
number of points in the interval [0,λ] as N → ∞.

Exercise 11.6 Suppose that X (A) is a spatial Poisson process of discrete items
scattered on the plane R2 with intensity λ = 0.5 per square meter. We let

D((x, y), r) = {(u, v) ∈ R
2 : (x − u)2 + (y − v)2 ≤ r2}

denote the disc with radius r centered at (x, y) in R
2. No evaluation of numerical

expressions is required in this exercise.

(a) What is the probability that 10 items are found within the disk D((0, 0), 3) with
radius 3 meters centered at the origin?
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(b) What is the probability that 5 items are found within the disk D((0, 0), 3) and 3
items are found within the disk D((x, y), 3) with (x, y) = (7, 0)?

(c) What is the probability that 8 items are found anywhere within
D((0, 0), 3)

⋃
D((x, y), 3) with (x, y) = (7, 0)?

(d) Given that 5 items are found within the disk D((0, 0), 1), what is the probability
that 3 of them are located within the disk D((1/2, 0), 1/2) centered at (1/2, 0)
with radius 1/2?



Chapter 12
Reliability Theory

This chapter consists in a short review of survival probabilities based on failure
rate and reliability functions, in connection with Poisson processes having a time-
dependent intensity.

12.1 Survival Probabilities

Let τ : Ω −→ R+ denote (random) the lifetime of an entity, and let P(τ ≥ t) denote
its probability of surviving at least t years, t > 0. The probability of surviving up to
a (deterministic) time T , given that the entity has already survived up to time t , is
given by

P(τ > T | τ > t) = P(τ > T and τ > t)

P(τ > t)

= P(τ > T )

P(τ > t)
, 0 ≤ t ≤ T .

Let now

λ(t) := lim
h↘0

P(τ < t + h | τ > t)

h
, t ∈ R+,

denote the failure rate function associated to τ . Letting A = {τ < t + h} and B =
{τ > t} we note that (Ω \ A) ⊂ B, hence A ∩ B = B \ Ac, and
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λ(t) = lim
h↘0

P(τ < t + h | τ > t)

h

= 1

P(τ > t)
lim
h↘0

P(τ < t + h and τ > t)

h

= 1

P(τ > t)
lim
h↘0

P(τ > t) − P(τ > t + h)

h

= − d

dt
logP(τ > t)

= − 1

P(τ > t)

d

dt
P(τ > t) (12.1.1)

= − 1

R(t)

d

dt
R(t),

where the reliability function R(t) is defined by

R(t) := P(τ > t), t ∈ R+.

This yields
R′(t) = −λ(t)R(t),

with R(0) = P(τ > 0) = 1, which has for solution

R(t) = P(τ > t) = R(0) exp

(
−

∫ t

0
λ(u)du

)
= exp

(
−

∫ t

0
λ(u)du

)
,

(12.1.2)

t ∈ R+. Hence we have

P(τ > T | τ > t) = R(T )

R(t)
= exp

(
−

∫ T

t
λ(u)du

)
, t ∈ [0, T ]. (12.1.3)

In case the failure rate function λ(t) = c is constant we recover the memoryless
property of the exponential distribution with parameter c > 0, cf. (9.2.3).

Relation (12.1.2) can be recovered informally as

P(τ > T ) =
∏

0<t<T

P(τ > t + dt | τ > t) =
∏

0<t<T

exp (−λ(t)dt) ,

which yields

P(τ > t) = exp

(
−

∫ t

0
λ(s)ds

)
, t ∈ R+,

in the limit.
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12.2 Poisson Process with Time-Dependent Intensity

Recall that the random variable τ has the exponential distribution with parameter
λ > 0 if

P(τ > t) = e−λt , t ≥ 0,

cf. (1.5.3). Given (τn)n≥0 a sequence of i.i.d. exponentially distributed random vari-
ables, letting

Tn = τ0 + · · · + τn−1, n ≥ 1,

and
Nt =

∑
n≥1

1[Tn ,∞)(t), t ∈ R+,

defines the standard Poisson process with intensity λ > 0 of Sect. 9.1 and we have

P(Nt − Ns = k) = e−λ(t−s) (λ(t − s))k

k! , k ≥ 0.

The intensity of the Poisson process can in fact made time-dependent. For example
under the time change

Xt = N∫ t
0 λ(s)ds

where (λ(u))u∈R+ is a deterministic function of time, we have

P(Xt − Xs = k) =
(∫ t

s λ(u)du
)k

k! exp

(
−

∫ t

s
λ(u)du

)
, k ≥ 0.

In this case we have

P(Xt+h − Xt = 0) = e−λ(t)h + o(h) = 1 − λ(t)h + o(h), h ↘ 0, (12.2.1)

and

P(Xt+h − Xt = 1) = 1 − e−λ(t)h + o(h) � λ(t)h, h ↘ 0, (12.2.2)

which can also viewed as a pure birth process with time-dependent intensity. Letting
τ0 denote the first jump time of (Xt )t∈R+ , we have

R(t) = P(τ0 > t) = P(Xt = 0) = exp

(
−

∫ t

0
λ(u)du

)
, t ≥ 0, (12.2.3)
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hence by (12.1.3) we find

P(Xt+h = 0 | Xt = 0) = P(τ0 > t + h | τ0 > t)

= e−λ(t)h + o(h) = 1 − λ(t)h + o(h), h ↘ 0,

and

P(Xt+h ≥ 1 | Xt = 0) = P(τ0 < t + h | τ0 > t) = 1 − P(τ0 > t + h | τ0 > t)

= 1 − e−λh � λ(t)h + o(h), h ↘ 0,

which coincide respectively with P(Xt+h − Xt = 0) and P(Xt+h − Xt = 1)
in (12.2.1) and (12.2.2) above, as (Xt )t∈R+ has independent increments.

Cox Processes

The intensity process λ(s) can also be made random. In this case, (Xt )t∈R+ is called
a Cox process and it may not have independent increments. For example, assume
that (λu)u∈R+ is a two-state Markov chain on {0,λ}, with transitions

P(λt+h = λ | λt = 0) = αh, h ↘ 0,

and
P(λt+h = 0 | λt = λ) = βh, h ↘ 0.

In this case the probability distribution of Nt can be explicitly computed, cf. Chap.
VI-7 in [KT81].

Renewal Processes

A renewal process is a counting process (Nt )t∈R+ given by

Nt =
∑
k≥1

k1[Tk ,Tk+1)(t) =
∑
k≥1

1[Tk ,∞)(t), t ∈ R+,

in which τk = Tk+1 − Tk , k ∈ N, is a sequence of independent identically distributed
random variables. In particular, Poisson processes are renewal processes.

12.3 Mean Time to Failure

The mean time to failure is given, from (12.1.1), by

IE[τ ] =
∫ ∞

0
t
d

dt
P(τ < t)dt = −

∫ ∞

0
t
d

dt
P(τ > t)dt

= −
∫ ∞

0
t R′(t)dt =

∫ ∞

0
R(t)dt, (12.3.1)

provided that limt↘0 t R(t) = 0. For example when τ has the distribution function
(12.2.3) we get
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IE[τ ] =
∫ ∞

0
R(t)dt =

∫ ∞

0
exp

(
−

∫ t

0
λ(u)du

)
dt.

In case the function λ(t) = λ > 0 is constant we recover the mean value

IE[τ ] =
∫ ∞

0
e−λt dt = 1

λ

of the exponential distribution with parameter λ > 0.

Exercise

Exercise 12.1 Assume that the random time τ has the Weibull distribution with
probability density

fβ(x) = β1[0,∞)x
β−1e−tβ , x ∈ R,

where β > 0 is a called the shape parameter.

(a) Compute the distribution function Fβ of the Weibull distribution.
(b) Compute the reliability function R(t) = P(τ > t).
(c) Compute the failure rate function λ(t).
(d) Compute the mean time to failure.



Appendix A
Some Useful Identities

Here we present a summary of algebraic identities that are used in this text.

Indicator functions

1A(x) =
⎧
⎨

⎩

1 if x ∈ A,

0 if x /∈ A.

1[a,b](x) =
⎧
⎨

⎩

1 if a ≤ x ≤ b,

0 otherwise.

Binomial coefficients
(
n

k

)

:= n!
(n − k)!k! , k = 0, 1, . . . , n.

Exponential series

ex =
∞∑

n=0

xn

n! , x ∈ R. (A.1)

Geometric sum
n∑

k=0

rk = 1 − r

1 − r

n+1

, r �= 1. (A.2)

Geometric series
∞∑

k=0

rk = 1

1 − r
, −1 < r < 1. (A.3)

Differentiation of geometric series
∞∑

k=1

krk−1 = ∂

∂r

∞∑

k=0

rk = ∂

∂r

1

1 − r
= 1

(1 − r)2
, −1 < r < 1. (A.4)
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Binomial identities
n∑

k=0

(
n

k

)

akbn−k = (a + b)n.

n∑

k=0

(
n

k

)

= 2n. (A.5)

n∑

k=1

k

(
n

k

)

= n2n−1.

n∑

k=0

k

(
n

k

)

akbn−k =
n∑

k=1

n!
(n − k)!(k − 1)!a

kbn−k

=
n−1∑

k=0

n!
(n − 1 − k)!k!a

k+1bn−1−k

= n
n−1∑

k=0

(
n − 1

k

)

ak+1bn−1−k

= na(a + b)n−1, n ≥ 1,
n∑

k=0

k

(
n

k

)

akbn−k = a
∂

∂a

n∑

k=0

(
n

k

)

akbn−k

= a
∂

∂a
(a + b)n

= na(a + b)n−1, n ≥ 1.

Sums of integers
n∑

k=1

k = n(n + 1)

2
. (A.6)

n∑

k=1

k2 = n(n + 1)(2n + 1)

6
. (A.7)

Taylor expansion

(1 + x)α =
∞∑

k=0

xk

k! α(α − 1) × · · · × (α − (k − 1)). (A.8)

Differential equation

The solution of f ′(t) = c f (t) is given by f (t) = f (0)ect , t ∈ R+. (A.9)



Appendix B
Solutions to Selected Exercises and Problems

Chapter 1 - Probability Background

Exercise 1.2 We write

Z =
N∑

k=1

Xk

whereP(N = n) = 1/6, n = 1, 2, . . . , 6, and Xk is a Bernoulli random variable with
parameter 1/2, k = 1, 2, . . . , 6.

(a) We have

IE[Z ] = IE[IE[Z | N ]] =
6∑

n=1

IE[Z | N = n]P(N = n) = 7

4
, (B.1)

where we applied (A.6). Concerning the variance, we have

IE[Z2] = IE[IE[Z2 | N ]] = 14

3
, (B.2)

where we used (A.7) and (B.1), hence

Var[Z ] = IE[Z2] − (IE[Z ])2 = 14

3
− 49

16
= 77

48
. (B.3)

(b) We find

P(Z = l) = 1

6

6∑

n=max(1,l)

(
n

l

)(
1

2

)n

, l = 0, 1, . . . , 6.

(c) We have
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IE[Z ] =
6∑

l=0

lP(Z = l) = 1

6

6∑

l=0

l
6∑

n=l

(
1

2

)n (n

l

)

= 7

4
,

which recovers (A.7), and where we applied (A.5). We also have

IE[Z2] =
6∑

l=0

l2P(Z = l) = 14

3
,

which recovers (B.3).

Exercise 1.3

(a) Weassume that the sequenceofBernoulli trials is representedby a family (Xk)k≥1

of independent Bernoulli random variables with distribution P(Xk = 1) = p,
P(Xk = 0) = 1 − p, k ≥ 1. We have

Z = X1 + X2 + · · · + XN =
N∑

k=1

Xk,

and, since IE[Xk] = p,

IE[Z ] =
∞∑

n=0

(
n∑

k=1

IE[Xk]
)

P(N = n) = p
∞∑

n=0

nP(N = n) = pIE[N ].

Next, the expectation of the Poisson random variable N with parameter λ > 0
is given as in (1.6.4) by

IE[N ] =
∞∑

n=0

nP(N = n) = e−λ
∞∑

n=0

n
λn

n! = λe−λ
∞∑

n=0

λn

n! = λe−λeλ = λ,

(B.4)
where we used the exponential series (A.1), hence IE[Z ] = pλ. Concerning the
variance we have, since IE[X2

k ] = p we find

IE[Z2] = IE

⎡

⎣

(
N∑

k=1

Xk

)2
⎤

⎦ = p(1 − p)IE[N ] + p2IE[N 2].

Next, we have

IE[N 2] =
∞∑

n=0

n2P(N = n) = e−λ
∞∑

n=0

n2
λn

n! λ + λ2,

hence

https://doi.org/_1
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Var[N ] = IE[N 2] − (IE[N ])2 = λ, (B.5)

and Var[Z ] = IE[Z2] − (IE[Z ])2 = pλ.

(b) For l ∈ N, using (1.3.1) with B = {Z = l} and the fact that
n∑

k=1

Xk has a binomial

distribution with parameter (n, p), we have

P(Z = l) =
∞∑

n=0

P

(
N∑

k=1

Xk = l
∣
∣
∣N = n

)

P(N = n) = (λp)

l!
l

e−pλ,

hence Z has a Poisson distribution with parameter pλ.
(c) From Question (b), Z is a Poisson random variable with parameter pλ, hence

from (B.4) and (B.5) we have IE[Z ] = Var[Z ] = pλ.

Exercise 1.5 Since U is uniformly distributed given L over the interval [0, L], we
have

fU |L=y(x) = 1

y
1[0,y](x), x ∈ R, y > 0,

hence by the definition (1.5.7) of the conditional density fU |L=y(x) we have

f(U,L)(x, y) = fU |L=y(x) fL(y) = 1[0,y](x)1[0,∞)(y)e
−y . (B.6)

Next, we from (B.6) we get

f(U,L−U )(x, z) = f(U,L)(x, x + z) = 1[0,∞)(x)1[0,∞)(z)e
−x−z .

Exercise 1.6

(a) Assuming that X and Y are independent Poisson random variables with param-
eters λ and μ, we have

P(X + Y = n) =
n∑

k=0

P(X = k and X + Y = n) = e−λ−μ (λ + μ)n

n! , (B.7)

hence X + Y has a Poisson distribution with parameter λ + μ.
(b) We have

P(X = k | X + Y = n) = P(X = k and X + Y = n)

P(X + Y = n)
=
(
n

k

)(
λ

λ + μ

)k ( μ

λ + μ

)n−k

,

(B.8)
hence, given X + Y = n, the random variable X has a binomial distribution
with parameters n and λ/(λ + μ).

(c) In this case, using the exponential probability density fΛ(x) = θ1[0,∞)(x)e−θx ,
x ∈ R, we find
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P(X = k) =
(

1 − 1

θ + 1

)(
1

θ + 1

)k

.

Therefore X + Y has a negative binomial distribution with parameter (r, p) =
(2, 1/(θ + 1)), cf. (1.5.12), and we have

P(X = k | X + Y = n) = P(X = k)P(Y = n − k)

P(X + Y = n)
= 1

n + 1
, k = 0, 1, . . . , n,

which shows that the distribution of X given X + Y = n is the discrete uniform
distribution on {0, 1, . . . , n}.

(d) In case X and Y have the same parameter, i.e. λ = μ, we have

P(X = k | X + Y = n) =
(
n

k

)
1

2n
, k = 0, 1, . . . , n,

which becomes independent of λ. Hence, when λ is represented by a random
variable Λ with probability density x �−→ fΛ(x) on R+, from (B.8) we get
P(X = k | X + Y = n) = 2−n

(n
k

)
, k = 0, 1, . . . , n.

Exercise 1.7 Let C1 denote the color of the first drawn pen, and let C2 denote
the color of the second drawn pen. We have P(C1 = R) = P(C1 = G) = 1/2 and
P(C2 = R and C1 = R) = 2/3, P(C2 = R and C1 = G) = 1/3. On the other hand,
we have

P(C2 = R) = P(C2 = R and C1 = R) + P(C2 = R and C1 = G)

= P(C2 = R | C1 = R)P(C1 = R) + P(C2 = R | C1 = G)P(C1 = G)

= 2

3
× 1

2
+ 1

3
× 1

2
= 1

2
,

and

P(C2 = G) = P(C2 = G and C1 = R) + P(C2 = G and C1 = G)

= P(C2 = G | C1 = R)P(C1 = R) + P(C2 = G | C1 = G)P(C1 = G) = 1

2
.

Finally, the probability we wish to compute is

P(C1 = R | C2 = R) = P(C1 = R and C2 = R)

P(C2 = R)
= P(C2 = R | C1 = R)

P(C1 = R)

P(C2 = R)
= 2

3
.

Exercise 1.8

(a) The probability that the system operates is

P(X ≥ 2) =
(
3

2

)

p2(1 − p) + p3 = 3p2 − 2p3,
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where X is a binomial random variable with parameter (3, p).
(b) The probability that the system operates is

∫ 1

0
P(X ≥ 2 | p = x)dP(p ≤ x) =

∫ 1

0
P(X ≥ 2 | p = x)dx = 1

2
,

similarly to Exercise 1.6-(b).

Chapter 2 - Gambling Problems

Exercise 2.1

(a) By first step analysis we have

f (k) = (1 − 2r) f (k) + r f (k + 1) + r f (k − 1),

which yields the equation

f (k) = 1

2
f (k + 1) + 1

2
f (k − 1), 1 ≤ k ≤ S − 1, (B.9)

with the boundary conditions f (0) = 1 and f (S) = 0, which is identical to
Equation (2.2.18).
We refer to this equation as the homogeneous equation.

(b) According to the result of (2.2.19) in Sect. 2.2 we know that the general solution
of (B.9) has the form

f (k) = C1 + C2k, k = 0, 1, . . . , S

and after taking into account the boundary conditions we find f (k) = S − k

S
,

k = 0, 1, . . . , S.
(c) By first step analysis we have

h(k) = (1 − 2r)(1 + h(k)) + r(1 + h(k + 1)) + r(1 + h(k − 1))

= 1 + (1 − 2r)h(k) + rh(k + 1) + rh(k − 1),

hence the equation

h(k) = 1

2r
+ 1

2
h(k + 1) + 1

2
h(k − 1), 1 ≤ k ≤ S − 1,

with the boundary conditionsh(0) = 0 andh(S) = 0,which is identical to (2.3.6)
by changing h(k) into 2r × h(k) in (2.3.6).

(d) After trying a solution of the form h(k) = Ck2 we find

Ck2 = 1

2r
+ 1

2
C(k + 1)2 + 1

2
C(k − 1)2,
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henceC should be equal toC = −1/(2r), hence k �−→ −k2/(2r) is a particular
solution.

(e) Given the hint, the general solution has the form h(k) = C1 + C2k − k2/2r ,
k = 0, 1, . . . , S, which gives

h(k) = k(S − k)

2r
, k = 0, 1, . . . , S, (B.10)

after taking into account the boundary conditions.
(f) Starting fromany state k ∈ {1, 2, . . . , S − 1}, themeanduration goes to infinity

when r goes to zero.

Problem 2.7

(a) We have
g(k) = pg(k + 1) + qg(k − 1), k = 1, 2, . . . , S, (B.11)

with
g(0) = pg(1) + qg(0) (B.12)

for k = 0, and the boundary condition g(S) = 1.
(b) We observe that the constant function g(k) = C is solution of both (B.11) and

(B.12) and the boundary condition g(S) = 1 yields C = 1, hence g(k) = P(W |
X0 = k) = 1 for all k = 0, 1, . . . , S.

(c) We have

g(k) = 1 + pg(k + 1) + qg(k − 1), k = 1, 2, . . . , S − 1, (B.13)

with g(0) = 1 + pg(1) + qg(0) for k = 0, and the boundary condition g(S) =
0.

(d) Case p �= q. The solution of the homogeneous equation

g(k) = pg(k + 1) + qg(k − 1), k = 1, 2, . . . , S − 1,

has the form g(k) = C1 + C2(q/p)k , k = 1, 2, . . . , S − 1, andwe can check that
k �→ k/(p − q) is a particular solution. Hence the general solution of (B.13) has
the form

g(k) = k

q − p
+ C1 + C2(q/p)k, k = 0, 1, . . . , S,

with
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = g(S) = S

q − p
+ C1 + C2(q/p)S,

pg(0) = p(C1 + C2) = 1 + pg(1) = 1 + p

(
1

q − p
+ C1 + C2

q

p

)

,

which yields

g(k) = IE[TS | X0 = k] = S − k

p − q
+ q

(p − q)2
((q/p)S − (q/p)k),

k = 0, 1, . . . , S.

Case p = q = 1/2. The solution of the homogeneous equation is given by

g(k) = C1 + C2k, k = 1, 2, . . . , S − 1,

and the general solution to (B.13) has the form g(k) = −k2 + C1 + C2k, k =
1, 2, . . . , S, with

⎧
⎪⎨

⎪⎩

0 = g(S) = −S2 + C1 + C2S,

g(0)

2
= C1

2
= 1 + g(1)

2
= 1 + −1 + C1 + C2

2
,

hence

g(k) = IE[TS | X0 = k] = (S + k + 1)(S − k), k = 0, 1, . . . , S.

(e) When p �= q we have

pk := P(TS < T0 | X0 = k) = 1 − (q/p)k

1 − (q/p)S
, k = 0, 1, . . . , S,

and when p = q = 1/2 we find pk = k/S, k = 0, 1, . . . , S.
(f) The equality holds because, given thatwe start from state

�

�

�

�

k+1 at time 1,whether
TS < T0 or TS > T0 does not depend on the past of the process before time 1. In
addition it does not matter whether we start from state

�

�

�

�

k+1 at time 1 or at time
0.

(g) We have

P(X1 = k + 1 | X0 = k and TS < T0) = P(X1 = k + 1, X0 = k, TS < T0)

P(X0 = k and TS < T0)

= p
P(TS < T0 | X0 = k + 1)

P(TS < T0 | X0 = k)
= p

pk+1

pk
,
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k = 0, 1, . . . , S − 1. By the result of Question (e), when p �= q we find

P(X1 = k + 1 | X0 = k and TS < T0) = p
1 − (q/p)k+1

1 − (q/p)k
,

k = 1, 2, . . . , S − 1, and in case p = q = 1/2 we get

P(X1 = k + 1 | X0 = k and TS < T0) = k + 1

2k
,

k = 1, 2, . . . , S − 1. Note that this probability is higher than p = 1/2.
(h) Similarly, we have

P(X1 = k − 1 | X0 = k and T0 < TS)

= P(X1 = k − 1, X0 = k and T0 < TS)

P(X0 = k and T0 < TS)

= q
P(T0 < TS | X0 = k − 1)

P(T0 < TS | X0 = k)
= q

1 − pk−1

1 − pk
,

k = 1, 2, . . . , S − 1. When p �= q this yields

P(X1 = k − 1 | X0 = k and T0 < TS) = q
(q/p)k−1 − (q/p)S

(q/p)k − (q/p)S
,

k = 1, 2, . . . , S − 1, and when p = q = 1/2 we find

P(X1 = k − 1 | X0 = k and T0 < TS) = S + 1 − k

2(S − k)
,

k = 1, 2, . . . , S − 1. Note that this probability is higher than q = 1/2.
(i) We find

h(k) = 1 + p
pk+1

pk
h(k + 1) +

(

1 − p
pk+1

pk

)

h(k − 1), (B.14)

k = 1, 2, . . . , S − 1, or, due to the first step equation pk = ppk+1 + qpk−1,

pkh(k) = pk + ppk+1h(k + 1) + qpk−1h(k − 1), k = 1, 2, . . . , S − 1,

with the boundary condition h(S) = 0. When p = q = 1/2 we have pk = k/S
by Question (e), hence (B.14) becomes

h(k) = 1 + k + 1

2k
h(k + 1) + k − 1

2k
h(k − 1), k = 1, 2, . . . , S − 1.
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(j) We have to solve

kh(k) = k + 1

2
(k + 1)h(k + 1) + 1

2
(k − 1)h(k − 1), k = 1, 2, . . . , S − 1,

with the boundary condition h(S) = 0. Letting g(k) = kh(k)we check that g(k)
satisfies

g(k) = k + 1

2
g(k + 1) + 1

2
g(k − 1), k = 1, 2, . . . , S − 1, (B.15)

with the boundary conditions g(0) = 0 and g(S) = 0.We check that g(k) = Ck3

is a particular solutionwhenC = −1/3, hence the solution of (B.15) has the form
g(k) = −k3/3 + C1 + C2k, by the homogeneous solution given in Sect. 2.3,
whereC1 andC2 are determined by the boundary conditions 0 = g(0) = C1 and

0 = g(S) = −1

3
S3 + C1 + C2S,

i.e. C1 = 0 and C2 = S2/3. Consequently, we have g(k) = k(S2 − k2)/3, k =
0, 1, . . . , S, hence we have

h(k) = IE[TS | X0 = k, TS < T0] = S2 − k2

3
, k = 1, 2, . . . , S.

Chapter 3 - Random Walks

Exercise 3.1

(a) We find

(
4

3

)

=
(
4

1

)

= 4 paths, as follows.

(b) In each of the

(
4

3

)

=
(
4

1

)

= 4!
3! = 4 paths there are 3 steps up (with probability

p) and 1 step down (with probability q = 1 − p), hence the result.
(c) We consider two cases depending on the parity of n and k.

(i) In case n and k are even, or written as n = 2n′ and k = 2k ′, (3.3.3) shows
that

P(Sn = k | S0 = 0) = P(S2n′ = 2k′ | S0 = 0) =
(

n

(n + k)/2

)

p(n+k)/2q(n−k)/2,

−n ≤ k ≤ n.
(ii) In case n and k are odd, or written as n = 2n′ + 1 and k = 2k ′ + 1, (3.3.4)

shows that

P(Sn = k | S0 = 0) =
(

n

(n + k)/2

)

p(n+k)/2q(n−k)/2, −n ≤ k ≤ n.
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Fig. B.1 Four paths leading from 0 to 2 in four steps

(d) By a first step analysis started at state 0 we have, letting pn,k := P(Sn = k),
pn+1,k = ppn,k−1 + qpn,k+1, for all n ∈ N and k ∈ Z.

(e) We consider two cases depending on the parity of n + 1 + k.

(i) If n + 1 + k is odd the equation is clearly satisfied as both the right hand
side and left hand side of (3.4.25) are equal to 0.

(ii) If n + 1 + k is even we have ppn,k−1 + qpn,k+1 pn+1,k , which shows that
pn,k satisfies Equation (3.4.25). In addition we clearly have

p0,0 = P(S0 = 0) = 1 and p0,k = P(S0 = k) = 0, k �= 0.

Exercise 3.9

(a) Since the increment Xk takes its values in {−1, 1}, the set of distinct values in
{S0, S1, . . . , Sn} is the integer interval

[

inf
k=0,1,...,n

Sk, sup
k=0,1,...,n

Sk

]

,

which has

Rn = 1 +
(

sup
k=0,1,...,n

Sk

)

−
(

inf
k=0,1,...,n

Sk

)

elements. In addition we have R0 = 1 and R1 = 2.
(b) At each time step k ≥ 1 the range can only either increase by one unit or remain

constant, hence Rk − Rk−1 ∈ {0, 1} is a Bernoulli random variable. In addition
we have the identity

{Rk − Rk−1 = 1} = {Sk �= S0, Sk �= S1, . . . , Sk �= Sk−1},

hence, applying the probability P to both sides, we get

P(Rk − Rk−1 = 1) = P(Sk − S0 �= 0, Sk − S1 �= 0, . . . , Sk − Sk−1 �= 0).

(c) By the change of index

https://doi.org/_3
https://doi.org/_3


Appendix B: Solutions to Selected Exercises and Problems 307

(X1, X2, . . . , Xk−1, Xk) �−→ (Xk, Xk−1, . . . , X2, X1)

under which X1 + X2 + · · · + Xl becomes Xk + · · · + Xk−l+1, l = 1, 2, . . . , k,
we have

P(Rk − Rk−1 = 1) = P(X1 �= 0, X1 + X2 �= 0, . . . , X1 + · · · + Xk �= 0),

for all k ≥ 1, since the sequence (Xk)k≥1 is made of independent and identically
distributed random variables.

(d) We have the telescoping sum

Rn = R0 +
n∑

k=1

(Rk − Rk−1), n ∈ N.

(e) By (1.2.4) we have

P(T0 = ∞) = P

(
⋂

k≥1

{T0 > k}
)

= lim
k→∞P(T0 > k),

since {T0 > k + 1} =⇒ {T0 > k}, k ≥ 1, i.e. ({T0 > k})k≥1 is a decreasing se-
quence of events.

(f) Noting that Rk − Rk−1 ∈ {0, 1} is a Bernoulli random variable with IE[Rk −
Rk−1] = P(Rk − Rk−1 = 1), we find

IE[Rn] =
n∑

k=0

P(T0 > k).

(g) Let ε > 0. Since by Question (e) we have P(T0 = ∞) = limk→∞ P(T0 > k),
there exists N ≥ 1 such that

|P(T0 = ∞) − P(T0 > k)| < ε, k ≥ N .

Hence for n ≥ N we have

∣
∣
∣
∣
∣
P(T0 = ∞) − 1

n

n∑

k=1

P(T0 > k)

∣
∣
∣
∣
∣
≤ N

n
+ ε.

Then, choosing N0 ≥ 1 such that (N + 1)/n ≤ ε for n ≥ N0, we get

∣
∣
∣
∣P(T0 = ∞) − 1

n
IE[Rn]

∣
∣
∣
∣ ≤ 1

n
+
∣
∣
∣
∣
∣
P(T0 = ∞) − 1

n

n∑

k=1

P(T0 > k)

∣
∣
∣
∣
∣
≤ 2ε,
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n ≥ N0, which concludes the proof.
(h) From Relation (3.4.15) in Sect. 3.4 we have P(T0 = +∞) = |p − q|, hence by

the result of Question (g) we get limn→∞ IE[Rn]/n = |p − q|, when p �= q, and
limn→∞ IE[Rn]/n = 0 when p = q = 1/2.

Chapter 4 - Discrete-Time Markov Chains

Exercise 4.10

(a) Let Sn denote the wealth of the player at time n ∈ N. The process (Sn)n∈N is a
Markov chain whose transition matrix is given by

P = [
Pi, j

]

i, j∈N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 · · ·
q 0 p 0 0 0 · · ·
q 0 0 p 0 0 · · ·
q 0 0 0 p 0 · · ·
q 0 0 0 0 p · · ·
...

...
...

...
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

After n time stepswe haveP(Sn = n + 1 | S0 = 1) = pn , n ≥ 1, and Pn is given
by

Pn = [ [Pn]i, j
]

i, j∈N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · 0 0 0 0 0 0 · · ·
1 − pn 0 · · · 0 pn 0 0 0 0 · · ·
1 − pn 0 · · · 0 0 pn 0 0 0 · · ·
1 − pn 0 · · · 0 0 0 pn 0 0 · · ·
1 − pn 0 · · · 0 0 0 0 pn 0 · · ·
1 − pn 0 · · · 0 0 0 0 0 pn · · ·

...
...

...
...

...
...

...
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(B.16)
in which the n columns no 2 to n + 1 are identically 0.

(b) In this case the transition matrix P becomes

P = [
Pi, j

]

i, j∈N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

q p 0 0 0 0 · · ·
q 0 p 0 0 0 · · ·
q 0 0 p 0 0 · · ·
q 0 0 0 p 0 · · ·
q 0 0 0 0 p · · ·
...

...
...

...
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and by induction on n ≥ 2 we find
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Pn =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

q qp qp2 . . . qpn−1 pn 0 0 0 · · ·
q qp qp2 . . . qpn−1 0 pn 0 0 · · ·
q qp qp2 . . . qpn−1 0 0 pn 0 · · ·
q qp qp2 . . . qpn−1 0 0 0 pn · · ·
q qp qp2 . . . qpn−1 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B.17)

Chapter 5 - First Step Analysis

Exercise 5.5 This exercise is a particular case of the Example of Sect. 5.1, by taking
a := 0.3, b := 0, c := 0.7, d := 0, α := 0, β := 0.3, γ := 0, η := 0.7.

Exercise 5.6 We observe that state 3 is absorbing:

Let h3(k) := IE[T3 | X0 = k] denote the mean (hitting) time needed to reach state
3 after starting from state k = 0, 1, 2, 3. We have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h3(0) = 1 + 1

2
h3(0) + 1

2
h3(2)

h3(1) = 1 + 1

2
h3(0)

h3(2) = 1 + 1

2
h3(0) + 1

2
h3(1)

h3(3) = 0,

which yields h3(3) = 0, h3(1) = 8, h3(2) = 12, h3(0) = 14. We check that h3(3) <

h3(1) < h3(2) < h3(0), as can be expected from the graph.

Exercise 5.7

(a) The chain has the following graph:
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Note that this process is in fact a fair gambling process on the state space
{0, 1, 2, 3}.
(b) Since the states 0 and 3 are absorbing, by first step analysis we find

g0(0) = 1, g0(1) = 2

3
, g0(2) = 1

3
, g0(3) = 0.

(c) By first step analysis we find

h0,3(0) = 0, h0,3(1) = 2, h0,3(2) = 2, h0,3(3) = 0.

Exercise 5.9

(a) Letting f (k) := P(T0 < ∞ | S0 = k)we have the boundary condition f (0) = 1
and by first step analysis we find that f (k) satisfies

f (k) = p f (k + 1) + q f (k − 1), k ≥ 1,

which is (2.2.6), and has the general solution

f (k) = C1 + C2r
k, k ∈ N, (B.18)

where r = q/p, by (2.2.16).

(i) In case q ≥ p, f (k) would tend to (positive or negative) infinity if C2 �= 0,
hence we should have C2 = 0, and C1 = f (0) = 1, showing that f (k) = 1
for all k ∈ N.

(ii) In case q < p, the probability of hitting 0 in finite time starting from k
becomes 0 in the limit as k tends to infinity, i.e. we have

lim
k→∞ f (k) = lim

k→∞P(T0 < ∞ | S0 = k) = 0, k ∈ N,

which shows that C1 = 0.

On the other hand, the condition f (0) = 1 yields C2 = 1, hence we find
f (k) = (q/p)k for all k ≥ 0.

(b) Letting h(k) := IE[T0 | S0 = k] we have the boundary condition h(0) = 0 and
by first step analysis we find that h(k) satisfies
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h(k) = 1 + ph(k + 1) + qh(k − 1), k ≥ 1,

which is (2.3.6) and has a general solution of the form

h(k) = C1 + C2r
k + 1

q − p
k, k ∈ N, (B.19)

by (2.3.9). Next, we note that by the Markov property we should have the de-
composition

h(k + 1) = IE[T0 | S0 = k + 1]
= IE[T0 | S0 = 1] + IE[T0 | S0 = k]
= h(1) + h(k), k ∈ N,

i.e. the mean time to go down from k + 1 to 0 should be the sum of the mean
time needed to go down one step plus the mean time needed to go down k steps.
This shows that

h(k) = h(0) + kh(1) = kh(1),

hence by (B.19) we have C1 = C2 = 0, h(1) = 1/(q − p), and

h(k) = k

q − p
, k ∈ N.

Exercise 5.10 First, we take a look at the complexity of the problem. Starting from

0 there are multiple ways to reach state 13 without reaching 11 or 12 . For
example:

13 = 3 + 4 + 1 + 5, or 13 = 1 + 6 + 3 + 3, or 13 = 1 + 1 + 2 + 1 + 3 + 1 + 4, etc.

Clearly it would be difficult to enumerate all such possibilities, for this reason we
use the framework of Markov chains. We denote by Xn the cumulative sum of dice
outcomes after n rounds, and choose to model it as a Markov chain with n as a time
index. We can represent Xn as

Xn =
n∑

k=1

ξk, n ≥ 0,

where (ξk)k≥1 is a family of independent random variables uniformly distributed over
{1, 2, 3, 4, 5, 6}. The process (Xn)n≥0 is a Markov chain since given the history of
(Xk)k=0,1,...,n up to time n, the value

Xn+1 = Xn + ξn+1
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depends only on Xn and on ξn+1 which is independent of X0, X1, . . . , Xn . The
process (Xn)n≥0 is actually a random walk with independent increments ξ1, ξ2, . . ..
The chain (Xn)n≥0 has the transition matrix

[
Pi, j

]

i, j∈N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1/6 1/6 1/6 1/6 1/6 1/6 0 0 0 0 0 · · ·
0 0 1/6 1/6 1/6 1/6 1/6 1/6 0 0 0 0 · · ·
0 0 0 1/6 1/6 1/6 1/6 1/6 1/6 0 0 0 · · ·
0 0 0 0 1/6 1/6 1/6 1/6 1/6 1/6 0 0 · · ·
0 0 0 0 0 1/6 1/6 1/6 1/6 1/6 1/6 0 · · ·
0 0 0 0 0 0 1/6 1/6 1/6 1/6 1/6 1/6 · · ·
0 0 0 0 0 0 0 1/6 1/6 1/6 1/6 1/6 · · ·
0 0 0 0 0 0 0 0 1/6 1/6 1/6 1/6 · · ·
0 0 0 0 0 0 0 0 0 1/6 1/6 1/6 · · ·
0 0 0 0 0 0 0 0 0 0 1/6 1/6 · · ·
0 0 0 0 0 0 0 0 0 0 0 1/6 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

...
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Letting A := {11, 12, 13, 14, 15, 16}, we are looking at the probability

g0 := P(XTA = 13 | X0 = 0)

of hitting the set A through and the set 13 after starting from state 0. More generally,
letting

gk := P(XTA = 13 | X0 = 0)

denote the probability of hitting the set A through the set 13 after starting from state k,
we have gk = 0 for all k ≥ 14. By first step analysis we find the system of equations

g(k) = 1

6

6∑

i=1

gk+i , k ∈ N,

with solution

g7 = 73

64
, g8 = 72

63
, g9 = 7

62
, g10 = 1

6
,

and

g0 = 710 − 76 × 64 − 4 × 73 × 66

611
� 0.181892636.

Exercise 5.11

(a) The transition matrix is given by
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × × × × ×
q 0 p 0 0 0
0 q 0 p 0 0
0 0 q 0 p 0
0 0 0 q 0 p
× × × × × ×

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The information contained in the first and last lines of the matrix is not needed
here because they have no influence on the result. We have g(0) = 0, g(5) = 1,
and

g(k) = q × g(k − 1) + p × g(k + 1), 1 ≤ k ≤ 4. (B.20)

(b) When p = q = 1/2 the probability that starting from state k the fish finds the
food before getting shocked is obtained by solving Equation (B.20) rewritten as

g(k) = 1

2
× g(k − 1) + 1

2
× g(k + 1), 1 ≤ k ≤ 4.

Trying a solution of the form g(k) = C1 + kC2 under the boundary conditions
g(0) = 0 and g(5) = 1, shows that C1 = 0 and C2 = 1/5, which yields g(k) =
k/5, k = 0, 1, . . . , 5.

Exercise 5.12

(a) The transition matrix is given by

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 · · ·
1 0 0 0 0 0 · · ·
1/2 1/2 0 0 0 0 · · ·
1/3 1/3 1/3 0 0 0 · · ·
1/4 1/4 1/4 1/4 0 0 · · ·
1/5 1/5 1/5 1/5 1/5 0 · · ·
...

...
...

...
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(b) We have

h0(m) =
m−1∑

k=0

1

m
(1 + h0(k)) = 1 + 1

m

m−1∑

k=0

h0(k), m ≥ 1,

and h0(0) = 0, h0(1) = 1.
(c) We have

h0(m) = 1 + 1

m

m−1∑

k=0

h0(k) = h0(m − 1) + 1

m
, m ≥ 1,
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hence

h0(m) = h0(m − 1) + 1

m
=

m∑

k=1

1

k
, m ≥ 1.

Exercise 5.13

(a) Assuming that it takes one day per state transition, the graph of the chain can be
drawn as

where state 0 represents the tower, states 1 and 2 represents the tunnel, and
state 3 represents the outside.

(b) We have

P =

⎡

⎢
⎢
⎣

1/3 1/3 0 1/3
0 0 1 0
1 0 0 0
0 0 0 1

⎤

⎥
⎥
⎦ .

(c) By first step analysis we find

h3(0) = 1

3
(1 + h3(0)) + 1

3
(3 + h3(0)) + 1

3
,

i.e. h3(0) = 5, i.e. 4 times steps on average to reach the exit, plus one time step
from the exit to the outside.

Exercise 5.14 The average time t spent inside the maze can be quickly computed
by the following first step analysis using weighted links:

t = 1

2
× (t + 3) + 1

6
× 2 + 2

6
× (t + 5),

which yields t = 21. We refer to Exercise 5.13 and its solution for a more detailed
analyis of a similar problem.

Exercise 5.15 The chain has the following graph:

https://doi.org/_5
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(a) Let us compute

g0(k) = P(T0 < ∞ | X0 = k) = P(XT{0,3} = 0 | X0 = k), k = 0, 1, 2, 3.

Since states 0 and 3 are absorbing, by first step analysis we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0(0) = 1

g0(1) = 0.1 × g0(0) + 0.6 × g0(1) + 0.1 × g0(2) + 0.2 × g0(3)

g0(2) = 0.2 × g0(0) + 0.3 × g0(1) + 0.4 × g0(2) + 0.1 × g0(3)

g0(3) = 0,

i.e. ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0(0) = 1

g0(1) = 0.1 + 0.6 × g0(1) + 0.1 × g0(2)

g0(2) = 0.2 + 0.3 × g0(1) + 0.4 × g0(2)

g0(3) = 0,

which has for solution g0(0) = 1, g0(1) = 8/21, g0(2) = 11/21, g0(3) = 0, cf.
also (5.1.10).

(b) Let
h0,3(k) = IE[T{0,3} | X0 = k]

denote the mean time to reach the set A = {0, 3} starting from k = 0, 1, 2, 3. By
first step analysis, we have
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

h0,3(0) = 0

h0,3(1) = 0.1 × 1 + 0.6 × (1 + h0,3(1)) + 0.1 × (1 + h0,3(2)) + 0.2 × (1 + h0,3(3))

h0,3(2) = 0.2 × 1 + 0.4 × (1 + h0,3(1)) + 0.3 × (1 + h0,3(2)) + 0.1 × (1 + h0,3(3))

h0,3(3) = 0,

i.e. ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

h0,3(0) = 0

h0,3(1) = 1 + 0.6 × h0,3(1) + 0.1 × h0,3(2)

h0,3(2) = 1 + 0.4 × h0,3(1) + 0.3 × h0,3(2)

h0,3(3) = 0,

which has for solution h0,3(0) = 0, h0,3(1) = 10/3, h0,3(2) = 10/3, h0,3(3) =
0.

Note that the relation h0,3(1) = h0,3(2) can be guessed from the symmetry of the
problem.

Exercise 5.19 We have

h(k) = IE

[ ∞∑

i=0

βi c(Xi )

∣
∣
∣X0 = k

]

= IE
[
c(X0)

∣
∣
∣X0 = k

]
+ IE

[ ∞∑

i=1

βi c(Xi )

∣
∣
∣X0 = k

]

= c(k) +
∑

j∈S
Pk, j IE

[ ∞∑

i=1

βi c(Xi )

∣
∣
∣X1 = j

]

= c(k) + β
∑

j∈S
Pk, j IE

[ ∞∑

i=0

βi c(Xi )

∣
∣
∣X0 = j

]

= c(k) + β
∑

j∈S
Pk, j h( j), k ∈ S.

However, this type of equation may be difficult to solve in general. We refer to
Problem 5.22 for a particular case with explicit solution.

Problem 5.21

(a) The boundary conditions g(0) and g(N ) are given by g(0) = 1 and g(N ) = 0.
(b) We have

https://doi.org/_5
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g(k) = P(T0 < TN | X0 = k) =
N∑

l=0

P(T0 < TN | X1 = l)P(X1 = l | X0 = k)

=
N∑

l=0

g(l)Pk,l , k = 0, 1, . . . , N .

(c) We find

[
Pi, j

]

0≤i, j≤3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

(2/3)3 (2/3)2 2/32 1/33

1/33 2/32 (2/3)2 (2/3)3

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(d) Letting g(k) = 1 − k/N , we check that g(k) satisfies the boundary conditions
g(0) = 1 and g(N ) = 0, and in addition we have

N∑

l=0

g(l)Pk,l =
N∑

l=0

N !
(N − l)!l!

(
k

N

)l (

1 − k

N

)N−l N − l

N

=
(

1 − k

N

)(
k

N
+ 1 − k

N

)N−1

= N − k

N
= g(k), k = 0, 1, . . . , N ,

which allows us to conclude by uniqueness of the solution given two boundary
conditions, cf. Exercise 5.9 for cases of non-uniqueness under a single boundary
condition.

(e) The boundary conditions h(0) and h(N ) are given by h(0) = 0 and h(N ) = 0
since the states 0 and N are absorbing.

(f) We have

h(k) = IE[T0,N | X0 = k]

=
N∑

l=0

(1 + IE[T0,N | X1 = l])P(X1 = l | X0 = k)

=
N∑

l=0

(1 + IE[T0,N | X1 = l])Pk,l =
N∑

l=0

Pk,l +
N∑

l=0

IE[T0,N | X1 = l]Pk,l

= 1 +
N−1∑

l=1

IE[T0,N | X1 = l]Pk,l = 1 +
N−1∑

l=1

h(l)Pk,l, (B.21)
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k = 1, 2, . . . , N − 1.
(g) In this case, the Equation (B.21) reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h(0) = 0,

h(1) = 1 + 4

9
h(1) + 2

9
h(2)

h(2) = 1 + 2

9
h(1) + 4

9
h(2)

h(3) = 0,

which yields h(0) = 0, h(1) = 3, h(2) = 3, h(3) = 0.

Problem 5.22

(a) Since we consider the time until we hit either 0 or N , we have h(N ) = 0 as well
as h(N ) = 0.

(b) We have

h(k) = IE

[
τ−1∑

i=0

Xi

∣
∣
∣X0 = k

]

= IE
[
X0

∣
∣
∣X0 = k

]
+ IE

[
τ−1∑

i=1

Xi

∣
∣
∣X0 = k

]

= k + pIE

[
τ−2∑

i=0

Xi+1

∣
∣
∣X1 = k + 1

]

+ qIE

[
τ−2∑

i=0

Xi+1

∣
∣
∣X1 = k − 1

]

(B.22)

= k + pIE

[
τ−1∑

i=0

Xi

∣
∣
∣X0 = k + 1

]

+ qIE

[
τ−1∑

i=0

Xi

∣
∣
∣X0 = k − 1

]

(B.23)

= k + ph(k + 1) + qh(k − 1), 1 ≤ k ≤ N − 1,

where we used the fact that τ − 1 in (B.22) becomes τ in (B.23).

From now on we take p = q = 1/2.
(c) We check successively that h(k) = C , h(k) = Ck, h(k) = Ck2 cannot be solu-

tion and that h(k) = Ck3 is solution provided that C = −1/3.
(d) The general solution has the form h(k) = −k3/3 + C1 + C2k, and the boundary

conditions show that

⎧
⎪⎨

⎪⎩

0 = h(0) = C1,

0 = h(N ) = −N 3

3
+ C1 + C2N ,
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hence C1 = 0, C2 = N 2/3, and

h(k) = −k3

3
+ N 2 k

3
= k

3
(N 2 − k2) = k(N − k)

N + k

3
, k = 0, 1, . . . , N .

(B.24)
(e) When N = 2 we find h(1) = 1 since starting from k = 1 we can only move to

state 0 or state N = 2 which ends the game with a cumulative sum equal to 1 in
both cases.

(f) (i) We find an average of

IE[T0,N | X0 = 4] = 4(70 − 4) = 4(70 − 4) = 264 months = 22 years.

(ii) By (B.24) we find

h(4) = 4

3
(702 − 42) = $6512K = $6.512M.

(iii) In that case we find $4K × 264 = $1056K = $1.056M.
(iv) It appears that starting a (potentially risky) business is more profitable on

the average than keeping the same fixed initial income over an equivalent
(average) period of time.

Chapter 6 - Classification of States

Exercise 6.1

(a) The graph of the chain is

This Markov chain is reducible because its state space can be partitioned into
two communicating classes as S = {0} ∪ {1, 2, 3}.

(b) State 0 has period 1 and states 1 , 2 , 3 have period 3.
(c) We have

p0,0 = P(T0 < ∞ | X0 = 0) = P(T0 = 1 | X0 = 0) = 1

3
,

and

P(T0 = ∞ | X0 = 0) = 1 − P(T0 < ∞ | X0 = 0) = 2

3
.

We also have

https://doi.org/_6
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P(R0 < ∞ | X0 = 0) = P(T0 = ∞ | X0 = 0)
∞∑

n=1

(P(T0 < ∞ | X0 = 0))n

= 2

3

∞∑

n=1

(
1

3

)n

= 1.

(d) There are no absorbing states, state 0 is transient, and states 1 , 2 , 3 are
recurrent byCorollary 6.6. State 0 is transient sinceP(R0 < ∞ | X0 = 0) = 1,
as expected according to (5.4.3).

Exercise 6.3

(a) The chain has the following graph

(b) All states 0 , 1 , 2 and 3 have period 1, which can be obtained as the
greastest common divisor (GCD) of {2, 3} for states 0 , 1 , 2 and {4, 6, 7}
for state 3 . The chain is aperiodic.

(c) State 4 is absorbing (and therefore recurrent), state 0 is transient because

P(T r
0 = ∞|X0 = 0) ≥ 1

4
> 0,

and the remaining states 1 , 2 , 3 are also transient because they communicate
with the transient state 0 , cf. Corollary 6.6. By pathwise or first step analysis
we can actually check that

P(Tr
0 = ∞|X0 = 0)

= 1

4

(
P(Tr

0 = ∞|X0 = 1) + P(Tr
0 = ∞|X0 = 2) + P(Tr

0 = ∞|X0 = 3)
) = 3

4
.

(d) The Markov chain is reducible because its state space S = {0, 1, 2, 3, 4} can be
partitioned into two communicating classes {0, 1, 2, 3} and {4}.

Exercise 6.4 The graph of the chain is
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(a) The chain is reducible and its communicating classes are {0}, {1}, {3}, {5}, and
{2, 4}.

(b) States 0 , 1 , 3 are transient and states 2 , 4 , 5 are recurrent.
(c) State 3 has period 0, states 2 and 4 have period 2, and states 0 , 1 , 5

are aperiodic.

Exercise 6.5

(a) The graph of the chain is

The chain is reducible, with communicating classes {0, 2}, {1}, {3}.
(b) States 0 , 2 , 3 have period 1 and state 1 has period 0. States 1 and 3

are transient, states 0 and 2 are recurrent by Theorem 6.9 and Corollary 6.6,
and they are also positive recurrent since the state space is finite. There are no
absorbing states.

Chapter 7 - Long-Run Behavior of Markov Chains

Exercise 7.5

(a) We have ⎡

⎢
⎢
⎣

0 0.5 0 0.5
0.5 0 0.5 0
0 0.5 0 0.5
0.5 0 0.5 0

⎤

⎥
⎥
⎦ .

(b) By first step analysis and symmetry of the maze we have μ0(1) = μ0(3), hence

μ0(0) = 4, μ0(1) = 3, μ0(2) = 4, μ0(3) = 3.
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The symmetry of the problem shows that we have, μ0(1) = μ0(3), which greatly
simplifies the calculations.

(c) Clearly, the probability distribution (π0,π1,π2,π3) = (1/4, 1/4, 1/4, 1/4) is
invariant and satisfies the condition π = πP , see also Exercise 7.14.

Exercise 7.6

(a) Clearly, the transition from the current state to the next state depends only on the
current state on the chain, hence the process is Markov. The transition matrix of
the chain on the state space S = (D, N ) is

P =
[
1 − a a
b 1 − b

]

=
[
1/4 3/4
1/4 3/4

]

.

(b) The stationary distribution π = (πD,πN ) is solution of π = πP under the condi-
tionπD + πN = 1, which yieldsπD = b/(a + b) = 1/4 andπN = a/(a + b) =
3/4.

(c) In the long run, by the Ergodic Theorem 7.12we find that the fraction of distorted
signals is πD = 1/4 = 25%.

(d) The average time hN (D) = μN (D) to reach state N starting from state D
satisfies

μN (D) = (1 − a)(1 + μN (D)) + a (B.25)

hence μN (D) = 1/a = 4/3.

(e) The average time μD(N ) to reach state D starting from state N satisfies

μD(N ) = (1 − b)(1 + μD(N )) + b (B.26)

hence μN (D) = 1/b = 4.

Exercise 7.7

(a) The chain has the following graph:

The chain is reducible and its communicating classes are {0, 1, 2} and {3}.
(b) State 3 is transient because P(T3 = ∞ | X0 = 3) = 0.4 + 0.6 = 1, cf. (6.3.1),

and states 0 , 1 , 2 are recurrent by Theorem 6.9 and Corollary 6.6.
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(c) It suffices to consider the subchain on {0, 1, 2} with transition matrix

P̃ =
⎡

⎣
0 1 0
0.2 0 0.8
0.3 0 0.7

⎤

⎦ ,

and to solve π = π P̃ , i.e. which yields π1 = π0 and 0.3π2 = 0.8π1 = 0.8π0,
with 1 = π0 + π1 + π2 = 2π0 + 8π0/3, i.e. π0 = 3/14, π1 = 3/14, π2 = 4/7,
and the fraction of time spent at state 0 in the long run is 3/14 � 0.214 as the
limiting and stationary distributions coincide.

(d) Letting h0(k) denote the mean hitting time of state 0 starting from state k ,
we have ⎧

⎪⎪⎨

⎪⎪⎩

h0(0) = 0
h0(1) = 0.2(1 + h0(0)) + 0.8(1 + h0(2))
h0(2) = 0.3(1 + h0(0)) + 0.7(1 + h0(2))
h0(3) = 0.4(1 + h0(0)) + 0.6(1 + h0(1)),

hence h0(0) = 0, h0(1) = 11/3, h0(2) = 10/3, h0(3) = 16/5, and the mean
time to reach state 0 starting from state 2 is found to be equal to h0(2) = 10/3,
which can also be recovered by pathwise analysis and the geometric series

h0(2) = 0.3
∞∑

k=1

k(0.7)k−1 = 0.3

(1 − 0.7)2
= 10

3
.

Note that the value of h0(2) could also be computed by restriction to the sub-
chain {0, 1, 2}, by solving

⎧
⎨

⎩

h0(0) = 0
h0(1) = 0.2(1 + h0(0)) + 0.8(1 + h0(2))
h0(2) = 0.3(1 + h0(0)) + 0.7(1 + h0(2)).

Exercise 7.8

(a) First, we note that the chain has finite state space and it is irreducible, positive
recurrent and aperiodic, hence by Theorem 7.8 its limiting distribution coincides
with its stationary distribution which is the unique solution of π = πP . After
calculations, this equation can be solved as

π0 = c × 161, π1 = c × 460, π2 = c × 320, π3 = c × 170.

The condition

1 = π0 + π1 + π2 + π3 = c × 161 + c × 460 + c × 320 + c × 170

shows that
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π0 = 161

1111
, π1 = 460

1111
, π2 = 320

1111
, π3 = 170

1111
. (B.27)

(b) We choose to solve this problem using mean return times since μ0(i) = h0(i),
i = 1, 2, 3, however it could also be solved using mean hitting times hi ( j). We
have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ0(0) = 1 + μ0(1),

μ0(1) = 0.1 + 0.4(1 + μ0(1)) + 0.2(1 + μ0(2)) + 0.3(1 + μ0(3))
= 1 + 0.4μ0(1) + 0.2μ0(2) + 0.3μ0(3),

μ0(2) = 0.2 + 0.2(1 + μ0(1)) + 0.5(1 + μ0(2)) + 0.1(1 + μ0(3))
= 1 + 0.2μ0(1) + 0.5μ0(2) + 0.1μ0(3),

μ0(3) = 1 + 0.3μ0(1) + 0.4μ0(2),

hence

μ0(1) = 950

161
, μ0(2) = 860

161
, μ0(3) = 790

161
.

Note that the data of the first row in the transition matrix is not needed in order
to compute the mean return times.

(c) We find

μ0(0) = 1 + μ0(1) = 1 + 950

161
= 161 + 950

161
= 1111

161
,

hence the relation π0 = 1/μ0(0) is satisfied from (B.27).

Exercise 7.9

(a) All states of this chain have period 2.
(b) The chain is irreducible and it has a finite state space, hence it is positive re-

current from Theorem 6.11. By Proposition 6.14, all states have period 2 hence
the chain is not aperiodic, and for this reason Theorem 7.2 and Theorem 7.8
cannot be used and the chain actually has no limiting distribution. Nevertheless,
Theorem 7.10 applies and shows that the equation π = πP characterizes the
stationary distribution.

Exercise 7.10 We choose to model the problem on the state space {1, 2, 3, 4},
meaning that the replacement of a component is immediate upon failure. Let Xn

denote the remaining active time of the component at time n. Given that at time n
there remains Xn = k ≥ 2 units of time until failure, we know with certainty that
at the next time step n + 1 there will remain Xn−1 = k − 1 ≥ 1 units of time until
failure. Hence at any time n ≥ 1 we have

Xn = 4 =⇒ Xn+1 = 3 =⇒ Xn+2 = 2 =⇒ Xn+3 = 1,
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whereas when Xn = 1 the component will become inactive at the next time step and
will be immediately replaced by a new component of random lifetime T ∈ {1, 2, 3}.
Hence we have

P(Xn+1 = k | Xn = 1) = P(T = k), k = 1, 2, 3, 4,

and the process (Xn)n∈N is a Markov chain on S = {1, 2, 3, 4}, with transition matrix

P =

⎡

⎢
⎢
⎣

P(Y = 1) P(Y = 2) P(Y = 3) P(Y = 4)
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0.1 0.2 0.3 0.4
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎥
⎥
⎦ .

We now look for the limit limn→∞ P(Xn = 1). Since the chain is irreducible, aperi-
odic (all states are checked to have period one) and its state space is finite, we know
by Theorem 7.8 that π1 = limn→∞ P(Xn = 1), where π = (π1,π2,π3,π4) is the
stationary distribution π uniquely determined from the equation π = πP , as fol-
lows: ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1 = 0.1π1 + π2

π2 = 0.2π1 + π3

π3 = 0.3π1 + π4

π4 = 0.4π1.

hence π2 = 0.9π1, π3 = 0.7π1, π4 = 0.4π1, under the condition π1 + π2 + π3 +
π4 = 1, i.e. π1 + 0.9π1 + 0.7π1 + 0.4π1 = 1, which yields π1 = 1/3, π2 = 9/30,
π3 = 7/30,π4 = 4/30. This result can be confirmed by computing the limit ofmatrix
powers (Pn)n∈N as n tends to infinity using the followingMatlab/Octave commands:

P = [0.1,0.2,0.3,0.4;
1,0,0,0;
0,1,0,0;
0,0,1,0;]
mpower(P,1000)

showing that

lim
n→∞ Pn =

⎡

⎢
⎢
⎣

0.33333 0.30000 0.23333 0.13333
0.33333 0.30000 0.23333 0.13333
0.33333 0.30000 0.23333 0.13333
0.33333 0.30000 0.23333 0.13333

⎤

⎥
⎥
⎦ .

Exercise 7.11 The graph of the chain is as follows:
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We note that the chain is reducible, and that its state space S can be partitioned into
4 communicating classes:

S = {A, B} ∪ {C} ∪ {D} ∪ {E},

where A, B are recurrent, E is absorbing, and C, D are transient.

Starting from state C , one can only return to C or end up in one of the absorbing
classes {A, B} or {E}. Let us denote by

T{A,B} = inf{n ≥ 0 : Xn ∈ {A, B}}

the hitting time of {A, B}. We start by computing P(T{A,B} < ∞ | X0 = C). By first
step analysis we find that this probability satisfies

P(T{A,B} < ∞ | X0 = C) = 0.2 + 0.4 × P(T{A,B} < ∞ | X0 = C) + 0.4 × 0,

hence P(T{A,B} < ∞ | X0 = C) = 1/3, On the other hand, {A, B} is a closed two-
state chain with transition matrix

[
1 − a a
b 1 − b

]

=
[
0.6 0.4
0.3 0.7

]

,

hence, starting from any state within {A, B}, the long run probability of being in A
is given by

lim
n→∞P(Xn = A | X0 ∈ {A, B})

= lim
n→∞P(Xn = A | X0 = A)

P(X0 = A)

P(X0 ∈ {A, B})
+ lim

n→∞P(Xn = A | X0 = B)
P(X0 = B)

P(X0 ∈ {A, B})
= b

a + b

(
P(X0 = A)

P(X0 ∈ {A, B}) + P(X0 = B)

P(X0 ∈ {A, B})
)
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= 0.3

0.3 + 0.4
= 3

7
.

Since
{Xn = A} ⊂ {TA,B ≤ n} ⊂ {TA,B < ∞}, n ∈ N,

we conclude that

α := lim
n→∞P(Xn = A | X0 = C)

= lim
n→∞P

(
TA,B < ∞ and Xn = A | X0 = C

)

= lim
n→∞P

(
TA,B < ∞ and Xn+TA,B = A | X0 = C

)

= P
(
TA,B < ∞ | X0 = C

)
lim
n→∞P

(
Xn+TA,B = A | TA,B < ∞ and X0 = C

)

= P
(
TA,B < ∞ | X0 = C

)

× lim
n→∞P

(
Xn+TA,B = A | TA,B < ∞, XTA,B ∈ {A, B}, X0 = C

)

= P
(
T{A,B} < ∞ | X0 = C

)
lim
n→∞P(Xn = A | X0 ∈ {A, B})

= 1

3
× 3

7
= 1

7
,

where we used the strong Markov property, cf. Exercise 5.8.

Exercise 7.12

(a) The chain has the following graph:

(b) The communicating classes are {0, 1}, {2}, {3}, and {4}.
(c) States 3 and 4 are transient, states 0 and 1 are recurrent, and state 2 is

absorbing (hence it is recurrent).
(d) By (4.5.7) we have

lim
n→∞P(Xn = 0 | X0 = 4) = lim

n→∞P(Xn = 0 | X0 = 0) = 1/2

2/3 + 1/2
= 3

7
,

cf. also the Table 8.1.

Exercise 7.13

(a) The transition matrix P of the chain on the state space S = (C, T ) is given by
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[
4/5 1/5
3/4 1/4

]

.

(b) The stationary distribution π = (πC ,πT ) is solution of π = πP under the con-
dition πC + πT = 1, which yields πC = 15/19 and πT = 4/19.

(c) In the long run, applying the Ergodic Theorem 7.12 we find that 4 out of 19
vehicles are trucks.

(d) Let μT (C) and μT (T ) denote the mean return times to state T starting from
C and T , respecticely. By first step analysis we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μT (C) = 1 + 4

5
μT (C)

μT (T ) = 1 + 3

4
μT (C)

which has for solution μT (C) = 5 and μT (T ) = 19/4.

Exercise 7.15

(a) We solve the system of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π0 = q(π0 + π1 + π2 + π3) + π4 = q + pπ4

π1 = pπ0

π2 = pπ1 = p2π0

π3 = pπ2 = p3π0

π4 = pπ3 = p4π0,

which yields 1 = π0 + π1 + π2 + π3 + π4 = π0(1 + p + p2 + p3 + p4), and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π0 = 1

1 + p + p2 + p3 + p4

π1 = p

1 + p + p2 + p3 + p4

π2 = p2

1 + p + p2 + p3 + p4

π3 = p3

1 + p + p2 + p3 + p4

π4 = p4

1 + p + p2 + p3 + p4
.

(b) Since the chain is irreducible and aperiodic with finite state space, its limiting
distribution coincides with its stationary distribution.
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Exercise 7.16

(a) The transition matrix P is given by

P =

⎡

⎢
⎢
⎣

0 1/2 0 1/2
1/3 0 1/3 1/3
0 1 0 0
1/2 1/2 0 0

⎤

⎥
⎥
⎦ .

(b) The chain is aperiodic, irreducible, and has finite state space hence we can apply
Theorem 7.8 or Theorem 7.10. The equation πP = π reads

πP = [πA,πB,πC ,πD] ×

⎡

⎢
⎢
⎣

0 1/2 0 1/2
1/3 0 1/3 1/3
0 1 0 0
1/2 1/2 0 0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

3
πB + 1

2
πD

1

2
πA + πC + 1

2
πD

1

3
πB

1

2
πA + 1

3
πB

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [πA,πB,πC ,πD],

i.e. πA = πD = 2πC and πB = 3πC , which, under the condition πA + πB +
πC + πD = 1, gives πA = 1/4, πB = 3/8, πC = 1/8, πD = 1/4.

(c) We solve the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μD(A) = 1

2
+ 1

2
(1 + μD(B)) = 1 + 1

2
μD(B)

μD(B) = 1

3
+ 1

3
(1 + μD(A)) + 1

3
(1 + μD(C)) = 1 + 1

3
(μD(A) + μD(C))

μD(C) = 1 + μD(B)

μD(D) = 1

2
(1 + μD(A)) + 1

2
(1 + μD(B)) = 1 + 1

2
(μD(A) + μD(B)),

which has for solution μD(A) = 8/3, μD(B) = 10/3, μD(C) = 13/3,
μD(D) = 4. On average, player D has to wait μD(D) = 4 time units before
recovering the token.

(d) This probability is πD = 0.25, and we check that the relation μ(D) = 1/πD = 4
is satisfied.

Exercise 7.17 Clearly we may assume that c < 1, as the case c = 1 corresponds
to the identity matrix, or to constant a chain. On the other hand, we cannot directly
apply Theorem 7.8 since the chain is reducible. The chain has the following graph:
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(a) By observation of

P2 =
⎡

⎣
1 0 0
0 1 0

a(1 + c) b(1 + c) c2

⎤

⎦

and

P3 =
⎡

⎣
1 0 0
0 1 0

a(1 + c + c2) b(1 + c + c2) c3

⎤

⎦

we infer that Pn takes the general form

Pn =
⎡

⎣
1 0 0
0 1 0
an bn cn

⎤

⎦ ,

where an , bn and cn are coefficients to be determined by the following induction
argument. Writing down the relation Pn+1 = P × Pn as

Pn+1 =
⎡

⎣
1 0 0
0 1 0

an+1 bn+1 cn+1

⎤

⎦ =
⎡

⎣
1 0 0
0 1 0
a b c

⎤

⎦ ×
⎡

⎣
1 0 0
0 1 0
an bn cn

⎤

⎦

shows that we have the recurrence relations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

an+1 = a + can,

bn+1 = b + cbn,

cn+1 = c × cn,

which yield

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

an = a + ac + · · · + acn−1 = a
1 − cn

1 − c
,

bn = b + bc + · · · + bcn−1 = b
1 − cn

1 − c
,

cn+1 = cn,

hence

Pn =
⎡

⎢
⎣

1 0 0
0 1 0

a
1 − cn

1 − c
b
1 − cn

1 − c
cn

⎤

⎥
⎦ .
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(b) From the structure of Pn it follows that the chain admits a limiting distribution

lim
n→∞ Pn =

⎡

⎢
⎣

1 0 0
0 1 0
a

1 − c

b

1 − c
0

⎤

⎥
⎦ .

which is dependent of the initial state, provided that c < 1. The limiting proba-
bilities

lim
n→∞P(Xn = 0 | X0 = 2) = a

1 − c
,

resp.

lim
n→∞P(Xn = 1 | X0 = 2) = b

1 − c
,

correspond to the probability of moving to state 0 , resp. the probability of
moving to state 1 , given one does not return to state 2 .

In addition we have P(T r
2 = ∞ | X0 = 2) = a + b > 0, hence state 2 is tran-

sient and the chain is not recurrent.
(c) By solving the equation π = πP we find that the chain admits an infinity of

stationary distributions of the form (π0,π1, 0) with π0 + π1 = 1 when c < 1.
We also note that here, all limiting distributions obtained in Question (b) are
also stationary distributions on every row.

Exercise 7.18

(a) The process (Xn)n∈N is a two-stateMarkov chain on {0, 1}with transition matrix

[
α β
p q

]

and α = 1 − β. The entries on the second line are easily obtained. Concerning
the first line we note that P(N = 1) = β is the probability of switching from 0
to 1 in one time step, while the equality P(N = 2) = β(1 − β) shows that the
probability of remaining at 0 for one time step is 1 − β.

(b) This probability is given from the stationary distribution (π0,π1) asπ1 = β/(p +
β).

Exercise 7.20

(a) The N × N transition matrix of the chain is
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P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q p 0 · · · · · · 0 0 0
q 0 p · · · · · · 0 0 0

0 q 0 . . .
. . . 0 0 0

0 0 q . . .
. . . 0 0 0

...
...

...
. . .

. . .
...

...
...

0 0 0 . . .
. . . 0 p 0

0 0 0 · · · · · · q 0 p
0 0 0 · · · · · · 0 q p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(b) The chain is irreducible if p ∈ (0, 1), and reducible if p = 0 or p = 1.
(c) If p ∈ (0, 1) there are no absorbing states and all states are positive recurrent. If

p = 0, state 1 is absorbing and all other states are transient. If p = 1, state N is
absorbing and all other states are transient.

(d) The equation π = πP yields

π2 = p

q
π1 and πN = p

q
πN−1, k = 1, 2, . . . , N − 1,

and
p(πk − πk−1) = q(πk+1 − πk) k = 2, 3, . . . , N − 1.

We check that πk given by

πk = pk−1

qk−1
π1, k = 1, 2, . . . , N ,

satisfies the above conditions. The normalization condition

1 =
N∑

k=1

πk = π1

N∑

k=1

pk−1

qk−1
= π1

N−1∑

k=0

(
p

q

)k

= π1
1 − (p/q)N

1 − p/q

shows that

πk = 1 − p/q

1 − (p/q)N

pk−1

qk−1
, k = 1, 2, . . . , N ,

provided that 0 < p �= q < 1. When p = q = 1/2 we find that the uniform
distribution

πk = 1

N
, k = 1, 2, . . . , N ,

is stationary. When p = 0 the stationary distribution is 1{0} = [1, 0, . . . , 0, 0],
and when p = 1 it is 1{N } = [0, 0, . . . , 0, 1].

(e) The chain has finite state space and when p ∈ (0, 1) it is irreducible and aperi-
odic, hence its limiting distribution coincides with its stationary distribution.
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Problem 7.23

(a) We have

P(Yn+1 = j | Yn = i) = P(Yn+1 = j and Yn = i)

P(Yn = i)

= P(XN−n−1 = j)

P(XN−n = i)
P(XN−n = i | XN−n−1 = j) = π j

πi
Pj,i .

On the other hand, we have

P(Yn+1 = j | Yn = in, . . . ,Y0 = i0) = P(Yn+1 = j,Yn = in, . . . , Y0 = i0)

P(Yn = in, . . . , Y0 = i0)

= P(XN−n−1 = j, XN−n = in, . . . , XN = i0)

P(XN−n = in, . . . , XN = i0)
= P(XN−n−1 = j and XN−n = in)

×P(XN−n+1 = in−1, . . . , XN = i0 | XN−n−1 = j, XN−n = in)

P(XN−n+1 = in−1, . . . , XN = i0)

= P(XN−n−1 = j)

P(XN−n = in)
P(XN−n = in | XN−n−1 = j) = π j

πin

Pj,in ,

and this shows that

P(Yn+1 = j | Yn = in, . . . ,Y0 = i0) = P(Yn+1 = j | Yn = in) = π j

πin

Pj,in ,

i.e. the time-reversed process (Yn)n=0,1,...,N has the Markov property.
(b) We find

Pi, j = πi

π j
Pj,i , (B.28)

i.e.
πi Pi, j = π j Pj,i ,

which is the detailed balance condition with respect to the probability distribu-
tion π = (πi )i∈S .

(c) We have
π j =

∑

i

π j Pj,i =
∑

i

πi Pi, j = [πP] j .

(d) According to the detailed balance condition (B.28) we have

Pk1,k2 Pk2,k3 · · · Pkn ,k1 = Pkn ,k1

n−1∏

i=1

Pki ,ki+1 = Pkn ,k1

n−1∏

i=1

πki+1

πki

Pki+1,ki
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= πkn

πk1

Pkn ,k1

n−1∏

i=1

Pki+1,ki = Pk1,kn

n−1∏

i=1

Pki+1,ki ,

holds for all sequences {k1, k2, . . . , kn} of states and n ≥ 2.
(e) If the Markov chain satisfies

Pk1,k2 Pk2,k3 · · · Pkn−1,kn Pkn ,k1 = Pk1,kn Pkn ,kn−1 · · · Pk3,k2 Pk2,k1
then by summation over the indexes k2, k3, . . . , kn−1, using the matrix power
relation

[Pn−1]i, j =
∑

k2,...,kn−1

Pi,k2 Pk2,k3 · · · Pkn−1, j ,

we get
[Pn−1]k1,kn Pkn ,k1 = Pk1,kn [Pn−1]kn ,k1 .

On the other hand, by taking the limit as n goes to infinity Theorem 7.8 shows
that

lim
n→∞[Pn−1]kn ,k1 = lim

n→∞[Pn]kn ,k1 = πk1

since the limiting and stationary distributions coincide, and we get

πkn Pkn ,k1 = Pk1,knπk1 ,

which is the detailed balance condition.
(f) The detailed balance condition reads

πi Pi,i+1 = πi

(
1

2
− i

2M

)

= πi+1Pi+1,i = πi+1
i + 1

2M
,

hence
πi+1

πi
= 1 − i/M

(i + 1)/M
= M − i

i + 1
,

which shows that

πi = (M − i + 1)

i

(M − i + 2)

(i − 1)
· · · (M − 1)

2

M

1
π0 = M !

i !(M − i)!π0 = π0

(
M

i

)

,

i = 0, 1, . . . , M , where the constant π0 > 0 is given by

1 =
∑

i

πi = π0

M∑

i=0

(
M

i

)

= π02
M ,

https://doi.org/_7


Appendix B: Solutions to Selected Exercises and Problems 335

hence π0 = 2−M and

πi = 1

2M

(
M

i

)

, i = 0, 1, . . . , M.

(g) We have

[πP]i = Pi+1,iπi+1 + Pi,iπi + Pi−1,iπi−1

= 1

2M
i + 1

2M

(
M

i + 1

)

+ 1

2M

(
1

2
− i − 1

2M

)(
M

i − 1

)

+ 1

2M
× 1

2

(
M

i

)

= 1

2M

(
M

i

)

,

which is also known as Pascal’s triangle.
(h) The chain is positive recurrent, irreducible and aperiodic, therefore by Theo-

rem 7.8 it admits a limiting distribution equal to π.
(i) We have

lim
n→∞ IE[Xn | X0 = i] = lim

n→∞

M∑

j=0

jP(Xn = j | X0 = i)

=
M∑

j=0

j lim
n→∞P(Xn = j | X0 = i) =

M∑

j=0

jπ j

= 1

2M

M∑

j=0

j

(
M

j

)

= M

2M

M−1∑

j=0

(M − 1)!
j !(M − 1 − j)! = M

2
,

independently of i = 0, 1, . . . , M .
(j) Clearly, the relation

IE

[

X0 − M

2

∣
∣
∣X0 = i

]

= i − M

2

holds when n =0. Next, assuming that the relation holds at the rank n ≥ 0 we
have

h(i) = IE

[

Xn+1 − M

2

∣
∣
∣X0 = i

]

= Pi,i+1IE

[

Xn+1 − M

2

∣
∣
∣X1 = i + 1

]

+ Pi,i IE

[

Xn+1 − M

2

∣
∣
∣X1 = i

]

+Pi,i−1IE

[

Xn+1 − M

2

∣
∣
∣X1 = i − 1

]
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=
(
1

2
− i

2M

)

IE

[

Xn+1 − M

2

∣
∣
∣X1 = i + 1

]

+ 1

2
IE

[

Xn+1 − M

2

∣
∣
∣X1 = i

]

+ i

2M
IE

[

Xn+1 − M

2

∣
∣
∣X1 = i − 1

]

=
(
1

2
− i

2M

)(

i + 1 − M

2

)(

1 − 1

M

)n

+ 1

2

(

i − M

2

)(

1 − 1

M

)n

+ i

2M

(

i − 1 − M

2

)(

1 − 1

M

)n

=
(

i − M

2

)(

1 − 1

M

)n+1

, n ≥ 0,

for all i = 0, 1, . . . , M .

Taking the limit as n goes to infinity we get

lim
n→∞ IE

[

Xn − M

2

∣
∣
∣X0 = i

]

= lim
n→∞

(

i − M

2

)(

1 − 1

M

)n

= 0,

hence lim
n→∞ IE[Xn] = M/2, for all i = 0, 1, . . . , M , which recovers the result of

Question (i).

Chapter 8 - Branching Processes

Exercise 8.2

(a) We have

G1(s) = IE[sY ] = s0P(Y = 0) + s1P(Y = 1) = 1

2
+ 1

2
s, s ∈ R.

(b) We prove this statement by induction. Clearly it holds at the order 1. Next,
assuming that (8.3.10) holds at the order n ≥ 1 we get

Gn+1(s) = G1(Gn(s)) = G1

(

1 − 1

2n
+ s

2n

)

= 1

2
+ 1

2

(

1 − 1

2n
+ s

2n

)

= 1 − 1

2n+1
+ s

2n+1
.

(c) We have

P(Xn = 0 | X0 = 1) = Gn(0) = 1 − 1

2n
.

(d) We have

IE[Xn | X0 = 1] = G ′
n(s)|s=1 = (IE[Y1])n = 1

2n
.
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(e) The extinction probability α is solution ofG1(α) = α, i.e. α = 1/2 + α/2, with
unique solution α = 1.

Exercise 8.3

(a) We have G1(s) = 0.2 + 0.5s + 0.3s2 and

IE[X1] = IE[ξ] = G ′
1(1) = 0.5 + 2 × 0.3 = 1.1,

hence
IE[X2] = (G ′

1(1))
2 = (IE[ξ])2 = (1.1)2,

by Proposition 8.2. On the other hand, we have

G2(s) = G1(G1(s))

= G1(0.2 + 0.5s + 0.3s2)

= 0.312 + 0.31s + 0.261s2 + 0.09s3 + 0.027s4,

with
G ′

2(s) = 0.31 + 0.522s + 0.27s2 + 0.108s3

and
G ′′

2(s) = 0.522 + 0.54s + 0.324s2,

hence

G ′
2(1) = (G ′

1(1))
2 = (1.1)2 = 1.21 and G ′′

2(1) = 1.386,

and
IE[X2

2] = G ′′
2(1) + G ′

2(1) = 1.386 + 1.21 = 2.596.

By (1.7.6) this yields
Var[X2] = 2.596 − (1.21)2.

(b) We have G2(s) = 0.312 + 0.31s + 0.261s2 + 0.09s3 + 0.027s4, hence

P(X2 = 0) = 0.312, P(X2 = 1) = 0.31, P(X2 = 2) = 0.261,

and
P(X2 = 3) = 0.09, P(X2 = 4) = 0.027.

(c) We have P(X4 = 0) = G4(0) = G2(G2(0)) � 0.44314.
(d) We have IE[X10] = (IE[X1])10 = (G ′

1(1))
10 = (1.1)10 = 2.59, since the mean

population size grows by 10% at each time step.
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(e) The extinction probability α solves the equation

α = G1(α) = 0.2 + 0.5α + 0.3α2,

i.e. 0.3α2 − 0.5α + 0.2 = 0.3(α − 1)(α − 2/3) = 0, hence α = 2/3.

Exercise 8.4

(a) We have G1(s) = P(Y = 0) + sP(Y = 1) + s2P(Y = 2) = as2 + bs + c, s ∈
R.

(b) Letting Xn denote the number of individuals in the population at generation
n ≥ 0, we have

P(X2 = 0 | X0 = 1) = G1(G1(0)) = G1(c) = ac2 + bc + c.

This probability can actually be recovered by pathwise analysis, by noting that
in order to reach {X2 = 0} we should have either

(i) Y1 = 0 with probability c, or
(ii) Y1 = 1 with probability b and then Y1 = 0 with probability c, or
(iii) Y1 = 2 with probability a and then Y1 = 0 (two times) with probability c,

which yields P(X2 = 0 | X0 = 1) = c + bc + ac2.
(c) We have

P(X2 = 0 | X0 = 2) = (P(X2 = 0 | X0 = 1))2 = (ac2 + bc + c)2,

as in (8.3.1).
(d) The extinction probability α1 given that X0 = 1 is solution of G1(α) = α, i.e.

aα2 + bα + c = α,

or
0 = aα2 − (a + c)α + c = (α − 1)(aα − c)

from the condition a + b + c = 1. The extinction probability α1 is known to be
the smallest solution of G1(α) = α, hence it is α1 = c/a when 0 < c ≤ a. The
extinction probability α2 given that X0 = 2 is α2 = (α1)

2.
(e) When 0 ≤ a ≤ c we have α1 = 1.

Exercise 8.6

(a) When only red cells are generated, their number at time n − 1 is sn−1, hence the
probability that only red cells are generated up to time n is

1

4
×
(
1

4

)2

× · · · ×
(
1

4

)2n−1

=
n−1∏

k=0

(
1

4

)2k (1

4

)2n−1

, n ≥ 0.
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(b) Since white cells cannot reproduce, the extinction of the culture is equivalent to
the extinction of the red cells, and this question can be solved as in the framework
ofExercise 8.3.Theprobability distributionof thenumberY of red cells produced
from one red cell is

P(Y = 0) = 1

12
, P(Y = 1) = 2

3
, P(Y = 2) = 1

4
,

which has the generating function

G1(s) = P(Y = 0) + sP(Y = 1) + s2P(Y = 2)

= 1

12
+ 2s

3
+ s2

4
= 1

12
(1 + 8s + 3s2),

hence the equation G1(α) = α reads

3α2 − 4α + 1 = 3(α − 1)(α − 1/3) = 0,

which has α = 1/3 for smallest solution. Consequently, the extinction probabil-
ity of the culture is equal to 1/3.

(c) The probability that only red cells are generated from time 0 to time n is

1

3
×
(
1

3

)2

× · · · ×
(
1

3

)2n−1

=
n−1∏

k=0

(
1

3

)2k

=
(
1

3

)2n−1

,

n ≥ 0. The probability distribution

IP(Y = 0) = 1

6
, IP(Y = 1) = 2

2
, IP(Y = 2) = 1

3
,

of the number Y of red cells has the generating function

G1(s) = IP(Y = 0) + sIP(Y = 1) + s2IP(Y = 2)

= 1

6
+ s

2
+ s2

3
= 1

12
(2 + 6s + 4s2),

hence the equation G1(α) = α reads 1 + 3α + 2α2 = 6α, or

2α2 − 3α + 1 = 2(α − 1)(α − 1/2) = 0,

which has α = 1/2 for smallest solution. Consequently, the extinction probabil-
ity of the culture is equal to 1/2.

Exercise 8.9

(a) We have P(X = k) = (1/2)k+1, k ∈ N.

https://doi.org/_8
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(b) The probability generating function of X is given by

GX (s) = E[sX ] =
∞∑

k=0

skP(X = k) = 1

2

∞∑

k=0

( s

2

)k = 1

2 − s
,

−1 < s ≤ 1.
(c) The probability we are looking for is

P(X3 = 0 | X0 = 0) = GX (GX (GX (0))) = 1

2 − 1
2−1/2

= 3

4
.

(d) Since giving birth to a girl is equivalent to having at least one child, and this
happens to each couple with probability 1/4, the probability we are looking for
is equal to

1

4
+ 3

4
× 1

4
+
(
3

4

)2
× 1

4
= 1

4
× 1 − (3/4)3

1 − 3/4
= 1 − (3/4)3 = 37

64
= 0.578125.

It can also be recovered from

G(3)
Z (s) = GZ (GZ (GZ (s))) = 37

64
+ 27s

64

at s = 0, where GZ is the probability generating function GZ (s) = 1/4 + 3s/4.

Problem 8.11

(a) We have

IE[Zn] =
n∑

k=1

IE[Xk] =
n∑

k=1

μk = μ

n−1∑

k=0

μk = μ
1 − μ

1 − μ

n

, n ∈ N.

(b) We have

IE[Z ] = IE

[ ∞∑

k=1

Xk

]

=
∞∑

k=1

IE[Xk] = μ

∞∑

k=0

μk = μ

1 − μ
, n ∈ N,

provided that μ < 1.
(c) We have

H(s) = IE
[
sZ | X0 = 1

] =
∞∑

k=0

(
sIE

[
sZ | X0 = 1

])k
P(Y1 = k) = G1(sH(s)).

(d) We have
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H(s) = G1(sH(s)) = 1 − p

1 − psH(s)
,

hence
psH 2(s) − H(s) + q = 0,

and

H(s) = 1 ± √
1 − 4pqs

2ps
= 1 − √

1 − 4pqs

2ps
,

where we have chosen the minus sign since the plus sign leads to H(0) = +∞
whereaswe should have H(0) = P(Z = 0) ≤ 1. In additionwehaveμ = p/q <

1 hence p < 1/2 < q and the minus sign gives

H(1) = 1 − √
1 − 4pq

2p
= 1 − |q − p|

2p
= 1.

(e) We have

lim
s↘0+

H(s) = lim
s↘0+

1 − (1 − 2pqs)

2ps
= q = P(Z = 0) = P(Y1 = 0) = H(0).

(f) We have

H ′(s) = pq

ps
√
1 − 4pqs

− 1 − √
1 − 4pqs

2ps2
,

and

H ′(1) = pq

p
√
1 − 4pq

− 1 − √
1 − 4pq

2p
= pq

p(q − p)
− 1 − (q − p)

2p

= q

q − p
− 1 = p

q − p
= μ

1 − μ
,

with μ = p/q for p < 1/2, which shows that

IE[Z ] = μ

1 − μ

and recovers the result of Question (b).
(g) We have

IE

⎡

⎣
Z∑

k=1

Uk

⎤

⎦ =
∞∑

n=0

IE

⎡

⎣
Z∑

k=1

Uk | Z = n

⎤

⎦P(Z = n)IE[U1]IE[Z ] = IE[U1] μ

1 − μ
.

(h) We have
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P(Uk < x, k = 1, 2, . . . , Z) =
∞∑

n=0

P(Uk < x, k = 1, 2, . . . , n)P(Z = n)

=
∞∑

n=0

(F(x))nP(Z = n) = H(F(x)).

(i) We have

IE

[
Z∑

k=1

Uk

]

= IE[U1] μ

1 − μ
= μ

1 − μ
= p

q − p
.

We find

P(Uk < x, k = 1, 2, . . . , Z) = H(F(x)) = H(1 − e−x )

= 1 − √
1 − 4pq(1 − e−x )

2p(1 − e−x )
.

Chapter 9 - Continuous-Time Markov Chains

Exercise 9.1 We model the number of operating machines as a birth and death
process (Xt )t∈R+ on the state space {0, 1, 2, 3, 4, 5}. A new machine can only be
added at the rate λ since the repairman can fix only one machine at a time. In order to
determine the failure rate starting from state k ∈ {0, 1, 2, 3, 4, 5}, let us assume that
the number of working machines at time t is Xt = k. It is known that the lifetime
τi of machine i ∈ {0, . . . , k} is an exponentially distributed random variable with
parameter μ > 0. On the other hand, we know that the first machine to fail will do
so at time min(τ1, τ2, . . . , τk), and we have

P(min(τ1, τ2, . . . , τk) > t) = P(τ1 > t, τ2 > t, . . . , τk > t)

= P(τ1 > t)P(τ2 > t) · · ·P(τk > t) = (e−μt )k = e−kμt ,

t ∈ R+, hence the time until the first machine failure is exponentially distributed
with parameter kμ, i.e. the birth rate μk of (Xt )t∈R+ is μk = kμ, k = 1, 2, 3, 4, 5.

Consequently, the infinitesimal generator Q of (Xt )t∈R+ is given by

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−λ λ 0 0 0 0
μ − μ − λ λ 0 0 0
0 2μ − 2μ − λ λ 0 0
0 0 3μ − 3μ − λ λ 0
0 0 0 4μ − 4μ − λ λ
0 0 0 0 5μ − 5μ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

with λ = 0.5 and μ = 0.2. We look for a stationary distribution of the form
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π = (π0,π1,π2,π3,π4,π5)

by solving πQ = 0, which yields

π1 = λ

μ
π0, π2 = λ

2μ
π1, π3 = λ

3μ
π2, π4 = λ

4μ
π3, π5 = λ

5μ
π4,

i.e.

π1 = λ

μ
π0, π2 = λ2

2μ2
π0, π3 = λ3

3!μ3
π0, π4 = λ4

4!μ4
π0, π5 = λ5

5!μ5
π0,

which is a truncated Poisson distribution with

π0 + λ

μ
π0 + λ2

2μ2
π0 + λ3

3!μ3
π0 + λ4

4!μ4
π0 + λ5

5!μ5
π0 = 1,

hence

π0 = 1

1 + λ

μ
+ λ2

2μ2
+ λ3

3!μ3
+ λ4

4!μ4
+ λ5

5!μ5

= μ5

μ5 + λμ4 + λ2μ3/2 + λ3μ2/3! + λ4μ/4! + λ5/5! .

Finally, since π5 is the probability that all 5 machines are operating, the fraction of
time the repairman is idle in the long run is

π5 = λ5

120μ5 + 120λμ4 + 60λ2μ3 + 20λ3μ2 + 5λ4μ + λ5 .

Note that of at most two machines can be under repair, the infinitesimal generator Q
of (Xt )t∈R+ will become

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2λ 2λ 0 0 0 0
μ − μ − 2λ 2λ 0 0 0
0 2μ − 2μ − 2λ 2λ 0 0
0 0 3μ − 3μ − 2λ 2λ 0
0 0 0 4μ − 4μ − λ λ
0 0 0 0 5μ − 5μ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Exercise 9.2

(a) Since the time τ R
k spent between two Poisson arrivals no k and k + 1 is an

exponentially distributed random variable with parameter λR , the probability
we are looking for is given by
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P(τ R
k > t) = e−λRt ,

where N R
t denotes a Poisson process with intensity λR .

(b) This probability is given by

P(NW
t ≤ 3) = P(NW

t = 0) + P(NW
t = 1) + P(NW

t = 2) + P(NW
t = 3)

= e−λW t + λW te−λW t + e−λW t λ
2
W t2

2
+ e−λW t λ

3
W t3

6
,

where NW
t denotes a Poisson process with intensity λW .

(c) This probability is given by the ratio P(τ R < τW ) = λR/(λW + λR) of arrival
rates, as follows from the probability computation (1.5.9), where τ R and τW are
independent exponential random variables with parameters λR and λW , repre-
senting the time until the next “read”, resp. “write” consultation.

(d) This distribution is given by P(N R
t = k | N R

t + Y = n) where N R
t , N

W
t are in-

dependent Poisson random variables with parameters λRt and λW t respectively.
We have

P(N R
t = k | N R

t + NW
t = n) = P(N R

t = k and N R
t + NW

t = n)

P(N R
t + NW

t = n)

=
(
n

k

)(
λR

λR + λW

)k ( λW

λR + λW

)n−k

, k = 0, 1, . . . , n,

cf. (B.8) in the Exercise 1.6.

Exercise 9.3

(a) The number Xt of machines operating at time t is a birth and death process on
{0, 1, 2} with infinitesimal generator

Q =
⎡

⎣
−λ λ 0
μ −(λ + μ) λ
0 2μ −2μ

⎤

⎦ .

The stationary distribution π = (π0,π1,π2) is solution of πQ = 0 under the
condition π0 + π1 + π2 = 1, which yields

(π0,π1,π2) =
(

2μ2

2μ2 + 2λμ + λ2
,

2λμ

2μ2 + 2λμ + λ2
,

λ2

2μ2 + 2λμ + λ2

)

,

i.e. the probability that no machine is operating is π0 = 2/5 when λ = μ = 1.
(b) The number Xt of machines operating at time t is now a birth and death process

on {0, 1}. The time spent in state 0 is exponentially distributed with average
1/λ. When the chain is in state 1 , one machine is working while the other one
may still be under repair, and the mean time IE[T0 | X0 = 1] spent in state 1

https://doi.org/_1
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before switching to state 0 has to be computed using first step analysis on the
discrete-time embedded chain. We have

IE[T0 | X0 = 1]
= P(Xλ < Xμ) ×

(
1

μ
+ IE[T0 | X0 = 1]

)

+ P(Xμ < Xλ) × 1

μ

= 1

μ
+ P(Xλ < Xμ) × IE[T0 | X0 = 1]

= 1

μ
+ λ

λ + μ
IE[T0 | X0 = 1],

where, by (9.7.2) and (9.7.3) or (1.5.9), P(Xλ < Xμ) = λ/(λ + μ) is the prob-
ability that an exponential random variable Xλ with parameter λ > 0 is smaller
than another independent exponential randomvariable Xμ with parameterμ > 0.
In other words, P(Xλ < Xμ) is the probability that the repair of the idle machine
finishes before the working machine fails. This yields

IE[T0 | X0 = 1] = λ + μ

μ2
,

hence the corresponding rate is μ2/(λ + μ) and the infinitesimal generator of
the chain becomes

Q =
⎡

⎣
−λ λ
1

IE[T0 | X0 = 1] − 1

IE[T0 | X0 = 1]

⎤

⎦ =
⎡

⎣
−λ λ
μ2

λ + μ
− μ2

λ + μ

⎤

⎦ .

The stationary distribution π = (π0,π1) is solution of πQ = 0, i.e.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 = −λπ0 + π1
μ2

λ + μ

0 = λπ0 − π1
μ2

λ + μ

under the condition π0 + π1 = 1, which yields

(π0,π1) =
(

μ2

μ2 + λμ + λ2
,

λμ + λ2

μ2 + λμ + λ2

)

,

i.e. the probability that no machine is operating when λ = μ = 1 is π0 = 1/3.

Exercise 9.6 The size of the crack is viewed as a continuous-time birth process
taking values in {1, 2, 3, . . .} with state-dependent rate λk = (1 + k)ρ, k ≥ 1. Let
us denote by τk the time spent at state k ∈ N between two increases, which is an
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exponentially distributed random variable with parameter λk . The time it takes for

the crack length to grow to infinity is
∞∑

k=1

τk . It is known that
∞∑

k=1

τk < ∞ almost

surely if the expectation IE

[ ∞∑

k=1

τk

]

is finite, and in this situation the crack grows to

infinity within a finite time. We have

IE

[ ∞∑

k=1

τk

]

=
∞∑

k=1

IE[τk] =
∞∑

k=1

1

λk
=

∞∑

k=1

1

(1 + k)ρ
.

By comparison with the integral of the function x �−→ 1/(1 + x)ρ we get

IE

[ ∞∑

k=1

τk

]

=
∞∑

k=1

1

(1 + k)ρ
≤
∫ ∞

0

1

(1 + x)ρ
dx = 1

ρ − 1
< ∞,

provided that ρ > 1.We conclude that the time for the crack to grow to infinite length
is (almost surely) finite when ρ > 1. Similarly, we have

IE

[ ∞∑

k=1

τk

]

=
∞∑

k=1

1

(1 + k)ρ
≥
∫ ∞

1

1

(1 + x)ρ
dx = ∞,

hence the mean time for the crack to grow to infinite length is infinite when ρ ≤ 1.

Exercise 9.7

(a) This time is the expected value of the third jump time T3, i.e.

IE[T3] = IE[τ0] + IE[τ1] + IE[τ2] = 3

λ
= 30 minutes.

(b) This probability is

P(N60 < 3) = P(N60 = 0) + P(N60 = 1) + P(N60 = 2)

= e−60λ(1 + 60λ + (60λ)2/2)

= 25e−6 � 0.062.

Exercise 9.8

(a) By the independence of increments of the Poisson process (Nt )t∈R+ we find

P(Nt3 = 5 | Nt1 = 1) = P(Nt3 = 5 and Nt1 = 1)

P(Nt1 = 1)

= P(Nt3 − Nt1 = 4 and Nt1 = 1)

P(Nt1 = 1)
= P(Nt3 − Nt1 = 4)P(Nt1 = 1)

P(Nt1 = 1)
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= P(Nt3 − Nt1 = 4) = (λ(t3 − t1))4

4! e−λ(t3−t1).

(b) We expand Nt4 into the telescoping sum

Nt4 = (Nt4 − Nt3) + (Nt3 − Nt2) + (Nt2 − Nt1) + (Nt1 − N0)

of independent increments on disjoint time intervals, to obtain

IE[Nt1Nt4(Nt3 − Nt2)]
= λ3t1(t4 − t3)(t3 − t2) + λ2t1(t3 − t2)(1 + λ(t3 − t2))

+λ3t1(t2 − t1)(t3 − t2) + λ2t1(1 + λt1)(t3 − t2).

(c) We have {T2 > t} = {Nt ≤ 1}, t ∈ R+, hence

IE[Nt2 | T2 > t1] = IE[Nt2 | Nt1 ≤ 1] = 1

P(Nt1 ≤ 1)
IE[Nt21{Nt1≤1}],

by (1.6.6). Now, using the independence of increments between Nt2 − Nt1 and
Nt1 , we have

IE[Nt21{Nt1≤1}] = IE[(Nt2 − Nt1)1{Nt1≤1}] + IE[Nt11{Nt1≤1}]
= IE[Nt2 − Nt1 ]P(Nt1 ≤ 1) + IE[Nt11{Nt1≤1}],

hence

IE[Nt2 | T2 > t1] = IE[Nt2 | Nt1 ≤ 1] = 1

P(Nt1 ≤ 1)
IE[Nt21{Nt1≤1}]

= IE[Nt2 − Nt1 ] + P(Nt1 = 1)

P(Nt1 ≤ 1)
= λ(t2 − t1) + λt1e−λt1

e−λt1 + λt1e−λt1
.

Exercise 9.10 This is an extension of Exercise 9.9. The generator of the process is
given by

Q =

⎡

⎢
⎢
⎢
⎢
⎣

−αN αN 0 · · · 0 0 0
β − α(N − 1) − β α(N − 1) · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · β(N − 1) − α − β(N − 1) α
0 0 0 · · · 0 βN − βN

⎤

⎥
⎥
⎥
⎥
⎦

.

Writing the equation πQ = 0 shows that we have −αNπ0 + βπ1 = 0,

β(k + 1)πk+1 − (α(N − k) + βk)πk + α(N − (k − 1))πk−1 = 0, k = 1, 2, . . . , N − 1,

and απN−1 − βNπN = 0, from which we deduce the recurrence relation
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πk+1 = α

β

N − k

k + 1
πk, k = 0, 1, . . . , N − 1,

and by induction on k = 1, 2, . . . , N we find

πk =
(

α

β

)k N (N − 1) · · · (N − k + 1)

k! π0

=
(

α

β

)k N !
(N − k)!k!π0 =

(
α

β

)k (N

k

)

π0,

k = 0, 1, . . . , N . The condition π0 + π1 + · · · + πN = 1 shows that π0 = (1 +
α/β)−N and we have

πk =
(

α

α + β

)k ( β

α + β

)N−k N !
(N − k)!k! , k = 0, 1, . . . , N ,

hence the stationary distributionπ is a binomial distributionwith parameter (N , p) =
(N ,α/(α + β)).

Exercise 9.11 The generator Q of this pure birth process is given by

Q = [
λi, j

]

i, j∈N =

⎡

⎢
⎢
⎢
⎢
⎣

−1 1 0 0 0 · · ·
0 −3 3 0 0 · · ·
0 0 −2 2 0 · · ·
0 0 0 −5 5 · · ·
...

...
...

...
. . .

. . .

⎤

⎥
⎥
⎥
⎥
⎦

,

hence the forward Kolmogorov equation P ′(t) = P(t)Q yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

P ′
0,0(t) = −P0,0(t),

P ′
0,1(t) = P0,0(t) − 3P0,1(t),

P ′
0,2(t) = 3P0,1(t) − 2P0,2(t),

P ′
0,3(t) = 2P0,2(t) − 5P0,3(t).

The first equation is solved by (A.9) as

P0,0(t) = P0,0(0)e
−t = e−t , t ∈ R+,

and this solution can be easily recovered from

P0,0(t) = P(Xt = 0 | X0 = 0) = P(τ0 > t) = e−t , t ∈ R+.



Appendix B: Solutions to Selected Exercises and Problems 349

The second equation becomes

P ′
0,1(t) = e−t − 3P0,1(t), (B.29)

and has the solution

P0,1(t) = 1

2
(e−t − e−3t ), t ∈ R+.

The remaining equations can be solved similarly by searching for a suitable particular
solution. For

P ′
0,2(t) = 3

2
(e−t − e−3t ) − 2P0,2(t),

we find

P0,2(t) = 3

2
e−3t (1 − et )2, t ∈ R+, (B.30)

and for
P ′
0,3(t) = 3e−3t (1 − et )2 − 5P0,3(t),

we find

P0,3(t) = 1

4
e−5t (et − 1)3(1 + 3et ), t ∈ R+. (B.31)

Exercise 9.12 Noting that the two events

{T1 > t, T2 > t + s} = {Xt = 0, 0 ≤ Xt+s ≤ 1}

coincides for all s, t ∈ R+, we find that

P(T1 > t and T2 > t + s) = P(Xt = 0 and Xt+s ∈ {0, 1} | X0 = 0)

= P(Xt+s ∈ {0, 1} | Xt = 0)P(Xt = 0 | X0 = 0)

= P(Xs ∈ {0, 1} | X0 = 0)P(Xt = 0 | X0 = 0)

= (P(Xs = 0 | X0 = 0) + P(Xs = 1 | X0 = 0))P(Xt = 0 | X0 = 0)

= P0,0(t)(P0,0(s) + P0,1(s)).

Next, we note that we have

P0,0(t) = e−λ0t , t ∈ R+,

and

P0,1(t) = λ0

λ1 − λ0

(
e−λ0t − e−λ1t

)
, t ∈ R+,
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hence

P(T1 > t and T2 > t + s) = e−λ0(t+s) + λ0

λ1 − λ0

(
e−λ0(t+s) − e−λ0t−λ1s

)

= λ1

λ1 − λ0
e−λ0(t+s) − λ0

λ1 − λ0
e−λ0t−λ1s .

Then, since

P(T1 > x and T2 > y) =
∫ ∞

x

∫ ∞

y
f(T1,T2)(u, v)dudv,

by (1.5.4) we get

f(T1,T2)(x, y) = ∂2

∂y∂x
P(T1 > x and T2 > y)

= ∂2

∂y∂x

(
λ1

λ1 − λ0
e−λ0 y − λ0

λ1 − λ0
e−λ0x−λ1(y−x)

)

= −λ0
∂

∂y
e−λ0x−λ1(y−x) = λ0λ1e

−λ0x−λ1(y−x),

provided that y ≥ x ≥ 0. When x > y ≥ 0 we have

f(T1,T2)(x, y) = 0.

The density of (τ0, τ1) is given under the change of variable T0 = τ0, T1 = τ0 + τ1,
by

f(τ0,τ1)(s, t) = f(T1,T2)(s, s + t) = λ0λ1e
−λ0s−λ1t , s, t ∈ R+,

which shows that τ0, τ1 are two independent exponentially distributed random vari-
ables with parameters λ0 and λ1, respectively.

Exercise 9.13 Let (Nt )t∈R+ denote a Poisson process with intensity λ > 0.

(a) This probability is equal to

P(NT = 0) = P(τ0 > T ) = e−λT .

(b) Let t denote the expected time we are looking for. When the woman attempts
to cross the street, she can do so immediately with probability P(NT = 0) =
P(τ0 > T ), in which case the waiting time is 0. Otherwise, with probability
1 − P(NT = 0), she has to wait on average (using Lemma 1.4 and (1.6.14))
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IE[τ0 | τ0 < T ] = 1

P(τ0 < T )
IE[τ01{τ0<T }]

= λ

1 − e−λT

∫ T

0
xe−λxdx

= 1 − (1 + λT )e−λT

λ(1 − e−λT )

for the first car to pass, after which the process is reinitialized and the average
waiting time is again t . Hence by first step analysis in continuous time we find
the equation

t = 0 × P(NT = 0) + (IE[τ0 | τ0 < T ] + t) × P(τ0 ≤ T )

= 1 − (1 + λT )e−λT

λ
+ t (1 − e−λT ) (B.32)

with unknown t , and solution t = (eλT − 1 − λT )/λ.
(c) Denoting by t the mean time until she finishes crossing the street we have, by

first step analysis in continuous time,

t = IE
[
T1{T<τ0} + (τ0 + t)1{T≥τ0}

]

= λT
∫ ∞

T
e−λsds + λ

∫ T

0
(s + t)e−λsds

= TP(τ0 > T ) + λ

∫ T

0
se−λsds + tP(τ0 < T )

= T e−λT + 1 − e−λT (1 + λT )

λ
+ t (1 − e−λT ),

which yields t = (eλT − 1)/λ.
(d) In this case, T becomes an independent exponentially distributed random vari-

able with parameter μ > 0, hence we can write

t = IE

[
eλT − 1

λ

]

= 1

μ − λ

if μ > λ, with t = +∞ if μ ≤ λ.

Exercise 9.15

(a) The generator Q of (Xt )t∈R+ is given by

Q =
⎡

⎣
−0.5 0.5 0
0.2 −0.45 0.25
0 0.4 −0.4

⎤

⎦ .
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(b) Solving for πQ = 0 we have

πQ = [π0,π1,π2] ×
⎡

⎣
−0.5 0.5 0
0.2 −0.45 0.25
0 0.4 −0.4

⎤

⎦

=
⎡

⎣
−0.5 × π0 + 0.2 × π1

0.5 × π0 − 0.45 × π1 + 0.4 × π2

0.25 × π1 − 0.4 × π2

⎤

⎦

T

= [0, 0, 0],

i.e. π0 = 0.4 × π1 = 0.64 × π2 under the condition π0 + π1 + π2 = 1, which
gives π0 = 16/81, π1 = 40/81, π2 = 25/81.

(c) In the long run the average is 0 × π0 + 1 × π1 + 2 × π2 = 40/81 + 50/81 =
90/81.

(d) We find 100 × 90/81 = 1000/9.
(e) We have

Q =
⎡

⎣
−0.5 0.5 0
0.2 −0.7 0.5
0 0.4 −0.4

⎤

⎦ ,

and solving πQ = 0 shows that

[π0,π1,π2] =
[
0.32

2.12
,
0.8

2.12
,

1

2.12

]

= [0.15094, 0.37736, 0.47170] .

Exercise 9.16 Both chains (X1(t))t∈R and (X2(t))t∈R have the same infinitesimal
generator

Q =
[−λ λ

μ −μ

]

.

The infinitesimal generator of Z(t) := X1(t) + X2(t) is given by

⎡

⎣
−2λ 2λ 0
μ −λ − μ λ
0 2μ −2μ

⎤

⎦ ,

as the birth rate λ is doubled when both chains are in state 0 , and the death rate μ

is also doubled when both chains are in state 1 . Recall that by Proposition 9.6, the
semi-groups of X1(t) and X2(t) are given by

⎡

⎣
P(X1(t) = 0 | X1(0) = 0) P(X1(t) = 1 | X1(0) = 0)

P(X1(t) = 0 | X1(0) = 1) P(X1(t) = 1 | X1(0) = 1)

⎤

⎦
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=

⎡

⎢
⎢
⎢
⎣

μ

λ + μ
+ λ

λ + μ
e−t (λ+μ) λ

λ + μ
− λ

λ + μ
e−t (λ+μ)

μ

λ + μ
− μ

λ + μ
e−t (λ+μ) λ

λ + μ
+ μ

λ + μ
e−t (λ+μ)

⎤

⎥
⎥
⎥
⎦

.

As for the transition semi-group of Z(t), we have

P0,0(t) = P(Z(t) = 0 | Z(0) = 0) =
(

μ

λ + μ
+ λ

λ + μ
e−t (λ+μ)

)2

.

For P0,1(t) we have

P0,1(t) = P(Z(t) = 1 | Z(0) = 0)

= P(X1(t) = 0 and X2(t) = 1 | X1(0) = 0 and X2(0) = 0)

+P(X1(t) = 1 and X2(t) = 0 | X1(0) = 0 and X2(0) = 0)

= P(X1(t) = 1 | X1(0) = 0)P(X2(t) = 0 | X2(0) = 0)

+P(X1(t) = 0 | X1(0) = 0)P(X2(t) = 1 | X2(0) = 0)

= 2P(X1(t) = 1 | X1(0) = 0)P(X2(t) = 0 | X2(0) = 0).

Starting from Z(0) = 1 and ending at Z(t) = 1 we have two possibilities (0, 1)
or (1, 0) for the terminal condition. As for the initial condition Z(0) = 1 the two
possibilities (0, 1) and (1, 0) count for one only since they both give Z(0) = 1.
Thus, in order to compute P1,1(t) we can choose to assign the value 0 to X1(0) and
the value 1 to X2(0) without influencing the final result, as the other choice would
lead to the same probability value. Hence for P1,1(t) we have

P1,1(t) = P(Z(t) = 1 | Z(0) = 1)

= P(X1(t) = 0 and X2(t) = 1 | X1(0) = 0 and X2(0) = 1)

+P(X1(t) = 1 and X2(t) = 0 | X1(0) = 0 and X2(0) = 1)

= P(X1(t) = 0 | X1(0) = 0)P(X2(t) = 1 | X2(0) = 1)

+P(X1(t) = 1 | X1(0) = 0)P(X2(t) = 0 | X2(0) = 1).

Concerning P1,0(t) we have

P1,0(t) = P(Z(t) = 0 | Z(0) = 1)

= P(X1(t) = 0 and X2(t) = 0 | X1(0) = 0 and X2(0) = 1).

On the other hand, we have

P1,2(t) = P(Z(t) = 2 | Z(0) = 1)

= P(X1(t) = 1 and X2(t) = 1 | X1(0) = 0 and X2(0) = 1)
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= P(X1(t) = 1 | X1(0) = 0)P(X2(t) = 1 | X2(0) = 1).

Exercise 9.17 Starting from state 0 , the process Xt = ξNt stays at state 0 during
an exponentially distributed Poisson interjump time with parameter λ, after which
Nt increases by one unit. In this case, ξNt = 0 becomes ξNt+1 = 1 with probability 1,
from the transition matrix (9.8.4), hence the birth rate of Xt from state 0 to state 1
is λ. Then, starting from state 1 , the process Xt stays at 1 during an exponentially
distributed time with parameter λ. The difference is that when Nt increases by one
unit, ξNt = 1 may move to ξNt+1 = 0 with probability 1 − α, or remain at ξNt+1 = 1
with probability α. In fact, due to the Markov property, Xt will remain at 1 during
an exponentially distributed time whose expectation may be higher than 1/λ when
α > 0. We will compute the expectation of this random time.

(a) We have

IE
[
T r
0 | X0 = 1

] = α

(
1

λ
+ IE

[
T r
0 | X0 = 1

]
)

+ (1 − α) ×
(
1

λ
+ 0

)

= 1

λ
+ αIE

[
T r
0 | X0 = 1

]
,

hence

IE
[
T r
0 | X0 = 1

] = 1

λ(1 − α)
(B.33)

and

IE
[
T r
0 | X0 = 0

] = 1

λ
+ 1 × IE

[
T r
0 | X0 = 1

] = 2 − α

λ(1 − α)
.

Note that (B.33) can also be recovered from (5.3.3) by letting b = 1 − α and
multiplying by the average Poisson interjump time 1/λ.

(b) We have

IE
[
T r
1 | X0 = 1

] = 1

λ
+ αIE

[
T r
1 | X0 = 1

] + (1 − α)IE
[
T r
1 | X0 = 0

]

= 2 − α

λ
+ αIE

[
T r
1 | X0 = 1

]
,

since IE
[
T r
1 | X0 = 0

] = 1/λ, hence

IE
[
T r
1 | X0 = 1

] = 2 − α

λ(1 − α)
.

(c) This continuous-time first step analysis argument is similar to the one used in
the solution of Exercise 9.3. Since

IE
[
T r
0 | X0 = 1

] = 1

λ(1 − α)
,
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it takes an exponential random time with parameter λ(1 − α) for the process
(Xt )t∈R+ to switch from state 1 to state 0 . Hence the death rate is

1

IE
[
T r
0 | X0 = 1

] = λ(1 − α),

and the infinitesimal generator Q of Xt is

⎡

⎢
⎢
⎣

−λ λ

1

IE
[
T r
0 | X0 = 1

] − 1

IE
[
T r
0 | X0 = 1

]

⎤

⎥
⎥
⎦ =

⎡

⎣
−λ λ

(1 − α)λ −(1 − α)λ

⎤

⎦ .

Problem 9.18

(a) We need to show the following properties.

(i) The process (N 1
t + N 2

t )t∈R+ is a counting process. Clearly, the jump heights
are positive integers and they can only be equal to one since the probability
that N 1

t and N 2
t jumps simultaneously is 0.

(ii) The process (N 1
t + N 2

t )t∈R+ has independent increments.

Letting 0 < t1 < t2 < · · · < tn , the family

(
N 1
tn + N 2

tn − (N 1
tn−1

+ N 2
tn−1

), . . . , N 1
t2 + N 2

t2 − (N 1
t1 + N 2

t1)
)

= (
N 1
tn − N 1

tn−1
+ N 2

tn − N 2
tn−1

, . . . , N 1
t2 − N 1

t1 + N 2
t2 − N 2

t1

)

is a family of independent random variables. In order to see this we note
that N 1

tn − N 1
tn−1

is independent of

N 1
tn−1

− N 1
tn−2

, . . . , N 1
t2 − N 1

t1 ,

and of
N 2
tn − N 2

tn−1
, . . . , N 2

t2 − N 2
t1 ,

hence it is also independent of

N 1
tn−1

− N 1
tn−2

+ N 2
tn−1

− N 2
tn−2

, . . . , N 1
t2 − N 1

t1 + N 2
t2 − N 2

t1 .

Similarly it follows that N 2
tn − N 2

tn−1
is independent of

N 1
tn−1

− N 1
tn−2

+ N 2
tn−1

− N 2
tn−2

, . . . , N 1
t2 − N 1

t1 + N 2
t2 − N 2

t1 ,

hence N 1
tn + N 2

tn − (N 1
tn−1

+ N 2
tn−1

) is independent of
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N 1
tn−1

− N 1
tn−2

+ N 2
tn−1

− N 2
tn−2

, . . . , N 1
t2 − N 1

t1 + N 2
t2 − N 2

t1 .

This shows the required mutual independence by induction on n ≥ 1.

(iii) The process (N 1
t + N 2

t )t∈R+ has stationary increments. We note that the
distributions of the random variables N 1

t+h − N 1
s+h and N 2

t+h − N 2
s+h do not

depend on h ∈ R+, hence by the law of total probability we check that

P(N 1
t+h + N 2

t+h − (N 1
s+h + N 2

s+h) = n)

=
n∑

k=0

P(N 1
t+h − N 1

s+h = k)P(N 2
t+h − N 2

s+h = n − k)

is independent of h ∈ R+.

The intensity of N 1
t + N 2

t is λ1 + λ2.
(b) (i) The proof of independence of increments is similar to that of Question (a).

(ii) Concerning the stationarity of increments we have

P(Mt+h − Mt = n) = P(N 1
t+h − N 2

t+h − (N 1
s+h − N 2

s+h) = n)

= P(N 1
t+h − N 1

s+h − (N 2
t+h − N 2

s+h) = n)

=
∞∑

k=0

P(N 1
t+h − N 1

s+h = n + k)P(N 2
t+h − N 2

s+h = k)

which is independent of h ∈ R+ since the distributions of N 1
t+h − N 1

s+h and
N 2
t+h − N 2

s+h are independent of h ∈ R+.
(c) For n ∈ N we have

P(Mt = n) = P(N 1
t − N 2

t = n)

=
∞∑

k=max(0,−n)

P(N 1
t = n + k)P(N 2

t = k)

= e−(λ1+λ2)t
∞∑

k=max(0,−n)

λn+k
1 λk

2t
n+2k

k!(n + k)!

=
(

λ1

λ2

)n/2

e−(λ1+λ2)t
∞∑

k=max(0,−n)

(t
√

λ1λ2)
n+2k

(n + k)!k!

=
(

λ1

λ2

)n/2

e−(λ1+λ2)t I|n|(2t
√

λ1λ2),

where

In(x) =
∞∑

k=0

(x/2)n+2k

k!(n + k)! , x > 0,
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is themodified Bessel function with parameter n ≥ 0. When n ≤ 0, by exchang-
ing λ1 and λ2 we get

P(Mt = n) = P(−Mt = −n) =
(

λ1

λ2

)n/2

e−(λ1+λ2)t I−n(2t
√

λ1λ2),

hence in the general case we have

P(Mt = n) =
(

λ1

λ2

)n/2

e−(λ1+λ2)t I|n|(2t
√

λ1λ2), n ∈ Z,

which is known as the Skellam distribution.
(d) From the bound1 I|n|(y) < Cn y|n|ey , y > 1, we get

P(Mt = n) ≤ Cne
−(λ1+λ2)t

(
λ1

λ2

)n/2

(2t
√

λ1λ2)
|n|e2t

√
λ1λ2

= Cne
−t (

√
λ1−

√
λ2)

2

(
λ1

λ2

)n/2

(2t
√

λ1λ2)
|n|,

which tends to 0 as t goes to infinity when λ1 �= λ2. Hence we have2

lim
t→∞P(|Mt | < c) =

∑

−c<k<c

lim
t→∞P(|Mt | = k) = 0, c > 0. (B.34)

(e) When Mt ≥ 0, Mt represents the number of waiting customers. When Mt ≤ 0,
−Mt represents the number of waiting drivers. Relation (B.34) shows that for
any fixed c > 0, the probability of having either more than c waiting customers
or more than c waiting drivers is high in the long run.

Problem 9.19
(a) We have

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Nλ Nλ 0 · · · · · · 0 0 0
μ − μ − (N − 1)λ (N − 1)λ · · · · · · 0 0 0
...

...
...

. . .
. . .

...
...

...
...

...
...

. . .
. . .

...
...

...

0 0 0 · · · · · · (N − 1)μ − (N − 1)μ − λ λ
0 0 0 · · · · · · 0 Nμ −Nμ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(b) The system of equations follows by writing the matrix multiplication P ′(t) =
P(t)Q term by term.

(c) We apply the result of Question (b) to

1See e.g. Theorem 2.1 of [Laf91] for a proof of this inequality.
2Treating the case λ1 = λ2 is more complicated and not required.
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∂Gk

∂t
(s, t) =

N∑

n=0

sn P ′
k,n(t),

and use the expression

∂Gk

∂s
(s, t) =

N∑

n=1

nsn−1P ′
k,n(t).

(d) We have

λN (s − 1)Gk (s, t) + (μ + (λ − μ)s − λs2)
∂Gk
∂s

(s, t) − ∂Gk
∂t

(s, t)

= −(s − 1)(λ + μ)(N − k)
(
(s − 1)μe−(λ+μ)t + λs + μ

)k
λ
(
−(s − 1)λe−(λ+μ)t + λs + μ

)N−k−1
e−(λ+μ)t

+(s − 1)(λ + μ)kμ
(
(s − 1)μe−(λ+μ)t + λs + μ

)k−1(−(s − 1)λe−(λ+μ)t + λs + μ
)N−k

e−(λ+μ)t

+(s − 1)
(
(s − 1)μe−(λ+μ)t + λs + μ

)k
Nλ

(
−(s − 1)λe−(λ+μ)t + λs + μ

)N−k

+
(
λs2 − (λ − μ)s − μ

)
(N − k)

(
λe−(λ+μ)t − λ

)(
(s − 1)μe−(λ+μ)t + λs + μ

)k(−(s − 1)λe−(λ+μ)t + λs + μ
)N−k−1

−
(
μe−(λ+μ)t + λ

)
k
(
(s − 1)μe−(λ+μ)t + λs + μ

)k−1(−(s − 1)λe−(λ+μ)t + λs + μ
)N−k (

λs2 − (λ − μ)s − μ
)

= 0.

(e) This expression follows from the relation

IE[Xt | X0 = k] = ∂Gk

∂s
(s, t)|s=1

and the result of Question (d).
(f) We have

lim
t→∞ IE[Xt | X0 = k] = k

λ(λ + μ)k−1

(λ + μ)N
(μ + λ)N−k + (N − k)

(μ + λ)λk−1

(λ + μ)N
λN−k = Nλ

λ + μ
.

Chapter 10 - Discrete-Time Martingales

Exercise 10.2

(a) From the tower property of conditional expectations we have:

IE[Mn+1] = IE[IE[Mn+1 | Fn]] ≥ IE[Mn], n ≥ 0.

(b) If (Zn)n∈N is a process with independent increments have negative expectation,
we have

IE[Zn+1 | Fn] = IE[Zn | Fn] + IE
[
Zn+1 − Zn | Fn

]

= IE[Zn | Fn] + IE[Zn+1 − Zn]
≤ IE[Zn | Fn] = Zn, n ≥ 0.

https://doi.org/_10
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(c) We let A0 := 0, An+1 := An + IE[Mn+1 − Mn | Fn], n ≥ 0, and

Nn := Mn − An, n ∈ N. (B.35)

(i) For all n ∈ N, we have

IE[Nn+1 | Fn] = IE[Mn+1 − An+1 | Fn]
= IE[Mn+1 − An − IE[Mn+1 − Mn | Fn] | Fn]
= IE[Mn+1 − An | Fn] − IE[IE[Mn+1 − Mn | Fn] | Fn]
= IE[Mn+1 − An | Fn] − IE[Mn+1 − Mn | Fn]
= −IE[An | Fn] + IE[Mn | Fn] = Mn − An = Nn,

hence (Nn)n∈N is a martingale with respect to (Fn)n∈N.
(ii) For all n ∈ N, we have

An+1 − An = IE[Mn+1 − Mn | Fn]
= IE[Mn+1 | Fn] − IE[Mn | Fn]
= IE[Mn+1 | Fn] − Mn ≥ 0,

since (Mn)n∈N is a submartingale.
(iii) By induction we have An+1 = An + IE[Mn+1 − Mn | Fn], n ∈ N, which is

Fn-measurable if An is Fn−1-measurable, n ≥ 1.
(iv) This property is obtained by construction in (B.35).

(d) For all bounded stopping times σ and τ such that σ ≤ τ a.s., we have IE[Nσ] =
IE[Nτ ] by (10.3.3), hence

IE[Mσ] = IE[Nσ] + IE[Aσ]
= IE[Nτ ] + IE[Aσ]
≤ IE[Nτ ] + IE[Aτ ]
= IE[Mτ ],

by (10.3.3), since (Mn)n∈N is a martingale and (An)n∈N is nondecreasing.

Chapter 11 - Spatial Poisson Processes

Exercise 11.2 The probability that there are 10 events within a circle of radius 3
meters is

e−9πλ (9πλ)10

10! = e−9π/2 (9π/2)10

10! � 0.0637.

Exercise 11.3 The probability that more than two living organisms are in this mea-
sured volume is

https://doi.org/_10
https://doi.org/_10
https://doi.org/_11
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P(N ≥ 3) = 1 − P(N ≤ 2) = 1 − e−10θ

(

1 + 10θ + (10θ)2

2

)

= 1 − e−6

(

1 + 6 + 62

2

)

= 1 − 25e−6 � 0.938.

Exercise 11.4 Let XA, resp. XB , the number of defects found by the first, resp.
second, inspection. We know that XA and XB are independent Poisson random vari-
ables with intensities 0.5, hence the probability that both inspections yield defects
is

P(XA ≥ 1 and XB ≥ 1) = P(XA ≥ 1)P(XB ≥ 1)

= (1 − P(XA = 0))(1 − P(XB = 0))

= (1 − e−0.5)2 � 0.2212.

Exercise 11.5 The number XN of points in the interval [0,λ] has a binomial dis-
tribution with parameter (N ,λ/N ), i.e.

P(XN = k) =
(
N

k

)(
λ

N

)k (

1 − λ

N

)N−k

, k = 0, 1, . . . , N ,

and we find

lim
N→∞P(XN = k) = λk

k! lim
N→∞

((

1 − λ

N

)N−k k−1∏

i=0

N − i

N

)

= e−λ λk

k! ,

which is the Poisson distribution with parameter λ > 0.

Exercise 11.6

(a) Based on the area πr2 = 9π, this probability is given by e−9π/2(9π/2)10/10!.
(b) This probability is

e−9π/2 (9π/2)5

5! × e−9π/2 (9π/2)3

3! .

(c) This probability is e−9π(9π)8/8!.
(d) Since the location of points are uniformly distributed by (11.1.2), the probability

that a point in the disk D((0, 0), 1) is located in the subdisk D((1/2, 0), 1/2)
is given by the ratio π/4/π = 1/4 of their surfaces. Hence, given that 5 items
are found in D((0, 0), 1), the number of points located within D((1/2, 0), 1/2)
has a binomial distribution with parameter (5, 1/4), cf. (B.8) in the solution of
Exercise 1.6 and Exercise 9.2-(d), and we find the probability

(
5

3

)

(1/4)3(3/4)2 = 45

512
� 0.08789.

https://doi.org/_11
https://doi.org/_1
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Chapter 12 - Reliability and Renewal Processes

Exercise 12.1

(a) We have

Fβ(t) = P(τ < t) =
∫ t

0
fβ(x)dx = β

∫ t

0
xβ−1e−xβ

dx = −
[
e−xβ

]t

0
= 1 − e−tβ ,

t ∈ R+.
(b) We have

R(t) = P(τ > t) = 1 − Fβ(t) = e−tβ , t ∈ R+.

(c) We have

λ(t) = − d

dt
log R(t) = βtβ−1 t ∈ R+.

(d) By (12.3.1) we have

IE[τ ] =
∫ ∞

0
R(t)dt =

∫ ∞

0
e−tβdt.

In particular this yields IE[τ ] = √
π/2 when β = 2.

https://doi.org/_12
https://doi.org/_12
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