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Preface

Stochastic and Markovian modeling are of importance to many areas of science
including physics, biology, engineering, as well as economics, finance, and social
sciences. This text is an undergraduate-level introduction to the Markovian mod-
eling of time-dependent randomness in discrete and continuous time, mostly on
discrete state spaces, with an emphasis on the understanding of concepts by
examples and elementary derivations. This second edition includes a revision of the
main course content of the first edition, with additional illustrations and applica-
tions. In particular, the exercise sections have been considerable expanded and now
contain 138 exercises and 11 longer problems.

The book is mostly self-contained except for its main prerequisites, which consist
in a knowledge of basic probabilistic concepts. This includes random variables,
discrete distributions (essentially binomial, geometric, and Poisson), continuous
distributions (Gaussian and gamma), and their probability density functions,
expectation, independence, and conditional probabilities, some of which are
recalled in the first chapter. Such basic topics can be regarded as belonging to the
field of “static” probability, i.e., probability without time dependence, as opposed to
the contents of this text which is dealing with random evolution over time.

Our treatment of time-dependent randomness revolves around the important
technique of first-step analysis for random walks, branching processes, and more
generally for Markov chains in discrete and continuous time, with application to the
computation of ruin probabilities and mean hitting times. In addition to the treat-
ment of Markov chains, a brief introduction to martingales is given in discrete time.
This provides a different way to recover the computations of ruin probabilities and
mean hitting times which have been presented in the Markovian framework. Spatial
Poisson processes on abstract spaces are also considered without any time ordering.

There already exist many textbooks on stochastic processes and Markov chains,
including [BN96, Cin75, Dur99, GSO1, JSO1, KT81, Medl0, Nor98, Ros96,
SteO1]. In comparison with the existing literature, which is sometimes dealing with
structural properties of stochastic processes via a more compact and abstract
treatment, the present book tends to emphasize elementary and explicit calculations
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instead of quicker arguments that may shorten the path to the solution, while being
sometimes difficult to reproduce by undergraduate students.

Some of the exercises have been influenced by [Cin75, JSO1, KT81, Med10,
Ros96] and other references, while a number of them are original, and their solu-
tions have been derived independently. The problems, which are longer than the
exercises, are based on various topics of application. This second edition only
contains the answers to selected exercises, and the remaining solutions can be
downloaded in a solution manual available from the publisher’s Web site, together
with Python and R codes. This text is also illustrated by 41 figures.

Some theorems whose proofs are technical, as in Chaps. 7 and 9, have been
quoted from [BN96, KT81]. The contents of this book have benefited from
numerous questions, comments, and suggestions from undergraduate students in
Stochastic Processes at the Nanyang Technological University (NTU) in Singapore.

Singapore, Singapore Nicolas Privault
March 2018
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Introduction

A stochastic' process is a mathematical tool used for the modeling of
time-dependent random phenomena. Here, the term “stochastic” means random and
“process” refers to the time-evolving status of a given system. Stochastic processes
have applications to multiple fields and can be useful anytime one recognizes the
role of randomness and unpredictability of events that can occur at random times in,
e.g., physical, biological, or financial system.

For example, in applications to physics one can mention phase transitions,
atomic emission phenomena, etc. In biology, the time behavior of live beings is
often subject to randomness, at least when the observer has only access to partial
information. This latter point is of importance, as it links the notion of randomness
to the concept of information: What appears random to an observer may not be
random to another observer equipped with more information. Think, for example,
of the observation of the apparent random behavior of cars turning at a crossroad
versus the point of view of car drivers, each of whom are acting according to their
own decisions. In finance, the importance of modeling time-dependent random
phenomena is quite clear, as no one can make definite predictions for the future
moves of risky assets. The concrete outcome of random modeling lies in the
computation of expectations or expected values, which often turn out to be more
useful than the probability values themselves. An average or expected lifetime, for
example, can be easier to interpret than a (small) probability of default. The
long-term statistical behavior of random systems, which also involves the estima-
tion of expectations, is a related issue of interest.

Basically, a stochastic process is a time-dependent family (X;),., of random
variables, where ¢ is a time index belonging to a parameter set or timescale 7. In
other words, instead of considering a single random variable X, one considers a
whole family of random variables (X;),.,, with the addition of another level of
technical difficulty. The timescale T can be finite (e.g., T ={1,2,...,N}) or
countably infinite (e.g. T = N = {0, 1,2, ...}) or even uncountable (e.g. T = [0, 1],

'From the Greek “a70'yo¢” (stokhos), meaning “guess”, or “conjecture”.

XV



XVi Introduction

T =R.). The case of uncountable T corresponds to continuous-time stochastic
processes, and this setting is the most theoretically difficult. A serious treatment of
continuous-time processes would in fact require additional background in measure
theory, which is outside of the scope of this text. Measure theory is the general
study of measures on abstract spaces, including probability measures as a particular
case, and allows for a rigorous treatment of integrals via integration in the Lebesgue
sense. The Lebesgue integral is a powerful tool that allows one to integrate func-
tions and random variables under minimal technical conditions. Here we mainly
work in a discrete-time framework that mostly does not require the use of measure
theory.

That being said, the definition of a stochastic process (X;),.; remains vague at
this stage since virtually any family of random variables could be called a stochastic
process. In addition, working at such a level of generality without imposing any
structure or properties on the processes under consideration could be of little
practical use. As we will see later on, stochastic processes can be classified into two
main families:

Stochastic Processes

0 artingales

— Markov Processes
Roughly speaking, a process is Markov when its statistical behavior after time
t can be recovered from the value X; of the process at time ¢. In particular, the
values X; of the process at times s € [0, ) have no influence on this behavior as
long as the value of X, is known.

— Martingales
Originally, a martingale is a strategy designed to win repeatedly in a game of
chance. In mathematics, a stochastic process (X;),cg, is a martingale if the best
possible estimate at time s of its future value X, at time ¢ > s is simply given by
X;. This requires the careful definition of a “best possible estimate,” and for this
we need the tool of conditional expectation which relies on estimation in the
mean square sense. Martingale are useful in physics and finance, where they are
linked to the notion of equilibrium.
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Time series of order greater than one form another class of stochastic processes that
may have neither the Markov property nor the martingale property in general.

The outline of this text is as follows. After reviewing in Chap. 1 the probabilistic
tools required in the analysis of Markov chains, we consider simple gambling
problems in Chap. 2, due to their practical usefulness and to the fact that they only
require a minimal theoretical background. Next, in Chap. 3, we turn to the study of
discrete-time random walks with infinite state space, which can be defined as
stochastic processes with independent increments, without requiring much abstract
formalism. In Chap. 4, we introduce the general framework of Markov chains in
discrete time, which includes the gambling process and the simple random walk of
Chaps. 2 and 3 as particular cases. In the subsequent Chaps. 5, 6, and 7, Markov
chains are considered from the point of view of first-step analysis, which is intro-
duced in detail in Chap. 5. The classification of states is reviewed in Chap. 6, with
application to the long-run behavior of Markov chains in Chap. 7, which also
includes a short introduction to the Markov chain Monte Carlo method. Branching
processes are other examples of discrete-time Markov processes which have
important applications in life sciences, e.g., for population dynamics or the control
of disease outbreak, and they are considered in Chap. 8. Then in Chap. 9, we deal
with Markov chains in continuous time, including Poisson and birth and death
processes. Martingales are considered in Chap. 10, where they are used to recover
in a simple and elegant way the main results of Chap. 2 on ruin probabilities and
mean exit times for gambling processes. Spatial Poisson processes, which can be
defined on an abstract space without requiring an ordered time index, are presented
in Chap. 11. Reliability theory is an important engineering application of Markov
chains, and it is reviewed in Chap. 12. All stochastic processes considered in this
text have a discrete state space and discontinuous trajectories.



Chapter 1 ®)
Probability Background e

In this chapter we review a number of basic probabilistic tools that will needed for
the study of stochastic processes in the subsequent chapters. We refer the reader to
e.g. [Dev03, JPOO, Pit99] for additional background on probability theory.

1.1 Probability Spaces and Events

We will need the following notation coming from set theory. Given A and B to abstract
sets, “A C B” means that A is contained in B, and in this case, B \ A denotes the
set of elements of B which do not belong to A. The property that the element w
belongs to the set A is denoted by “w € A”, and given two sets A and £2 such that
A C 2, welet A° = 2\ A denote the complement of A in §2. The finite set made
of n elements wy, ..., w, is denoted by {wy, ..., w,}, and we will usually make a
distinction between the element w and its associated singleton set {w}.

A probability space is an abstract set §2 that contains the possible outcomes of a
random experiment.

Examples

(i) Coin tossing: 2 = {H, T}.
(i) Rolling one die: £2 = {1, 2, 3,4, 5, 6}.
(iii) Picking one card at random in a pack of 52: 2 = {1,2,3, ..., 52}.
(iv) An integer-valued random outcome: 2 =N = {0, 1,2, .. .}.
In this case the outcome w € N can be the random number of trials needed until
some event occurs.
(v) A nonnegative, real-valued outcome: 2 = R,..
In this case the outcome w € R, may represent the (nonnegative) value of a
continuous random time.

© Springer Nature Singapore Pte Ltd. 2018 1
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(vi) A random continuous parameter (such as time, weather, price or wealth, tem-
perature,...): 2 = R.

(vii) Random choice of a continuous path in the space £2 = C(R,.) of all continuous
functions on R, .
In this case, w € £2 is a function w : R; — R and a typical example is the
graph t — w(t) of a stock price over time.

Product Spaces:

Probability spaces can be built as product spaces and used for the modeling of
repeated random experiments.

(1) Rolling two dice: 2 = {1, 2,3,4,5,6} x {1,2,3,4,5, 6}.

In this case a typical element of 2 is written as w = (k,l) with k,[ €
{1,2,3,4,5,6}.
(ii) A finite number n of real-valued samples: 2 = R".

In this case the outcome w is a vector w = (x1, ..., Xx,) € R" withn components.

Note that to some extent, the more complex §2 is, the better it fits a practical and
useful situation, e.g. £2 = {H, T} corresponds to a simple coin tossing experiment
while £2 = C(R,) the space of continuous functions on R can be applied to the
modeling of stock markets. On the other hand, in many cases and especially in the
most complex situations, we will not attempt to specify £2 explicitly.

Events

An event is a collection of outcomes, which is represented by a subset of £2.
The collections G of events that we will consider are called o-algebras, and
assumed to satisfy the following conditions.

(1) ¥ €g,
(ii) For all countable sequences A, € G, n > 1, we have U A, €q,

n>1

(iii) AceG=(2\A) g,

where 2\ A:={we 2 : w¢Al
Note that Properties (ii) and (iii) above also imply

ﬂAnz <UA;) eg, (1.1.1)

n>1 n>1

for all countable sequences A, € G, n > 1.

The collection of all events in £2 will often be denoted by F. The empty set ¥ and
the full space £2 are considered as events but they are of less importance because
£2 corresponds to “any outcome may occur” while #J corresponds to an absence of
outcome, or no experiment.
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In the context of stochastic processes, two o-algebras F and G such that F C G
will refer to two different amounts of information, the amount of information asso-
ciated to F being here lower than the one associated to G.

The formalism of o-algebras helps in describing events in a short and precise way.

Examples
(1) £2=1{1,2,3,4,5,6}.
The event A = {2, 4, 6} corresponds to
“the result of the experiment is an even number”
(i) Taking again 2 = {1, 2, 3,4, 5, 6},
F ={82,0,{2,4,6},{1,3,5}}

defines a o-algebra on §2 which corresponds to the knowledge of parity of an
integer picked at random from 1 to 6.

Note that in the set-theoretic notation, an event A is a subset of £2,1.e. A C 2,
while it is an element of F, i.e. A € F. For example, we have £2 D {2, 4, 6} €
F, while {{2, 4, 6}, {1, 3,5}} C F.

(iii) Taking

G:={02,0,{2,4,6},{2,4},{6},{1,2,3,4,5},{1,3,5,6}, {1,3,5}} D F,
defines a o-algebra on §2 which is bigger than F, and corresponds to the par-
ity information contained in F, completed by the knowledge of whether the
outcome is equal to 6 or not.

(iv) Take
2={H T} x{H,T}={(H,H),(HT),(T,H), (T, T)}

In this case, the collection F of all possible events is given by

F=.{(H, )}, {(T, D)}, {(H, D)}, {(T, H)}, (1.1.2)
{(T.T), (H, 1)}, {(H,T),(T, H)}, {(H, T), (T, T)},
{(T,H), (T, 1)}, {(H,T),(H, H)}, {(T, H), (H, H)},
{(H, H), (T, T), (T, H)},{(H, H), (T, T),(H, T)},
{(H,T7),(T, H), (H, H)},{(H, T),(T, H),(T, T)}, 2} .

Note that the set F of all events considered in (1.1.2) above has altogether

1= (8) event of cardinality O,
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with n = 4, for a total of

events of cardinality 1,

n
1
n

5 events of cardinality 2,

events of cardinality 3,

S W

4
6
4
1

event of cardinality 4,

~

I
N
A e N g

4
4
16:2"=Z<k> =1+4+6+4+1
k=0

events. The collection of events

G:={0,{(T,T),(H, H)},{(H,T),(T, H)}, 2}
defines a sub o-algebra of F, associated to the information “the results of two coin
tossings are different”.

Exercise: Write down the set of all events on 2 = {H, T'}.

Note also that (H, T) is different from (7', H), whereas {(H, T), (T, H)} is equal
to {(T, H), (H, T)}.

In addition, we will usually make a distinction between the outcome w € 2 and
its associated event {w} € F, which satisfies {w} C £2.

1.2 Probability Measures

A probability measure is a mapping P : 7 — [0, 1] that assigns a probability
P(A) € [0, 1] to any event A € F, with the properties

(a) P(£2) =1, and
(b) P (U Ay | = P(A,). whenever A, N A; =0, k # 1.
n=1

n=1
Property (b) above is named the law of total probability. It states in particular that
we have

P(AyU---UA,) =P(A) + - +P(A))

when the subsets Ay, ..., A, of £2 are disjoints, and

P(A U B) = P(A) + P(B) (1.2.1)
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if AN B = (. We also have the complement rule
P(A) =P(£2\ A) =P(2) —P(A) =1 —P(A).
When A and B are not necessarily disjoint we can write
P(AUB) =P(A) +P(B) —P(AN B).

The triple
(82, F,P) (1.2.2)

was introduced by A.N. Kolmogorov (1903—-1987), and is generally referred to as
the Kolmogorov framework.

A property or event is said to hold P-almost surely (also written P-a.s.) if it holds
with probability equal to one.

Example
Take
Q2 ={(T.T),(H H),(HT) (T, H)}

and
F={T,T),H, H},{(H,T) (T, H)}, $2}.

The uniform probability measure IP on (§2, F) is given by setting
1 1

In addition, we have the following convergence properties.

1. Let (A,).en be a nondecreasing sequence of events, i.e. A, C Ay, n € N.
Then we have

P <U A,,) = lim P(A,). (1.2.3)

neN

2. Let (A,)qen be anonincreasing sequence of events, i.e. A,+; C A,,n € N.Then
we have

P (ﬂ A,,) = lim P(4,). (1.2.4)

neN
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1.3 Conditional Probabilities and Independence

We start with an example.

Consider a population £2 = M U W made of a set M of men and a set W of
women. Here the o-algebra F = {2, §, W, M} corresponds to the information given
by gender. After polling the population, e.g. for a market survey, it turns out that a
proportion p € [0, 1] of the population declares to like apples, while a proportion
1 — p declares to dislike apples. Let A C §2 denote the subset of individuals who
like apples, while A° C §2 denotes the subset individuals who dislike apples, with

p=P(A) and 1-— p=DP(AY),

e.g. p = 60% of the population likes apples. It may be interesting to get a more
precise information and to determine

nw
e the relative proportion ]P’(—W)) of women who like apples, and
. . P(ANM) .
e the relative proportion W of men who like apples.

Here, P(A N W) /P(W) represents the probability that a randomly chosen woman
in W likes apples, and P(A N M)/P(M) represents the probability that a randomly
chosen man in M likes apples. Those two ratios are interpreted as conditional prob-
abilities, for example P(A N M)/P(M) denotes the probability that an individual
likes apples given that he is a man.

For another example, suppose that the population 2 is split as 2 = Y U O into
aset Y of “young” people and another set O of “old” people, and denote by A C 2
the set of people who voted for candidate A in an election. Here it can be of interest
to find out the relative proportion

P(Y N A)

P(A|Y) = 0

of young people who voted for candidate A.

More generally, given any two events A, B C £2 with P(B) # 0, we call

P(A N B)

P(A | B) := )

the probability of A given B, or conditionally to B.

Remark 1.1 We note that if P(B) = 1 we have P(A N B°) < P(B°) = 0, hence
P(A N B°) = 0, which implies

P(A) = P(AN B) + P(A N BY) = P(AN B),

and P(A | B) = P(A).
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We also recall the following property:

P <B N DA,,) = iP(B NAy)
n=1

n=1

> BB | A)P(A,)

n=1

=) P(A, | BYP(B),

n=1

for any family of disjoint events (A,),>; with A; N A; =, i # j, and P(B) > 0,
n > 1. This also shows that conditional probability measures are probability mea-
sures, in the sense that whenever P(B) > 0 we have

(a) P(2 | B) = 1, and

o0 o0
(b) P (U A,|B)| = ZIP’(An | B), whenever Ay N A; =, k # 1.
n=1

n=1

oo
In particular, if U A, = 2, (Ay)n>1 becomes a partition of §2 and we get the law

n=1
of total probability

P(B) =) P(BNA,) =Y P(A,|BP(B) =) P(B|A)P(4,). (13.1)

n=1 n=I1 n=l1

provided that A; N A; =,i # j,and P(B) > 0,n > 1. However, we have in gen-

eral . -
P (A\ U Bn) # Y P(A| By,
n=1 n=1

even when By N B; = @, k # [. Indeed, taking for example A = 2 = B; U B, with
By N B, =@ and P(B;) = P(B,) = 1/2, we have

1 =P(2 | B1UBy) #P(2 | B)+P(82| By =2.

Independent Events

Two events A and B are said to be independent if
P(A | B) =P(A),

which is equivalent to
P(AN B) = P(A)P(B).



8 1 Probability Background

In this case we find
P(A | B) =P(A).

1.4 Random Variables

A real-valued random variable is a mapping

X:2 —R

whH— X(w)
from a probability space §2 into the state space R. Given
X: 2 —R

a random variable and A a (measurable)! subset of R, we denote by {X € A} the

event
(XeAl ={we 2 : X(w)e A}

Given G a g-algebra on £2, the mapping X : 2 —> R is said to be G-measurable if
(X<x}={wef : X(w)<x}eg,

for all x € R. In this case we will also say that the knowledge of X depends only on
the information contained in G.

Examples
(i) Let £2 :={1,2,3,4,5,6} x {1, 2, 3,4, 5, 6}, and consider the mapping

X:2 —R
k, ) —> k+1.

Then X is a random variable giving the sum of the two numbers appearing on
each die.

(i1) the time needed everyday to travel from home to work or school is a random
variable, as the precise value of this time may change from day to day under
unexpected circumstances.

(iii) the price of a risky asset is a random variable.

In the sequel we will often use the notion of indicator function 14 of an event A.
The indicator function 1 4 is the random variable

"Measurability of subsets of R refers to Borel measurability, a concept which will not be defined
in this text.
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1, :2 — {0, 1}

wh— 1x(w)

defined by '
te={o i ga
with the property
Tang(w) = La(w)1p(w),
since

weANB ¢ {weAandw € B}
— {la(w)=1and 1z(w) =1}
<— la(w)lp(w) = 1.

‘We also have
Taup =14+ 1p —Tpnp =14+ 1p — 1413,

and
Taup =14 + 13,

if AN B =4¢.
For example, if 2 = N and A = {k}, for all/ € N we have

1 ifk=1I,
INNOES
0 ifk #£1.
Given X a random variable, we also let
1 if X =n,
Lix=n =
0 if X #n,
and
1 ifX <n,
Il{X<n} =

0 if X > n.

(1.4.1)

(1.4.2)
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1.5 Probability Distributions

The probability distribution of a random variable X : £2 — R is the collection
{P(X € A) : Ais ameasurable subset of R}.

As the collection of measurable subsets of R coincides with the o-algebra generated
by the intervals in R, the distribution of X can be reduced to the knowledge of either

Pla<X<b)=P(X<b)—P(X <a) : a<beR)},

or
{(P(X <a) : aeR}, or {P(X>a) : acR},

see e.g. Corollary3.8 in [Cin11].
Two random variables X and Y are said to be independent under the probability
P if their probability distributions satisfy

P(X €A, YeB)=PX e APY € B)

for all (measurable) subsets A and B of R.
Distributions Admitting a Density

We say that the distribution of X admits a probability density distribution function
fx : R — Ry if, for all @ < b, the probability P(a < X < b) can be written as

b
Pla=X<b) = / Jx(x)dx.

We also say that the distribution of X is absolutely continuous, or that X is an
absolutely continuous random variable. This, however, does not imply that the density
function fx : R — R, is continuous.

In particular, we always have

/‘°° fx(x)dx =P(—c0o < X <o0) =1

for all probability density functions fx : R — R,.

Remark 1.2 Note that if the distribution of X admits a density then for all a € R,
we have

P(X = a) = / f(x)dx =0, (1.5.1)

and this is not a contradiction.
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In particular, Remark 1.2 shows that
Pa<X<b)=PX=a)+Pla<X<b)=Pla<X<b)=Pla<X <b),

for a < b. Property (1.5.1) appears for example in the framework of lottery games
with a large number of participants, in which a given number “a” selected in advance
has a very low (almost zero) probability to be chosen.

The density fx can be recovered from the cumulative distribution functions

xH— Fx(x) =P(X <x) = /x fx(s)ds,

and -
x> 1= Fx(x) =P(X >x) = / Sx(s)ds,
as
o [* o [
fx(x) = Fx(s) = 6_/ fx(s)ds = ——/ fx(s)ds, xeR.
x J ox J,
Examples

(i) The uniform distribution on an interval.

The probability density function of the uniform distribution on the interval
[a, b], a < b, is given by

1
fx) = b—]l[a,b](x), x eR.

—a
(i) The Gaussian distribution.

The probability density function of the standard normal distribution is given by

2
e /2 x € R.

1
(x) =
f 2T
More generally, the probability density function of the Gaussian distribution
with mean 1 € R and variance o > 0 is given by

1
fx) = ———e WYy R,
mo?

In this case, we write X ~ N'(u, 02).

(iii)) The exponential distribution.



12 1 Probability Background

The probability density function of the exponential distribution with parameter
A > 0 is given by

de ™M, x>0

F(x) = Ajg .00 (X)e™™ = (15.2)
0, x <0.

We also have
PX>1=e™ teR,. (1.5.3)

(iv) The gamma distribution.
The probability density function of the gamma distribution is given by
A

a 1 -
N x)\ leax’ x>0

P = ps T e = § T z
07 X < 0,

where a > 0 and A\ > 0 are parameters, and
o0
r'(\) ::/ e v dx, A>0,
0

is the gamma function.
(v) The Cauchy distribution.

The probability density function of the Cauchy distribution is given by

, x € R.

(vi) The lognormal distribution.

The probability density function of the lognormal distribution is given by

1  (u—logx)?
e 22 , x>0

F ) = Lo (0) — e 58 = { xo/0r
X) = ),00) (X € 20 =
10.00) xo/2m
0, x < 0.

Exercise: For each of the above probability density functions, check that the condition
oo
/ f)dx =1
—00

is satisfied.
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Fig. 1.1 Probability P((X, Y) € [-0.5, 1] x [—0.5, 1]) computed as a volume integral

Joint Densities

Given two absolutely continuous random variables X : 2 — RandY : 2 — R
we can form the R?-valued random variable (X, Y) defined by

(X,Y):2 — R?
w— (X (), Y (w)).

We say that (X, Y) admits a joint probability density
Joxr R — Ry

when

P(X,Y) € Ax B) = / / S (x, y)dxdy
BJA

for all measurable subsets A, B of R, cf. Fig. 1.1.
The density f(x,y) canbe recovered from the joint cumulative distribution function

X y
x,y)— Fxrx,y) =P(X <xandY <y) = / fx.r)(s, t)dsdt,
—00 J —00
and o oo
x,Yr—P(X>xandY >y) = / / fix.r (s, t)dsdt,
x Jy
as

2

0x0dy

82 x y
iy [ ) ﬁ ) Foer (s, Ddsdt (1.5.5)

S, y) = Fix.y)(x,y) (1.5.4)
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3x6y/ | f(X v (s, Hdsdt,

x,y €R.

The probability densities fx : R — Ry and fy : R — Ry of X : 2 — Rand
Y : 2 — R are called the marginal densities of (X, Y) and are given by

fx(x) = / S, y)dy, xeR, (1.5.6)

and

fr(y) = / fxr(x,y)dx, yeR.

The conditional density fxjy—, : R — R, of X given Y = y is defined by

f(x Y)()C y)
fr(y)

provided that fy(y) > 0. In particular, X and Y are independent if and only if
fxiv=y(x) = fx(x), x,y € R, ie.,

Sxir=y(x) == ., x,y€R, (1.5.7)

fanG,y) = fx@fr@), x,yeR.

Example

If X,..., X, are independent exponentially distributed random variables with
parameters Ap, ..., A, we have

P(min(Xy,....X,) > ) =P(X; > 1,..., X, > 1)
=PX;>1t---P(X, >1)
=e !Nt t e Ry, (1.5.8)

hence min(X1, ..., X,) is an exponentially distributed random variable with param-
eter A\ + -+ -+ A\,

Given the joint density of (X, X,) given by

Foxixn (6, ¥) = fx, (0 fx, (0) = Mdge ™17 x 1y >0,

we can write
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P(X) < Xp) =P(X; < X»)

© py
= / f Sxix)(x, y)dxdy
o Jo

0 y
=M\ / f e M MV dxdy
0 0
Al

= 1.5.9
NN ( )
and we note that
(X, = X2) = Ak f NN dady = 0.
{(x,y)e]Ri s x=y}

Discrete Distributions

We only consider integer-valued random variables, i.e. the distribution of X is given
by the values of P(X = k), k € N.

Examples

(i) The Bernoulli distribution.

We have
PX=1)=p and PX=0=1-p, (1.5.10)

where p € [0, 1] is a parameter.
Note that any Bernoulli random variable X : £2 — {0, 1} can be written as
the indicator function

X =14
on2withdA={X=1}={we R : Xw) =1}

(i1) The binomial distribution.

We have
T LAWY n—k _
P(X_k)_<k>p(1—p) , k=0,1,...,n,

where n > 1 and p € [0, 1] are parameters.
(iii) The geometric distribution.

In this case, we have
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P(X =k)=(1—-p)p*, keN, (1.5.11)

where p € (0, 1) is a parameter. For example, if (X;)ien 1S a sequence of
independent Bernoulli random variables with distribution (1.5.10), then the
random variable,?

Ty :=inf{k e N : X; =0}

can denote the duration of a game until the time that the wealth X; of a player
reaches 0. The random variable Tj has the geometric distribution (1.5.11) with
parameter p € (0, 1).

(iv) The negative binomial (or Pascal) distribution.

We have

k+r—1

]P’(X:k):( .

)(1 —p)'pt,  keN, (1.5.12)

where p € (0, 1) and r > 1 are parameters. Note that the sum of r > 1 inde-
pendent geometric random variables with parameter p has a negative binomial
distribution with parameter (r, p). In particular, the negative binomial distribu-
tion recovers the geometric distribution when r = 1.

(v) The Poisson distribution.

We have .

A
P(X =k) = Fe_’\, keN,

where \ > 0 is a parameter.

The probability that a discrete nonnegative random variable X : 2 — N U {400}
is finite is given by

o0
P(X < o0) = ZIP(X =k), (1.5.13)
k=0
and we have

1 =P(X = 00) + P(X < 00) =P(X = 00) + Y P(X =k).
k=0

Remark 1.3 The distribution of a discrete random variable cannot admit a density.
If this were the case, by Remark 1.2 we would have P(X = k) = O forall k € N and

2The notation “inf” stands for “infimum”, meaning the smallest n > 0 such that X,, = 0, if such an
n exists.
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o0
1=P(XeR)=P(X eN) =) P(X =k) =0,
k=0
which is a contradiction.

Given two discrete random variables X and Y, the conditional distribution of X given
Y = k is given by

P(X =nand Y =k)
PX=n|Y=k) = P =) , n €N,

provided that P(Y = k) > 0,k € N.

1.6 Expectation of Random Variables

The expectation, or expected value, of a random variable X is the mean, or average
value, of X. In practice, expectations can be even more useful than probabilities. For
example, knowing that a given equipment (such as a bridge) has a failure probability
of 1.78493 out of a billion can be of less practical use than knowing the expected
lifetime (e.g. 200000 years) of that equipment.

For example, the time T (w) to travel from home to work/school can be a random
variable with a new outcome and value every day, however we usually refer to its
expectation IE[T] rather than to its sample values that may change from day to day.

Expected Value of a Bernoulli Random Variable

Any Bernoulli random variable X : £ — {0, 1} can be written as the indicator
function X := 1, where A is the event A = {X = 1}, and the parameter p € [0, 1]
of X is given by

p=PX =1) =P(A) = E[14] = E[X].

The expectation of a Bernoulli random variable with parameter p is defined as

E[14]:= 1 x P(A) +0 x P(A°) = P(A).  (1.6.1)

Expected Value of a Discrete Random Variable

Next, let X : 2 —> N be a discrete random variable. The expectation [E[ X ] of X is
defined as the sum

E[X] = Z kKP(X = k), (1.6.2)
k=0
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in which the possible values k € N of X are weighted by their probabilities. More
generally we have

E[6(X)] =) ¢(k)P(X = k),

k=0
for all sufficiently summable functions ¢ : N — R.

The expectation of the indicator function X = 1,4 = 1 x=1 can be recovered from
(1.6.2) as

E[X]=E[14]=0x P2\ A) +1xP(A) =0 x P(2\ A) + 1 x P(A) = P(A).
Note that the expectation is a linear operation, i.e. we have
ElaX + bY] =alE[X] + PE[Y], a,beR, (1.6.3)

provided that
E[|X|]+ E[|Y]] < oc.
Examples

(1) Expected value of a Poisson random variable with parameter A > 0:

] R X \k . © \k
E[X] =) kP(X =k =e Zkﬁ =) = A, (1.6.4)
k=0 k=1 k=0
where we used the exponential series (A.1).

(ii) Estimating the expected value of a Poisson random variable using R:

Taking A := 2, we can use the following R code:

poisson_samples <— rpois(100000, lambda = 2)
poisson_samples
mean(poisson_samples)

Given X : 2 —> N U {400} a discrete nonnegative random variable X, we have
o0
P(X < 00) = ZIP’(X = k),
k=0

and

1=P(X =00) + P(X < 00) =P(X =00) + Y P(X =k),
k=0

and in general
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[E[X] = +00 x P(X = 00) + ZkP(X =k).
k=0

In particular, P(X = oo) > 0 implies IE[X] = oo, and the finiteness IE[X] < oo
condition implies P(X < oo) = 1, however the converse is not true.

Examples

(a)

(b)

()

Assume that X has the geometric distribution

P(X =k =5 k20, (1.6.5)
with parameter p = 1/2, and
> l & 1 1
EX]=) — =- == =1 ,
X1 kX(;zkH 4]; T T aa=1p2 T o
by (A.4). Letting ¢(X) := 2%, we have
=1
]P’((b(X)<oo):]P’(X<oo)=ZW=1,
k=0
and - © =
E[¢(X)] = DPX=k)=) — =Y - =+00,
[p(X)] gqs()( ) gzkﬂ ;2

hence the expectation [E[¢(X)] is infinite although ¢(X) is finite with probability
3
one.

The uniform random variable U on [0, 1] satisfies [E[U] = 1/2 < oo and
P(1/U <00)=PWU >0)=PWU € (0,1]) =1,

however we have
Udx
E[l/U] = — = 400,
0 X

and P(1/U = +o00) =P(U =0) =0.
If the random variable X has an exponential distribution with parameter ;1 > 0
we have

3This is the St. Petersburg paradox.
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00 3 < oo ifpu> A
E[eM] = u/ Me My = H T
0
+o00, if p <A

Conditional Expectation
The notion of expectation takes its full meaning under conditioning. For example, the
expected return of a random asset usually depends on information such as economic
data, location, etc. In this case, replacing the expectation by a conditional expectation
will provide a better estimate of the expected value.

For instance, life expectancy is a natural example of a conditional expectation
since it typically depends on location, gender, and other parameters.

The conditional expectation of X : 2 —> N a finite random variable given an
event A is defined by

E[X | Al=) kP(X =k |A) = ZkP(X ?P)(kAa;nd A

k=0

Lemma 1.4 Given an event A such that P(A) > 0, we have

1
E[X | A] = IED(A)]E[XIIA] (1.6.6)

Proof The proof is done only for X : 2 — N a discrete random variable, however
(1.6.6) is valid for general real-valued random variables. By Relation (1.4.1) we have

E[X | A] = P(A) ZkIF’(X =k| A

Zm({x =kINA) = ZkIE [1(x=rna] (1.6.7)

IP’(A) P(A) &
1 o0
= —— kIE |1 11 1 k1
o e[t = [ e
1
= —IE[14X 1.6.8
P(A) [T4X], ( )
where we used the relation o
X = klix=p
k=0

which holds since X takes only integer values. (]
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Example

(1) Consider £2 = {1,3, —1, —2, 5, 7} with the uniform probability measure given
by
IED({k}):1/67 k:1139_11_215»7a

and the random variable
X: 2 —7Z

given by
X(k)=k, k=123,-1,-257.

Then E[X | X > 0] denotes the expected value of X given
{X >0}=1{1,3,5,7} C £2,

i.e. the mean value of X given that X is strictly positive. This conditional expec-
tation can be computed as

1+3+5+7
4

1434547 1
6 4/6

E[X | X > 0]

1
= E[Xlix-0l
MX>O)[ (=0l

where P(X > 0) = 4/6 and the truncated expectation IE[X 1;x.¢,] is given by
E[X1ix-0l=14+34+5+7)/6.

(i) Estimating a conditional expectation using R:

geo_samples <— rgeom(100000, prob = 1/4)
mean(geo_samples)
mean(geo_samples[geo_samples<10])

Taking p := 3/4, by (A.4) we have

E[X]=(1-p)) kph = =3,
k=1 —p

and

1
— _EJ[x1
P(X < 10) X1,

1 9
~ P(X < 10) ;HP(X =k

E[X | X <10] = x<10]
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P(l—P) 0 k
T pio 31)2
_p(l—p)g 1-p"
S 1=p®aop\1-p
p(1—p" =100 - p)p°)

(I=p)d=p
~ 2.4032603455.

If the random variable X : 2 — N is independent of the event A* we have
IE[X14] = E[X]IE[14] = E[X]P(A),

and we naturally find
E[X | A] = E[X]. (1.6.9)

Taking X = 14 with
A1 82 —{0,1}

1 ifweA,

“”_”l/“:{o ifwée A,

shows that, in particular,

E[ls|Al=0xP(X=0]A)+1xPX=1]A)

—P(X =1]A)
—P(A | A)
= 1.

One can also define the conditional expectation of X given A = {Y = k}, as

o0
E[X|Y=kl=) nP(X=n|Y =k,
n=0
where Y : 2 — N is a discrete random variable.

Proposition 1.5 Given X a discrete random variable such that IE[|X|] < oo, we
have the relation

4e,PUX =k} N A) = P({X = k})P(A) for all k € N.
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IE[X] = E[IE[X | Y]], (1.6.10)

which is sometimes referred to as the tower property.

Proof We have

8

E[E[X | YT] Z [X | Y =kIP(Y = k)

where we used the marginal distribution
P(X=n)=) P(X=nandY =k), neNl,
k=0

that follows from the law of total probability (1.3.1) with Ay = {Y =k}, k > 0.
Taking

oo
Y =) kly,
k=0

with Ay :={Y =k}, k € N, from (1.6.10) we also get the law of total expectation

E[X] = E[E[X | Y]] (1.6.11)

ol

E[X | Y = kIP(Y = k)

~
Il
=}

ol

E[X | Ax]P(Ag).

o~
Il
=}

Example

Life expectancy in Singapore is IE[T] = 80 years overall, where T denotes the
lifetime of a given individual chosen at random. Let G € {m, w} denote the gender
of that individual. The statistics show that

E[T |G=m]=78 and EE[T | G = w] = 81.9,
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and we have

80 = E[T]
= E[E[T|G]]
=P(G = w)E[T | G = w]+P(G =m)E[T | G =m]
=819 x P(G = w) + 78 x P(G = m)
=819 x (1 —P(G =m)) + 78 x P(G = m),

showing that
80 =819 x (1 —IP(G =m)) + 78 x P(G =m),

i.e.
81.9—-80 1.9
— =0.487.

]PG: = — =
G=m=89-78 " 39

Variance
The variance of a random variable X is defined in general by
Var[X] := E[X?] - (E[X])%,

provided that IE[| X |?] < oco. If (X;)ken is a sequence of independent random vari-
ables we have

o[-l
g e b
=E LX:; ; Xsz} - ; IX:I:IE[XI(]]E[XI]

=Y EIX{1+ Y EXuX]-) (EIXd)— Y E[XJEX]

k=1 1<k#l<n k=1 1<k#l<n

= Y (E[X;] - (E[X(])?)

k=1

= ZVar[Xk]. (1.6.12)
k=1
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Random Sums

In the sequel we consider Y : 2 — Nan a.s. finite, integer-valued random variable,
i.e. wehave P(Y < 00) =1 and P(Y = o0) = 0.

Based on the tower property or ordinary conditioning, the expectation of a random
Y

sum E X, where (X )ren is a sequence of random variables, can be computed from

k=1
the tower property (1.6.10) or from the law of total expectation (1.6.11) as

Y Y
]E|:2Xk:| =E |:IE Zxk Y:|:|
k=1 L k=1
o0 Y
=Y E|) X Y:ni|]P’(Y=n)
n=0 L k=1
:i]E iXk Y=ni|IP’(Y=n),
n=0 L k=1

and if Y is (mutually) independent of the sequence (Xj)ien this yields
Y 00 n
E [Zxk} =Y E {ZX,{] P(Y = n)
k=1 n=0 k=1
=) P(Y=n)) E[X].
n=0 k=1

Similarly, for a random product we will have, using the independence of ¥ with
(Xi)keN,

Y 00 n
E []‘[ xk} = Z]E []‘[ Xk:| P(Y = n) (1.6.13)
k=1 n=0 k=1

=Y P =n[]EXd.
n=0 k=1

where the last equality requires the (mutual) independence of the random variables
in the sequence (Xy)g>;.

Distributions Admitting a Density

Given a random variable X whose distribution admits a density fy : R — R, we
have

E[X] = f " feds,

o0
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and more generally,
[e¢]
E[p(X)] = / P(x) fx (x)dx, (1.6.14)
—00
for all sufficiently integrable function ¢ on R. For example, if X has a standard
normal distribution we have

2/2 dx

E[o(X)] = - .
[6(0)] /_ _ote I

In case X has a Gaussian distribution with mean 1 € R and variance o> > 0 we get

E[¢(X)] = \/% / ” B(x)e Q) gy (1.6.15)
Yixea —00

Exercise: In case X ~ N (11, 0%) has a Gaussian distribution with mean z € R and
variance o > 0, check that

pw=IE[X] and o¢%=E[X?]— (E[X])>.

When (X, Y) : 2 — R? is a R%-valued couple of random variables whose distri-
bution admits a density fx y : R> — R, we have

E[4(X, V)] = / / 60x, ¥) Fry (r, y)dxdy,

for all sufficiently integrable function ¢ on R>.

The expectation of an absolutely continuous random variable satisfies the same lin-
earity property (1.6.3) as in the discrete case.

The conditional expectation of an absolutely continuous random variable can be
defined as

xXfxjy=y(x)dx

]E[X|Y:y]=/

where the conditional density fxjy—,(x) is defined in (1.5.7), with the relation
E[X]=E[E[X | Y]] (1.6.16)
which is called the fower property and holds as in the discrete case, since
o0
E[E[X | Y]] =f E[X | Y = ylfr(dy

= / / Xfxyy=y(x) fr (y)dxdy
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o0 o0
=/ X/ S (x, y)dydx
—00 —0oQ

_ f " fedx = ELX],

o0

where we used Relation (1.5.6) between the density of (X, Y) and its marginal X.
For example, an exponentially distributed random variable X with probability
density function (1.5.2) has the expected value

% 1
E[X] = /\/ xe Mdx = —.
0 A

Conditional Expectation Revisited

The construction of conditional expectation given above for discrete and absolutely
continuous random variables can be generalized to o-algebras.

Definition 1.6 Given (§2, F, IP) a probability space and p > 1, we let L?(£2, F)
denote the space of F-measurable and p-integrable random variables, i.e.

L"(R2,F):={F:2 — R : E[|F|"] <oo}.
We define a scalar product (-, -) 2o, ) between elements of L%(82, F), as
(F,G)20.7 :=E[FG], F,GelL*2,F).
This scalar product is associated to the norm || - || 12, ) by the relation
IFI = VEIFY = (F, F)ia@.m,  F e LX(2,5),

and it induces a notion of orthogonality, namely F is orthogonal to G in L?>(£2, F)
if and Only if (F, G>L2(.Q,]:) =0.

Definition 1.7 Given G C F a sub o-algebra of F and F € L*(£2, F), the condi-
tional expectation of F given G, and denoted

E[F | G],

is defined as the orthogonal projection of F onto L*($2, G).

As a consequence of the uniqueness of the orthogonal projection onto the subspace
L*(£2,G) of L?>(2, F), E[F | G] is characterized by the relation

(G, F —E[F | G227 =0,

which rewrites as
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E[G(F - E[F | GD] =0,

ie.

[E[GF] = E[GE[F | GlI,
for all bounded and G-measurable random variables G, where (-, -) .2( 7) denotes
the inner product in L2(2, F).

In addition, [E[F | G] realizes the minimum in mean square distance between F and
L*(£2,G), i.e. we have

IF —ELF | Gllli2er = inf [IF—=Glern. (1.6.17)
GeL2(2.0)

The following proposition will often be used as a characterization of [E[F | G].

Proposition 1.8 Given F € L>(2, F), X := IE[F | G] is the unique random vari-
able X in L*(2, G) that satisfies the relation

E[GF] =E[GX] (1.6.18)

Jor all bounded and G-measurable random variables G.
The conditional expectation operator has the following properties.

(1) IE[FG | G] = GEE[F | G]if G depends only on the information contained in G.
Proof: By the characterization (1.6.18) it suffices to show that
E[HFG] =E[HGIE[F|F]], (1.6.19)

for all bounded and H-measurable random variables H, which implies
E[FG | ¢] = GE[F | G].

Relation (1.6.19) holds from (1.6.18) because the product H G is G-measurable
hence G in (1.6.18) can be replaced with HG.

(i) IE[G|G] = G when G depends only on the information contained in G.

Proof: This is a consequence of point (i) above by taking F = 1.
(iii) E[E[F|G] | H] = E[F|H] if H C G, called the fower property.
Proof: First we note that (iii) holds when H = {{J, §2} because taking G = 1
in (1.6.18) yields
E[F] = E[E[F | G]]. (1.6.20)

Next, by the characterization (1.6.18) it suffices to show that
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(iv)

)

E[HE[F|G]] = E[HE[F|H]], (1.6.21)

for all bounded and G-measurable random variables H, which will imply (iii)
from (1.6.18).

In order to prove (1.6.21) we check that by point (i) above and (1.6.20) we
have

E[HIE[F|G]] = E[E[HF|G]] = E[H F]
= E[E[H F|H]] = E[HE[F[H]],

and we conclude by the characterization (1.6.18).

IE[F|G] = IE[F] when F “does not depend” on the information contained in
G or, more precisely stated, when the random variable F is independent of the
o-algebra G.

Proof: 1t suffices to note that for all bounded G-measurable G we have
E[FG] = E[F]E[G] = E[GE[F]],

and we conclude again by (1.6.18).
If G depends only on G and F is independent of G, then

E[h(F, G)|G] = E[h(F, x)]i=c- (1.6.22)

Proof: This relation can be proved using the tower property, by noting that for
any K € L*(£2, G) we have

E[KIE[h(x, F)li=c] = E[KIE[h(x, F) | Gli=c]
KE[R(G, F) | G]]
E[Kh(G, F) | Gl

Kh(G, F)],

IE[
[
[
[

Il
B &8 &

which yields (1.6.22) by the characterization (1.6.18).

The notion of conditional expectation can be extended from square-integrable ran-
dom variables in L?(£2, F) to integrable random variables in L'(£2, F), cf. e.g.
[Kal02], Theorem5.1.

When the o-algebra G := o(Ay, A,, ..., A,) is generated by n disjoint events
A, Ay, ..., A, € F, we have

n

. E[F1
E[F |Gl =) 14E[F | A] = th HE)(A*;*.
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1.7 Moment and Probability Generating Functions

Characteristic Functions

The characteristic function of a random variable X is the function ¥y : R — C
defined by '
Uy(t) =E[e"¥], teR.

The characteristic function ¥x of a random variable X with density f : R — R,
satisfies

ufx(z)=/ e f(x)dx, teR.

[o.¢]
On the other hand, if X : £2 —> N is a discrete random variable we have
oo
Wy(t) =Y e"P(X=n), teR,
n=0
The main applications of characteristic functions lie in the following theorems:

Theorem 1.9 Two random variables X : 2 — R and Y : 2 —> R have same
distribution if and only if

Uy (t) =Wy (1), t e R.
Theorem 1.9 is used to identify or to determine the probability distribution of a
random variable X, by comparison with the characteristic function ¥y of a random
variable Y whose distribution is known.
The characteristic function of a random vector (X, Y) is the function Wy y :

R? — C defined by

Uy y(s, 1) =E[e"*T],  s,teR.
Theorem 1.10 The random variables X : 2 —> RandY : 2 — R areindepen-
dent if and only if

Pyy(s,t) =Px()¥y (), s,telr

A random variable X is Gaussian with mean p and variance o if and only if its
characteristic function satisfies

E[e’X] = elon=2 aeR. (1.7.1)
In terms of moment generating functions we have, replacing i« by «,

]E[e”x] —et??2 R (1.7.2)
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From Theorems 1.9 and 1.10 we deduce the following proposition.

Proposition 1.11 Let X ~ N (i, 0%) and Y ~ N (v, 03) be independent Gaussian
random variables. Then X + Y also has a Gaussian distribution

X+Y:N(M+V,U§+012,).

Proof Since X and Y are independent, by Theorem 1.10 the characteristic function
Ux,y of X 4+ Y is given by

Pxiy (1) = Px()Py (1)
— eir;l,—zza§(/2em/—z2a§/2

_ eir(u+u)—r2(0§(+0§,)/2’ t R,

where we used (1.7.1). Consequently, the characteristic function of X + Y is thatof a
Gaussian random variable with mean ¢ + v and variance o + o3 and we conclude
by Theorem 1.9.

Moment Generating Functions

The moment generating function of a random variable X is the function @y :
R — R defined by
ox(t) =E[e'*], teR,

provided that the expectation is finite. In particular, we have

1

E[X"] = %@((0), n=l,

provided that IE[| X |"] < oo, and

®x(1) = E[e'] = Z ’%]E[X"],
n=0 "

provided that E[e/*!] < oo, 7 € R, and for this reason the moment generating func-
tion G x characterizes the moments IE[X"]of X : 2 —> N, n > 0.

The moment generating function @y of a random variable X with density f :
R — R, satisfies

Dy (t) = / e f(x)dx, t eR.

Note that in probability we are using the bilateral moment generating function trans-
form for which the integral is from —oo to 4-o0.
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Probability Generating Functions
Consider
X : 2 — NU {+o0}

adiscrete random variable possibly taking infinite values. The probability generating
function of X is the function

Gy [-1,1] — R

s — Gx(s)

defined by

o0
Gx(s) =E[s"lxeo] =) _s"P(X =n), —1<s<L (1.7.3)
n=0

Note that the series summation in (1.7.3) is over the finite integers, which explains
the presence of the truncating indicator 1{x -« inside the expectation in (1.7.3). If
the random variable X : £2 — N is almost surely finite, i.e. P(X < 00) = 1, we
simply have

Gx(s) =E[s"] = Zs”IP’(X =n), —l<s<I,
n=0

and for this reason the probability generating function G x characterizes the proba-
bility distribution P(X =n),n > 0,of X : 2 — N.

Examples

(i) Poisson distribution. Consider a random variable X with probability generating
function
Gx(s)=e*" P —1<s<1,

for some \ > 0. What is the distribution of X?

Using the exponential series (A.1) we have

n

n!’

oo
Gx(s) =e ™D =™ Zs"
n=0

hence by identification with (1.7.3) we find

n

A
P(X =n) = e_A—‘, neN,
n
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i.e. X has the Poisson distribution with parameter .
(ii) Geometric distribution. Given X a random variable with geometric distribution
P(X =n)=(1— p)p",n € N, we have

o0 o0
l1—p
Gx(s) = sS"P(X =n) =(1 — stp" = , —1<s <,
x() go (X =n)=( p),;o P =1
where we applied the geometric series (A.3).
We note that from (1.7.3) we can write
Gx(s) =E[s*], —1<s<1,

since s¥ = s¥ 1 x-oor when —1 < s < 1.
{ }

Properties of Probability Generating Functions
(i) Taking s = 1, we have
(o]
Gx()=) P(X =n)=P(X <00) =E[Lixoog)].
n=0

hence

Gx(1) = P(X < 00).

(ii) Taking s = 0, we have
Gx(0) = E[0*] = E[1{x=0)] = P(X = 0),

since 0° = 1 and 0% = 1x—q, hence

Gx(0) = P(X = 0). (1.7.5)

(iii) The derivative G'y (s) of G x (s) with respect to s satisfies

o0
Gy() =Y ns"'P(X =n), —l<s<lI,

n=1

hence, taking s := 1 we have
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Gy() = BIX]= ) kP(X =k),
k=0

provided that [E[ X] < oo.

(iv) By computing the second derivative
oo
Gi(s) =Y k(k—1)s**P(X = k)
k=2
oo
= Zk(k — Ds*2P(X = k)
k=0

o0 o0
= Zk%"*zp(x k) — stH]P(X =k, —l<s<I,
k=0 k=0

we similarly find

Gy(1) =) k(k — DP(X = k)
k=0

= ikzp(x =k) — ikP(X =k)

k=0 k=0
= [E[X?] — E[X],

hence

Var[X] = G% (1) + G (1) (1 — G (1)), (1.7.6)

provided that IE[X?] < oo.
(v) When X : 2 — NandY : 2 — Nare two finite independent random vari-
ables we have

Gxiy(s) =E [sx“’] —E [‘v"s"} —E [x"} E [sy] = Gx(5)Gy(s),
(1.7.7)

—1<s<l.
(vi) The probability generating function can also be used from (1.7.3) to recover
the distribution of the discrete random variable X as
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71

1
P(X =n) = ﬁa—cx(s)mzo, neN, (1.7.8)

os"

extending (1.7.5) to all n > 0.

Exercise: Show that the probability generating function of a Poisson random variable
X with parameter A > 0 is given by

Gy(s)=e D _—1<s<l.
From the generating function we also recover the mean
E[X] = Gy (1) = Aep " = A,
of the Poisson random variable X with parameter A, and its variance
Var[X] = Gy (1) + Gy (1) — (G (1))?

= A%ﬁf:l) + )\seﬁs(gl) -\
=N+ A=A =,

by (1.7.6).

Exercises

Exercise 1.1 Consider a random variable X : 2 — N U {oo} with distribution
P(X =k) =qgp*, keN={0,1,2,...},

where g € [0,1 — p]and 0 < p < 1.

(a) Compute P(X < oo) and P(X = oo) by considering two cases, and give the
value of IE[X] when0 < g <1 — p.

(b) Assume that ¢ = 1 — p and consider the random variable Y := r* for some
r > 0. Explain why P(Y < oo) = 1 and compute [E[Y] by considering two cases
depending on the value of r > 0.

Exercise 1.2 Let N € {1, 2, 3, 4, 5, 6} denote the integer random variable obtained
by tossing a six faced die and by noting the number on the upper side of the die.
Given the value of N, an independent, unbiased coin is thrown N times. We denote
by Z the total number of heads that appear in the process of throwing the coin N
times.
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(a) Using conditioning on the value of N € {1, 2, 3,4, 5, 6}, compute the mean and
the variance of the random variable Z.

(b) Determine the probability distribution of Z.

(c) Recover the result of Question (a) from the data of the probability distribution
computed in Question (b).

Exercise 1.3 Thinning of Poisson random variables. Given a random sample N of a
Poisson random variable with parameter A\, we perform a number N of independent
{0, 1}-valued Bernoulli experiments independent of N, each of them with parameter
p € (0,1). We let Z denote the total number of +1 outcomes occuring in the N
Bernoulli trials.

(a) Express Z as a random sum, and use this expression to compute the mean and
variance of Z.

(b) Compute the probability distribution of Z.

(c) Recover the result of Question (a) from the data of the probability distribution
computed in Question (b).

Exercise 1.4 Given X and Y two independent exponentially distributed random
variables with parameters A and y, show the relation

E[min(X,Y) | X < Y] = ﬁ = E[min(X, Y)]. (1.7.9)

Exercise 1.5 Given a random sample L of a gamma random variable with density

fr(x) = Lo ecpxe™™,

consider U a uniform random variable taking values in the interval [0, L] and let
V=L-U.

Compute the joint probability density function of the couple (U, V') of random vari-
ables.

Exercise 1.6 Let X and Y denote two independent Poisson random variables with
parameters A and .

(a) Show thatthe random variable X + Y has the Poisson distribution with parameter
A+ p.

(b) Compute the conditional distribution P(X =k | X + Y = n) given that X +
Y =n,forall k,n € N.

(c) Assume that respective parameters of the distributions of X and Y are random,
independent, and chosen according to an exponential distribution with parameter
0> 0.

Give the probability distributions of X and Y, and compute the conditional
distribution P(X =k | X + Y =n) giventhat X + Y =n, forall k,n € N.
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(d) Assume now that X and Y have same random parameter represented by a single
exponentially distributed random variable A with parameter § > 0, independent
of X and Y.

Compute the conditional distribution P(X =k | X + Y = n) given that X +
Y =n,forall k,n € N.

Exercise 1.7 A red pen and a green pen are put in a hat. A pen is chosen at random
in the hat, and replaced inside after it color has been noted.

e In case the pen is of red color, then a supplementary red pen is placed in the hat.
e On the other hand if the pen color is green, then another green pen is added.

After this first part of the experiment is completed, a second pen is chosen at random.
Determine the probability that the first drawn pen was red, given that the color of
the second pen chosen was red.

Exercise 1.8 A machine relies on the functioning of three parts, each of which
having a probability 1 — p of being under failure, and a probability p of functioning
correctly. All three parts are functioning independently of the others, and the machine
is working if and only if two at least of the parts are operating.

(a) Compute the probability that the machine is functioning.

(b) Suppose that the machine itselfis set in arandom environment in which the value
of the probability p becomes random. Precisely we assume that p is a uniform
random variable taking real values between 0 and 1, independently of the state
of the system.

Compute the probability that the machine operates in this random environment.



Chapter 2 ®)
Gambling Problems ez

This chapter consists in a detailed study of a fundamental example of random walk
that can only evolve by going up of down by one unit within the finite state space
{0, 1, ..., S}. This allows us in particular to have a first look at the technique of first
step analysis that will be repeatedly used in the general framework of Markov chains,
particularly in Chap. 5.

2.1 Constrained Random Walk

To begin, let us repeat that this chapter on “gambling problems” is not primarily
designed to help a reader dealing with problem gambling, although some comments
on this topic are made of the end of Sect.2.3.

We consider an amount $S of S dollars which is to be shared between two players
A and B. At each round, Player A may earn $1 with probability p € (0, 1), and in
this case Player B loses $1. Conversely, Player A may lose $1 with probability g :=
1 — p, in which case Player B gains $1, and the successive rounds are independent.

We let X, represent the wealth of Player A attimen € N, while S — X, represents
the wealth of Player B at time n € N.

The initial wealth X, of Player A could be negative, but for simplicity we will
assume that it is comprised between 0 and S. Assuming that the value of X,,, n > 0,
belongs to {1, 2, ..., S — 1} at the time step n, at the next step n + 1 we will have

x | X, + 1 if Player A wins round n + 1,

"1 =1 X, — 1 if Player B wins round n + 1.
Moreover, as soon as X, hits one of the boundary points {0, S}, the process remains
frozen at that state over time, i.e.

© Springer Nature Singapore Pte Ltd. 2018 39
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Fig. 2.1 Sample path of a gambling process (X, ),eN

X, =0—= X,,1=0 and X, =S5 = X,+1 =S,
i.e.
PX,:1=0]X,=0=1 and P(X,.1 =S1X, =85 =1, neN.

In other words, the game ends whenever the wealth of any of the two players reaches
$0, in which case the other player’s account contains $S (see Fig.2.1).
Among the main issues of interest are:

e the probability that Player A (or B) gets eventually ruined,
e the mean duration of the game.

We will also be interested in the probability distribution of the random game duration
T,i.e. in the knowledge of P(T' = n),n > 0.
According to the above problem description, for all n € N we have

PXpt1=k+1|X,=k)=p and P(Xp11=k—1|X,=k) =gq,

k=1,2,...,5 — 1, and in this case the chain is said to be time homogeneous since
the transition probabilities do not depend on the time index n.
Since we do not focus on the behavior of the chain after it hits states O or S, the
probability distribution of X, given {X,, = 0} or {X,, = S} can be left unspecified.
The probability space £2 corresponding to this experiment could be taken as the
(uncountable) set

Q:={-1+1}N= {a) = (wp,w1,...) : w; ==x1, ne N},
with any element w € £2 represented by a countable sequence of +1 or —1, depending

whether the process goes up or down at each time step. However, in the sequel we
will not focus on this particular expression of £2.
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2.2 Ruin Probabilities

We are interested in the event

R4 = “Player A loses all his capital at some time” = U{X” =0}, 2.2.1)
neN

and in computing the conditional probability
fstk) :=P(Rsa | Xo=k), k=0,1,...,S. (2.2.2)

Pathwise Analysis
First, let us note that the problem is easy to solveinthecase S = 1, S =2and § = 3.

() S=1.

In this case the boundary {0, 1} is reached from time 0 and we find

(2.2.3)

{fl(o) =P(Ra | Xo=0) =1,
H) =P(Ra| Xo=1)=0.

(i) S =2.
In this case we find

[200) =P(Ry | Xo=0) =1,
() =P(Rys | Xo=1) =g, (2.2.4)
f2(2) =P(Ra | Xo=2)=0.

(iii) S =3.

The value of f,(1) = P(R4 | Xo = 1) is computed by noting that starting from
state (D, one can reach state @ only by an odd number 2n 4 1 of step, n € N,
and that every such path decomposes into n + 1 independent downwards steps,
each of them having probability g, and n upwards steps, each of them with
probability p. By summation over n using the geometric series identity (A.3),

this yields
) =P[Ry | Xo=0) =1,
() =P(Ra | Xo=1) =qz(1’q>" - 1—qpq’
=0 ) (2.2.5)
SO =FRy | Xo=2 ="} (r)" = 17—
n=0
£B3)=P(Ra | Xo=3)=0.
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The value of f3(2) is computed similarly by considering n + 2 independent down-
wards steps, each of them with probability ¢, and n upwards steps, each of them with
probability p. Clearly, things become quite complicated for S > 4, and increasingly
difficult as S gets larger.

First Step Analysis

The general case will be solved by the method of first step analysis, which will be
repeatedly applied to other Markov processes in Chaps.3 and 5 and elsewhere.

Lemma 2.1 Forallk =1,2,...,S — 1 we have
P(Rs | Xo=k) = pP(Ra | Xo=k+ 1) +qP(Rs | Xo =k —1).

Proof The idea is to apply conditioning given the first transition from X, to X;. For
alk=1,2,...,5 —1,by (1.2.1) we have

P(Rs | Xo = k)
=PRyjand X; =k+1|Xg=k)+P(Rpand X, =k — 1| Xg =k)
_ P(R4 and X, =k+1andXo=k)+]P(RAandX1 =k—1and Xg =k)

P(X, = k) P(Xo = k)
_PRiand Xy =k+1land Xo=k) PX;=k+1and Xo=k)
IP(X] :k+landX0:k) P(Xo:k)
P(Ryand X; =k —land Xo=k) P(X; =k~ land X =k)
]P(X] :k—landX():k) P(X():k)

=PRs | X1 =k+1and Xog =kP(X; =k+1|Xy=k)

+P(Rs | X1 =k—1and Xo=KkP(X1=k—1| Xy =k)
=pP(Rs | X1 =k+1and Xg =k) +gP(Rs | X1 =k — 1 and Xy = k)
=pPR4 | Xo=k+ 1D +qP(Rs | Xo =k — 1),

where we used Lemma 2.2 below on the last step. ]

In the case S = 3, Lemma 2.1 shows that

f30) =P(Rs | Xo=0) =1,

S = pfs2) +4qf30) = pfs2) +q = pafs(D) +4q,
/2 = pfi3) +qfs(1) = qfs(1) = pafs(2) +¢°,
f33) =P(Rs | Xo =3) =0,

which can be easily solved to recover the result of (2.2.5).
More generally, Lemma 2.1 shows that the function

fs:{0,1,..., 8} — [0, 1]


https://doi.org/10.1007/978-981-13-0659-4_3
https://doi.org/10.1007/978-981-13-0659-4_5
https://doi.org/10.1007/978-981-13-0659-4_1
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defined by (2.2.2) satisfies the linear equation'

f)=pfk+D)+qfk—1), k=12,....,5—1, (2.2.6)

subject to the boundary conditions
fs(0) =P(Rs | Xo=0) =1, 2.2.7)

and

fs(8) =P(Ra | Xo=8) =0, (2.2.8)

fork € {0, S}.Itcan be easily checked that the expressions (2.2.3), (2.2.4) and (2.2.5)
do satisfy the above Eq. (2.2.6) and the boundary conditions (2.2.7) and (2.2.8).

Note that Lemma 2.1 is frequently stated without proof. The last step of the proof
stated above rely on the following lemma, which shows that the data of X entirely
determines the probability of the ruin event R,4. In other words, the probability of
ruin depends only on the initial amount k owned by the gambler when he enters the
casino. Whether he enters the casino at time 1 with X; = k £ 1 or at time O with
X = k = 1 makes no difference on the ruin probability.

Lemma 2.2 Forallk=1,2,...,5 — 1 we have
PRy | Xi=kxland Xog=k)=P(Rs | X1 =k+1)=PRs | Xo=k £ 1).

In other words, the ruin probability depends on the data of the starting point and not
on the starting time.

Proof This relation can be shown in various ways:

1. Descriptive proof (preferred): we note that given X| = k + 1, the transition from
Xo to X; has no influence on the future of the process after time 1, and the
probability of ruin starting at time 1 is the same as if the process is started at time
0.

2. Algebraic proof: first for 1 <k < S —1and k£ 1 > 1, letting )N(o =X,—-Z
where Z >~ X| — X, has same distribution as X; — X and is independent of X,
by (2.2.1) we have

'Due to the relation (f + g)(k) = f(k) 4+ g(k) we can check that if f and g are two solutions of
(2.2.6) then f + g is also a solution of (2.2.6), hence the equation is linear.
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[
IP(RA|Xl:k:l:landXO:k):JP’<U{Xn=O}‘X1=k:|:1, onk)
n=0

P((U{Xn = 0}) N{X; =k=+1}N{X, =k}>

n=0
PEXi =k 1} N{Xo =k}

P

(@

(X, =0} N {X, =ki1}m{X0=k}))

n=0

o
IP’((U{X,, =0}> N{X; =k£1}N{X, =k}>

n=2
P{Xi =kx1}N{Xo =k})

P (X1 =k£1}N{Xo = k})

(@

(X, =0} N{X, =k:|:1}m{X0=k}))

Il
S}

P{AX1 =k £1} N {Xo = k})

P ((U{X = 0}) N{Xi=k£1}N{X, — Xy = j:l})

= n=2 _ (2.2.9)
IP({X1 — k1 N{X, — Xy = :i:l})

P ((G{X = 0}) N{X; =k=+ 1}) IP’({Xl — X = 11})

= n=2 (2.2.10)

P((X, =k+ 1})JP>({X1 Xy = :I:l})

:IP’(G{X,, 20}‘{)(1 —k+ 1})
n=2
=]P’(G{Xn =0}‘{X0 —k+ 1})

n=1
=PRs | Xo=k£1),

otherwise if k = 1 we easily find that

P(Ry | X;=0and Xo=1) =1 = P(R4 | Xo = 0),
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since {X; =0} C Ry = U{X,, = 0}. Note that when switching from (2.2.9) to
neN

(2.2.10), using X, := X; — Z we regard the process increment starting from X

as run backward in time.

O

In the remaining of this section we will prove that in the non-symmetric case p # g
the solution of (2.26) is given by

(q/p)* —(q/p)5 _ (p/q)5~* —
1—(q/p)S (p/q)5 —1

1
fstk) =P(R4 | Xo =k) = ,(22.11)

k=0,1,...,S, and that in the symmetric case p = g = 1/2 the solution of (2.2.6)
is given by

S—k

k
Jfs(k) =P(Ra | Xo=k) = 5 (2.2.12)

k=0,1,...,8, cf. also Exercise 2.3 for a different derivation.
Remark that (2.2.11) and (2.2.12) do satisfy both boundary conditions (2.2.7) and
(2.2.8). When the number S of states becomes large we find that, for all k > 0,

1 ifg > p,

k
<1> if p>q,
p

which represents the probability of hitting the origin starting from state ®, cf. also
3.4.16 below and Exercise 3.2-(c) for a different derivation of this statement.

Exercise: Check that (2.2.11) agrees with (2.2.4) and (2.2.5) when S = 2 and § = 3.

Joolk) := lim P(R4 | Xo = k) = (2.2.13)

In the graph of Fig.2.2 the ruin probability (2.2.11) is plotted as a function of k
for p = 0.45 and g = 0.55.

We now turn to the solution of (2.2.6), for which we develop two different ap-
proaches (called here the “standard solution” and the “direct solution™) that both
recover (2.2.11) and (2.2.12).


https://doi.org/10.1007/978-981-13-0659-4_3
https://doi.org/10.1007/978-981-13-0659-4_3
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f(k)

‘Rui‘n pr‘oba‘bilit‘y wi‘th § = ‘20 a‘nd p= p4§ —‘)lﬁ

L I

H
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

Fig. 2.2 Ruin probability f>o(k) function of Xg = k € [0, 20] for S = 20 and p = 0.45

Standard Solution Method

We decide to look for a solution of (2.2.6) of the form?
k— f(k) = CdF, (2.2.14)

where C and a are constants which will be determined from the boundary conditions
and from the Eq. (2.2.6), respectively.
Substituting (2.2.14) into (2.2.6) when C is non-zero yields the characteristic
equation
pa*—a+q=pla—1)(a—q/p) =0, (2.2.15)

of degree 2 in the unknown a, and this equation admits in general two solutions a;
and a, given by

L+ VT—dpg 1—@}:{1 g}:“r}
p

1
{a1, ax} = { 2 2

for all p € (0, 1], with

a; =1 and azzrzz.

Note that we have a; =a, = lincase p =g = 1/2.
Non-symmetric Case: p # q - Proof of (2.2.11)

In this case we have p # ¢,i.er # 1, and

flky=Cia¥=C, and  f(k) = Cyr*

2Where did we get this idea? From intuition, experience, or empirically by multiple trials and errors.
3From the Latin “id est” meaning “that is”.
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are both solutions of (2.2.6). Since (2.2.6) is linear, the sum of two solutions remains
a solution, hence the general solution of (2.2.6) is given by

fstk) = Craf + Coak = C, + Cor*,  k=0,1,...,8, (2.2.16)
where r = g /p and Cy, C, are two constants to be determined from the boundary
conditions.

From (2.2.7), (2.2.8) and (2.2.16) we have

fs(0)=1=C1+ Cy,

(2.2.17)
fs(8) =0=Cy + Cor¥,
and solving the system (2.2.17) of two equations we find
rs 1
C] = —m and C2 = m,
which yields (2.2.11) as by (2.2.16) we have
r*—=rS g/~ /p)®
k) = Cy+ Cork = = , k=0,1,...,8.
fst)=Cr+ Crt = 4 I —@/p)]
Symmetric Case: p=q=1/2 - Proof of (2.2.12)
In this case, Eq. (2.2.6) rewrites as
1 1
f(k):zf(k+l)+§f(k—1), k=1,2,...,5 -1, (2.2.18)

and we have r = 1 (fair game) and (2.2.15) reads
a*—2a+1=@—-1)7>=0,

which has the unique solution @ = 1, since the constant function f (k) = C is solution
of (2.2.6).

However this is not enough and we need to combine f (k) = C; with a second
solution. Noting that g(k) = C,k is also solution of (2.2.6), the general solution is
found to have the form

fsk) = f(k) 4+ gk) = C1 + Cak. (2.2.19)
From (2.2.7), (2.2.8) and (2.2.19) we have
fs(0)=1=Cy,

(2.2.20)
fs(8) =0=C+CsS,
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and solving the system (2.2.20) of two equations we find
Ci=land C, = —1/8S,

which yields the quite intuitive solution

S—k

| =

, k=0,1,...,8. (2.2.21)

Direct Solution Method

Noting that p + ¢ = 1 and due to its special form, we can rewrite (2.2.6) as

P+ fstk) =pfstk+1) +qfstk — 1),

k=1,2,...,85 — 1, ie. as the difference equation
p(fstk+1) — fsk)) — q(fsk) — fs(k — 1)) =0, (2.2.22)
k=1,2,...,5 — 1, which rewrites as

Fsk+1) — fs(k) = %(fs(k) —fsk—1), k=1,2,....5—1,

hence fork =1,

fs@) = fs(D) = %(fs(l) — f5(0)),

and for k = 2,

2
£s3) = f5(2) = %(fs(2) — fs(1)) = (%) (fs(1) = £5(0)),

and following by induction on k£ we can show that

k
fstk+1) — fs(k) = (%) (fs(1) = f5(0)), (2.2.23)

k=0,1,...,5 — 1. Next, by the telescoping sum

n—1

fs(m) = £s0) + Y (fsk + 1) — f5(k)),
k=0

Relation (2.2.23) implies

n—1 k
Fsn) = f50) + (fs(1) = fsO) Y (%) , (22.24)

k=0
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n=1,2,...,5 — 1. The remaining question is how to find fs(1) — f5(0), knowing
that f5(0) = 1 by (2.2.7).

Non-symmetric Case: p # q

In this case we have r = g/p # 1 and we get

n—1

fs) = f50) + (fs(D) — fsO) Y r
k=0

= f5(0) + ———(f5() = fs(O)). (2.2.25)

1

n=12,...,5 — 1, where we used (A.2).
Conditions (2.2.7) and (2.2.8) show that

N
0=fs(S) =1+ _rr (fs(1) = f5(0)),

1

hence
—-r

1
fs) = f5(O) = =7

and combining this relation with (2.2.25) yields

1—r" 1—r" =S
fsn) = fs(0) — ——= =1 =

1—r 1S 1—rS’

n=20,1,...,S, which recovers (2.2.11).
Symmetric Case:p = q = 1/2

In this case we have r = 1 and in order to solve (2.2.18) we note that (2.2.22) simply
becomes

fstk+1) = fstk) = fo(1) = fs(0),  k=0,1,...,85—1,
and (2.2.24) reads
fsn) = fs(0) +n(fs(1) — fs(0)), n=12,...,8—1,

which has the form (2.2.19). Then the conditions fs(0) = 1 and fs(S) = 0, cf. (2.2.7)
and (2.2.8), yield

1
0= fs(S) =1+ S(fs(1) — fs(0)), hence fs(1)— f5(0)= -5


https://doi.org/10.1007/978-981-13-0659-4
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and

n n

= 0 _— = 1 _ s
fs(n) = fs(0) S R S
n=20,1,...,S, which coincides with (2.2.21).

Remark 2.3 Note that when p = g = 1/2, (2.2.22) can be read as a discretization
of the continuous Laplace equation as

0°f _of af

W(X) =~ 8_x(x +1/2) — 8_x(x —1/2)
~(fx+D—fx) =) - fx=1)
-0, xeR (2.2.26)

which admits a solution of the form

f&) = fO0)+xf'0) = fO) +x(f(1) = f(0), x€eR,
showing the intuition behind the linear form of (2.2.19).

In order to compute the probability of ruin of Player B given that Xy = k we
only need to swap k to S — k and to exchange p and ¢ in (2.2.11). In other words,
when X = k then Player B starts with an initial amount S — k and a probability g
of winning each round, which by (2.2.11) yields

_ W =/t 1-@/p)

P(Rs | Xo=F) 1—(p/9)*  1—(q/p)S

ifp#£q, (2.2.27)

where

Rp := “Player B loses all his capital at some time” = U{X” = S}
neN

In the symmetric case p = g = 1/2 we similarly find

k 1
PRy | Xo=h) = k=0.1....5 ifp=g=5 (2229

cf. also Exercise 2.3 below.
Note that (2.2.27) and (2.2.28) satisfy the expected boundary conditions

P(Rg | Xo=0)=0 and P(Ryz | Xo=S) = 1,

since X represents the wealth of Player A at time 0.
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By (2.2.11) and (2.2.27) we can check that*

P(RAURp | Xo=k) =P(Ra | Xo=k) +P(Rp | Xo =k)
_ (q/p)*—(q/p)5 1—(q/p)*

1—(q/p)S 1—(q/p)S
=1, k=0,1,...,S, (2.2.29)

which means that eventually one of the two players has to lose the game. This means
in particular that, with probability one, the game cannot continue endlessly.
In other words, we have

P(RyNRy | Xo=k) =0, k=0,1,....8.

In the particular case S = 3 we can indeed check by (1.2.4) that, taking

A, = ﬂ [Xyoi=land Xoe =2}, n>1,
k=1

the sequence (A,),> is nonincreasing, hence

P (ﬂ {Xa01 = Land X, =2} |Xo = 2)

n>1

=P<ﬂﬂ{x2k—1 =1 and X =2}‘X0=2)

n>1k=1

= lim P <ﬂ [Xo1 =1 and Xo = 2}}){0 - 2)

n—o0
k=1
= p lim (pg)" =0,
n—o0

since we always have 0 < pg < 1, and where we used (1.2.4). However, this is a
priori not completely obvious when § > 4.
When the number S of states becomes large, (2.2.7) also shows that for all k > 0

we have
0 if p <gq,

k
1—(1) ifp>gq,
P

which represents the complement of the probability (2.2.13) of hitting the origin
starting from state ®, and is the probability that the process (X,),cn “escapes to
infinity”.

lim P(Rp | Xo = k) =
S—o00

4Exercise: check by hand computation that the equality to 1 holds as stated.


https://doi.org/10.1007/978-981-13-0659-4_1
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Ruin probability, S = 20, k = 10
0.8 -
0.6
0.4 -
0.2
o i 1 I .
o 0.1 0.2 0.3 0.8 0.9 1

Fig. 2.3 Ruin probability as a function of p € [0, 1] for § =20 and k = 10

In Fig.2.3 above the ruin probability (2.2.11) is plotted as a function of p for
S =20and k = 10.

Gambling machines in casinos are computer controlled and most countries permit
by law a certain degree of “unfairness” (see the notions of “payout percentage” or
“return to player”) by taking p < 1/2 in order to allow the house to make an income.’
Interestingly, we can note that taking e.g. p = 0.45 < 1/2 gives a ruin probability

P(R4 | Xo = 10) = 0.8815,

almost equal to 90%, which means that the slightly unfair probability p = 0.45 at
the level of each round translates into a probability of only 0.1185 ~ %12 of finally
winning the game, i.e. a division by 4 from 0.45, although the average proportion of
winning rounds is still 45%.

Hence a “slightly unfair” game on each round can become devastatingly unfair
in the long run. Most (but not all) gamblers are aware that gambling machines are
slightly unfair, however most people would intuitively believe that a small degree
of unfairness on each round should only translate into a reasonably low degree of
unfairness in the long run.

2.3 Mean Game Duration

Let now
Tos=inf{n>0: X, =0o0r X, = S}

denote the time® until any of the states @ or ® are reached by (X,),eny, with Ty s = 0o
in case neither states are ever reached, i.e. when there exists no integer n > 0 such
that X,, =0 or X,, = § (see Fig.2.4).

SIn this game, the payout is $2 and the payout percentage is 2p.

%The notation “inf” stands for “infimum”, meaning the smallestn > O such that X,, = Oor X,, = §,
if such an n exists.
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Xn

S =6

Fig. 2.4 Sample paths of a gambling process (X, ),eN

Note that by (2.2.29) we have
P(Tos <o | Xo=k)=P(RAURp | Xo=k)=1, k=0,1,...,S.
and therefore
P(Ths=00| Xo=k)=0, k=0,1,...,8.
We are now interested in computing the expected duration
hs(k) :=E[Tos | Xo = k]

of the game given that Player A starts with a wealth equal to Xo = k € {0, 1, ..., S}.
Clearly, we have the boundary conditions

hs(0) = E[Ty,s | Xo =0] =0, (2.3.1a)
{ hs(S) =E[Tys | Xo = S]=0. (2.3.1b)

We start by considering the particular cases S = 2 and § = 3.
(i S=2.

We have
0 if Xo =0,

Too=1{1ifXo=1,
0 if Xo = 2,

thus Tp» is deterministic given the value of Xy and we simply have h,(1) =
T(),z = 1 when X() =1.
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(i) S =3.

In this case the probability distribution of Ty 3 given Xy € {0, 1,2, 3} can be
determined explicitly and we find, when Xy = 1,

P(Tos =2k | Xo=1) = p*(pp)*", k=1,
P(Tos=2k+1]|Xo=1)=q(pg)*, k=0,

since in an even number 2k of steps we can only exit through state @ after starting
from @, while in an odd number 2k + 1 of steps we can only exit through state
©. By exchanging p with ¢ in the above formulas we get, when Xy = 2,

P(Tos =2k | Xo=2) = ¢*(pg)*~',  k>1,
P(Tos =2k+1|Xo=2)=p(pg)*, k=0,

whereas Ty 3 = 0 whenever Xy = 0 or X = 3.
As a consequence, we can directly compute

o0
h3(2) = E[Tys | Xo=2] =2 kP(To3 = 2k | Xo =2)
k=1

oo
+) @k + DP(To3 =2k + 1| Xo =2)
k=0

o0 o0

=2¢>Y k(pg)"' +p > 2k + D)(pg)*
k=1 k=0

o 2q? N 2p%q p

S (I—pg)?  (A-pg?* 1-pgq

2q* + p + qp*

(1 — pg)?
1+q

= , (2.3.2)
1 —pq

where we applied (A.4), and by exchanging p and g we get

2p°+q+pg>  1+p

hy(1) =E[Tos | Xo=1] = =
(1 - pg)? 1 - pq

(2.3.3)

Again, things can become quite complicated for S > 4, and increasingly difficult
when S becomes larger.


https://doi.org/10.1007/978-981-13-0659-4
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In the general case S > 4 we will only compute the conditional expectation of
Tp,s and not its probability distribution. For this we rely again on first step analysis,
as stated in the following lemma.

Lemma 24 Forallk=1,2,...,5 — 1 we have
E[Tos | Xo=kl=1+pE[Tos | Xo=k+ 1]+ qE[Tos | Xo =k —1].

Proof We condition on the first transition from X, to X;. Using the equality 14 =
1ang + 1 ange under the form

Lixo=k) = Lix,=k+1,x0=k} + Lix,=k—1,X0=k)>

cf. (1.4.2), and conditional expectations we show, by first step analysis, that for all
k=1,2,..., 5 — 1,applying Lemma 1.4 and (1.6.6) successively to A = {X¢ = k},
A={Xo=k—1}and A = {Xy = k + 1}, we have

1
E[T, Xo=kl=——FE|Ty¢lix.—
[To,s | Xo ] P(Xo = 1) [70,51 (x0=1]

= IP’(XO;:k) (E[To.s1(x,=k+1.x0=k} | + E [To,5 Lix, =k—1.x0=41])
P(Xy =k+1and Xy =k)
- P(X, = k)
P(X, =k — 1 and Xy = k)
P(Xo = k)
=PXi=k+1|Xo=kE[Tos| X1 =k+ 1, Xo =k]
+P(X 1 =k—-1|Xo=k)E[T)s | X1 =k —1, Xo =k]
=pE[los| X1 =k+1,Xo=kl+qE[Tos | X; =k—1, Xo =k] (2.3.4)
=pE[los+1[Xo=k+1,X 1 =kl+qE[Tos+1|Xo=k—1,X_| =k]
(2.3.5)

E[Tos | X1 =k+ 1, Xo = k]

E[Tos | X1 =k —1, Xo =k]

=pE[Tos+1|Xo=k+1]+qE[Tos+ 1| Xo=k—1]
=p(I +E[Tos | Xo=k+ 1] +q(1 +E[Tos | Xo=k—1])
=p+q+pE[Tos| Xo=k+ 11+ qE[Tos | Xo =k — 1]
=14+ pE[Tos| Xo=k+1]1+qE[Ths | Xo =k —1].

From (2.3.4) to (2.3.5) we relabelled X as X, which amounts to changing Ty g — 1
into T s, or equivalently changing T s into Ty s + 1. O
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In the case S = 3, Lemma 2.4 shows that

h3(0) = E[To,s | Xo =0] =0,
h3(1) = 14 ph3(2) + qh3(0) =1+ ph3(2) = 1+ p(1 +qh3(1)) = 1+ p + pgh3(1),
h3(2) =14 ph3(3) + qh3(1) =1+ qh3(1) =1+ q(1 + ph3(2)) = 1 +q + pqh3(2),
h3(3) = E[To,s5 | Xo =31 =0,

which can be solved to recover the result of (2.3.2), (2.3.3).
More generally, defining the function hg : {0, 1,..., S} — R, by

hs(k) :=IE[Tys | Xo=k], k=0,1,...,8,

Lemma 2.4 shows that

hs(k) = p(1 +hs(k + 1) +q(1 + hs(k — 1)) = 14 phs(k + 1) + ghg(k — 1),

k=1,2,...,5 — 1, ie. we have to solve the equation

hk) =1+ ph(k+1)+qh(k—1), k=12,...,5—1,

h(0) = h(S) = 0,

for the function 4 (k). Using the fact that p + ¢ = 1, we can rewrite (2.3.6) as
(p+q@hk) =14+ phtk+1)+qghtk —1), k=1,2,...,8—1,

or as the difference equation

ph(k+1) — h(k)) —q(h(k) — h(k — 1)) = —1, k=1,2,...,8—1,
2.3.7)
under the boundary conditions (2.3.1a) and (2.3.1b).
The equation

p(flk+1) = f(k)) —q(f(k) = fk=1)) =0, k=12,....5-1,
(2.3.8)

cf. (2.2.22), is called the homogeneous equation associated to (2.3.7).
We will use the following fact:

The general solution to (2.3.7) can be written as the sum of a homogeneous
solution of (2.3.8) and a particular solution of (2.3.7).
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Non-symmetric Case: p # q

By (2.2.16) we know that the homogeneous solution of (2.3.8) is of the form C; +
C,r*. Next, searching for a particular solution of (2.3.7) of the form k — Ck
shows that C has to be equal to C = 1/(q — p). Therefore, whenr = gq/p # 1, the
general solution of (2.3.7) has the form

1
hg(k) = C + Cork + ——k. (2.3.9)
q—p
From the boundary conditions (2.3.1a) and (2.3.1b) and from (2.3.9) we have

hs(0) =0=C + (s,

2.3.10)

1 (

hs(S) =0=C, 4+ Cor’S + ——S8,
q-7r

and solving the system (2.3.10) of two equations we find

e 8 e S
RS T @ —pa—=r5

)

hence from (2.3.9) we get

1 1—(q/p)
hs(k) = IE[T, Xo=kl=—[k—S———
s(k) [To,s | Xo = k] q—p( 1= q/p)°

1
=— (k—SP(Rg | Xo=k)), k=0,1,2,...,8,
q-r

) (2.3.11)

which does satisfy the boundary conditions (2.3.1a) and (2.3.1b). Note that changing
k to S — k and p to g does not modify (2.3.11), as it also represents the mean game
duration for Player B.

When p =1, i.e. r =0, we can check easily that e.g. hg(k) =S —k, k =
0,1,2,...,S. On the other hand, when the number § of states becomes large, we
find that for all k > 1,

00 ifg < p,

heo(k) := lim hg(k) = lim E[Tys | Xo = k] = L (2.3.12)
S—o00 S—00 ' lfC] >p

q—7p

with 15 (0) = 0, cf. also the symmetric case treated below when p = ¢ = 1/2. In
particular, for k > 1 we have
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Fig. 2.5 Mean game duration /0 (k) as a function of Xg = k € [0, 20] for p = 0.45

P(Ty <oco| Xo=k) <1 and [E[Thy=00]| Xg=k]=00, p>gq,

1
P(Th <oco| Xo=k)=1 and IE[Th =00 | X¢ =k] = o0, p:q:z,

P(Thy <oo| Xo=k)=1 and [E[Tp=00]|Xg=k] <00, p<gq.

When r = g/p < 1, this yields an example of a random variable Ty which is (almost
surely’) finite, while its expectation is infinite.® This situation is similar to that of the
St. Petersburg paradox as in (1.6.5).

Itiseasy to show that (2.3.11) yields #,(1) = 1 when S = 2. When § = 3,(2.3.11)
shows that, using the relation p +¢ = 1,

1 1—q/p> 1+p
E[Tys | Xo=1]=——(1-3 = , 2.3.13
Tos | Xo =11 q—p( 1—(q/p)? 1—pg ( )
and
1 1—(q/p)2> l1+¢
E[Tos | Xo=2]=—(2-3 = , 23.14
os | Xo =2] q—p( 1—(q/p)? 1 —pq ( )

however it takes more time to show that (2.3.13) and (2.3.14) agree respectively with
(2.3.2) and (2.3.3). In Fig. 2.5 below the mean game duration (2.3.11) is plotted as a
function of k for p = 0.45.

Symmetric Case:p = q = 1/2

In this case (fair game) the homogeneous solution of (2.3.8) is C; + C,k, given by
(2.2.19).

7«Almost surely” means “with probability 1.
8Recall that an infinite set of finite data values may have an infinite average.
This point is left as exercise.
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Sincer = 1 we see thatk — Ck can no longer be a particular solution of (2.3.7).
However we can search for a particular solution of the form k —> Ck?, in which
case we find that C has to be equal to C = —1.
Therefore when r = g/p = 1 the general solution of (2.3.7) has the form
hs(k) = Cy 4+ Cak — k2, k=0,1,2,...,8S. (2.3.15)
From the boundary conditions (2.3.1a) and (2.3.1b) and from (2.3.15) we have
hs(0) =0 = Cy,
(2.3.16)
hs(S) =0=C; + C>S — 52,
and solving the above system (2.3.16) of two equations yields

Ci=0 and C, =S,

hence from (2.3.15) we get

hs(k) = E[Tos | Xo =kl =k(S—k), k=0,1,2,....58,

(2.3.17)

which does satisfy the boundary conditions (2.3.1a) and (2.3.1b) and coincides with
(2.3.12) when S goes to infinity.

We note that for all values of p the expectation IE[Ty s | Xo = k] has a finite
value, which shows that the game duration Ty g is finite with probability one for all
k=0,1,...,5,ie.P(Tys =00 | Xo=k)=0forallk =0,1,...,S.

Remark 2.5 When r = 1, by the same argument as in (2.2.26) we find that (2.3.7)
is a discretization of the continuous Laplace equation
13%f
EW(X)Z_L XGR,

which has for solution
f(x) = fO) +xf'(0)—x* xeR.

Note that (2.3.17) can also be recovered from (2.3.11) by letting p go to 1/2. In
the next Fig. 2.6 the expected game duration (2.3.11) is plotted as a function of p for
S =20and k = 10.
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Fig. 2.6 Mean game duration as a function of p € [0, 1] for § =20 and k = 10

As expected, the duration will be maximal in a fair game for p = ¢ = 1/2. On
the other hand, it always takes exactly 10 = S — k = k steps to end the game in case
p = 0or p = 1, in which case there is no randomness. When p = 0.45 the expected
duration of the game becomes 76.3, which represents only a drop of 24% from the
“fair” value 100, as opposed to the 73% drop noticed above in terms of winning
probabilities. Thus, a game with p = 0.45 is only slightly shorter than a fair game,
whereas the probability of winning the game drops down to 0.12.

Remark 2.6 In this chapter we have noticed an interesting connection between anal-
ysis and probability. That is, a probabilistic quantity such as k — P(R4 | Xo = k)
or k —> IE[Ty s | Xo = k] can be shown to satisfy a difference equation which is
solved by analytic methods. This fact actually extends beyond the present simple
framework, and in continuous time it yields other connections between probability
and partial differential equations.

In the next chapter we will consider a family of simple random walks which can
be seen as “unrestricted” gambling processes.

Exercises

Exercise 2.1 We consider a gambling problem with the possibility of a draw, ' i.e. at
time n the gain X,, of Player A can increase by one unit with probability r € (0, 1/2],
decrease by one unit with probability 7, or remain stable with probability 1 — 2r. We
let

fk) :=P(Ra | Xo =k)

denote the probability of ruin of Player A, and let

h(k) :=IE[To s | Xo = k]

10A150 called “lazy random walk”.
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denote the expectation of the game duration Ty g starting from Xo =k, k=0, 1,
.5 8.

(a) Using first step analysis, write down the difference equation satisfied by f (k)
and its boundary conditions, k =0, 1, ..., S. We refer to this equation as the
homogeneous equation.

(b) Solve the homogeneous equation of Question (a) by your preferred method. Is
this solution compatible with your intuition of the problem? Why?

(c) Using first step analysis, write down the difference equation satisfied by % (k)
and its boundary conditions, k =0, 1, ..., S.

(d) Find a particular solution of the equation of Question (c).

(e) Solve the equation of Question (c).

Hint: recall that the general solution of the equation is the sum of a particular
solution and a solution of the homogeneous equation.

(f) How does the mean duration h(k) behave as r goes to zero? Is this solution
compatible with your intuition of the problem? Why?

Exercise 2.2 Recall that for any standard gambling process (Z; )<y On a state space
{a,a+1,...,b— 1, b} with absorption at states @ and ® and probabilities p # ¢
of moving by +1, the probability of hitting state @ before hitting state @ after starting
from state Zo =k € {a,a+1,...,b — 1, b} is given by

1—(p/9)"™*
L—(p/q)>~
In questions (a), (b), (c) below we consider a gambling process (X)ien on the state

space {0, 1, ..., S} with absorption at @ and ® and probabilities p # g of moving
by £1.

(2.3.18)

(a) Using Relation (2.3.18), give the probability of coming back in finite time to a

given statem € {1, 2, ..., S — 1} after starting from Xg =k e {m+ 1, ..., S}.

(b) Using Relation (2.3.18), give the probability of coming back in finite time to the
given statem € {1, 2, ..., S — 1} after starting from Xg =k € {0,1,,...,m —
1}.

(c) Using first step analysis, give the probability of coming back to state @ in finite
time after starting from Xy = m.

(d) Using first step analysis, compute the mean time to either come back to m of
reach any of the two boundaries {0, S}, whichever comes first?

(e) Repeat the above questions (c), (d) with equal probabilities p = g = 1/2, in
which case the probability of hitting state @ before hitting state ® after starting
from state Zy = k is given by

b—k
b—a’

k=a,a+1,....,b—1,b. (2.3.19)
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Exercise 2.3 Consider a gambling process (X,),en on the state space S = {0, 1,
..., S}, with probability p, resp. ¢, of moving up, resp. down, at each time step. For
k=0,1,...,8S,let t; denote the first hitting time

T = inf{n >0 : X, = k}.
of state ® by the process (X,),eN, and let
pk::P(Tk+1<TO|X():k), kIO,l,...,S—l,

denote the probability of hitting state before hitting state ©@.

(a) Show that pp = P(t;41 < 19 | X0 = k) satisfies the recurrence equation
Pk = P + qpk—1 Pk, k=1,2,...,8—1, (2.3.20)

i.e.
Pk = T—" ",
1 — gpir—1

(b) Check by substitution that the solution of (2.3.20) is given by

1—(q/p)

=7 k=0,1,....,5—1. 2.3.21
T T/ pHT (2321

(c) Compute P(tg < 179 | Xo = k) by a product formula and recover (2.2.11) and
(2.2.27) based on the result of part (2.3.21).

(d) Show that (2.2.12) and (2.2.28) can be recovered in a similar way in the sym-
metric case p = g = 1/2 by trying the solution py = k/(k+1),k=0,1, ...,
S—1.

Exercise 2.4 Consider a gambling process (X,,),cn on the state space {0, 1, 2}, with
transition probabilities given by

P(X;=0]Xo=0) PX;=1]|Xo=0) P(X;=2]Xo=0)
PX;=0]Xo=1) PXi=1|Xo=1) PX;=2]|Xo=1)
P(X;=0|Xo=2) P(X;=1]|Xo=2) P(X;=2]|Xo=2)
1

p
0

(=}
o Q o
- O N
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where 0 < p < 1 and ¢ = 1 — p. In this game, Player A is allowed to “rebound”
from state @ to state (D with probability p, and state @ is absorbing.
In order to be ruined, Player A has to visit state @ twice. Let

flk):=P(Ra| Xo=k), k=012,

denote the probability of ruin of Player A starting from k = 0, 1, 2. Starting from @
counts as one visit to ©.

(a) Compute the boundary condition f(0) using pathwise analysis.
(b) Give the value of the boundary condition f(2), and compute f(1) by first step
analysis.

Exercise 2.5 (a) Recover (2.3.17) from (2.3.11) by letting p go to 1/2, i.e. when
r=gq/p goesto l.

(b) Recover (2.2.21) from (2.2.11) by letting p go to 1/2, i.e. when r = g /p goes
to 1.

Exercise 2.6 Extend the setting of Exercise 2.1 to a non-symmetric gambling pro-
cess with draw and respective probabilities « > 0, 8 >0, and 1 —a — 8 > 0 of
increase, decrease, and draw. Compute the ruin probability f (k) and the mean game
duration A (k) in this extended framework. Check that when o« = 8 € (0, 1/2) we
recover the result of Exercise 2.1.

Problem 2.7 We consider a discrete-time process (X,),>o that models the wealth
of a gambler within {0, 1, ..., S}, with the transition probabilities

PXpp1 =k+1|X, =k =p, k=0,1,...,5—1,
PXpp1 =k—1|X,=k)=q, k=1,2,...,85,

and
HD()(n+1 =0 | Xn = 0) =dq,

foralln e N={0,1,2,...}, where ¢ =1 — p and p € (0, 1]. In this model the
gambler is given a second chance, and may be allowed to “rebound” after reaching
0. Let

w=Jix,=5)

neN

denote the event that the player eventually wins the game.
(a) Let
gk) :==P(W | Xo =k)

denote the probability that the player eventually wins after starting from state
k €{0,1, ..., S}. Using first step analysis, write down the difference equations
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(b)

()

(d

(e)

2 Gambling Problems

satisfied by g(k), k =0, 1, ..., S — 1, and their boundary condition(s), which
may not be given in explicit form. This question is standard, however one has to
pay attention to the special behavior of the process at state 0.
Obtain P(W | Xg = k) forallk =0, 1, ..., S as the unique solution to the sys-
tem of equations stated in Question (a). The answer to this question is very
simple and can be obtained through intuition. However, a (mathematical) proof
is required.
Let

T =inf{n >0 : X, = S}

denote the first hitting time of S by the process (X,,),>0. Let
h(k) = E[Ts | Xo = k]

denote the expected time until the gambler wins after starting from state
k €{0,1,...,S}. Using first step analysis, write down the difference equations
satisfied by h(k) fork =0, 1, ..., S — 1, and state the corresponding boundary
condition(s). Again, one has to pay attention to the special behavior of the pro-
cess at state 0, as the equation obtained by first step analysis for /(0) will take
a particular form and can be viewed as a second boundary condition.

Compute E[Ts | Xo = k] for all k =0, 1, ..., S by solving the equations of
Question (c).

This question is more difficult than Question (b), and it could be skipped at first
reading since its result is not used in the sequel. One can solve the homogeneous
equation for k = 1,2, ..., S — 1 using the results of Sect.2.3, and a particular
solution can be found by observing that here we consider the time until Player
A (not B) wins. As usual, the cases p # g and p = g = 1/2 have to be consid-
ered separately at some point. The formula obtained for p = 1 should be quite
intuitive and may help you check your result.

Let now

To=inf{n >0 : X, =0}

denote the first hitting time of 0 by the process (X,,),>0. Using the results of
Sect. 2.2 for the ruin of Player B, write down the value of

P =P(Ts < Ty | Xo =k)
as a functionof p, S,andk =0,1,...,S.

Note that according to the notation of this chapter, {Ts < Ty} denotes the event
“Player A wins the game”.
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®)

(2)

(h)

®

@

Explain why the equality

P(Ts <To | X1 =k+1land Xo=k) =P(Ts < Ty | X1 =k + 1)

holds fork € {0, 1, ..., S — 1} (an explanation in words will be sufficient here).
Using Relation (2.3.22), show that the probability

]P’(X1=k~|—1|X0=kande<TO)

of an upward step given that state S is reached first, is equal to

P(Tg < Ty | Xo =k + 1
POX| = k+1|Xo=kand Ts < Tp) = pos =TolXo=k+ D _ pert (5393
P

P(Ts < Tp | Xo = k)

k=1,2,...,5 — 1, to be computed explicitly from the result of Question (e).
How does this probability compare to the value of p?

No particular difficulty here, the proof should be a straightforward application
of the definition of conditional probabilities.

Compute the probability

P(X;=k—1|Xo=kand Ty <Ts), k=1,2,...,85,

of a downward step given that state O is reached first, using similar arguments
to Question (g).
Let

h(ky =E[Ts | Xo =k, Ts < Tol, k=1,2,...,85,

denote the expected time until the player wins, given that state 0 is never reached.
Using the transition probabilities (2.3.23), state the finite difference equations
satisfied by h(k), k = 1,2,...,S — 1, and their boundary condition(s).

The derivation of the equation is standard, but you have to make a careful use of
conditional transition probabilities given {Ts < Tp}. There is an issue on whether
and how /(0) should appear in the system of equations, but this point can actually
be solved.

Solve the equation of Question (i) when p = 1/2 and compute h(k) for k =
1,2,...,S. What can be said of 4(0)?

There is actually a way to transform this equation using an homogeneous equa-
tion already solved in Sect.2.3.

Problem 2.8 Let S > 1. We consider a discrete-time process (X,),>o that models
the wealth of a gambler within {0, 1, ..., S}, with the transition probabilities

PXpp1 =k+2[ Xy =k)=p, PXpp1=k—-1]X,=k) =2p,



66 2 Gambling Problems

and
PX,p1=k| X, =k)=r, kegz,

foralln e N={0,1,2,...},where p > 0,r >0,and 3p +r = 1. We let
t:=inf{n >0 : X, <0or X, > S}.
(a) Consider the probability
gk) :=P(X: = S| Xo=k)

that the game ends with Player A winning the game, starting from X, = k. Give
the values of ¢(0), g(S) and g(S + 1).

(b) Using first step analysis, write down the difference equation satisfied by g(k), k =
1,2,...,S — 1, and its boundary conditions, by taking overshoot into account.
We refer to this equation as the homogeneous equation.

(c) Solve the equation of Question (b) from its characteristic equation as in (2.2.15).

(d) Does the answer to Question (c) depend on p? Why?

(e) Consider the expected time

hk):=FE[t | Xo=kl, k=0,1,....,5+1,

spent until the end of the game. Give the values of £(0), #(S) and A(S + 1).

(f) Using first step analysis, write down the difference equation satisfied by h(k),
k=1,2,...,5 — 1, and its boundary conditions.

(g) Find a particular solution of the equation of Question (e)

(h) Solve the equation of Question (2.1 c).

Hint: the general solution of the equation is the sum of a particular solution and
a solution of the homogeneous equation.

(i) How does the mean duration 4 (k) behave as p goes to zero? Is this compatible
with your intuition of the problem? Why?

(G) How do the values of g(k) and h(k) behave for fixed k € {1,2,..., S —1}as §
tends to infinity?

Problem 2.9 Consideragambling process (X,,),>o onthe state space S = {0, 1, ..., S},
with transition probabilities

PXp1=k+1|Xy=k)=p, PXpp=k—-1|X,=k) =gq,
k=1,2,...,85—1,with p+qg = 1. Let

t:=inf{n >0 : X, =0o0r X, =S}
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denote the time until the process hits either state O or state S, and consider the second

moment

h(k) :==E[t* | Xo =k].
of t after starting fromk =0,1,2,...,S.
(a) Give the values of 2(0) and A (S).

(b)
(©)

(d)

(e

)

Using first step analysis, find an equation satisfied by (k) and involving [E[7 |
Xo=k+1]and E[t | Xo=k—-1],k=1,2,...,S— 1.
From now on we take p = ¢ = 1/2. Recall that in this case we have

E[r | Xo = k] = (S — k)k, k=0,1,...,8.

Show that the function & (k) satisfies the finite difference equation

1 1
hk) = =1+2(S =k + sh(k+ 1) + shk =1,  k=12....5-1
(2.3.24)

Knowing that

2

2 k*
k —> 5k2— Bk

3 +3

is a particular solution of the equation (2.3.24) of Question (c), and that the
solution of the homogeneous equation

f(k)=%f(k+1)+%f(k—l), k=1,2,...,8—1,

takes the form
fk) = Ci1 + Cak,

compute the value of the expectation A(k) solution of (2.3.24) for all k =

0,1,...,8.
Compute the variance

(k) = E[2? | Xo = k] — (Elt | Xo = k])°

of the game duration starting fromk =0, 1, ..., S.
Compute v(1) when S = 2 and explain why the result makes pathwise sense.



Chapter 3 ®)
Random Walks greckie

In this chapter we consider our second important example of discrete-time stochastic
process, which is a random walk allowed to evolve over the set Z of signed integers
without any boundary restriction. Of particular importance are the probabilities of
return to a given state in finite time, as well as the corresponding mean return time.

3.1 Unrestricted Random Walk

The simple unrestricted random walk (S,,),>0, also called Bernoulli random walk, is
defined by Sp = 0 and

Si=Y Xe=Xi+-+X,, nx1,
k=1

where the random walk increments (X )i>; form a family of independent, {—1, 41}-
valued random variables.

We will assume in addition that the family (X;)r>1 is i.i.d., i.e. it is made of
independent and identically distributed Bernoulli random variables, with distribution

P(Xy =+1) = p,
P(X, =—-1) =g, k>1,

with p +¢g = 1.

© Springer Nature Singapore Pte Ltd. 2018 69
N. Privault, Understanding Markov Chains, Springer Undergraduate
Mathematics Series, https://doi.org/10.1007/978-981-13-0659-4_3
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3.2 Mean and Variance

In this case the mean and variance of X,, are given by
EX,]=—-1xg+1xp=2p—1=p—gq,
and

Var[X,] = E[X}] — (E[X,])*
=1lxg+1xp—Q2p—1)7
=4p(1 — p) =4pq.

As a consequence, we find that

E[S, | So=0]1=E {Zxk} =Y E[X]=nQ2p—1)=n(p—q),
k=1

k=1

and the variance can be computed by (1.6.12) as

k=1

Var[S, | So = 0] = Var [Z Xk:| = ZVar[Xk] = 4npq,
k=1

where we used (1.6.12).

3.3 Distribution

First we note that in an even number of time steps, (S,),en can only reach an even
state in Z starting from @ Similarly, in an odd number of time steps, (S,),en can
only reach an odd state in Z starting from @ Indeed, starting from S, = k the value
of S,+2 after two time steps can only belong to {k — 2, k, k + 2}. Consequently, we

have
P(Sy, =2k+1] Sy =0) =0, keZ, neN,

(3.3.1)
P(Szn+]=2k|S()=O)=O, keZ, neN,

and
P(S, =k | Sy=0)=0, fork < —nork > n, (3.3.2)

since Sp = 0. Next, let / denote the number of upwards steps between time 0 and
time 2n, whereas 2n — [ will denote the number of downwards steps. If S, = 2k we


https://doi.org/10.1007/978-981-13-0659-4_1
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3.3 Distribution 71

have
2k =1—2n —1) =2l —2n,

hence there are /| = n + k upwards steps and 2n — [ = n — k downwards steps, —n <
k < n.The probability of a given paths having/ = n + k upwards stepsand 2n — [ =

n — k downwards steps is

pn+kqn7k

and in order to find P(S,, = 2k | So = 0) we need to multiply this probability by the
total number of paths leading from @ to in 2n steps. We find that this number

of paths is
2n\ ([ 2n
n+k) \n—k

which represents the number of ways to arrange n + k upwards steps (or n — k
downwards steps) within 2n time steps.
Hence we have

IP’(Szn=2/’<|So=0)=<
n

10 10
in addition to (3.3.1) and (3.3.2). Figure 3.1 shows one of the 120 = ( 7 ) = < )

possible paths corresponding ton = 5 and k = 2.

GNP oOoRrRNWMGON

o

1 2 3 a 5 6 7 8 9 10

10

Fig. 3.1 Graph of 120 = ( 7

10
):(3)pathswithn:53ndk:2
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Exercises:

(i) Show by a similar analysis that

2n+1

P(Sye1=2k+1]Sy=0) =
(S2141 +1]85 =0 (n+k+1

)pn+k+lqn—k’ —-n<k<n,

(3.3.4)
ie. 2n+ 14 S5,41)/2 is a binomial random variable with parameter (2n +
1, p), and

2 14+ S,,
P(n+ + S2n41

_ :k’S():O):IP’(SZnH:Zk—Zn—l‘SO:O)

I 20 A N
k=0,1,...,2n+1.

(ii) Show thatn + S, /2 isabinomial' random variable with parameter (21, p),i.e.,
show that

SZn
P<n+7_k‘50_0) _IP(SQ,,_Zk—Zn‘SO—O)

2
— (:)pqun_k, k=0,1,...,2n.

3.4 First Return to Zero

Let
Ty :=inf{fn>1 : S, =0}

denote the time of first return to @ of the random walk started at @ with the

convention inf ¢} = 0o.> We are interested in particular in computing the mean time

IE[T§ | So = OJittakes toreturn to state @ after starting from state @ (seeFig.3.2).
We are interested in computing the distribution

gn) =P(Tg =n|S=0), n=1,

of the first return time 7 to @ It is easy to show by pathwise analysis that 7] can

only be even-valued starting from @, hence g(2k + 1) = 0 for all £k € N, and in
particular we have

"Note that S, is always an even number after we start from Sp = 0.

2Recall that the notation “inf” stands for “infimum”, meaning the smallest n > 0 such that S, = 0,
with Ty = oo if no such n > 0 exists.
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Sn

So =0
0

Fig. 3.2 Sample path of the random walk (S;,),eN

P(Iy =1]8=0)=0, P(Tj =2]S)=0)=2pq, (3.4.1)

and
P(T] =418y =0) =2p°q?, (3.4.2)

by considering the two paths leading from @ to @ intwo steps and the only two paths
leading from @ to @ in four steps without hitting @ However the computation
of P(Ty = 2n | So = 0) by this method is difficult to extend to all n > 3.

In order to completely solve this problem we will rely on the computation of the
probability generating function Gy of Ty, cf. (3.4.9) below.

This computation will use the following tools:

e convolution equation, see Relation (3.4.3) below,
e Taylor expansions, see Relation (3.4.22) below,
e probability generating functions.

First, we will need the following Lemma3.1 which will be used in the proof of
Lemma 3.3 below.

Lemma 3.1 (Convolution equation). The function

g:{1,2,3,...} — [0,1]

n+— g(n)

defined by
gn) =PI =n|S=0), n=1,

satisfies the convolution equation

n—2

h(n) = Zg(n —khk), n=>1, (3.4.3)
k=0
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So=0

o 1 2 3 4 5 6 7 8 9k=10 11 12 13 14 15 "
Tg =n

Fig. 3.3 Last return to state 0 at time k = 10

with the initial condition g(1) = 0, where h(n) := P(S, = 0| Sy = 0) is given from
(3.3.3) by

2
h(2n) = < n)p"q”, and h2n+1)=0, neN. (3.4.4)
n

Proof We first partition the event {S, = 0} into

n—2
{8, =0} = J(Sk =0, Sip1 #0,.... 81 #0, 5, =0}, n=>1,
k=0

according to all possible times k = 0, 1, ..., n — 2 of last return to state @ before
time n, with {S; = 0} = ¢ since we are starting from Sy = O (see Fig.3.3).
Then we have

h(n) :=P(S, =0 | Sy = 0)
n—2

=Y P(Sk =0, Sp1 #£0..... 81 #0, S, =0 S =0)
k=0

n—2
=D P(Sit #0.... Si1 #0, S, =0] S =0, Sy=0)P(S; =0 So=0)
k=0

n—2
=) P(Sta1 0. ... S #£0, S, =0 S =0)P(S, =08 =0) (345)
k=0

n—2
=S P(Si # 0., Sukot 0. Sy =01 S =0)P(S; =0 Sy = 0) (3.46)
k=0

n—2

= Z]P’(TO’ =n—k|Sy=0PS=0]|Sy=0) (3.4.7)
k=0
n—2

=) hbgn—k. n=1,

k=0
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where from (3.4.5) to (3.4.6) we applied a shift of k steps in time, from time k + 1
to time 1. O

We now need to solve the convolution equation (3.4.3) for g(n) = P(Tj =n | S =
0), n > 1, knowing that g(1) = 0. For this we will derive a simple equation for the
probability generating function

GTU’ . [—1, 1] — R

s > Gy (s)

of the random variable 7j, defined by
) o0 oo
Gry(s) =Bl Ligy o) | Sy =01 =) s"P(Ty =n | Sy =0)= ) s"g(n),
n=0 n=0
—1<s<1,cf (1.7.3).
Recall that the knowledge of Gy (s) provides certain information on the distri-
bution of 7, such as the probability

P(T§ <00 8o =0) =E[Liz;<o0) | So = 0] = Gr; (1)

and the expectation
o0
E[Ty L <o) | So=01=Y nP(Ty =n| S =0) = Gl (1).
n=1

In Lemma 3.3 below we will compute Gy (s) for all s € [—1, 1]. First, let the func-
tion

H :R— R
s —> H(s)
be defined by
o0 o0
H(s) =Y h(k)s* = s*P($ =05 =0), -l1<s<L
k=0 k=0

In the following lemma we show that the function H (s) can be computed in closed
form.

Proposition 3.2 We have

1
2pq°

H(s) = (1—4pgsH~'?,  Is| <


https://doi.org/10.1007/978-981-13-0659-4_1
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Proof By (3.4.4) and the fact that P(Sy+1 = 0] So =0) =0, k € N, we have

(o]
H(S) = Zsk]P)(Sk =0 | S() = 0)
k=0

2k
2: 2k E:Zk k _k
— P(S, =01 Sy =0) =
= Sk =018 =0) = s <k)pq

k=0
stk GGk = DK = DOk =) x - x 4x3x 2]
(k(k —1) x - ><2><1)2

rnqg

=~
Il
=)

ks i k(k —1/2)(k —2/2)(k —3/2) x -+ x (4/2) x (3/2) x (2/2) x (1/2)
(k=1 x ---x2x1)?

tqu

(4p

~
Il
o

(k= 1/2)(k —3/2) x - x (3/2) x (1/2)

— k 2

_1;(4[7(1)& k(k—1) x---x2x1
i( DFdpg)ks® (=1/2=(k—=1))(B/2 —k) x --- x (=3/2) x (=1/2)
k=0 k(k—1) x---x2x1

(- qsz)k (=1/2) x (=3/2) x --- x (3/2 —k)(—1/2 — (k — 1))

rnqg

= k!
=(1—4pgsH)~'2, (3.4.8)
[4pgs?| < 1.3 O

Remark We note that, taking s = 1, by (1.6.1) we have

]

H(l) = ZIP’(Sk =0]S,=0)
k=0

I
M2

E[1{s,—0) | So = 0]

>~

||
Il
|—| o

[e.¢]
Z]lsk 0}‘So=0:|,
k=0

hence H(1) = 1/4/1 — 4pq represents the mean number of visits of the random
walk (S,).cn to state O.

Next, based on the convolution equation (3.4.3) of Lemma 3.1 we compute Gz; (s) in
the next Lemma 3.3 by deriving and solving an Eq. (3.4.13) for Gz; (s). This method
has some similarities with the z-transform method used in electrical engineering.

© k
3We used the formula (1 + x)® = Z x—a(a — 1) x --- X (a— (k — 1)), cf. Relation (A.8).

k!
k=0


https://doi.org/10.1007/978-981-13-0659-4_1
https://doi.org/10.1007/978-981-13-0659-4
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Lemma 3.3 The probability generating function Gr; of the first return time Ty to
@ is given by

1
Gry(s)=1- m =1—+/1—4pgs?, 4pgs’ <1. (3.4.9)
s

Proof We have, taking into account the relations g(1) =P(Ty =1| 5, =0) =0
and 7(0) =0,

Gry(s)H(s) = <Z s"g(n)) (Zs’%(k))
n=1 k=0
> s gmhk) = s"g(mh (k)
k=0 k=0 n=2
-2
s g — kh(k)
k=0

I
M

=
||
)

I
M2

-
||
o

10 (3.4.10)

M

~
Il

S'P(S;, =01 Sy=0) (3.4.11)

M

~
Il

1

o0
=1+ s'PS=0]8=0)=H(s) -1, (3.4.12)
=0

where from line (3.4.10) to line (3.4.11) we have applied the change of variable
(k,n) —> (k, 1) with! = n + k, and from line (3.4.11) to line (3.4.12) we have used
the convolution equation (3.4.3) of Lemma3.1. This shows that Gy (s) satisfies the
equation

Gry(s)H(s)=H(s) — 1, 4pgs* < 1. (3.4.13)

Solving (3.4.13) yields the value of Gy (s) for all s such that 4pgs? < 1. [l

See Exercise 3.4-(e) for another derivation of (3.4.9) based on first step analysis.*

4«Any good theorem should have several proofs, the more the better. For two reasons: usually,
different proofs have different strengths and weaknesses, and they generalise in different directions
- they are not just repetitions of each other. Some of them are good for this application, some are
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We will apply our knowledge of Gy (s) to the computation of the first return time
distribution of 7}, the probability of return to @ in finite time, and the mean return
time to @

Probability of Return to Zero in Finite Time

The probability that the first return to @ occurs within a finite time is

P(Ty <008y =0)=E[Lir7<00) | So=0] = ]E[lTor]l{T({<oo} | So = 0]

= GTOV(I) = 1 —\/1 —4pq

2q, >1/2,
=1—|2p—1|=1—|p—q|={2i P
— 2min(p, ), (3.4.14)

hence

P(T, =00 | So=0)=2p—1]=|p—ql. (3.4.15)

Note that in (2.2.13) above we have shown that the probability of hitting state @ in
finite time starting from any state @ with k > 1 is given by

k
P(Ty < oo | So = k) = min (1, (—) ) . k=1, (3.4.16)

i.e.

k
P(ngoomo:k):max(o,l—(Z)), k> 1,

cf. also Exercises 3.2-(c) and 3.4-(c).
In the non-symmetric case p # g, Relation (3.4.14) shows that

P(Ty <oo|So=0)<1 and P(Ty =00]|Sy=0)>0,

whereas in the symmetric case (or fair game) p = g = 1/2 we find that
P(Ty <oo|So=0)=1 and P(Tj=00|S=0)=0,

i.e. the random walk returns to @ with probability one.
See Exercise 3.4-(b) and 5.9-(a) for other derivations of (3.4.16).

good for that application. They all shed light on the area. If you cannot look at a problem from
different directions, it is probably not very interesting; the more perspectives, the better !” - Sir
Michael Atiyah.


https://doi.org/10.1007/978-981-13-0659-4_2
https://doi.org/10.1007/978-981-13-0659-4_5
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Mean Return Time to Zero

(i) In the non-symmetric case p # ¢, by (3.4.15), the time 7] needed to return to
state (0) is infinite with probability

P(Tg =00 ]S =0)=1Ip—q|l>0,

hence the expected value®

o0
E[T; | So =0] =00 x P(Tj =0 | S():O)—l—ZkIP’(T(j‘:k | So =0)
k=1
= 00 (3.4.17)
is infinite in that case.®

Note that starting from Sy = k > 1, by (2.3.12) we have found that the mean hitting
time of state (0) equals

00 ifg < p,

E[Ty | So =kl = (3.4.18)

ifg > p.
q9—p

In particular we have P(Tj < oo | Sy = k) = 1 wheng > pandk > 1, whichis con-
sistent with (3.4.16). See Exercise 5.9-(b) for other derivations of (2.3.12)-(3.4.18)
using the probability generating function s = Gy (s).

Remark By (3.4.9), the truncated expectation IE[7} Lirg<coy | So = 0] satisfies

o0
E[T] Li7;<o0) | So =01 =Y nP(T§ =n| S =0)
n=1
= G/Tg(l)
4pgs
V1 —4pgs?
_4ra
V1 —4pg
_ _4pq
lp—ql’

s=1

(3.4.19)

when p # g, which shows in particular from Lemma 1.4 that

SNote that the summation 32 | = 3~ _; _, actually excludes the value k = oo.
6We use the convention co x 0 = 0.


https://doi.org/10.1007/978-981-13-0659-4_2
https://doi.org/10.1007/978-981-13-0659-4_5
https://doi.org/10.1007/978-981-13-0659-4_2
https://doi.org/10.1007/978-981-13-0659-4_1
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(i)
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1
E[T] | T, , So=0]= E[T! 177 =001 | So =0
[Ty | Ty < oo, So ] P(I] < o0 | S0 =0) [76 Ly <ooy | So = 0]
__ 1 2pq  _ ,max(p, q)
min(p, q) |p — q| lp —ql

In the symmetric case p = g = 1/2 we have P(Tj < 0o | § =0) =1 and
E[T] | So = 0] = E [T} L7y <o) | So =0] = (1) = 00 (3.4.20)

as the slope of s > Gy (s) in Fig.3.4b) is infinite at s = 1, or by taking the
limit as p, ¢ — 1/2in (3.4.19) or (3.4.18).

When p = g = 1/2 the random walk returns to state @ with probability one
within a finite (random) time, while the average of this random time is infinite.
This yields another example of a random variable 7;j which is almost surely
finite, while its expectation is infinite as in the St. Petersburg paradox.

This shows how even a fair game can be risky when the player’s wealth is
negative as it will take on average an infinite time to recover the losses.

First Return Time Distribution

Proposition 3.4 can also be obtained from the path counting result of Exercise 3.8.

Proposition 3.4 The probability distribution P(T] = n | Sy = 0) of the first return
time Ty to @ is given by

By =2k So=0) = —— () pp*. keN (34.21)
0= == \k )P ’ -

withP(Ty =2k+1]85 =0 =0keN

ok N W B U O N ® ©
— T T T

o e e

ok N W B U O N ® ©

-1

L L L L L L L L L L L
-08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1 -1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
S S

(a) Graph of G'ry (s) with p = 0.35. (b) Graph of Gy (s) with p = 0.5.

Fig. 3.4 Probability generating functions of 7;j for p = 0.35 and p = 0.5
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Proof By applying a Taylor expansion to s —> 1 — (1 — 4pgs?)'/? in (3.4.9), we
get

Gry(s) =1—(1—4pgsH'?

oo (L () (Y g

=1 Zk!( 4pgs®) (2 o) (2 l)x x(2 (k 1))
_ I Gt (1Y 1

_22s T (1 2>x x(k 1 2), (3.4.22)

where we used (13.9) for o = 1/2. By identification of (3.4.22) with the expansion

o0
Gry(s) = ZS"IP(T(; =n|S =0, —-l<s<lI,
n=0

we obtain
P(Ty =2k | So = 0) = g(2k)

4pg)* 1 1 1

G/ PR B T
k2 2 2

k—1
_ ¢pg)t 1
= okl 1:[1 T3

1 (2% i
=— k
2k_1<k>(pq), €N,

while P(Ty =2k + 1] Sy =0) = g(2k + 1) = 0,k € N. This conclusion could also
be obtained using (1.7.8) from the relation

1

. 1
P(Ty =n|Sy=0)= 19 Ch =0, M€ N.

O
Exercise: Check that the formula (3.4.21) recovers (3.4.1) and (3.4.2) when k =
0,1,2.

Using the independence of increments of the random walk (S,,),<n one can also
show that the probability generating function of the first passage time

Ty =inf{n >0 : S, =k}

to any level £ > 1 is given by

k
1 — /1= 4pgs?
Gr,(s) = (—’”’S> . 4pgs’ <1, q<p, (3.4.23)

2qgs


https://doi.org/10.1007/978-981-13-0659-4_1
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from which the distribution of 7; can be computed given the series expansion of
G, (s), cf. Exercise 3.4 below with k = —i.

The gambling process of Chap. 2 and the standard random walk (S,,),en Will later
be reconsidered as particular cases in the general framework of Markov chains of
Chaps.4 and 5.

Exercises

Exercise 3.1 We consider the simple random walk (S,,),cn of Sect. 3.1 with inde-
pendent increments and started at Sy = 0, in which the probability of advance is p
and the probability of retreat is 1 — p.

(a) Enumerate all possible sample paths that conduct to S; = 2 starting from Sy = 0.
(b) Show that

4\ , 4\ ,
P(Ss=218 =0 = (3)17 (I-p)= <1>p‘(1 - P).
(c) Show that we have
P(S, =k |Sy=0)

n (+)/2(1 _ \(1=k)/2
((n+k)/2>p 1-p ,n+kevenand |k| <n, (3.4.24)
P(S, =k | So=0) =0, n+kodd or k| > n.

(d) Show, by a direct argument using a “last step” analysis at time n + 1 on random
walks, that p, , 1= P(S, = k | So = 0) satisfies the difference equation

Pn+1k = PPnk—1 T GDnk+1, (3.4.25)

under the boundary conditions ppo = 1 and pox = 0, k # 0.
(e) Confirm that p, ; = P(S, = k | So = 0) given by (3.4.24) satisfies the equation
(3.4.25) and its boundary conditions.

Exercise 3.2 Consider a random walk (S,,),cx on Z with independent increments
and probabilities p, resp. ¢ = 1 — p of moving up by one step, resp. down by one
step. Let

To =inf{n >0 : S, =0}
denote the hitting time of state (0).

(a) Explain why for any k > 1 we have

E[Ty | So = k] = kE[Ty | So = 1],


https://doi.org/10.1007/978-981-13-0659-4_2
https://doi.org/10.1007/978-981-13-0659-4_4
https://doi.org/10.1007/978-981-13-0659-4_5
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and compute E[T) | Sp = 1] using first step analysis when ¢ > p. What can we
conclude when p > ¢?
(b) Explain why, by the Markov property, we have

P(Ty <oo | So=k) =@(Ty <00 | So=1), k>1.

(c) Using first step analysis for random walks, show that o := P(Ty < 00 | Sp = 1)
satisfies the quadratic equation

pa® —a+q=pla—q/p)(a—1)=0,

and give the values of P(Tp < 0o | So = 1) and P(Ty = oo | Sp = 1) in the cases
p < q and p > q respectively.

Exercise 3.3 Consider the random walk
Sy =X+ + X, n>1,
with Sp = 0, where (X )>1 is a sequence of Bernoulli random variables with
PXy=1D)=pe(©1, PXi=-1)=q€(01),

and p + g = 1. Recall that the probability generating function (PGF)

0

Gr;(s) = Zsk}P’(TO’ =k), sel[-1,1], (3.4.26)
k=0

of the first return time 7; := inf{S, =0 : n > 1} to state @ is given by

Gr;(s) =1—+/1—4pgs>, s e[-1,1]. (3.4.27)

(a) Compute P(7;y = 0) and P(7j < oo) from Gry.

(b) By differentiation of (3.4.26) and (3.4.27), compute P(Tj = 1), P(Tj = 2),
P(Ty = 3) and P(Tj = 4) using the PGF G1;.

(c) Compute E[Ty | Ty < oo] using the PGF Gy .

Exercise 3.4 Consider a simple random walk (X,,),>0 on Z with respective proba-
bilities p and ¢ of increment and decrement. Let

Ty :=inf{n >0 : X, =0}
denote the first hitting time of state @, and consider the probability generating

function
Gi(s):=E[s" | Xo=i], -l<s<l1, i€Z
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(a) By a first step analysis argument, find the finite difference equation satisfied by
G (s), and its boundary condition(s) ati = 0 and i = Fo0.

(b) Find the value of G;(s) for alli € Z and s € (0, 1), and recover the result of
(3.4.23) on the probability generating function of the hitting time 7 of @
starting from state ().

(c) Recover Relation (2.2.13)—(3.4.16) using G, (s).

(d) Recover Relation (2.3.12)—(3.4.18) by differentiation of s — G;(s).

(e) Recover the result of (3.4.9) on the probability generating function of the return
time 7 to 0).

Exercise 3.5 Using the probability distribution (3.4.21) of Tjj, recover the fact that

]E[Tor]l{Té‘<oo} | S() = 0] = 0Q, when p=q= ]/2.

Exercise 3.6 Consider a sequence (X;)i>; of independent Bernoulli random vari-
ables with
PXy=1)=p, and P(X;=—-1)=¢q, k=1,

where p 4+ g = 1, and let the process (M,,),cn be defined by M, := 0 and

n

M, = sz—lxk, n
k=1

v

(a) Compute E[M,,] foralln > 0.
(b) Consider the hitting time 7 := inf{n > 1 : M, = 1} and the stopped process

Mmin(n,r) = Mn ]]-{n<7'} + ]]-{Tfn}s neN.

Determine the possible values of Mmin@.r), and the probability distribution of
Myin(n, ) at any time n > 1.

(c) Give an interpretation of the stopped process (Mmin(n,))nen in terms of strategy
in a game started at My = 0.

(d) Based on the result of part (b), compute IE[ Myinn. -] forall n > 1.

Exercise 3.7 Winning streaks. Consider a sequence (X,),->; of independent
Bernoulli random variables with the distribution

P(anl):l” P(Xn:()):CIv n>1,

withg := 1 — p. Forsomem > 1, let T ™ denote the time of the first appearance of
m consecutive “1” in the sequence (X,),>;. For example, for m = 4 the following
sequence

——
—
O« &
——

’

6 7 8
ol

,1,1,1,0,1,1,0,...)

— —

4 times

1
|
0,

yields T® = 8.
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(a) Compute P(T™ < m),P(T™ =m),P(T"™ =m +1),andP(T"™ = m + 2).
(b) Show that the probability generating function

Gron(s) :=E [sT(m)IL{T(m)@o}] . se(=11,

satisfies
m—1
Gron(s) = p"s" + > pgs" ' Gron(s),  se(=1,1). (3.4.28)
k=0

Hint: Look successively at all possible starting patterns of the form

a,...,1,1,0,...),

where k = 0, 1, ..., m, compute their respective probabilities, and apply a “k-
step analysis” argument.

(c) From (3.4.28), compute the probability generating function Gz of T™ for all
se(—1,1).

Hint: We have

m

m—1
X 1—x
Zx = ., xe(=1,1.
k=0 -x

(d) From the probability generating function Gy (s), compute IE[T ] for all
m > 1.

Hint: It can be simpler to differentiate inside (3.4.28) and to use the relation

m—1
1_ m
(1= > k4 Deffmx” = -~ xe(-11.
pard 1—x

Exercise 3.8 Consider a random walk (S,,),cy on Z with increments 41, started at
So = 0. Recall that the number of paths joining states @ and over 2m time

steps is
2
( " ) (3.4.29)
m+k

(a) Compute the total number of paths joining S} = 1to Sp,—; = 1.
Hint: Apply the formula (3.4.29).

(b) Compute the total number of paths joining S} = 1to S, = —1.
Hint: Apply the formula (3.4.29).
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(c) Show that to every one path joining S; = 1 to Sp,—1 = 1 by crossing or hitting
we can associate one path joining S; =1 to S,,—; = —1, in a one-to-one
correspondence.

Hint: Draw a sample path joining S; = 1 to Sp,—; = 1, and reflect it in such a
way that the reflected path then joins §; = 1to Sp,—; = —1.

(d) Compute the total number of paths joining S; = 1 to S,_; = 1 by crossing or
hitting @
Hint: Combine the answers to part (b) and part (c).

(e) Compute the total number of paths joining S| = 1to S,,—; = 1 without crossing
or hitting @
Hint: Combine the answers to part (a) and (d).

(f) Give the total number of paths joining Sy = 0 to Sp, = 0 without crossing or
hitting @ between time 1 and time 2n — 1.
Hint: Apply two times the answer to part (e). A drawing is recommended.

Exercise 3.9 Range process. Consider the random walk (S,),>o defined by Sp = 0
and
S, =X1+---+ X, n>1,

where (Xy)r>1 1S an i. i.d.” family of {—1, 41}-valued random variables with distri-

bution
P(Xy = +1) = p,
P(Xy =-1)=gq,

k > 1, where p + g = 1. We let R, denote the range of (Sp, S1, ..., S,), i.e. the
(random) number of distinct values appearing in the sequence (So, Si, ..., Su).

R, =1 _ inf
" +<k=3}:¥?__,n Sk) ( ,,,,, . Sk)v

and give the value of Ry and R;.
(b) Show that for all k > 1, R, — Ry_; is a Bernoulli random variable, and that

(a) Explain why

PRt — Ri—1=1) =P(Sk — So #0, S = S1 #0, ..., S — Se—1 #0).
(c) Show that for all k > 1 we have

PRy — Riy = 1) =P(X; #£0, X, + X2 £0, ..., X + -+ Xx #0).

(d) Show why the telescoping identity R, = Ry + Z(Rk — Ri_1) holds for all
k=1
n € N.
(e) Show that P(T] = oo) = limy_.o P(T§ > k).

"Independent and identically distributed.
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Fig. 3.5 Illustration of the range process

(f) From the results of Questions (c) and (d), show that
n
E[R,] =) P(Ty >k, neN,
k=0

where Ty = inf{n > 1 : §, = 0} is the time of first return to @ of the random
walk.
(g) From the results of Questions (e) and (f), show that

1
P(T; = o0) = lim — E[R,].
n—oo n
(h) Show that

1
lim —E[R,] =0.

n—o00 N
when p = 1/2, and that E[R,] =, _ n|p — q|, when p # 1/2.8

In Fig. 3.5 the height at time n of the colored area coincides with R,, — 1.

8The meaning of f(n) ~, g(n)islim, . f(n)/g(n) =1, provided that g(n) # 0,n > 1.



Chapter 4 ®
Discrete-Time Markov Chains Check for

In this chapter we start the general study of discrete-time Markov chains by focusing
on the Markov property and on the role played by transition probability matrices.
We also include a complete study of the time evolution of the two-state chain, which
represents the simplest example of Markov chain.

4.1 Markov Property

We consider a discrete-time stochastic process (Z,),cn taking values in a discrete
state space S, typically S = Z.

The S-valued process (Z,,) N is said to be Markov, or to have the Markov property
if, for all n > 1, the probability distribution of Z,;; is determined by the state Z,
of the process at time n, and does not depend on the past values of Z; for k =
0,1,....,n—1.

In other words, for all n > 1 and all iy, iy, ..., i,, j €S we have

]P(Zn+l = ] | Zy=ln, Zn1=lp_1,..., ZO = lO) = IP)(Zn-',-l = J | Z, = ln)
In particular we have
IED(Zn-‘rl =.] | Zn = ina Zn—l = in—l) = IP)(Zn-H =] | Zn = il’l)’

and
PZy=jlZi=i,Zo=i0)=P(Zy=j | Z =1iy).

Note that this feature is apparent in the statement of Lemma 2.2. In addition, we have
the following facts.

© Springer Nature Singapore Pte Ltd. 2018 89
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1. The first order transition probabilities can be used for the complete computation
of the probability distribution of the process as

P(Zp =in, Zn—1 =in-1, ..., Zy =ip)

=PZy=in|Zn-1=ip-1,---, 20 =ip)P(Z,—1 = in—1,-.., Zo = ip)

=P(Zn=in|Zn-1 =in-DP(Zy—1 =in-112Zp-2 =in-2,...,Zo = ip)
XP(Zy—p =ip_2,..., 2y =ip)

=PZn=in|Zn—1 =in-DP(Zy—1 =in-112Zp-—2 =in-2)
xP(Zn—g =in—2|Zy—3=ip-3,..., 20 =i0))P(Zy—3 =ip-3,..., Zo = ip)

=PZn=in|Zn-1 =in-DP(Zy—1 =in-112Zp-—2 =in-2)
XP(Zp—2=in-2|Zn-3=in-3)P(Zy—3 =in-3,..., Zo = ip),

which shows, reasoning by induction, that

IP)(aninvznfl =in71»-~',20=i0) (411)
=P(Z, =i, | Zoo1 =in1) - P(Z1 =01 | Zo = i0)P(Zo = i),

or

]P)(Zn =ip, Lyt =ip1,.... L1 =1i1 | Zp =ip) (4.1.2)
=P(Z, =iy | Znr =in1) - P(Z1 = i1 | Zo = i),

10,11y ..+, 1p eSs.
2. By the law of total probability (1.3.1) applied to the events A, = {Z, = i, and
Zy =k}, k € S, under the probability measure P(- | Zy = i) we also have

P(Zy=i2| Zo=i0) = ) P(Za=irand Zy = i\ | Zo = io)
i[ES

=Y P(Zy=iy| Z1 =i)P(Zy =i\ | Zo = i),
ileS
i(), iz S S, and
P(Zy=iy) =) P(Zi =i, Zy = ip)
iQES
= ZP(Z, =i | Zo=io)P(Zy = ip), i1 €S. (4.13)
io€§
Example

The random walk
S, =X1+Xo+---+ X, neN, “4.1.4)


https://doi.org/10.1007/978-981-13-0659-4_1
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considered in Chap. 3, where (X, ), is a sequence of independent Z-valued random

increments, is a discrete-time Markov chainwith S =7Z ={..., -2, —-1,0, 1,2, ...}.

Indeed, the value of S, | depends only on S, and on the value of the next increment
X,+1. In other words, for all j, i,, ..., i; € Z we have (note that Sy = 0 here)

P(Sp+1=13j | Sn =in, Sp—1 =in—1,...,S1 =1i1) 4.1.5)

_P@Spp1 =0, S =in, Sp—1 =ip—1,..., 51 =1i1)

PGSy =ins Syt =in—1s..-, S1=1i1)

CPSpr1 = Sn=J—in,Sn— Su—1=in—ip-1,..., 52— Sy =ip —i1, 51 =1i1)
B P(Sp — Sp—1 =in —in—1.....S2— S| =iy — i1, S| =i1)

_PXpyp1=j—in, Xn=in—ip—1,..., X0 =i —i1, X1 =i1)
P(Xp =in —ip—1,..., X2 =ip —i1, X1 =1i1)
_PXyy1=j —in)PXp =in—ip—1,..., X2 =ip —i1, X1 =i1)

P(Xy, =in—ip_1,...,Xp=ip —i1, X1 =11)
=P(Xp+1=1J—in)
 PXpp1=j —in)PXn+ -+ X1 =1in)
- P(Xy+---+ Xy =in)
 PXyp1=j—in, Xn+--+ X1 =1in)
B PX1+-+ Xn =in)
_ Pypr =) —inand Sy =in) _ P(Syq1 =jand S, = iy)
B ]P)(Sn = in) B IP(Sn =ipn)
=P(Sp+1=1J | Sn =in).

In addition, the Markov chain (S,,),cn is time homogeneous if the random sequence
(X1)n>1 1s identically distributed.
In particular we have

P(Sn+l =] | Sn = l) = IP>()(n+l = ] - 1)9

hence the transition probability from state i to state j of a random walk with inde-
pendent increments depends only on the difference j — i and on the distribution of
Xn+1~

More generally, all processes with independent increments are Markov processes.
However, not all Markov chains have independent increments. In fact, the Markov
chains of interest in this chapter do not have independent increments.

4.2 Transition Matrix

As seen above, the random evolution of a Markov chain (Z,),cy is determined by
the data of
Pj=P(Z =j|Zo=1i), i j€S, 4.2.1)


https://doi.org/10.1007/978-981-13-0659-4_3
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which coincides with the probability P(Z,+; = j | Z, = i) which is independent
of n € N. In this case the Markov chain (Z,),cn is said to be time homogeneous.
This data can be encoded into a matrix indexed by S? =S x S, called the fransition
matrix of the Markov chain:

[P )ijes =P =71 20 =D s

also written on S := Z as

: P—;,—z P—;,—l P—‘z,o P—.Z,l P—'z,z
“P_y 2 Py g Poyo Poyy Py
P=[Pyjlcs=| Po2 Poo1 Poo Poax Poz -
- P2 Pt Pio Py P2

P o Py Py Py Pp o

The notion of transition matrix is related to that of (weighted) adjacency matrix in
graph theory.

Note the inversion of the order of indices (i, j) between P(Z,,1 = j | Z, = i)
and P; ;. In particular, the initial state @ is a row number in the matrix, while the
final state @ corresponds to a column number.

By the law of total probability (1.3.1) applied to the probability measure P(- |
Zy = i) we have the relation

Y P(Zi=jlZo=i)=PUjeslZi=j} | Zo=i)=P(2)=1, i€eN,
jes

4.2.2)
i.e. the rows of the transition matrix satisfy the condition

dop=1,
JjEes

for every row index i € S.
Using the matrix notation P = (P, ;)i jes, and Relation (4.1.1) we find

P(Z, =iy, Znot =ipn-1,..., 2o =1g) = P, - Py i P(Zo = i),

n—1sin

i0, 11, ...,0in €S, and we rewrite (4.1.3) as


https://doi.org/10.1007/978-981-13-0659-4_1
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P(Zy=i)=) P(Zi=i|Zo=j)P(Zy=j)=) PjP(Zy=j), i€S.
Jjes jes
(4.2.3)
A state k € S is said to be absorbing if P = 1.
In the sequel we will often consider S = N = {0, 1, 2, ...} and N-valued Markov
chains, in which case the transition matrix [ P(Zys1=jl|Z,=1) ] ‘N of the chain

. . i,j
1S written as
Poo Poi Pop -+

Py Py Py -

Pl .=
[ ]]MEN Py Py Py o---

From (4.2.2) we have

foralli € N.

In case the Markov chain (Z;)en takes values in the finite state space S =
{0,1,...,N}its (N + 1) x (N + 1) transition matrix will simply have the form

" Poo Po1 Pop -+ Pon'|
Pio Piyi Pip -+ Py
[ P ]05i,j5N =| Po Po1 P2 - Py
| Pvo Pnvi Pyo -+ Py oy
Still on the finite state space S = {0, 1, ..., N}, Relation (4.2.3) can be restated in

the language of matrix and vector products using the shorthand notation:

where
n=I[P(Z =0),....,P(Z; = N)] = [no, n1, ..., ny] € R¥*!



94 4 Discrete-Time Markov Chains
is the row vector “distribution of Z;”,
7 =[P(Zy=0),...,P(Zy = N)] = [no, ..., y] € RN*!

is the row vector representing the probability distribution of Z, and

[ Poo Po1 Pop -+ Pon |
Po Py Pip -+ Py
(M0, 01y .oyl =m0, ..., iyl x | Pao P21 Paa -+ Pan |, (4.2.5)

L Pno Pnvi Pn2 -+ Py

Invariant Vectors

A row vector 7w suchthatr = 7 P is said to be invariant or stationary by the transition
matrix P.
For example, in case the matrix P takes the form

[0 T M2 M3 - TN

o Ty Ty 73 -+ TIN

—[p. — | mom o T3 - T
P=[Py,loy oy =|T0 ™ T2 73 N,
L7To 7Ty 7Tp 73 -+ TN |

with all rows equal and 7y + 71 + - - - + 7wy = 1, then we have m = 7 P,i.e. w is an
invariant (or stationary) distribution for P.

4.3 Examples of Markov Chains

The wide range of applications of Markov chains to engineering, physics and biology
has already been mentioned in the introduction. Here we consider some more specific
examples.

(i) Random walk.

The transition matrix [ P ; ] of the unrestricted random walk (4.1.4)

o i,jeS
is given by



4.3 Examples of Markov Chains 95

i—11ii+1
i—2 -0 p 0 O O--
i—1 -.q 0 p 0 O--
[Pilijes= & |0 ¢ 0 p 0- “3.1)
i+1|--0 0 ¢ 0 p-
i+2] -0 0 0 ¢ 0.
R P

(ii)) Gambling process.

The transition matrix [ P ; ] of the gambling processon {0, 1, ..., S}

0<i,j<S§
with absorbing states @ and @ is given by

100 O 0 0 00O
gO0Op 0 - .. 0 0 00
0g0 p -+ -+ 0 000
P = [ Py ]0§i,,jgs = .
000 O g 0 poO
000 O 0 g O0p
L1000 O 0 0 01|
(iii) Credit rating.
[transition probabilities are expressed in %].
Rating at the start of a year Rating at the end of the year

AAA| AA| A |[BBB| BB | B |CCC| D |[NR.|Total
AAA |90.34/5.620.39(0.08|0.03| 0O 0 0 | 3.5 100
AA |0.64 [88.78| 6.72 | 0.47 | 0.06 | 0.09 | 0.02 | 0.01 | 3.21 | 100
A 10.07|2.16 (8794|497 | 0.47|0.19 | 0.01 | 0.04 | 4.16 | 100
BBB | 0.03 | 0.24 | 4.56 |84.26| 4.19 | 0.76 | 0.15 | 0.22 | 5.59 | 100
BB [0.03|0.06| 0.4 |6.09(76.09|6.82|0.96 | 0.98 | 8.58 | 100
B 0 [0.09]0.29|0.41]|5.11(74.62| 3.43 | 5.3 [10.76| 100
CCC |0.13| 0 |0.26(0.77 | 1.66 | 8.93 [53.19|21.94{13.14| 100
D 0 0 0 0 | 1.0 | 3.1 |9.29 |51.29(37.32| 100
NR. | O 0 0 0 0 | 0.1 |8.55(74.06/17.07| 100

We note that higher ratings are more stable since the diagonal coefficients of
the matrix go decreasing. On the other hand starting from the rating AA it is
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(iv)

)
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easier to be downgraded (probability 6.72%) than to be upgraded (probability
0.64%).

Ehrenfest chain.

Two volumes of air (left and right), containing a total of N balls, are connected

by a pipe.
() @

o, ©
o °
o
o) o
At each time step, one picks a ball at random and moves it to the other side. Let

Z, €{0,1,..., N} denote the number of balls in the left side at time n. The
transition probabilities P(Z,.; = j | Z, =1i),0 <1i, j < N, are given by

N —k
P(Zn+1=k+1|Zn=k)=T, k=0,1,...,N — 1, “4.3.2)
and L

IP’(Z,,+1=k—1|Z,,=k)=N, k=1,2,...,N, 4.3.3)
with

r 1 0 0 0 7
I/N 0 (N—1)/N --- 0O O
0 2/N 0 0 O
0o 0 3/N 0O O

P = : : ’ : : : ,
0o 0 3/N 0O O
0o 0 .. 0 2/N 0
0o 0 --+(N—-1)/N O 1/N

L 0 O . 0 1 0 |

cf. Exercises 6.7 and 7.3, Problem 7.23 on modified Ehrenfest chains, and Exer-
cise 4.9 on the Bernoulli-Laplace chain.

Markov chains in music.

By a statistical analysis of note transitions, every type of music can be encoded
into a Markov chain. An example of such an analysis is presented in the next
transition matrix.


https://doi.org/10.1007/978-981-13-0659-4_6
https://doi.org/10.1007/978-981-13-0659-4_7
https://doi.org/10.1007/978-981-13-0659-4_7
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A|lAg| B|C|D|E|F Gy
A[4/19| 0 [3/19| O |2/19|1/19| O |6/19|3/19
Agl 1 10| 0] 0]0]0]0|O0]|O0
B |7/15| 0 |1/15|4/15| O |3/15{ 0 | O | O
C| 0 | O |6/15(3/15(6/15 0 | O | O | O
D| O | O | O |3/11{3/11|5/11] 0 | O | O
E [4/19|1/19] O |[3/19] 0 [5/19|4/19|1/19{1/19
FIO0O]O0O]| O |LS|O|O|1/5]0/]3/5
G|1/5( 0 |1/5(2/5/0 | 0|0 |1/5[0
G| 0 | 0 |34 0| 0 |1/4] 0| 0|0

(vi) Text generation.
Markov chains can be used to generate sentences in a given language, based on
a statistical analysis on the transition between words in a sample text. The state
space of the Markov chain can be made of different word sequences.

Other applications of Markov chains include:

Memory management in computer science,

Logistics, supply chain management, and waiting queues,
Modeling of insurance claims,

Board games, e.g. Snakes and Ladders,

Genetics, cf. the Wright—Fisher model.

Random fields in imaging,

Artificial intelligence, learning theory and machine learning.

Graph Representation

Whenever possible we will represent a Markov chain using a graph, as in the following
example with transition matrix, see Fig.4.1.

0 0208 0 O
04 0 0 06 O
P=|105 0 0 05 0 |. (4.3.4)
0 0 0 04 06
0 04 06 0 O

Fig. 4.1 Graph of a five-state Markov chain
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4.4 Higher-Order Transition Probabilities

As noted above, the transition matrix P is a convenient way to record P(Z,1 = j |
Z,=1),i, ] €S, into an array of data.

However, it is much more than that, as already hinted at in Relation (4.2.4).
Suppose for example that we are interested in the two-step transition probability

P(Zpy2=j | Zn =1).
This probability does not appear in the transition matrix P, but it can be computed
by first step analysis, applying the law of total probability (1.3.1) to the probability

measure P(- | Z, = i) as follows.
(i) 2-step transitions. Denoting by S the state space of the process, we have

P(Zyyz=j| Zyn=1)=) P(Zya=jand Zy1 =112, =1i)

leS
o Z ]P)(ZrH—Z = j’ Zn+1 =1, Z, = l)
€S P(Zy =1)
_ Z ]P)(Zn+2 = j, Zn+1 = l, Zn = l) IED(Z”+1 = l and Zn = l)
~  P(Zy=land Z, =) P(Z, = i)
= P(Zy2=j| Zup =land Z, = )P(Zyj1 =1 | Z, = i)
leS
=Y P(Zuj2=j | Zuy =DP(Zyj1 =1 | Zy = i)
leS
= Z Pi Py
leS

=[P, i.j€S,
where we used (4.2.1). In other words, using matrix product notation, we find

P(Zpi2=j | Zuo = D))o<i.j<N

[ Poo Po1 Pop -+ Pon [ Poo Po1 Po2 - PonT]
Pl,O Pl,l P1,2 e P]’N Pl,o Pl,l P1’2 e PI,N
= P2,O P2$1 P2,2 e PZ,N X Pz.o P2,1 P2,2 . PZ,N

| Pyo Pvi Pyo -+ Pvnvl LPyvo Pvi Pyv2 -+ Py


https://doi.org/10.1007/978-981-13-0659-4_1
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(i) k-step transitions. More generally, for all k € N we have the recursion

P(Zysir1 = Jj | Zo =)= ) P(Zpsi1 = j and Zysy =1 | Zy = i)

leS
_ Z P(Zn+k+l = js Zn+k =1, 7, = i)
leS P(Z" =1)
_ Z P(Zn+k+l = j’ Zn+k = l, Zn = l) IP>(Zn+k =1[and Zn = l)
P P(Z,sx=1land Z, = i) P(Z, =1i)
=Y P(Zunsas1 = j | Zngx =l and Z, = \P(Zyyi =1 | Z, = i)
leS
=) Pt = Jj | Zuwe = DPZoie = 1| Zy = 1)
leS
=Y P(Zuyk =112, =0)P;.
leS

We have just checked that the family of matrix
[PZuik=Jj1Za=0D)] ;5. k=1
satisfies the same induction relation as the matrix power P, i.e.

[P =) [P L P,

leS

hence by induction on k > 0 the equality

[BZui=i1Zi=0]; s =[Py ]; jes = P*

holds not only for k = 0 and k = 1, but also for all k € N.
A\Note that in general we have [PX];; # (P, i,j €S.
The matrix product relation

Pm+n — PmPn — Pan,
which reads

[P" iy =Y [P"1ialP"lj = Y _[P"1lP")j. i.j€S,

leS leS
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can now be interpreted as

P(Zyim=j 1 Zo=0D) =) P(Zn=jlZo=DP(Z,=1]Zy=1i)
1eS

=) P(Zi=j1Z0=DP(Zn=1|Zo=1),
leS

i, j €S, which is called the Chapman-Kolmogorov equation, cf. also the triple
(1.2.2).

Example The gambling process (Z,),>0-

Taking § = 4 and p = 40%, the transition matrix of the gambling process on S =
{0, 1, ..., 4} of Chap.2 reads

06 0 04 0 O

P=[P;] 0 06 0 04 0 |, (4.4.1)

0<i,j<4 —

0 0 06 0 04

0 0 0 0 I

and we can check by hand that:

P2=PxP
f1 0 0 0 0] Ff1 0 0 0 0] 1 0 0 0 0 7
06 004 0 O 06 0 04 0 O 0.6 024 0 0.16 0
= 0 06 0040 X 0 06 0040 =]1036 0 048 0 0.16
0 0 06 0 04 0 0 06 0 04 0 036 0 024 04
loooo1|] Loooo1]|] [0 0 0 0 1 |

Exercise: From the above matrix (4.4.1), check that

P(Zy = 4| Zy=2) = [P’lh4 = 0.16,
P(Zy=1|2Zp=2)=[P*,; =0, and
P(Zy=2|Zy=2) =[P’],, = 0.48.


https://doi.org/10.1007/978-981-13-0659-4_1
https://doi.org/10.1007/978-981-13-0659-4_2
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Example. The fifth order transitions of the chain with Markov matrix (4.3.4) can be
computed from the fifth matrix power

0.14352 0.09600 0.25920 0.30160 0.19968
0.15840 0.10608 0.24192 0.30400 0.18960
P35 = | 0.17040 0.10920 0.23280 0.30880 0.17880
0.17664 0.11520 0.22800 0.30928 0.17088
0.14904 0.09600 0.25440 0.30520 0.19536

Note that for large transition orders (for example 1000 time steps) we get

0.16273 0.10613 0.24056 0.30660 0.18396
0.16273 0.10613 0.24056 0.30660 0.18396
P'%% = 10.16273 0.10613 0.24056 0.30660 0.18396 |,
0.16273 0.10613 0.24056 0.30660 0.18396
0.16273 0.10613 0.24056 0.30660 0.18396

which suggests a convergence phenomenon in large time for the Markov chain, see
Chap. 7 for details.

Example For the simple random walk of Chap. 3, computing the probability to travel

20
from (0)to]| 2k |= in 2n = 20 time steps involves a summation over =
©to(2){10)in 20 psinvolves asu v(ms)

2
( —Ck) = 15504 paths, which can be evaluated by computing [ P*°] . cf. also
n :

Fig.3.1.

4.5 The Two-State Discrete-Time Markov Chain

The above discussion shows that there is some interest in computing the n-th order
transition matrix P". Although this is generally difficult, this is actually possible
when the number of states equals two, i.e. S = {0, 1}.

To close this chapter we provide a complete study of the two-state Markov chain,
whose transition matrix has the form

pP= , (4.5.1)


https://doi.org/10.1007/978-981-13-0659-4_7
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We also have
PZyy1=112,=0=a, PZ,1=0|Z,=0=1-—a,

and
P(Zy11=012,=1)=0b, P(Zys1=11Z,=1)=1-0>.

The power

of the transition matrix P is computed for all n > 0 in the next Proposition4.1. We
always exclude the case a = b = 0 since it corresponds to the trivial case where
P =1j is the identity matrix (constant chain).

Proposition 4.1 We have
| b+a(l—a-0" a(l—-{0—-a->b)")

P" = 5 , neN.
At b= —a=b" a+b(1—a—b)"

Proof This result will be proved by a diagonalization argument. The matrix P has
two eigenvectors
1 —a
and ,
1 b

with respective eigenvalues Ay = land A, =1 —a — b.

Hence P can be written in the diagonal form

P=MxDxM", 4.5.2)
i.e.
b a
1 —a M0 a+b a+b
P = X X
1 b 0 s 1 1
a+b a+b

As a consequence of (4.5.2), we have

PPr=MxDxM "Y' =(MxDxMY)---.(MxDxM"
=MxDx---xDxM'=MxD"x M,
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where
|10
D _|:O )\,21:|, n € N.
hence
b a
1 —a 10 a+b a+b
P" = X X
1 b 0 A 1 1
a+b a+b
1 b a A a —a

+
a-+b _ba a+b b b

[ b+ar; a1l —Ah)
_ , 4.5.3)
atb | pa—  atba

(]
For an alternative proof of Proposition 4.1, see also Exercise 1.4.1 p. 5 of [Nor98] in
which P" is written as
1—a, -—a,
P" =
b, 1-b,

and the relation P"*! = P x P is used to find induction relations for a, and b, cf.
the solution of Exercise 7.17 for a similar analysis.

From the result of Proposition 4.1 we may now compute the probabilities

b+akj a(l —1%)
P(Z,=0|2Zy=0) = , PZ,=112y=0) = ——= 454
( | Zo=0) > ( | Zo=0) > ( )
and
b(1 —A%) a+bAj
PZ,=0|Zy=1)=——"=-, PZ,=1|Zy=1) = . 4.5.5
( | Zo=1) "y ( | Zo=1) P ( )

As an example, the value of P(Z3 =0 | Zy = 0) could also be computed using
pathwise analysis as

P(Zy=0|Zy=0) = —a)>+ab(l —b) +2(1 — a)ab,

which coincides with (4.5.4), i.e.


https://doi.org/10.1007/978-981-13-0659-4_7
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b+a(l —a—b)>
P(Z3 =0 Zy=0) = s :

for n = 3. Under the condition
—1l<Mm=1—-a—-b<1,

which is equivalent to (a, b) # (0, 0) and (a, b) # (1, 1), we can let n go to infinity
in (4.5.3) to derive the large time behavior, or limiting distribution, of the Markov
chain:

P(Z, =0 Zo=0) P(Z, =1]|Zo =0)
lim P" = lim —
noo R Pz =0 Zo=1) P(Z, =1]|Zo=1) | 2T |ba

1 b a

Note that convergence will be faster when a + b is closer to 1.
Hence we have

lim P(Z, =1|Zy=0)= lim P(Z, =1| Zg=1) = —— (4.5.6)
n— 00 a +b

n—oo

and
. . b

lim P(Z,=0]Zy=0)= lim P(Z,=0|Zy=1) = ——. 4.5.7)

n—00 n—00 a+b
Consequently,

[0, 711 b _a (4.5.8)
T =[mg, 1] i = —, —— 5.
0> a+b a+b

is a limiting distribution as n goes to infinity, provided that (a, b) # (1, 1). In other
words, whatever the initial state Zy, the probability of being at @ after a “large”
time becomes close to a/(a + b), while the probability of being at @ becomes close
tob/(a + b).

In case a = b = 0, we have

10
P=1I= ,
01

the chain is constant and it clearly admits its initial distribution as limiting distribu-
tion. In case a = b = 1, we have
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and there is no limiting distribution as the chain switches indefinitely between state

@ and @
The notions of limiting and invariant (or stationary) distributions will be treated in
Chap. 7 in the general framework of Markov chains, see for example Proposition 7.7.

Remarks

(i) The limiting distribution 7 in (4.5.8) is invariant (or stationary) by P in the

sense that
1 l—a a 1 [b(—a)+ab]"
P=—— =
g a+b[b’a][b 1—b] a+b[ab+a(1—b)]
1
= b =
a+b[,a] T,

i.e.  is invariant (or stationary) with respect to P, and the invariance relation
(4.2.4):
T =nP,

which means that P(Z; = k) = m if P(Zy = k) = m;, k = 0, 1. For example,

the distribution & = [1/2, 1/2] is clearly invariant (or stationary) for the swap-
ping chain with a = b = 1 and transition matrix

P =
10
while 7 := [1/3, 2/3] will not be invariant (or stationary) for this chain. This

is a two-state particular case of the circular chain of Example (7.2.4).
(i) If a + b = 1, one sees that

for all n € N and we find
P(Z,=12,=0)=PZ,=1|Zy=1)=P(Z,=1)=a

and
P(Z, =02, =0)=P(Z,=01Z;=1)=P(Z,=0)=0>

for all k =0,1,...,n — 1, regardless of the initial distribution [P(Z, = 0),

P(Zy = 1)]. In this case, Z, is independent of Z; as we have
P(Z,=1, 2y =) =P(Zy=i|Zr = )P(Zx = ) =P(Z, = DP(Zk = j),


https://doi.org/10.1007/978-981-13-0659-4_7
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i,j=0,1,0 <k <n,and (Z,),en is an i.i.d sequence of random variables
with distribution (1 — a, a) = (b, a) over {0, 1}.

(iii) A given proportion p = a/(a + b) € (0, 1) of visits to state @ in the long run
canbereachedbyanya € (0, plandb € (0, 1 — p]satisfyinga = bp/(1 — p).
Smaller values of a and b will lead to increased stickiness. The case (a, b) =
(p, 1 — p) satisfiesa + b = 1 and corresponds to minimal stickiness, i.e. to the
independence of the sequence (Z,),en-

(iv) Whena = b = 1in (4.5.1) the limit lim,_, .o P" does not exist as we have

1 0
, n =2k,
P"L:
0 17
, n=2k+1,

and the chain is indefinitely switching at each time step from one state to the
other.

In Figs.4.2 and 4.3 we consider a simulation of the two-state random walk with

transition matrix
0.8 0.2

P = ,
0.4 0.6
i.e. a = 0.2 and b = 0.4. Figure4.2 represents a sample path (x,),—o.1....100 of the
chain, while Fig. 4.3 represents the sample average

.....

1
Vo= ——(xo+x1 + -+ x,), n=0,1,...,100,
n+1

which counts the proportion of values of the chain in the state @ This proportion is
found to converge to a/(a + b) = 1/3. This is actually a consequence of the Ergodic
Theorem, cf. Theorem7.12 in Chap. 7.
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Fig. 4.2 Sample path of a two-state chain in continuous time with ¢ = 0.2 and b = 0.4
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Fig. 4.3 The proportion of chain values at (D tends to 1/3 = a/(a + b)

# Dimension of the transition matrix

d=2

# Parameter definition

a=0.2; b=0.4;

# Definition of the transition matrix
P=matrix(c(1—a,a,b,1—b),nrow=d,ncol=d,byrow=TRUE)

# Number of time steps

N=100

# Encoding of chain values

Z=array(N+1);

for(1l in seq(1,N)) {

Z|[1]=sample(d,size=1,prob=P[2,])

# Random simulation of Z[j+1] given Z[j]

for (j in seq(1,N)) Z[j+1]=sample(d,size=1,prob=P[Z][j].,])
Y=array(N+1);S=0;

# Computation of the average over the | first steps

for(lin seq(1,N+1)) { Z[1]=Z[1]—1; S=S+Z[1]; Y[1]=S/1; }
X=array(N+1); for(lin seq(1,N+1)) { X[1]=1-1; }
par(mfrow=c(2,1))
plot(X,Y,type="1",yaxt="n",xaxt="n",xlim=c(0,N),xlab="",
ylim=c(0,1),ylab="",xaxs="i",col="black",main="",bty="n")
segments(0,a/(a+b),N,a/(a+b))
axis(2,pos=0,at=c(0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0))
axis(1,pos=0,at=seq(0,N,10),outer=TRUE)
plot(X,Z,type="0",xlab="",ylab="",xlim=c(0,N),yaxt="n",
xaxt="n",xaxs="i",col="black",main="",pch=20,bty="n")
axis(1,pos=1,at=seq(0,N+1,10),outer=TRUE,padj=—4,tcl=0.5)
axis(1,pos=0,at=seq(0,N+1,10),outer=TRUE)
axis(2,las=2,at=0:1)

readline(prompt = "Pause. Press <Enter> to continue...")}
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Fig. 4.4 Convergence graph for the two-state Markov chain witha = 0.2 and b = 0.4
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Fig. 4.5 Sample path of a five-state Markov chain
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We close this chapter with two other sample paths of Markov chains in Figs. 4.4 and
4.5. In the next Fig.4.4 we check again that the proportion of chain values in the

state @ converges to 1/3 for a two-state Markov chain.
In Fig.4.5 we draw a sample path of a five-state Markov chain.

Exercises

Exercise 4.1 Consider a symmetric random walk (S,),ecny on Z with independent

increments =1 chosen with equal probability 1/2, started at Sy = 0.

(a) Is the process Z,, := 25, + 1 a Markov chain?
(b) Is the process Z,, := (S,)? a Markov chain?

Exercise 4.2 Consider the Markov chain (Z,),>0 with state space S = {1, 2} and

transition matrix
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12
1704 06
P=5 [0.8 0.2}'

(a) Compute P(Z; =1and Zs =2 | Zy, = 1 and Z5 = 2).
(b) Compute E[Z;, | Z, = 1].

Exercise 4.3 Consider a transition probability matrix P of the form

[0 m 72 W3 - TN
o 7Ty TTp T3 -+ TN
P_[P’~J]05i,j51v_ 0 T T2 T3 v,
L7To Ty 7Tp 73 -+ TN |
where 7w = [mg, 71, ..., 7wx] € [0, 11V*! is a vector such that wo+ 7w +--- +

JTN=1.

(a) Compute P" for alln > 2.

(b) Show that the vector 7 is an invariant (or stationary) distribution for P.

(c) Show that if P(Zp =i)=m;,i =0,1,..., N, then Z, is independent of Z;
for all 0 < k < n, and (Z,),en is an i.i.d sequence of random variables with
distribution 7 = [7g, 7y, ..., wy]over {0, 1, ..., N}.

Exercise 4.4 Consider a {0, 1}-valued “hidden” two-state Markov chain (X,),cn
with transition probability matrix

Poo Po1 PX;=0]Xo=0P(X;=1]| Xo=0)
P = =
Pio P PX1=0]Xo=D)P(X;=1]|Xo=1)
and initial distribution
7 = 7, m1] = [P(Xo = 0), P(Xo = D].
We observe a process (Oy)rey Whose state Oy € {a, b} at every time k € N has a
conditional distribution given X; € {0, 1} denoted by
M= | M0amop | _ POy =a| Xy =0)P(Or=0b| X, =0)
miyq myp POr=a| Xy =) POr=b| X, =1’

called the emission probability matrix.
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(a) Using elements of 7w, P and M, compute P(Xy = 1, X; = 1) and the probability
P((Oy, O1) = (a, b) and (X, X1) = (1, 1))
of observing the sequence (Og, O;) = (a, b) when (Xo, X;) = (1, 1).
Hint: By independence, the conditional probability of observing (O, O1) = (a, b)
given that (Xo, X;) = (1, 1) splits as

P((Op, 01) = (a.D) | (X0, X1) = (1, D)) =P(Og =a | Xo = DP(O1 =b | X1 =1).

(b) Find the probabilityP((Oy, O;) = (a, b)) that the observed sequence is (a, b).
Hint: Use the law of total probability based on all possible values of (X, X1).
(c) Compute the probabilities

P(Xy =11(00, 0)) =(a,b)), and P(X; =0] (0o, 01) = (a,D)).

Exercise 4.5 Consider a two-dimensional random walk (S,),cn started at Sy =
(0,0) on Z?, where, starting from a location S, = (i, j) the chain can move to
any of the points ( +1,j+ 1), +1,j—1),G —1,j+1), G —1,j — 1) with
equal probability 1/4.

(a) Suppose in addition that the random walk cannot visit any site more
than once, as in a snake game. Is the resulting system a Markov | | /L
chain? Justify your answer. -

(b) LetS, = (X,, ¥,) denote the coordinates of S, at time n and let Z,, := X? + Y2,
Is (Z,))nen @ Markov chain? Justify your answer.

Hint: Use the fact that a same value of Z,, may correspond to different locations of
(Xy, Y,) on the circle, for example (X, ¥,,) = (5,0) and (X, ¥,,) = (4, 3) when
Z, =25.

Questions (a) and (b) above are independent.

Exercise 4.6 The Elephant Random Walk (S,),cn [STOS] is a discrete-time Z-
valued random walk
Sn::X1+"'+Xn» nEN,

whose increments X; = S — Si_1, kK > 1, are recursively defined as follows:

e Attime n = 1, X; is a Bernoulli {—1, +1}-valued random variable with
P(X;=41)=p and PX;=-1)=g=1—-pe(0,1).

e At any subsequent time n > 2, one draws randomly an integer time index k €

{1,...,n — 1} with uniform probability, and lets X, := X with probability p,
and X, := — X with probability g := 1 — p.
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Does the Elephant Random Walk (S,,),cn have the Markov property?

Exercise 4.7 Consider a Markov chain (X,),>o with state space S = {0, 1} and
transition matrix

0o 1
Ofl—a a
le[ b l—b]’

where a, b > 0, and define a new stochastic process (Z,),>1 by Z, = (X,—1, X»),
n > 1. Argue that (Z,),>; is a Markov chain and write down its transition matrix.
Start by determining the state space of (Z,),>].

Exercise 4.8 Given p € [0, 1), consider the Markov chain (X,),>0 on the state space
{0, 1, 2} having the transition matrix

~
Il
D = O
cox ©
oxw R~
=

withg :=1— p.
(a) Give the probability distribution of the first hitting time

T:=inf{n>0 : X, =2}.

of state (2) starting from X, = (0).
Hint: Thesum Z = X + - - - 4+ X,, of n independent geometric random variables on
{1, 2, ...} has the negative binomial distribution

k—1
P(Z=k|Xo=1)= (k_d>(1—p>dpk—", k=d.

(b) Compute the mean hitting time [E[7;, | Xo = 0] of state @ starting from X = 0.
Hint: We have

> 1 nd 2
kpF'= ——— and kk—1D)pF?2=—"_ 0< 1.
,; P=a=p ; k=Dr =000 =p=

Exercise 4.9 Bernoulli-Laplace chain. Consider two boxes and a total of 2N balls
made of N red balls and N green balls. At time 0, a number k = X of red balls and
anumber N — k of green balls are placed in the first box, while the remaining N — k
red balls and k green balls are placed in the second box.
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P Q
.OO
(0] ® @)
e 0 © ©

At each unit of time, one ball is chosen randomly out of N in each box, and the
two balls are interchanged. Write down the transition matrix of the Markov chain
(Xn)nen with state space {0, 1,2, ..., N}, representing the number of red balls in
the first box. Start for example from N = 5.

Exercise 4.10 (a) After winning k dollars, a gambler either receives k + 1 dollars
with probability p, or has to quit the game and lose everything with probability
q = 1 — p. Starting from one dollar, find a model for the time evolution of the
wealth of the player using a Markov chain whose transition probability matrix
P will be described explicitly along with its powers P" of all orders n > 1.

(b) (Success runs Markov chain). We modify the model of Question (a) by allowing
the gambler to start playing again and win with probability p after reaching state
@. Write down the corresponding transition probability matrix P, and compute
P" forall n > 2.

Exercise 4.11 Let (X}).cn be the Markov chain with transition matrix

1/4 0 1/2 1/4
0 1/5 0 4/5
0 1 0 0

1/31/3 0 13

P =

A new process is defined by letting
0 ifX,=0o0orX,=1,
X, ifX,=2or X, =3,

i.e.

(a) Compute
P(Zpy1 =2|Zyn=0and Z,_1 =2) and P(Z,41 =2 | Zy =0and Z,_; = 3),

n>1.
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(b) Is (Z,),eny a Markov chain?

Exercise 4.12 [OSA+09]

Abeokuta, one of the major towns of the defunct Western Region of Nigeria, has
recently seen an astronomic increase in vehicular activities. The intensity of vehicle
traffic at the Lafenwa intersection which consists of Ayetoro, Old Bridge and Ita-
Oshin routes, is modeled according to three states L/M/H = {Low / Moderate / High}.

(a) During year 2005, low intensity incoming traffic has been observed at Lafenwa
intersection for 1, = 50% of the time, moderate traffic has been observed for
nu = 40% of the time, while high traffic has been observed during ny = 10%
of the time.

Given the correspondence table

incoming traffic vehicles per hour
L (low intensity) 360
M (medium intensity) 505
H (high intensity) 640

compute the average incoming traffic per hour in year 2005.

(b) The analysis of incoming daily traffic volumes at Lafenwa intersection between
years 2004 and 2005 shows that the probability of switching states within
{L, M, H} is given by the Markov transition probability matrix

2/3 1/6 1/6
P=|1/31/21/6
1/6 2/3 1/6

Based on the knowledge of P and n = [, ny, nul, give a projection of the
respective proportions of traffic in the states L/M/H for year 2006.

(c) Based on the result of Question (b), give a projected estimate for the average
incoming traffic per hour in year 2006.

(d) By solving the equation 7 = m P for the invariant (or stationary) probability
distribution m = [my, my, Ty], give a long term projection of steady traffic at
Lafenwa intersection. Hint: we have 7, = 11/24.



Chapter 5 ®)
First Step Analysis e

Starting with this chapter we introduce the systematic use of the first step analysis
technique, in a general framework that covers the examples of random walks already
treated in Chaps. 2 and 3. The main applications of first step analysis are the compu-
tation of hitting probabilities, mean hitting and absorption times, mean first return
times, and average number of returns to a given state.

5.1 Hitting Probabilities

Let us consider a Markov chain (Z,),cy with state space S, and let A C S denote a
subset of S. We are interested in the first time 74 the chain hits the subset A, with

Ty =inf{n >0 : Z, € A}, 5.1.1)
with Ty = 0if Zy € A and
Ty=o0 if (n>0:2,€ A} =90,

ie.if Z, ¢ Aforall n € N. Similarly to the gambling problem of Chap. 2, we would
like to compute the probabilities

(k) =P(Zy, =11 Zo =k)

of hitting the set A C Sthrough state/ € A starting from k € S, where Z7, represents
the location of the chain (Z,),cn at the hitting time T4.

This computation can be achieved by first step analysis, using the law of total
probability (1.3.1) for the probability measure P(- | Zy = k) and the Markov prop-
erty, as follows.
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Forall k € S\ A we have T4 > 1 given that Z; = k, hence we can write

gk =P(Zg, =1| Zo = k)
=Y P(Zr,=1|Zi=mand Zy = )P(Zi =m | Zy = k)
meS

=§:MZU:Z|L:HMP@1=m|ZW=M

meS

=Y PunP(Zr, =1|Z) =m)

meS

=Y PinP(Zr, =1 Zo=m)

meS

=2Pk,mgz(m), keS\A, [e€A,

meS
where the relation
PZr, =11 Z1=m)=P(Zr, =1|Zo=m)

follows from the fact that the probability of ruin does not depend on the initial time
the counter is started, as in Lemma 2.2.
Hence we have

gk) =Y Pemgim) = Pes+ Y Penmgi(m), (5.1.2)

meS meS\A

k € S,1 € A, under the boundary conditions

1ifk =1,
gk) =P(Zr, =11Zy=k) = Ljj=y = keA, les,
0ifk £1,

since T4 = 0 whenever one starts from Z; € A. Equation (5.1.2) can be rewritten in
matrix form as
g =Pg, leA, (5.1.3)
where ¢ is a column vector, under the boundary condition
gk)y=P(Zr, =1|Zo=k) = 1yk) =
0, k#1,

forallk € Aandl € S.
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In addition, the hitting probabilities g; (k) = P(Z7, =1 | Zy = k) satisfy the con-
dition

I =P(Th=00|Zy=k) + Y P(Zr, =1|Zo=k)

leA

=P(Ta=00|Zy=hk +Y_ gk, (5.1.4)

leA

forall k € S.
Note that we may have P(T4 = oo | Zy = k) > 0, for example in the following
chain with A = {0} and &k = 1 we have

P(Ty =00 | Zy=1) =0.2.

16@%@3 1

In case the transition matrix P satisfies
Pri = 1p=p
forall k,[ € A, the set A is said to be absorbing.

The next lemma will be used in Chap. 8 on branching Processes.

Lemma 5.1 Assume that state (J) € S is absorbing. Then for all D € S we have
P(T; <oo| Zy=i)= lim P(Z,=j | Zy=1i).

Proof We have
{T; < oo} = J{Z = j}.

n>1

because the finiteness of 7; means that Z, becomes equal to (7) for some n € N. In
addition, since @ € S is absorbing it holds that

{(Zv=j}C{Z=Jj}, neNl,

hence given that {Zy = i}, by (1.2.3) we have

a1 = B(T; < o0 | zozi)=P<U{zn=j}(zozi) (5.1.5)

n>1

=P (lim (Z, = j}|Zo =) = lim P(Z, = j} | Zo = ). 0



118 5 First Step Analysis

Block Triangular Transition Matrices

Assume now that the state space is S = {0, 1, ..., N} and the transition matrix P
has the form
0O R
P = , (5.1.6)
0 I

where Q is asquare (r + 1) x (r + 1) matrix, Risa (r + 1) x (N — r) matrix, and

1 0o --- 00
o1 --- 00
la=1: Do
0 0 1 0
0 0 0 1

is the (N —r) x (N — r) identity matrix, in which case the states in {r + 1,7 +
2,..., N} are absorbing.
Iftheset A := {r + 1,7 4+ 2, ..., N}is made of the absorbing states of the chain,
we have the boundary conditions
g(m)=1yp=, [=01,....,.N, m=r+1,r+2,...,N, (5.1.7)

hence the Eq. (5.1.2) can be rewritten as

N
9i(k) =Y Pemgi(m)

m=0
r N
=Y Pngim)+ > Pengi(m)
m=0 m=r+1

= Z Pk,mgl(m) + Pk,l

m=0

=Y Qumam)+ Riy,  k=0,1,....r, I=r+1,...N,

m=0

from (5.1.7) and since Py; = Ry, k=0,1,...,r,I=r+1,..., N. Hence we
have

9k =" Qumgi(m) + Rey. k=0,1,....r, I=r+1,....N.

m=0
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Remark 1In the case of the two-state Markov chain with transition matrix (4.5.1) and
A = {0} we simply find go(0) = 1 and

go(1) =b+ (1 —0b) x go(1),

hence go(1) = 1if b > 0 and go(1) =0if b = 0.

Examples Consider a Markov chain on {0, 1, 2, 3} with transition matrix of the form

(5.1.8)

SO0 Q8 =
[N )
S22 o O
-3 O

Let A = {0, 3} denote the absorbing states of the chain, and let
Tos=inf{n >0 : X, =0o0r X, =3}
and compute the probabilities
go(k) =P(Xr,, =01 Xo =k)

of hitting state © first within {0, 3} starting from k = 0, 1, 2, 3. The chain has the
following graph:

(5.1.9)

Noting that (0) and (3) are absorbing states, and writing the relevant rows of the first
step analysis matrix equation g = Pg, we have

90(0) =1
go(1) = a x 1 +bgo(1) + cgo(2) +d x 0
90(2) = a x 1+ Bgo(1) +7g0(2) + 1 x 0
go(3) =0,
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i.e.
go(0) =1
go(1) = a + bgo(1) + cgo(2)
90(2) = a+ Bgo(1) +790(2)

go(3) =0,
which has for solution
go(0) =1
ao(1) = ca+a(l —7)
R G Y ) Y (5.1.10)
) af + a(l —b) o
0 —

(I=b)d—=7) —cp
903) = 0.

We have ¢;(0) = ¢;(3) = 0for!/ = 1, 2, and by a similar analysis, letting

g3(k) :=P(Xg, =3|Xo=k), k=0,1,23,

we find
g3(0) =0
5(1) = cen+d(1 —)
(1=b)(1 =) —cp
Bd +n(1 —b)
2) =
8O =T - -8
g3(3) =1,
and we note that
ca+a(l —7) cen+d — )

go(1) +g3(1) =

I=b)A=m=cB A=b1-=7)—ch
sincea+n=1—vy—LFanda+d=1-b —c, and similarly

af+a(l —b) Bd +n(1 —b) _1
(I=b)(1—y)—cB A=b)(A—7)—cf

go(2) + g3(2) =

We also check that in case a = d and o = 7 we have

ca+a(B+2a) _ ca+taf+2ax

o) = (c+2a)(B+2a)—cB  2ca+2ab+ 4an

1
=9Q) =3,

and 1
go(D) = g3(1) = go(2) = g3(2) = X
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Note that, letting
To:=inf{n >0 : X, =0} and T3 :=inf{n >0 : X, =0},
we also have
go(k) =P( X7, =0 Xg=k)=P(Tp < o0 | Xg=k)

and
g3(k) =P(Xp, =31 Xo=k) =P(T3 <00 | Xog =k)

k=0,1,2,3.

5.2 Mean Hitting and Absorption Times

We are now interested in the mean hitting time
ha(k) :=E[Ty | Zo = k]

it takes for the chain to hit the set A C S starting from a state k € S. In case the set
A is absorbing we refer to h 4 (k) as the mean absorption time into A starting from
the state (%).

Clearly, since T4 = 0 whenever Xo = k € A, we have

hatk) =0, forallk € A.

In addition, for all k € S\ A, by first step analysis using the law of total expectation
(1.6.11) applied to the probability measure P(- | Zy = [), the Markov property and
Lemma 1.4 we have

hatk) = E[Ty | Zog = k]

= ZE[TAJL{Z,z,} | Zo = k]
leS
1

= S E[Tuliz 1z
]P)(Zozk)%s: [A {Z,=1} {2 k}]

1
= 5z =0 2 T s and 2]

P(Zy=1and Zy = k)
P(Zy = k)

- ZE[TA | Z) =l and Z, = k]
leS
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:ZE[TA | Zy=1land Zo = k]P(Z, =1 | Zy = k)

leS
=D Bl A+Ta| Zo=1P(Zi=1|Zo=k)
leS
=Y (U +E[Ts | Zo=IDP(Zy =1| Zo =k)
leS
=Y PZi=1|Zo=k + Y P(Zi=1|2Zy=FKE[Ta | Zo=1]
leS leS
=1+) P(Z =1|Zy=kEITs | Zo=1]
leS

=1+) Puhal). keS\A,
leS

where the relation
E[Ta | Z1 =1, Zo =kl =1+E[Ta | Zo =1]
can be justified as in the proof of Lemma 2.3.

Hence we have

hatk) =1+ Peha) =1+ Y Poha(), keS\A, (52.1)
leS leS\A

under the boundary conditions

hatk)=E[Ts| Zo=k] =0, keA, (5.2.2)

Condition (5.2.2) implies that (5.2.1) becomes

hatk) =1+ > Poha(l),  keS\A.
IeS\A

This equation can be rewritten in matrix form as

1
hpo= ||+ Pha,
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by considering only the rows with index k € S\ A, under the boundary conditions
ha(k) =0, ke A.

Block Triangular Transition Matrices

When the transition matrix P has the form (5.1.6)and A ={r+1,r +2,..., N},
Eq.(5.2.1) rewrites as

N

hatk) =1+ Peha(l)
=0

r N
=14 Y Puha)+ Y Pesha(l)

=0 I=r+1

=1+4) Puhat), 0<k<r,
=0

since ha(I) =0,l=r+1,r+2,...,N,ie.

hatk) =1+ Pehat),  0<k<r,
=0

with ha(k) =0, k=r+1,...,n.
Two-State Chain

In the case of the two-state Markov chain with transition matrix (4.5.1) with A = {0}
we simply find /{0, (0) = 0 and

hioy(1) = b x 1+ (1= b) (1 +hg()) = 1+ (1 —Dhg(D),  (5:2.3)

with solution

oo
1
hoy (1) =bY k(1= =2,
k=1

and similarly we find

- 1
hpy©0) =a ) k(1 —a)t = -,

a
k=1

with h0)(0) = Ay (1) = 0, cf. also (5.3.3) below.
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Utility Functionals

The above can be generalized to derive an equation for an expectation of the form

Ty
ha(k) ::E|:Zf(X,-) onk:|, k=0,1,...,N,

i=0

where f(-) is a given utility function, as follows:
Ty
hatk) = [Z XD | Xo = k}
i=0
r Ty
=> Pin (f(k) +E [Z f(x,-)}xl = mD
m=0 i=1
r r Ta
=Y Pnf)+ > PenE [Z fX) | X = m}
m=0 m=0 i=1
r r Tx
=f0)Y Pim+ Y Pink [Z f(X) | Xo = m]
m=0 m=0 i=0

=f(k)+ZPk.mhA(m), ke A°:={0,1,...,r},

m=0

with A :={r+1,..., N}, hence
hatk) = f()+ Y Pemha(m), ke A°={0,1,....r},
m=0

with the boundary condition
ha(k) =0, keA={r+1,...,n},

see also Exercise 5.20.

Examples
e When f = 14 = 1yo,.., is the indicator function over the set A°, i.e.
1ifX; ¢ A,

fX) =14(X)) =
0ifX;, eA,

the quantity 4 4 (k) coincides with the mean hitting time of the set A starting from
(. In particular, when A = {m} this recovers the equation



5.2 Mean Hitting and Absorption Times 125

hymy(k) =1+ Z Py ihyny (@), k € S\ {m}, (5.2.4)

1eS
I#m

with h{m}(m) =1.
e When f is the indicator function f = 1y, i.e.
1ifX; =1,
f X)) =1y (X)) =
0ifX; #1,

with [ € A€, the quantity h4 (k) will yield the mean number of visits to state (1)
starting from (%) before hitting the set A.

e See Exercises 5.19, 5.20, and also Problem 5.22 for a complete solution in case
f (k) =k and (X;)x>0 is the gambling process of Chap. 2.

Examples Consider the Markov chain whose transition probability matrix is given
by

P = [ Pifj]0§i,j§3 =

oL Q9
owo o
el eNoley
— o™ o

where o, § > 0 and a 4+ § = 1. Taking A := {3}, determine the mean time it takes
to reach state (3) starting from state (0). We observe that state 3) is absorbing:

«

Let

h3(k) =E[T; | Xo = k]

denote the mean (hitting) time to reach state (3), after starting fromstate k = 0, 1, 2, 3.
We get
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h3(0) = a(l + h3(0)) + B(1 + h3(2)) = 1 + ah3(0) + Bh3(2)
h3(1) = a(l + h3(0)) + B(1 + h3(3)) = 1 + ah3(0)

h3(2) = a1 + h3(0)) + B(1 + h3(1)) = 1 + ah3(0) + Shs(1)

h3(3) =0,
which, using the relation « = 1 — (3, yields

143 1+ 8+ 3

1
h3(3) =0,  hs(l)=—,  h3(2)= h3(0) = 7

B3 B
Since state 3) can only be reached from state () with probability [, it is nat-
ural that the hitting times go to infinity as § goes to zero. We also check that
h3(3) < h3(1) < h3(2) < h3(0), as can be expected from the above graph. In addi-
tion, (h3(1), h3(2), h3(0)) converge to (1, 2, 3) as (3 goes to 1, as can be expected.

5.3 First Return Times

Consider now the first return time T to state j € S, defined by
Tj’ =inf{n >1 : X, = j},

with

T/ =00 if X, # jforalln > 1.
Note that in contrast with the definition (5.1.1) of the hitting time 7, the infimum
is taken here for n > 1 as it takes at least one step out of the initial state in order to
return to state (7). Nevertheless we have 7; = 77 if the chain is started from a state
@ different from ().
Denote by

1) =EIT] | Xo =il = 1

the mean return time to state j € S after starting from state i € S.
Mean return times can also be computed by first step analysis. We have

ui(i) = E[T] | Xo =]
= 1xPX;=j | Xo=1)
+ > P(Xy =1| Xo=i)(1 +E[T] | Xo =1])

leS

I#]
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=P+ Y Pl +p;0)

I#j

=P+ Z P+ Z Piap (D)

leS leS

1#j 1#j

=Y Pu+Y_ Pupid)
leS [Ifj
L+ Pupy().

leS
I#j

hence
pi) =1+ Pyuj), i jeS. (5.3.1)

1eS

1]

Hitting Times Versus Return Times

Note that the mean return time equation in (5.3.1) does not include any boundary
condition, in contrast with the mean hitting time Eq. (5.2.4) in Sect. 5.2. In addition,
the time 7" to return to state (D is always at least one by construction, hence y1; (i) > 1
cannot vanish, while we always have 4; (i) = 0,i € S. Onthe other hand, by definition
we have

hi(j) =EIT} | Xo = j1=EIT; | Xo = j1 = u(j),

for all i # j, and for i = j the mean return time ;;(j) can be computed from the
hitting times h; (1), [ # j, by first step analysis as

() =Y Pl +hy)
leS
=P+ Pu(l+h;1)
I#j
=D P+ Y Puhi()
leS 1#j
=1+) Puhj), jeS, (53.2)
I#]

which in agreement with (5.3.1) wheni = j.

In practice we may prefer to compute first the hitting times #;(j) = 0 under the
boundary conditions 4; (i) = 0, and then to recover the return time p; (i) from (5.3.2),
i,j€S.
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Examples

(1) Mean return times for the two-state Markov chain.
The mean return time (i) = E[T; | Xo = i] to state (0 starting from state
@ € {0, 1} satisfies

po(0) = (1 —a) x 1 +a(l + po(1)) = 1+ apo(l)
po(1) =b x 14+ (1 =b)(1+ po(1)) =1+ A —b)ue(l)

which yields
a 1
po(0) =1+ 3 and  po(1) = ho(1) = 5’ (5.3.3)

cf. also (5.2.3) above for the computation of uo(1) = ho(1) = 1/b as a mean
hitting time. In the two-state case, the distribution of 7] given Xy = 0 is given
by

0 ifn =0,

fO=PAy =n | Xo=0)={1-a ifn=1, (5.3.4)
ab(1 —b)"%ifn > 2,
hence (5.3.3) can be directly recovered as'
110(0) =E[T} | Xo = 0]

o0
=ZnIP’(T0’ =n|Xy=0)
n=0

oo
=2 f

n=0

o0
=l—-a —i—abZn(l — b2

n=2

=l—a+ab Z(n +2)(1 — b)"
n=0

=l—a+ab(1—b)Y n(l—b)""+2ab» (1-b)
n=0 n=0
_a—l—b . a

14—, 535
5 ty (5.3.5)

o0 o0
'We are using the identities » ~ ¥ = (1 =) and ) " krk~! = (1 — )72, cf. (A.3) and (A 4).
k=0 k=1
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where we used the identity (A.4).
Similarly we check that

p(0) =1+ (1 —a)u(0)
pi (1) =1+ bpi(0),
which yields
PO =mO =1 and ) =1+,
and can be directly recovered by

> b b
ul(l)zl—b+ab2(n+2)(1—a)"=i=1+—, (5.3.6)
a a

n=0

asin (5.3.3) and (5.3.5) above, by swapping a with b and state © with state (D.

(i) Maze problem.
Mazes provide natural examples of Markovian systems as their users tend rely on
their current positions and to forget past information. More generally, Markovian
systems can be used as an approximation of a non-Markovian reality.

Consider a fish placed in an aquarium with 9 compartments:

@ @ | ©
@ & : ®
@ e
| | (5.3.7)

The fish moves randomly: at each time step it changes compartments and if it finds
k > 1 exit doors from one compartment, it will choose one of them with probability
1/k, i.e. the transition matrix is

0 1 0 0 0 0 0 0 07
120 120 0 0 0 0 0
0120 0 0 120 0 0
00 0 0 0 0 1 0 0
P=| 0 0 0 0 0 1/2 0 1/2 0
0 0 1/2 0 1/2 0 0 0 0
0 0 0 120 0 0 1/2 0
0 0 0 0 1/30 1/3 0 1/3
o 0 0 0 00 0 1 0
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Find the average time to come back to state (D) starting from state (D.

Letting
T/ =infln>1: X,=1}

denote the first return time to state (1, and defining
p(k) :=E[T] | Xo = k]
the mean return time to state (D starting from (&), we have

m() =14 1102

1 1 1
m(2) = E(l +0)+ 5(1 +mB) =1+ 5#1(3)

1 1 1 1
m3) = 5(1 +11(2) + 5(1 +pi(0) =1+ 5#1(2) + Em(ﬁ)
p(4) =1+ (7)

1 1 1 1
u1(5) = 5(1 + w1 (8) + 5(1 +p1(6)) =1+ 5#1(8) + 5#1(6)
6 —l 1 3 ! 1 5)=1 ! 3 ! 5
Ml()—z( + pi( ))+§( + u1(5)) = +§#1()+§H1()
D= 1+ 2@ + 2 ®) = 21+ @) + ~(1+ (8
1 (7) = +§M1()+§/~L1()—§( +M1())+§( + 11(3))

1 1 1
@) =2+ m@) + 3+ @) + 70+ O)

1
=1+ 3 (1 (7) + 1 (5) + 11(9))

© =1+ @),

or

1 2
p) =1+p1(2), m@ =1+ 5#1(3)» p(3) =2+ 5#1(6),

1 1
m@ =1+pu@, mG =1+ EM](S) + 5“1(6)’ 0=30+3u1(8) —511(6),

p1(7) =34 p1(8), 0=280+5u1(6) =5u1(8), 19 =14 u@8),
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60

il

50 A
40
30
20

Fig. 5.1 Mean return times to state O on the maze (5.3.7)

which yields

pi(1) =16, p(2) =15, 11 (3) =28, i (4) =59, 1 (5) =48, (5.3.8)
p1(6) =39, w1 (7) =58, ui(8) =55, ui(9) =56.

Consequently, it takes on average 16 steps to come back to (D) starting from (1), and
59 steps to reach (D) starting from (4. This data is illustrated in the following picture
in which the numbers represent the average time it takes to return to (D starting from
a given state.

(1) =16 | 1(2) =15 | 1 (3) = 28
|

pi(4) =59 pa(5) =48 | 111(6) = 39
|

p1(7) = 58 p1(8) =55 | 11 (9) = 56
| |

The next Fig. 5.1 represents the mean return times to state (0) according to the initial
state on the maze (5.3.7).

5.4 Mean Number of Returns

Return Probabilities

In the sequel we let

Dij =IP’(TJ-r <o | Xg=i)=PX, =jforsomen >1]| Xy =1i)
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denote the probability of return to state (7) in finite time? starting from state . The
probability p;; of return to state ) within a finite time starting from state () can be
computed as follows:

pii =P(X, =iforsomen >1|X,=1)

:P(U{ani}‘oni)

n>1

o0
=Y PXy=i,Xo1 #iy X #i | Xo=1)
n=1

£ (5.4.1)

ll’

\\Mg

where
O =PI =n | Xo=0)=P(Xy = j. Xot # oo, Xi £ J | Xo =),
i, J €S, is the probability distribution of T} given that Xo = i, with
fO =P =0|Xo=1i)=0.
Note that we have
f(l)_P(Xl—IIXo—l)— P;, i€S.

Convolution Equation

By conditioning on the first return time k > 1, the return time probability distribution
f ® _ =P(T/ =k | Xo = i) satisfies the convolution equation

[P']ii =P(Xy =i | Xo=1)

=) PG =i X # i Xo #0 | Xo=DP(Xy =i | X = 1)
k=1

=Y P(Xy =i Xem1 #iv. . X1 #1 | Xo=DP(Xup =i | Xo =1)
k=1

WL

which extends the convolution equation (3.4.7) from random walks to the more
general setting of Markov chains.

2When @ #* @ pij is the probability of visiting state @ in finite time after starting from state @.
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The return probabilities p;; will be used below to compute the average number of
returns to a given state, and the distribution f; f’;)’ k>1,of T].’ given that Xy = i will
be useful in Sect. 6.4 on positive and null recurrence.

Number of Returns

Let
o0
Rj =Y Tx,—j (5.4.2)

n=1

denote the number of returns? to state (7) by the chain (X,),cn. The next proposition
shows that, given {Xo = i}, R has a zero-modified geometric distribution with initial
mass 1 — p;;.

The next proposition shows that, given {Xo = i}, R; has a zero-modified geomet-
ric distribution with initial mass 1 — p;;.
Proposition 5.1 The probability distribution of the number of returns R; to state j
given that {Xy = i} is given by

1= pij, m=0,
pij X (p)" P x (I=pjp), m=>1,

Proof When the chain never visits state (J) starting from X, =i we have R; =0,
and this happens with probability

=1-P(T] <oo| Xo=1)
=1—Pij~

Next, when the chain (X,),en makes a number R; =m > 1 of visits to state @
starting from state (@, it makes a first visit to state (7) with probability p; ; and then
makes m — 1 returns to state @, each with probability p;;. After those m visits,
it never returns to state (7)), and this event occurs with probability 1 — p;;. Hence,
given that {X, = i} we have

pij X ()"t x (1=pj;), m=>1,
1 — pij, m=0,

by the same argument as in (5.3.4) above.

In case i = j, R; is simply the number of returns to state () starting from state @,
and it has the geometric distribution

3Here, R j is called a number of returns because the time counter is started at n = 1 and excludes
the initial state.



134 5 First Step Analysis

P(Ri=m | Xo=i)=0~-p)(pi)", m=>0.

Proposition 5.2 We have

L—pij, ifpjj=1,
]P)(R/<OO|X0=1)=
1, ifpjj < 1.

Proof We note that

o0
P(R; <oo| Xo=1i)=P(R; =0| Xo=1i)+ Y P(R; =m | Xo=1i)

m=1

1 = pij + pij(1 = pjj) Z(ij)m_l
m=1

1_pijs ifpjjzl,

1, ifpjj < 1.

We also have .
Dijs ifp;; =1,
P(Rj =00 | Xo=1) =
0, ifpjj < 1.
In particular if p;; = 1, i.e. state @ is recurrent, we have
]P’(Rj=m|X0=i)=0, m>1,
and in this case,
]P)(R/ <OO|XQ:Z)=IP(R]=O|X0=l)=1—pl],
]P(RJIOO|X()IZ)=1—IP(RJ <OO|X0=i)=pij.

On the other hand, when i = j, by (1.5.13) we find
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o0
IP’(R,-<oo|X0=i)=ZIP’(R,~=m|X0=i)

m=0

== pi) Y (pi)"

m=0
0, ifp;=1,
= (54.3)
], if Pii < ],
hence
I, ifpy;=1,
P(Ri =00 | Xp=1i) = (5.4.4)
0, if Pii < 1,

i.e. the number of returns to a recurrent state is infinite with probability one.
Mean Number of Returns

The notion of mean number of returns will be needed for the classification of states
of Markov chains in Chap.6. By (A.4), when p;; < 1 we have P(R; < oo | Xo =
i) = 1 and*

E[R; | Xo=i] = ZmJP’(Rj =m|Xo=1i) (5.4.5)

m=0

[o¢]
(I = pjjpij Z m(p;)""
m=1
Dij

, (5.4.6)
1 =pjj

hence
E[Rj|X()=i]<OO if pjj<1~

If pj; =1 then E[R; | Xo =i] = oo unless p; ; =0, in which case P(R; =0 |
Xo=i)=1and E[R; | Xg = i] = 0. In particular, when i = j we find the next
proposition.

Proposition 5.3 The mean number of returns to state @ is given by

Dii
1—pii’

E[R; | Xo=1i]=

and it is finite, i.e. E[R; | Xo = i] < 00, if and only if p;; < 1.

o0
#We are using the identity Y " krf™! = (1 —r) 7%, cf. (A4).
k=1
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More generally, by (5.4.2) we can also write

oo
E[R; | Xo=i]=E [Z lix,—j) | Xo = l}
n=I

Ellix,=jy | Xo =]

M

3
Il

P(Xy =J | Xo=1)

M

3
Il

M

[P"].- (5.4.7)

3
Il

The above quantity coincides with

E[R; | Xo =il =Ly +[La = P)7'], ;.

where (I; — P)~! is the matrix inverse of I; — P, by analogy with (A.3). Finally, if

(m) is the only absorbing state, we can also write

E[T, | Xo=il=1+) E[R; | Xo=il=)_[(s— S R

Jm J#m

See [AKS93] for an application of this formula to the Snakes and Ladders game.

Exercises

Exercise 5.1 Consider a Markov chain (X,),cy With state space S = {0, 1, 2, 3}
and transition probabilities

P(X; =0 Xo=0) =1, P(X; =3|Xo=3) =1,
P(X;=0]Xo=1)=1/2, PX;=2|Xo=1) =1/2,
PX,=1]Xo=2)=1/3, P(X, =3 | Xo =2) =2/3.

(a) Draw the graph of the chain and write down its transition matrix.
(b) Compute o :=P(T3 < 00| Xo =1) and § :=P(T3 < 0o | X9 = 2), where

T; :=inf{n >0 : X, =3}.

(c) Letting
Tos :=inf{n >0 : X, =0o0r X, =3},
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compute E[Tp3 | Xo = 1] and E[Ty 3 | X9 = 2].
Exercise 5.2 Consider a Markov chain (X,),>o with state space S = {0, 1} and

transition matrix
0.4 0.6

P =
0.8 0.2

Compute the mean duration between two visits to state (1.

Exercise 5.3 Consider the Markov chain (X,,),>0 on S = {0, 1, 2} whose transition
probability matrix P is given by

P=[012010011/302/32010]‘

(a) Draw a graph of the chain and find the probability g (k) that the chain is absorbed
into state (0) given that it started from states k = 0, 1, 2.

(b) Determine the mean time (k) it takes until the chain is absorbed into state (0),
after starting fromk =0, 1, 2.

Exercise 5.4 Consider the Markov chain with the graph

0.1 0.6

0.3 @3 1

0.5 0.5

0.8 (5.4.8)

and let
T/ ==infln>1: X,

k}

denote the return time to state k =0, 1, 2, 3.

(a) Find the probabilities
pr2 =P(Ty < oo | Xo=k),

fork=0,1,2,3.
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(b) Find the probabilities
pr1 =PI <oo| Xy =k), k=0,1,2,3.

Exercise 5.5 Consider a Markov chain (X,),cy with state space S = {0, 1, 2, 3}
and transition probability matrix given by

1 0 0 0
03 0 07 0
[Pislozii=s=1| 0 03 0 07
0 0 0 1

(a) What are the absorbing states of the chain (X,,),en?

(b) Given that the chain starts at (D), find its probability of absorption gy (k) = P(Ty <
0o | Xo = k) into state @ fork =0, 1, 2, 3.

(c) Find the mean hitting times h; (k) = E[T; | Xy = k] of state (D starting from
state &), fork = 0, 1, 2, 3.

Exercise 5.6 Consider a random walk with Markov transition matrix given by

05 0 05 0

05 0 0 05
[Piilocis=]0505 0 0
00 0 1

Compute the average time it takes to reach state 3) given that the chain is started at

state (0).

Exercise 5.7 Consider the Markov chain (X,),>0 on {0, 1, 2, 3} whose transition
probability matrix P is given by

1 0 0 0
p_ |05 0050
0 05 0 05
00 0 1

(a) Draw the graph of this chain.

(b) Find the probability go(k) that the chain is absorbed into state (0) given that it
started from state k = 0, 1, 2, 3.

(c) Determine the mean time A (k) it takes until the chain hits an absorbing state,
after starting from k =0, 1, 2, 3.
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Exercise 5.8 Consider a  discrete-time  homogeneous  Markov  chain
(X1)nen on a state space S, and the first hitting time

Ty=inf{n >0 : Z, € A},

of asubset A C of S. Show that (X,,),cn has the strong Markov property with respect
to Ty, i.e. show that foralln,m > 0, j € S, and (i )ren C S we have

P(X7,4n = j | X7, =0, ..., Xo = ir, and Ty < +00) = P(X, = j | Xo = io).

Exercise 5.9 We consider the simple random walk (S,,),cn of Chap. 3.

(a) Using first step analysis, recover the formula (3.4.16) for the probability P(7y <
o0 | Sy = k) of hitting state (0) in finite time starting from any state &) > 0 when
q < p.

(b) Using first step analysis, recover the formula (3.4.18) giving the mean hitting
time E[Ty | Sy = k] of state (0) from any state (X)) > 0 when ¢ > p.

Exercise 5.10 A player tosses a fair six-sided die and records the number appearing
on the uppermost face. The die is then tossed again and the second result is added to
the first one. This procedure is repeated until the sum of all results becomes strictly
greater than 10. Compute the probability that the game finishes with a cumulative
sum equal to 13.

Exercise 5.11 A fish is put into the linear maze as shown, and its state at time #n is
denoted by X,, € {0, 1,...,5}:

I I I I I
© 0) ©) ® O) ®

shock | | | | | food

Starting from any state k € {1, 2, 3, 4}, the fish moves to the right with probability p
and to the left with probability g such that p + g = 1 and p € (0, 1). Consider the
hitting times

Ty =inf{n >0 : X, =0}, and 75 =inf{n >0 : X, =5},

and g(k) = P(Ts < Ty | Xo = k), k=0,1,...,5.

(a) Using first step analysis, write down the equation satisfied by g(k), k =0, 1,
..., 5, and give the values of g(0) and g(5).

(b) Assume that the fish is equally likely to move right or left at each step. Compute
the probability that starting from state () it finds the food before getting shocked,
fork=0,1,...,5.

Exercise 5.12 Starting from a state m > 1 at time k, the next state of a random
device at time k + 1 is uniformly distributed among {0, 1, ..., m — 1}, with © as
an absorbing state.
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(a) Model the time evolution of this system using a Markov chain whose transition
probability matrix will be given explicitly.

(b) Let hy(m) denote the mean time until the system reaches the state zero for the
first time after starting from state (7). Using first step analysis, write down the
equation satisfied by hg(m), m > 1 and give the values of /((0) and ho(1).

1
(¢) Show that ho(m) is given by ho(m) = ho(m — 1) + —, m > 1, and that
m

|

ho(m) =3+

k=1
for all m € N.

Exercise 5.13 An individual is placed in a castle tower having three exits. Exit A
leads to a tunnel that returns to the tower after three days of walk. Exit B leads to
a tunnel that returns to the tower after one day of walk. Exit C leads to the outside.
Since the inside of the tower is dark, each exit is chosen at random with probability
1/3. The individual decides to remain outside after exiting the tower, and you may
choose the number of steps it takes from Exit C to the outside of the tower, e.g. take
it equal to O for simplicity.

(a) Show that this problem can be modeled using a Markov chain (X,,),cn with four
states. Draw the graph of the chain (X,),en.

(b) Write down the transition matrix of the chain (X},),en.

(c) Starting from inside the tower, find the average time it takes to exit the tower.

Exercise 5.14 A mouse is trapped in a maze. Initially it has to choose one of two
directions. If it goes to the right, then it will wander around in the maze for three
minutes and will then return to its initial position. If it goes to the left, then with
probability 1/3 it will depart the maze after two minutes of travelling, and with
probability 2/3 it will return to its initial position after five minutes of travelling.
Assuming that the mouse is at all times equally likely to go to the left or to the right,
what is the expected number of minutes that it will remain trapped in the maze?

Exercise 5.15 This exercise is a particular case of (5.1.8). Consider the Markov
chain whose transition probability matrix P is given by

1 0 0 O
0.1 0.6 0.1 0.2
0.2 0.3 04 0.1
0 0 0 1

P=

(a) Find the probability that the chain finishes at (0) given that it was started at state

(b) Determine the mean time it takes until the chain reaches an absorbing state.
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Exercise 5.16 Consider the Markov chain on {0, 1, 2} with transition matrix

1/3 1/3 1/3
1/4 3/4 0
0 0 1

(a) Compute the probability P(T» < oo | X = 1) of hitting state (2) in finite time
starting from state (1), and the probability P(T{ < oo | Xg = 1) of returning to
state (D) in finite time.

(b) Compute the mean return time pi (1) = E[T] | Xo = 1] to state (D and the mean
hitting time ho(1) = E[T, | Xo = 1] of state Q) starting from state (D.

Exercise 5.17 Taking N:=1{0,1,2,...}, consider the random walk
(Zi)ken = (Xi, Yi)ren on N x N with the transition probabilities

PXyri=x+1, Y=y Xe=x, i =y)
=PXp1=x, i =y+ 1| X =x, Y =y)
1
=5
k >0, and let
A={(x,y) eNxN:x>2 y=>2}

Let also
Tp:=inf{n >0 : X, >2and Y, > 2}

denote the hitting time of the set A by the random walk (Z;)xen, and consider the
mean hitting times

palx,y) :=E[T4 | Xo=x, Yo=y], x,yeN
(a) Give the value of pa(x, y) whenx > 2 and y > 2.

(b) Show that p4(x, y) solves the equation

1 1
.UA(xa)’):1+§HA(X+L)’)+§MA(X’)’+1), xayEN' (549)

(c) Show that pa(1,2) = ua(2,1) =2 and pa(0,2) = pua(2,0) = 4.

(d) In each round of a game, a coin is thrown to two cans in such a way that each
can has exactly 50% chance to receive the coin. Compute the mean time it takes
until both cans contain at least $2.

Exercise 5.18 Let N:={0,1,2,...} and consider a random walk
(Zi)ren = (Xi, Yi)ren on N x N with the transition probabilities
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P((Xir1: Yig) = x4+ 1,y) | (Xe, o) = (x, y))

1
= P((Xer1, Yer) = (6, y + D | (Xi, Ya) = (x, ) = 5 y) eNxN,

k > 0, and let
A::{(x,y)eNxN : xZSoryZ?)}.

Let also
Ty:=inf{n >0 : (X, Y, € A}

denote the first hitting time of the set A by the random walk (Z;)ren = (Xk, Yi)keN,
and consider the mean hitting times

pax,y) ==E[Ty | (Xo, Yo) = (x, »)],  (x,y) e NxN.

(a) Give the values of p4(x, y) when (x, y) € A.

(b) By applying first step analysis, find an equation satisfied by g4 (x, y) for 0 <
x,y <3.

(c) Find the values of p4(x, y) for all x, y < 3 by solving the equation of part (b).

(d) Two players compete in a fair game in which only one of the two players will
earn $1 at each round. How many rounds does it take on average until the gain
of one of the players reaches $3, given that both of them started from zero?

Exercise 5.19 Let (X,),>0 be a Markov chain with state space S and transition
probability matrix (P;;); jes. Our goal is to compute the expected value of the infinite
discounted series

h@i) =E {Z Bc(Xn) | Xo = i:| . ies,
n=0

where § € (0, 1) is the discount coefficient and c¢(-) is a utility function, starting from
state (D). Show, by a first step analysis argument, that /(i) satisfies the equation

h(i) = c()+ B Pyh(j)

JjeS

for every state @ € S.

Exercise 5.20 Consider a Markov Decision Process (MDP) on a state space S, with
set of actions A and family (P?),ca of transition probability matrices

P:SxSxA—|[0,1],
(k,1,a) —> P,
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and a policy m : S — A giving the action chosen at every given state in S. By first
step analysis, derive the Bellman equation for the optimal value function

V*(k) = maxE |:Z Y'R(X,) | Xo = k] ;
n=0

where v € (0, 1) is a discount factor and R : S — R is a reward function.

Problem 5.21 Let (X,,),en be a Markov chainon {0, 1, ..., N}, N > 1, with tran-

sition matrix P = [ P ]O<i <N

(a) Consider the hitting times
To =inf{n >0 : X, =0}, Ty =inf{n >0 : X, = N},

and
gk)y=P(Ty < Ty | Xo =k), k=0,1,..., N.

What are the values of ¢(0) and g(N)?
(b) Show, using first step analysis, that the function g satisfies the relation

N
gty =>"Pug), k=1,....N—1. (5.4.10)
=0

(c) In this question and the following ones we consider the Wright-Fisher stochastic
model in population genetics, in which the state X, denotes the number of
individuals in the population at time 7, and

N\ [ kY K\
Pk,z=P<Xn+1=l|Xn=k>=(z)<ﬁ> (“N) ’

k,l=0,1,..., N. Write down the transition matrix P when N = 3.
(d) Show, from Question (b), that given that the solution to (5.4.10) is unique, we
have N —k
]P)(T0<TN|X0:]()=T, k:O,l,...,N.
(e) Let
Toy =inf{n >0 : X, =0o0r X, = N},

and
h(k) =E[To.n | Xo = k], k=0,1,...,N.

What are the values of £(0) and Z(N)?
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(f) Show, using first step analysis, Show, using first step analysis, that the function
h satisfies the relation

N
h(k):l—i-ZPk,lh(l), k=1,2,...,N—1.
=0

(g) Assuming that N = 3, compute

h(k) = E[Tos | Xo = k], k=0,1,2,3.

Problem 5.22 Consider a gambling process (X,),>0 onthestate space {0, 1, ..., N},
with transition probabilities

PX,p1=k+1|X,=k)=p, PX,u=k—-1|X,=k) =gq,
k=1,2,...,N—1,with p+qg = 1. Let
T:=inf{n>0: X, =0o0r X, = N}
denote the time until the process hits either state 0 or state N, and consider the

expectation
T—1
h(k) :=E [in Xo = kj| :
i=0

of the random sum Z X; of all chain values visited before the process hits 0 or N

O<i<t

after starting fromk =0,1,2,..., N.

(a) Give the values of 4(0) and A(N).?
(b) Show, by first step analysis, that (k) satisfies the equations

h(k)y =k + ph(k+ 1) + qh(k — 1), k=1,2,...,N—1. (5.4.11)
From now on we take p = g = 1/2.

(c) Find a particular solution of Eq.(5.4.11).
(d) Knowing that the solution of the homogeneous equation

1 1
f(k)=§f(k+l)+§f(k—l), k=1,2,...,N—1,

-1

SWe apply the convention Z = Z =0.
i=0  0<i<0
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takes the form f (k) = C| + Cyk, show that the expectation A (k) solution of
(5.4.11) is given by

N2 — &2
W) = k=———.  k=0,1....N.

(e) Compute A(1) when N = 2 and explain why this result makes pathwise sense.

(f) Suppose that you start a business with initial monthly income of $4K. Every
month the income you receive from that business may increase or decrease by
$1K with equal probabilities (1/2, 1/2). You decide to stop that business as soon
as your monthly income hits the levels 0 or $70K, whichever comes first.

(i) Compute the expected duration of your business (in number of months).®
(i) Compute your expected accumulated wealth until the month before you stop
your business.

(iii) Compute your expected accumulated wealth under the assumption that your
monthly income remains constant equal to $4 K over the same mean duration
as in Question (f-i) above.

(iv) Any comment?

SRecall that E[Ty v | Xo = k] =k(N —k),k=0,1,...,N.



Chapter 6 ®)
Classification of States Geda

In this chapter we present the notions of communicating, transient and recurrent
states, as well as the concept of irreducibility of a Markov chain. We also examine
the notions of positive and null recurrence, periodicity, and aperiodicity of such
chains. Those topics will be important when analysing the long-run behavior of
Markov chains in the next chapter.

6.1 Communicating States

Definition 6.1 A state (7) € S is to be accessible from another state @ € S, and we
write @ —> (), if there exists a finite integer n > 0 such that

[P"),j=P(X,=j|Xo=1) >0.

In other words, it is possible to travel from @ to () with non-zero probability in a
certain (random) number of steps. We also say that state @ leads to state (j), and
when i # j we have

P(T] < 00| Xo=i) = B(T] <n|Xo=0)2P(X, = | Xo=i)>0.

Remark 6.1 Since P =13 and [P°];; =P(Xo = j | Xo = i) = 1{i = j} the def-
inition of accessibility states implicitly that any state @ is always accessible from
itself (in zero time steps) even if P;; = 0.

In case @ —> (3) and () —> @ we say that @ and (j) communicate' and we
write @ <— ().

The binary relation “<—" is a called an equivalence relation as it satisfies the
following properties:

'In graph theory, one says that @ and @ are strongly connected.

© Springer Nature Singapore Pte Ltd. 2018 147
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(a) Reflexivity:
For alli € S we have ©® «— @.
(b) Symmetry:
Forall i, j € S we have that @ <— (J) is equivalent to (J) «— @.
(c) Transitivity:
For all i, j, k € S such that © <— (J) and () «— ®, we have ©® «— ®.

Proof 1t is clear that the relation <— is reflexive and symmetric. The proof of
transitivity can be stated as follows. If © — (J) and (j) —> &), there exists a > 1
and b > 1 such that

[P“];,; > 0, [P"]x > 0.

Next, by (4.1.2), for all n > a + b we have

P(X, =k | Xo = i)

[ee]

=Y PXy=k Xyp=1, Xa=m|Xo=1)
I,meS
o0
= Z IP)(}(n =k | Xn—b = I)P(Xn—b =1 | Xa = m)P(Xa =m | XO = l)
I,meS
>PX, =k | Xpp=)PXnp=J| Xa=)PXo=j|Xo=1)
=[P ; [P" "1, ;[P 1k (6.1.1)

> 0.
The conclusion follows by taking n = a + b, in which case we have
P(X, =k | Xo =1i) = [P*]; ;[P"]jx > 0.
O

The equivalence relation ‘<—" induces a partition of S into disjoint classes
A, Ar, ..., A, suchthat S = A, U---UA,,, and

(a) we have ® «— (P foralli, j € Ay, and
(b) we have @ </ (J) wheneveri € A, and j € A, with p # q.
The sets Ay, A, ..., A, are called the communicating classes of the chain.

Definition 6.2 A Markov chain whose state space is made of a unique communi-
cating class is said to be irreducible, otherwise the chain is said to be reducible.

The R package “markovchain” can be used to the irreducibility of a given chain.
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install.packages("markovchain")

library (markovchain)

statesNames <— c("0", "1")

mcA <— new("markovchain",

transitionMatrix = matrix(c(0.7,0.3,0.1,0.9),

byrow = TRUE, nrow = 2,dimnames = list(statesNames, statesNames)))
is.irreducible(mcA)

Clearly, all states in S communicate when (X,,),cn is irreducible. In case the ith
column of a transition matrix P vanishes, i.e. P,; =0, i € S, then state @ cannot
be reached from any other state and D becomes a communicating class on its own,
as is the case of state (1) in Exercise4.10 for n > 2, or in Exercise 7.12. The same is
true of absorbing states. However, having a returning loop with probability strictly
lower than one is not sufficient to turn a given state into a communicating class on
its own. Clearly, the existence of at least one absorbing state @ with P;; = 1 makes
a chain reducible.

Exercise: Find the communicating classes of the Markov chain with transition matrix
(5.4.8) for the equivalence relation “<«—".

0 0208 0
0.3 01 0 06
05 0 0 05

0 0 0 1

The above state space S = {0, 1, 2, 3} is partitioned into two communicating classes
which are {0, 1, 2} and {3}.

6.2 Recurrent States

Definition 6.3 A state @ € S is said to be recurrent if, starting from state @, the
chain will return to state (D within a finite (random) time, with probability 1, i.e.,

pii =PI <oo| Xg=1i)=P(X,=iforsomen>1]|Xyg=1i)=1. (6.2.1)
The next Proposition 6.4 uses the mean number of returns R; to state @ defined in
(5.4.2).

Proposition 6.4 For any state @ € S, the following statements are equivalent:

(i) the state © € S is recurrent, i.e. p;; = 1,
(ii) the number of returns to @ € S is a.s.” infinite, i.e.

Zalmost surely.
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PR, =00 | Xo=i)=1, ie. P(R; <00 | Xg=1)=0, (6.2.2)

(iii) the mean number of returns to © € S is infinite, i.e.
E[R; | Xo =i] =00, (6.2.3)

(iv) we have

o0
Z =1, (6.2.4)
n=1

where fl(:l) =PI/ =n| Xy =1i), n > 1, is the distribution of T/ .
Proof Part (i) follows by the definition (6.2.1) of recurrent states.

(i1) Relation (6.2.2) is equivalent to (6.2.1) by (5.4.3) and (5.4.4).
(>iii) Relation (6.2.3) is equivalent to (6.2.1) by (5.4.5).
(iv) Relation (6.2.4) is equivalent to (6.2.1) by (5.4.1).

O

For example, state () is recurrent for the random walk of Chap.3 when p = g = 1/2,
while it is not recurrent if p # g as by (3.4.14) we have

Ppo.o = P(Ty < 00) =2min(p, g). (6.2.5)
As a consequence of (6.2.3), we have the following result.

Corollary 6.5 A state i € S is recurrent if and only if

o0

Z[Pn]i,i = 00,
n=1

i.e. the above series diverges.

Proof Forall i, j € S, by (5.4.7) we have

E[R; | Xo=il=E [Z n{x,l:j}‘xo = i:| = Elly,-j | Xo =1]
n=1 n=1

o0 oo
=Y P(X,=j|Xo=i)=) [P}, (6.2.6)
n=1 n=1
as in (5.4.7). To conclude we let j = i and apply (6.2.3). ]

Corollary 6.5 admits the following consequence, which shows that any state com-
municating with a recurrent state is itself recurrent. In other words, recurrence is a
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class property, as all states in a given communicating class are recurrent as soon as
one of them is recurrent.

Corollary 6.6 Let (j) € S be a recurrent state. Then any state @ € S that commu-
nicates with state (J) is also recurrent.

Proof By definition, since @ —> (§) and () — @, there exists @ > 1 and b > 1
such that
[P“);; >0 [P"1;: > 0,

and from (6.1.1) applied with k =i we find

oo oo
Y IPi= ) P(Xy=i|Xo=1i)
n=a+b n=a+b
oo
b —a—b
> [PN [Pl Y PI°
n=a+b
o
= [P“1i,jLP")ji ) _LP"];,
n=0
= 0Q,

which shows that state @ is recurrent from Corollary 6.5 and the assumption that
state (7) is recurrent. O

A communicating class A C S is therefore recurrent if any of its states is recurrent.

6.3 Transient States

A state @ € S is said to be transient when it is not recurrent, i.e., by (6.2.1),
pii =PI <oo|Xog=i)=P(X,=iforsomen>1|Xo=1i) <1, (63.1)

or
P(T/ =oc0 | Xo=1i) > 0.

Proposition 6.7 For any state @ € S, the following statements are equivalent:

(i) the state © € S is transient, i.e. p;; < 1,
(ii) the number of returns to @ € S is a.s.? finite, i.e.

PR, =00 | Xo=i)=0, ie. P(R; <00 | Xo=1i) =1, 6.3.2)

3almost surely.
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(iii) the mean number of returns to @ € S is finite, i.e.
E[R; | Xg =i] < o0, (6.3.3)

(iv) we have

YA <1 (6.3.4)

where fl(:') =PI =n| Xo=1i), n>1, is the distribution of T;'.

Proof This is a direct consequence of Proposition 6.4 and the definition (6.3.1) of
transience. Regarding point (ii) and the Condition (6.3.2) we also note that the state
@ € S is transient if and only if

P(Ri =00 | Xo=1i) <1,
which, by (5.4.4) is equivalent to P(R; = oo | Xg = i) = 0. O
In other words, a state D € S is transient if and only if

P(R; <oo| Xo=1i) >0,
which by (5.4.3) is equivalent to

PR, <oco | Xo=1i)=1,

i.e. the number of returns to state i € S is finite with a non-zero probability which
is necessarily equal to one. As a consequence of Corollary 6.5 we also have the
following result.

Corollary 6.8 A state i € S is transient if and only if

o0
> [P"ii < o0,
n=1

i.e. the above series converges.

By Corollary 6.8 and the relation

YoIP =l =p7",,,  ies,

n=0

we find that a chain with finite state space is transient if the matrix I; — P isinvertible.
Clearly, any absorbing state is recurrent, and any state that leads to an absorbing
state is transient.
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In addition, if a state @ € S communicates with a transient state () then @ is
also transient (otherwise the state () would be recurrent by Corollary 6.6). In other
words, transience is a class property, as all states in a given communicating class are
transient as soon as one of them is transient.

Example
For the two-state Markov chain of Sect. 4.5, Relations (4.5.4) and (4.5.5) show that

o0, ifb >0,

[e.¢]

o0
" b+ a)\!
> P00 =) —bz= o0
o periiC e Y (1 —a)" < oo, ifb=0anda > 0,

n=1

hence state Q) is transient if » = 0 and @ > 0, and recurrent otherwise. Similarly we
have

00, ifa > 0,
(o) o0
a+ b\
PP =) =1 =
- i > (1 =b)" < o0, ifa=0andb > 0,

n=1
hence state (D is transient if « = 0 and » > 0, and recurrent otherwise.
The above results can be recovered by a simple first step analysis for g;(j) =
P(T; <oo| Xo=j),i,j€{0,1},ie.
90(0) = ago(1) +1—a
go(1) = b+ (1 —b)go(1)

9100) =10 -a)g1(0) +a

g1(1) =bg1(0) +1—b,

which shows that go(0) = 1if b > 0and g;(1) = 1l ifa > 0.
We close this section with the following result for Markov chains with finite state
space.

Theorem 6.9 Let (X,,),cn be a Markov chain with finite state space S. Then (X,,)neN
has at least one recurrent state.

Proof Recall that from (5.4.5) we have
nd PR
E[R; | Xo=i1= pij(1 = ppp) ) n(pi)"™" = ——.

~1—pj,

n=1
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for any states @, (7) € S. Assuming that the state (j) € Sis transient we have p; ; < 1
by (6.3.1), hence

oo
E[R; | Xo=i]= ) [P"];; < oo,
n=1

by (6.3.3) which implies* that
lim [P"];; =0
n—o0

for all transient states j € S. In case all states in S were transient, since S is finite,
by the law of total probability (4.2.2) we would have

0= X Jim(P"hs = fim S = fim 1=
jes jes

which is a contradiction. Hence not all states can be transient, and there exists at least
one recurrent state. O

Exercises:

(i) Find which states are transient and recurrent in the chain (5.4.8).

0 0208 0
03 01 0 06
05 0 0 0.5

0 0 0 1

State @ is clearly recurrent since we have 7y = 1 with probability one when
X = 3. State @) is transient because

4
1—P2,2=P(T2r=00|xo=2)=§ZP(Xl =3]Xy=2)=0.5>0,
(6.3.5)
and state (D) is transient because
P(T{ =00 | Xo=1)=08=>P(X;, =3]|Xo=1) =0.6, (6.3.6)

see the Exercise 5.4 for the computations of

pia=P(T <o0|Xo=2)=0.38

(o]
4For any sequence (a,),>0 of nonnegative real numbers, Z a, < oo implies lim,_, o a, = 0.
n=0



6.3

(i)

Transient States 155

and 3
p2’2=P(T{ <OO|X()=2)=§.

By Corollary 6.6, the states @ and (D are transient because they communicate
with state Q.

Which are the recurrent states in the simple random walk (S,,),en of Chap. 3 on
S =277

First, we note that this random walk is irreducible as all states communicate
when p € (0, 1). The simple random walk (S,,),cny on S = Z has the transition
matrix

Pi,i+l =p, Pi,i—l =q = 1- D, i €.

We have
[P'ii =P(S,=i|So=1)=P(S, =015 =0),

with
2n
P(Sy, = 0) = ( ) Pt and  P(Se =0)=0, neN,
n

Hence

Y IP oo =) P(S,=0]S=0)=) P(S =0]5=0)
n=0 n=0

n=0

00
_ (2}1) " — H(1) = 1

n=»

and

o0
1
E[Ry | So =0] = P(S,=0]S=0)=———1,
[Ro | So ];( S0 =0) = ——=ms
where H (s) is defined in (3.4.8).
Consequently, by Corollary 6.5, all states @ € Z are recurrent when p = g =
1/2, whereas by Corollary 6.8 they are all transient when p # ¢q, cf. Corol-
lary 6.6.
Alternatively we could reach the same conclusion by directly using (3.4.14) and
(6.2.1) which state that

P(T/ < o0 | Xo = i) = 2min(p. ).
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6.4 Positive Versus Null Recurrence

The expected time of return (or mean recurrence time) to a state © € S is given by
pi (i) - = E[T] | Xo = i]

o0
:ZnIP’(Tl-’:n|X0:i)

n=1
oo

(n)

=2 nfil-
n=1

Recall that when state @ is recurrent we have P(T] < oo | Xo =i) = 1, i.e. the
random return time 7" is almost surely finite starting from state @, nevertheless this
yields no information on the finiteness of its expectation y; (i) = IE[T] | Xo = i],
cf. the example (1.6.5).

Definition 6.10 A recurrent state i € S is said to be:

(a) positive recurrent if the mean return time to @ is finite, i.e.
pii) = E[T] | Xo = i] < oo,

(b) null recurrent if the mean return time to @ is infinite, i.e.
i) = E[T] | Xo = i] = oo.

Exercise: Which states are positive/null recurrent in the simple random walk (S,,),en
of Chap.3on S = 7Z?

From (3.4.20) and (3.4.17) we know that IE[T] | Sp = i] = oo for all values of
p € (0, 1), hence all states of the random walk on Z are null recurrent when
p = 1/2, while all states are transient when p 7 1/2 due to (3.4.14).

The following Theorem 6.11 shows in particular that a Markov chain with finite state
space cannot have any null recurrent state, cf. e.g. Corollary 2.3 in [Kij97], and also
Corollary 3.7 in [AsmO03].

Theorem 6.11 Assume that the state space S of a Markov chain (X,),en is finite.
Then all recurrent states in S are also positive recurrent.

As a consequence of Definition 6.2, Corollary 6.6, and Theorems 6.9 and 6.11 we
have the following corollary.

Corollary 6.12 Let (X,),en be an irreducible Markov chain with finite state space
S. Then all states of (X,)neN are positive recurrent.
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6.5 Periodicity and Aperiodicity

Given a state i € S, consider the sequence
{n>1:[P"]; >0}

of integers which represent the possible travel times from state @ to itself.

Definition 6.13 The period of the state i € S is the greatest common divisor of the
sequence
n>1": [Pn],"i > 0}.

A state having period 1 is said to be aperiodic, which is the case in particular if
P;; > 0, 1i.e. when a state admits a returning loop with nonzero probability.

In particular, any absorbing state is both aperiodic and recurrent. A recurrent state
i € Sissaid to be ergodic if it is both positive recurrent and aperiodic.

If [P"];; =0forall n > 1 then the set {n > 1 : [P"];; > 0} is empty and by
convention the period of state D is defined to be 0. In this case, state @ is also
transient.

Note also that if

{n>1:[P"];; >0}

contains two distinct numbers that are relatively prime to each other (i.e. their greatest
common divisor is 1) then state @ aperiodic.

Proposition 6.14 shows that periodicity is a class property, as all states in a given
communicating class have same periodicity.

Proposition 6.14 All states that belong to a same communicating class have the
same period.

Proof Assume that state @ has period d;, that (j) communicates with @, and let
ne{m=>1: [P"];; > 0}. Since @ and (j) communicate, there exists &k, > 1
such that [P¥]; ; > 0 and [P'];; > 0, hence by (6.1.1) we have [ P**'];; > 0 hence
k + [ is a multiple of d;. Similarly by (6.1.1) we also have [P”*k”]i,i > 0, hence
n + k + [ and n are multiples of d;, which implies d; > d;. Exchanging the roles of
@ and (j) we obtain similarly that d; > d;. O

A Markov chain is said to be aperiodic when all of its states are aperiodic. Note
that any state that communicates with an aperiodic state becomes itself aperiodic. In
particular, if a communicating class contains an aperiodic state then the whole class
becomes aperiodic.
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Examples

(i) The chain

clearly has periodicity equal to 4.
(ii) Consider the following chain:

b

m>1:[P"%0>0}=1{2468,10,...},
(n>1: [P, >0}=1{24,6810,...},
(n>1: [P, >0}=1{4638,1012,...},
(n>1: [P35 >0} =1{4,68,10,12,...},

Here we have

hence all states have period 2, and this is also consequence of Proposition 6.14.
(iii)) Consider the following chain:

1
1 1
0.5
5

0

(6.5.1)
Here we have

(n=1:[P"0>0}={4,5,67,...},
{n>1:[P"11>01={4,5,6,7,...},
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1 :[P'hy,>0}=1{4,506,7,...},
1:[P"]53>0}=1{4,56,7,...},

{n=
>

{n

hence all states have period 1, see also Proposition 6.14.
(iv) Next, consider the modification of (6.5.1):

Here the chain is aperiodic since we have

(n>1:[P"oo>0}=1{23,4,567..1}
(n>1: [P, >0}=1(234567..1
(n>1:[P"hs>0}=1{3,4,50678,...1,
(n>1:[P"3>0}=1{4,6728,9,10,...},

hence all states have period 1.
Exercises:

(i) Whatis the periodicity of the simple random walk (S},), e of Chap.3onS = Z?

By (3.3.3) We have
2n 2n n_n 2n+1
[P = I L 0 and [P""'];; =0, neN,

hence
{n>1:[P"];; >0}={2,4,6,8,...},

and the chain has period 2.
(i1) Find the periodicity of the chain (5.4.8).
0 0208 0
03 01 0 06
05 0 0 05
0 0 0 1

0.8

States @, D, @ and Q) have period 1, hence the chain is aperiodic.
(iii) The chain of Fig.4.1 is aperiodic since it is irreducible and state 3) has a
returning loop.
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Exercises

Exercise 6.1 Consider a Markov chain (X,,),>0 on the state space {0, 1, 2, 3}, with
transition matrix

1/3 1/3 1/3 0
0 0 0 1
0 1 00
0 0 1 0

(a) Draw the graph of this chain and find its communicating classes. Is this Markov
chain reducible? Why?

(b) Find the periods of states @, @D, @, and 3.

(c) Compute P(Ty < 00| Xo=0), P(Th =00 | X9 =0), and P(Ry < 00 | Xg =
0).

(d) Which state(s) is (are) absorbing, recurrent, and transient?

Exercise 6.2 Consider the Markov chain on {0, 1, 2} with transition matrix

1/3 1/3 1/3
1/4 3/4 0
0 0 I

(a) Is the chain irreducible? Give its communicating classes.
(b) Which states are absorbing, transient, recurrent, positive recurrent?
(c) Find the period of every state.

Exercise 6.3 Consider a Markov chain (X,,),>¢ on the state space {0, 1, 2, 3, 4},
with transition matrix
01/4 1/4 1/4 1/4
1 0 0 0 O
01 0 0 O
00 1 0 O
00 O O

—_—

(a) Draw the graph of this chain.

(b) Find the periods of states @, @D, @, and 3.

(c) Which state(s) is (are) absorbing, recurrent, and transient?
(d) Is the Markov chain reducible? Why?

Exercise 6.4 Consider the Markov chain with transition matrix

1/2 0 1/400 1/4

1/3 1/3 1/3 00 0
[P~] _ 0 0 0 01 O
tJ 10<i,j<5 1/6 1/2 1/6 0 0 1/6
0 O 00 O
00 1

1
0 0 0
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(a) Is the chain reducible? If yes, find its communicating classes.
(b) Determine the transient and recurrent states of the chain.
(c) Find the period of each state.

Exercise 6.5 Consider the Markov chain with transition matrix

08 0 02 O
0 0 1 O
1 0 0 O

0304 0 03

(a) Is the chain irreducible? If not, give its communicating classes.
(b) Find the period of each state. Which states are absorbing, transient, recurrent,
positive recurrent?

Exercise 6.6 In the following chain, find:

(a) the communicating class(es),
(b) the transient state(s),

(c) the recurrent state(s),

(d) the positive recurrent state(s),
(e) the period of every state.

Exercise 6.7 Consider two boxes containing a total of N balls. At each unit of time
one ball is chosen randomly among N and moved to the other box.

(a) Write down the transition matrix of the Markov chain (X, ),cn With state space
{0, 1,2, ..., N}, representing the number of balls in the first box.
(b) Determine the periodicity, transience and recurrence of the Markov chain.

Exercise 6.8

(a) Is the Markov chain of Exercise4.10-(a) recurrent? positive recurrent?
(b) Find the periodicity of every state.
(c) Same questions for the success runs Markov chain of Exercise 4.10-(b).

Problem 6.9 Let o > 0 and consider the Markov chain with state space N and
transition matrix given by
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p 1 p o o

| = ——— P = , i>1.

ii—1 o 1 ii+1 a+t1

and a reflecting barrier at 0, such that Py ; = 1. Compute the mean return times

E[T] | Xo = k] for k € N, and show that the chain is positive recurrent if and only
ifa < 1.



Chapter 7
Long-Run Behavior of Markov Chains i

This chapter is concerned with the large time behavior of Markov chains, including
the computation of their limiting and stationary distributions. Here the notions of
recurrence, transience, and classification of states introduced in the previous chapter
play a major role.

7.1 Limiting Distributions

Definition 7.1 A Markov chain (X,),cy is said to admit a limiting probability
distribution if the following conditions are satisfied:

(i) the limits
lim P(X,, =j | Xo=1) (7.1.1)
n—oo
exist for all i, j € S, and
(ii) they form a probability distribution on S, i.e.

E lim P(X, =j| Xo=1i)=1, (7.1.2)
jES n—oo
foralli € S.

Note that Condition (7.1.2) is always satisfied if the limits (7.1.1) exist and the state
space S is finite.

Asremarkedin (4.5.6) and (4.5.7) above, the two-state Markov chain has a limiting
distribution given by

oy 1] = | ——, (7.1.3)
o, 1] = a~|—b’a—|—b s .
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provided that (a, b) # (0,0) and (a, b) # (1, 1), while the corresponding mean
return times are given from (5.3.3) by

b
(10(0), 11 (1)) = (1 + % 1+ —) ,
a

i.e. the limiting probabilities are given by the inverses

[7ro7r1]=[ b _a ]:[ ! 1 }:[ 111 (0) Lo (1) }
S Letbtatb ] L@ 1 Lo +m©) po) +m©@ I

This fact is not a simple coincidence, and it is actually a consequence of the following
more general result, which shows that the longer it takes on average to return to a
state, the smaller the probability is to find the chain in that state. Recall that a chain
(Xn)nen 1s said to be recurrent, resp. aperiodic, if all its states are recurrent, resp.
aperiodic.

Theorem 7.2 (Theorem IV.4.1 in [KT81]) Consider a Markov chain (X,),cN sat-
isfying the following 3 conditions:

(i) recurrence,
(ii) aperiodicity, and
(iii) irreducibility.

Then we have

lim P(X, = j | Xo=i) = . i,jeSs, (7.1.4)
n—oo

1
1 (J)
independently of the initial state i € S, where

1 () = E[T? | Xo = j] € [1, 00]
is the mean return time to state (j) € S.

In Theorem 7.2, Condition (i), resp. Condition (ii), is satisfied from Proposition 6.14,
resp. from Proposition 6.6, provided that at least one state is aperiodic, resp. recurrent,
since the chain is irreducible.

The conditions stated in Theorem 7.2 are sufficient, but they are not all necessary.
For example, a Markov chain may admit a limiting distribution when the recurrence
and irreducibility Conditions (i) and (iii) above are not satisfied.

Note that the limiting probability (7.1.4) is independent of the initial state @, and
it vanishes whenever the state @ is transient or null recurrent, cf. Proposition 7.4
below. In the case of the two-state Markov chain this result in consistent with (4.5.6),
(4.5.7), and (7.1.3). However it does not apply to e.g. the simple random walk of
Chap. 3 which is not recurrent when p # g from (6.2.5), and has period 2.
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For an aperiodic chain with finite state space, we can show that the limit
lim,_ P(X,, =i | Xo = j) exists for all i, j € S by breaking the chain into com-
municating classes, however it may depend on the initial state (7). This however does
not apply to the random walk of Chap. 3 which is not aperiodic and has an infinite
state space, although it can be turned into an aperiodic chain by allowing a draw as
in Exercise 2.1.

The following sufficient condition is a consequence of Theorem I'V.1.1 in [KT81].

Proposition 7.3 Consider a Markov chain (X,),en with finite state space
S ={0,1,..., N}, whose transition matrix P is regular, i.e. there exists n > 1 such
that all entries of the power matrix P" are non-zero. Then (X,),en admits a limiting

probability distribution m = (7;)i=o.1... N given by
7= lim P(X,=j|Xo=i), 0<i j<N, (7.1.5)

A chain with finite state space is regular if it is aperiodic and irreducible, cf.
Proposition 1.7 of [LPWO09].

We close this section with the following proposition, whose proof uses an argu-
ment similar to that of Theorem 6.9.

Proposition 7.4 Let (X,),en be a Markov chain with a transient state (7) € S. Then
we have

lim P(X,, =j| Xo=1i)=0,

n— o0

forall® € S.

Proof Since (§) is a transient state, the probability p;; of return to (7) in finite time
satisfies p;; < 1 by definition, hence by Relation (5.4.5) p. 133, the expected number
of returns to () starting from state (7) is finite':

E[R; | Xo=i]=E [Z ]l{xn=j}‘X0 = l}
n=1
o0
= E[lix-j | Xo=1]
n=1

(&)
=D PX,=j|Xo=1)
n=I
= P e
1—pjj

I'The exchange of infinite sums and expectation is valid in particular for nonnegative series.
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The convergence of the above series implies the convergence to 0 of its general
term, i.e.

lim P(X,, =j| Xo=1i)=0

n—0o0

for all © € S, which is the expected conclusion. ([

7.2 Stationary Distributions

Definition 7.5 A probability distribution on S is any a family m = (71;);cs in [0, 1]
such that

Z’]T i = 1.

i€S
Next, we state the definition of stationary distribution.

Definition 7.6 A probability distribution w on S is said to be stationary if, starting
Xy at time O with the distribution (7;);cs, it turns out that the distribution of X is
still (71;);es at time 1.
In other words, (7;);cs is stationary for the Markov chain with transition matrix P
if, letting

P(Xo =i) := m, i €8S,

at time 0, implies
PX)=i)=P(Xo=i)=m, i€S,

at time 1. This also means that

T =PXi=j)=) P(X;=j|Xo=i)P(Xo=i)=) mPi je€S,
ieS ieS

i.e. the distribution 7 is stationary if and only if the vector 7 is invariant (or stationary)
by the matrix P, that means
T =mnP. (7.2.1)

Note that in contrast with (5.1.3), the multiplication by P in (7.2.1) is on the right
hand side and not on the left. The relation (7.2.1) can be rewritten as the balance

condition
ZWiPi.k = Tk =7TkZPk,j =Z7TkPk,j, (7.2.2)
ieS = JjEeS

which can be illustrated as follows (Fig.7.1):
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UE

Py,;
ik
Ur

Fig. 7.1 Global balance condition (discrete time)

We also note that the stationarity and limiting properties of distributions are quite
different concepts. If the chain is started in the stationary distribution then it will
remain in that distribution at any subsequent time step (which is stronger than saying
that the chain will reach that distribution after an infinite number of time steps). On the
other hand, in order to reach the limiting distribution the chain can be started from any
given initial distribution or even from any fixed given state, and it will converge to the
limiting distribution if it exists. Nevertheless, the limiting and stationary distribution
may coincide in some situations as in Theorem 7.8 below.

More generally, assuming that X,, has the invariant (or stationary) distribution 7
attime n,ie. P(X, =i) =m,i € S, we have

P(Xpi1=j) =Y P(Xpy1=j | Xy = )P(X, = 1)

ieS
= Zf’i,jP(Xn =i)= ZPi,ﬂTi
ieS ieS

=[nPlj=m;, jES,
since the transition matrix of (X,),cn is time homogeneous, hence
PX,=j)=m;, jeS, = PXup=j=m;, jeS.
By induction on n > 0, this yields
P(X, =j)=mj, jeS, n>1,

i.e. the chain (X,,),<n remains in the same distribution 7 at all times n > 1, provided
that it has been started with the stationary distribution 7 at time n = 0.
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Proposition 7.7 Assume that S = {0, 1, ..., N} is finite and that the limiting dis-
tribution (7.1.5) _
m = lim P(X, = j | Xo=1)

n—0o0

exists foralli, j € S, i.e. we have

©0) (0) 0)
71-(()1) Tr%l) 7r](\1)
. Ty Ty ot Ty
lim P" =
n—o0 . .
(N) _(N) (N)
7'['0 ﬂ'] PR ﬂ'N
Then for everyi =0, 1, ..., N, the vector 7@ = (ﬂ';-i))je{()’] ,,,,, Ny IS a stationary
distribution and we have
70 =70 p, (7.2.3)
i.e. ™9 is invariant (or stationary) by P,i =0,1,..., N.

Proof We have

71'50 : = lim P(Xn =j | XO = l)
n—oo

= lim P(X,41 = j | Xo=1)
n—oo

= lim Y PXup1 =j | Xy = DP(X, =1| Xo =1)

n—oo IGS
= lim Z PP(X, =1|Xog=1i)
leS
=> P lim P(X, =1 Xo=1)
n—0oQ
leS
=y m'P, i,jeS
—_— 1 l,]’ l9 .] € ’
leS

where we exchanged limit and summation because the state space S is assumed to
be finite, which shows that
7@ — 7.‘.(l)p’

i.e. (7.2.3) holds and 7® is a stationary distribution,i =0, 1,..., N. O
Proposition 7.7 can be applied in particular when the limiting distribution 7; :=
lim,, o P(X, = j | Xo = i) does not depend on the initial state @, i.e.
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71'0 7'['1 ... ﬂ-N
7T0 7'['1 .« .. 7TN
lim P" =
n—oo
7T0 7'['1 “ .. ﬂ'N

For example, the limiting distribution (7.1.3) of the two-state Markov chain is also
an invariant distribution, i.e. it satisfies (7.2.1). In particular we have the following
result.

Theorem 7.8 (Theorem IV.4.2 in [KT81]) Assume that the Markov chain (X,,),en
satisfies the following 3 conditions:

(i) positive recurrence,
(ii) aperiodicity, and
(iii) irreducibility.

Then the chain (X,)nen admits a limiting distribution

m o= lim P(X, =i | Xo = j) = lim [P"];; = . i,jeS,
n—oo

1
nooe o)
which also forms a stationary distribution (7;)ics = (1/14;(i))ies, uniquely deter-
mined by the equation
m=maP.

In Theorem 7.8 above, Condition (ii), is satisfied from Proposition 6.14, provided
that at least one state is aperiodic, since the chain is irreducible.

See Exercise 7.21 for an application of Theorem 7.8 on an infinite state space.

In the following trivial example of a finite circular chain, Theorems 7.2 and 7.8
cannot be applied since the chain is not aperiodic, and it clearly does not admit a lim-
iting distribution. However, Theorem 7.10 below applies and the chain admits a sta-
tionary distribution: one can easily check that (k) =n and 7, = 1/n = 1/ (k),
k=1,2,...,n,withn =17.

~

Il
== el
OO0 O OO
[=Neloolel -l
[eNeNeNell NoeNel
[eNeN-N o NN
[Nl N oNoNeNe)
(=3 N eNoNeNeNe)

(7.2.4)

In view of Theorem 6.11, we have the following corollary of Theorem 7.8:
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Corollary 7.9 Consider an irreducible aperiodic Markov chain with finite state
space. Then the limiting probabilities

1
mo=lim P(X,, =i | Xo=j)= ——
n—o0 [

—, i,jeSs,
i (0)

exist and form a stationary distribution which is uniquely determined by the equation
m=mP.

Corollary 7.9 can also be applied separately to derive a stationary distribution on
each closed component of a reducible chain.

The convergence of the two-state chain to its stationary distribution has been
illustrated in Fig.4.4. Before proceeding further we make some comments on the
assumptions of Theorems 7.2 and 7.8.

Remarks

e Irreducibility.
The irreducibility assumption on the chain in Theorems 7.2 and 7.8 is truly required
in general, as a reducible chain may have a limiting distribution that depends on
the initial state as in the following trivial example on the state space {0, 1, 2}:

& & o

1

in which the chain is aperiodic and positive recurrent, but not irreducible. Note that
the sub-chain {1, 2} admits [7, m,] = [1/1.6,0.6/1.6] as stationary and limiting
distribution, however any vector of the form (1 — «, amy, am,) is also a stationary
distribution on S = {0, 1, 2} for any « € [0, 1], showing the non uniqueness of the
stationary distribution.
More generally, in case the chain is not irreducible we can split it into subchains
and consider the subproblems separately. For example, when the state space S
is a finite set it admits at least one communicating class A C S that leads to no
other class, and admits a stationary distribution 74 by Corollary 7.11 since it is
irreducible, hence a chain with finite state space S admits at least one stationary
distribution of the form (0, 0, ..., 0, m4).
Similarly, the constant two-state Markov chain with transition matrix P = [; is
reducible, it admits an infinity of stationary distributions, and a limiting distribu-
tion which is dependent on the initial state.

e Aperiodicity.
The conclusions of Theorems 7.2, 7.8 and Corollary 7.9 ensure the existence of the
limiting distribution by requiring the aperiodicity of the Markov chain. Indeed, the
limiting distribution may not exist when the chain is not aperiodic. For example,
the two-state Markov chain with transition matrix
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01
e=[10]
is not aperiodic (both states have period 2) and it has no limiting distribution
because?

P(X,, =1 | Xp) =1 and ]:P)(in+1 =1 | Xp) =0, n € N.

The chain does have an invariant (or stationary) distribution 7 solution of 7 = 7w P,

and given by
11
T = [m, m] = |:E’ 5]

e Positive recurrence.
Theorems 7.8 and 7.10 below, and Corollary 7.9 do not apply to the unrestricted
random walk (S,,),cn of Chap. 3, because this chain is not positive recurrent, cf.
Relations (3.4.20) and (3.4.17), and admits no stationary distribution.
If a stationary distribution m = (7;);cz existed it would satisfy the equation 7 =
7 P which, according to (4.3.1), would read

T = pmi1+qTiy1, i €7,

i.e.
(p+q@)m = pri-1 +qmip1, I €L,

or »
iy —7Ti=;(77i—7fi—|), i €.

As in the direct solution method of p. 48, this implies
Tigl — T = <£> (m —m), €N,
q

so that by a telescoping summation argument we have

k=1
M=o+ Y _(Wip1 — )
i=0
LN
i3 (2)
iz \4
1— k
= o+ (my — )P e,
1—p/q

2This two-state chain is a particular case of the circular chain (7.2.4) for n = 2.
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which cannot satisfy the condition Z my =1, with p #2g. When p=¢q =1/2

. . . kGZ
we similarly obtain

k—1

7Tk:7T0+Z(7Ti+1_7Ti):7TO+k(7T1_71'0)7 kelZ,
i—0

and in this case as well, the sequence (7 )cn cannot satisfy the condition Z T =

keZ
1, and we conclude that the chain does not admit a stationary distribution. Hence

the stationary distribution of a Markov chain may not exist at all.
In addition, it follows from (3.3.3) and the Stirling approximation formula that

2n)!
lim P(S,, =2k | Sp =0) = lim L ntk n—k
n—00 n—oo (n 4+ k)!(n — k)!
. 2n)!
lim

n—o0 22np 12

IA

1
= lim =0, kENa

n—o0o /Tn

so that the limiting distribution does not exist as well. Here, Theorem 7.2 cannot be
applied because the chain is not aperiodic (it has period 2), however aperiodicity
and irreducibility are not sufficient in general when the state space is infinite, cf.
e.g. the model of Exercise 2.1.

The following theorem gives sufficient conditions for the existence of a stationary
distribution, without requiring aperiodicity or finiteness of the state space. As noted
above, the limiting distribution may not exist in this case.

Theorem 7.10 ([BN96], Theorem4.1) Consider a Markov chain (X,,),cn Satisfying
the following two conditions:

(i) positive recurrence, and
(ii) irreducibility.
Then the probabilities
1

= i ES,
i (0)

T

form a stationary distribution which is uniquely determined by the equation m = 7 P.

Note that the conditions stated in Theorem 7.10 are sufficient, but they are not all
necessary. For example, Condition (i7) is not necessary as the trivial constant chain,
whose transition matrix P = Iy is reducible, does admit a stationary distribution.

Note that the positive recurrence assumption in Theorem 7.2 is required in general
on infinite state spaces. For example, the process in Exercise 7.21 is positive recurrent
for o < 1 only, whereas no stationary distribution exists when o > 1.


https://doi.org/10.1007/978-981-13-0659-4_3
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As a consequence of Corollary 6.12 we have the following corollary of
Theorem 7.10, which does not require aperiodicity for the stationary distribution
to exist.

Corollary 7.11 ([BN96]) Let (X,)nen be an irreducible Markov chain with finite
state space S. Then the probabilities

1

T = ——, kes,
T )

form a stationary distribution which is uniquely determined by the equation
m=mP.

According to Corollary 7.11, the limiting distribution and stationary distribution both
exist (and coincide) when the chain is irreducible aperiodic with finite state space,
and in this case we have m; > 0 for all k € S by Corollaries 6.12 and 7.11. When the
chain is irreducible it is usually easier to compute the stationary distribution, which
will give us the limiting distribution.

Under the assumptions of Theorem 7.8, if the stationary and limiting distributions
both exist then they are equal and in this case we only need to compute one of them.
However, in some situations only the stationary distribution might exist. According
to Corollary 7.11 above the stationary distribution always exists when the chain is
irreducible with finite state space, nevertheless the limiting distribution may not exist
if the chain is not aperiodic, consider for example the two-state switching chain with
a=b=1.

Finding a Limiting Distribution
In summary:

e We usually attempt first to compute the stationary distribution whenever possible,
and this also gives the limiting distribution when it exists. For this, we first check
whether the chain is positive recurrent, aperiodic and irreducible, in which case the
limiting distribution can be found by solving m = 7 P according to Theorem 7.8.

e In case the above properties are not satisfied we need to compute the limiting
distribution by taking the limit lim,_, ., P" of the powers P" of the transition
matrix, if possible by decomposing the state space in communicating classes as
in e.g. Exercise 7.11. This can turn out to be much more complicated and done
only in special cases. If the chain has period d > 2 we may need to investigate the
limits lim,,_, o, P instead, see e.g. Exercise 7.3 and (7.2.5)—(7.2.6) below.

To further summarize, we note that by Theorem 7.2 we have

(a) irreducible 4 recurrent + aperiodic = existence of a limiting distribution, by
Theorem 7.8 we get


https://doi.org/10.1007/978-981-13-0659-4_6
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(b) irreducible + positive recurrent + aperiodic = existence of a limiting distri-
bution which is also stationary, and by Theorem 7.10 we get
(c) irreducible + positive recurrent = existence of a stationary distribution.

In addition, the limiting or stationary distribution m = (7;);cs satisfies

1
T = i €8,

TO)
in all above cases (a), (b) and (c).

The Ergodic Theorem

The Ergodic Theorem, cf. e.g. Theorem 1.10.2 of [Nor98] states the following.
Theorem 7.12 Assume that the chain (X,,),en is irreducible. Then the sample aver-

age time spent at to state © converges almost surely to 1/p; (i), i.e.

1 1
lim — lix,—y = ——, i€S.
n—ce 1 ; STI0)
In case (X,,)nen 1s also positive recurrent, Theorem 7.10 shows that we also have

n

im =S Ly =m, i
Am ; (Xy=i) =T, 1 €S,

where (7;);cs is the stationary distribution of (X,),cn. We refer to Fig. 4.4 for an
illustration of convergence in the setting of the Ergodic Theorem 7.12.

Example. Consider the maze random walk (5.3.7) with transition matrix

"0 1 0 0 0 0 0 0 O
120 120 0 0 0 0 0
0120 0 0 1/2 0 0 0
00 00 0 0 1 0 0

P=|0 0 0 0 0 1/2 0 1/2 0

0 0 1/2 0 120 0 0 0

0 0 0 120 0 0 1/2 0

0 0 0 0 1/30 1/3 0 1/3
00 0 00 0 0 1 0 |
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The equation m = 7 P yields

1
7T1:§7T2
1
7T2=771+E7T3 ™ =§7T2
1 1 —
T = 57'('2 + 5776 T =3
1 T3 = Te
T4 = 27'('7 !
T4 = T3
= ! + ! hence 2
7T5—27T(, 37T'g ! !
~T7 = ;T8
1 +1
Te = T3 —T5
2 2 Mg = s
1
7T7=7T4+§7T8 e = 7
1
Ty = §7T5 + §7T7 + 79 T9 = 571'8,
1
T = —Tg,
9 3 8
and
l=m+m+m+ 7+ 75+ 76 + 77+ T3 + o
= +2m + 27 + 7 + 2w 4+ 2w + 27 + 31 + 1y
:1671'1,
hence
_ 1 _ 2 _ 2 _ 1
H T T A TR T
_ 2 _ 2 _ 2 _ 3 _ 1
T T A T A TR T

cf. Figs. 7.3 and 7.2, and we check that since p; (1) = 16 by (5.3.8), we indeed have

1 1

= =—,
pi(l) 16

according to Corollary 7.11.
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0.2

o 1 2 3 4 5 6 7 8 9

Fig. 7.3 Stationary distribution by state numbering

.191
0 =3
Time X | X | Data

0| Oj~0 |0.055
Y BT |0.115
2 2 |2 j0.122
3 1] |3 0.068
A 2 |4 1128
S 5| IS .126
6 4 |6 132
7 5 7 L1891
8| 4 |18 0.063
9 B hd

Fig. 7.4 Simulated stationary distribution

The stationary probability distribution of Figs. 7.3 and 7.2 can be compared to
the proportions of time spent at each state simulated in Fig. 7.4.

Note that this chain has period 2 and the matrix powers (P"),cn do not converge
as n tends to infinity, i.e. it does not admit a limiting distribution. In fact, using the
following Matlab/Octave commands:


https://doi.org/10.1007/978-981-13-0659-4_5
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P =10,1,0,0,0,0,0,0,0;
1/2,0,1/2,0,0,0,0,0,0;
0,1/2,0,0,0,1/2,0,0,0;
0,0,0,0,0,0,1,0,0;
0,0,0,0,0,1/2,0,1/2,0;
0,0,1/2,0,1/2,0,0,0,0;
0,0,0,1/2,0,0,0,1/2,0;
0,0,0,0,1/3,0,1/3,0,1/3;
0,0,0,0,0,0,0,1,0]
mpower(P,1000)
mpower(P,1001)

we see that

[1/8 0 1/4 0 1/4 0 1/4 0 1/87]
0 1/4 0 1/8 0 1/4 0 3/8 0
18 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0

lim P =|1/8 0 1/4 0 1/4 0 1/4 0 1/8 ], (7.2.5)

e 0 1/4 0 1/8 0 1/4 0 3/8 0
18 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0

| 1/8 0 1/4 0 1/4 0 1/4 0 1/8

and

0 1/4 0 1/8 0 1/4 0 3/8 0
1/8 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0
1/8 0 1/4 0 1/4 0 1/4 0 1/8
lim P*'=1| 0 1/4 0 1/8 0 1/4 0 3/8 0 |, (7.2.6)
e 1/8 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0
1/8 0 1/4 0 1/4 0 1/4 0 1/8
| 0 1/4 0 1/8 0 1/4 0 3/8 0

which shows that, although (P"),>; admits two converging subsequences, lim,_, o
P does not exist, therefore the chain does not admit a limiting distribution.
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7.3 Markov Chain Monte Carlo

The goal of the Markov Chain Monte Carlo (MCMC) method, or Metropolis algo-
rithm, is to generate random samples according to a target distribution 7 = (7;);cs
via a Markov chain that admits 7 as limiting and stationary distribution. It applies in
particular in the setting of huge state spaces S.

A Markov chain (Xj)ien with transition matrix P on a state space S is said to
satisfy the detailed balance (or reversibility) condition with respect to the probability
distribution m = (7;);es if

7T,'P,',j = 7Tij,i’ l,J e S. (731)

See Fig. 7.5. Note that the detailed balance condition (7.3.1) implies the global
balance condition (7.2.2) as, by summation over i € Sin (7.3.1) we have

Zﬂ'iPi,j = Zﬂjpj,i =7TjZPj,i =7, JES,

ieS ieS ieS

which shows that 7P = 7, i.e. 7 is a stationary distribution for P, cf. e.g. Prob-
lem 7.23-(c).

If the transition matrix P satisfies the detailed balance condition with respect to
« then the probability distribution of X, will naturally converge to the stationary
distribution 7 in the long run, e.g. under the hypotheses of Theorem 7.8, i.e. when
the chain (X} )ke is positive recurrent, aperiodic, and irreducible.

In general, however, the detailed balance (or reversibility) condition (7.3.1) may
not be satisfied by 7 and P. In this case one can construct a modified transition matrix
P that will satisfy the detailed balance condition with respect to . This modified
transition matrix P is defined by

P ;

Py

Fig. 7.5 Detailed balance condition (discrete time)
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T
J s
Pj,i_ if 71'ij,1' < TriPi,jr
~ . 7Tij’i T
P, ;=P ;jxmin| 1, =

ik, j .
P,',j if 7Tijq,' zﬂ-ipi,j’

fori # j, and

~ - P,
Pi=1—=Y Pyu=Pi+ Y Pu (l—min (1%)) i€S.

k#ieS i#keS Y

Clearly, we have P = P when the detailed balance (or reversibility) condition (7.3.1)
is satisfied. In the general case, we can check that for i # j we have
Pj’,'ﬂ'j:ﬂ'jﬁj’,' lf 7Tij’,'<7T,'P,"j,
P ;= 5 =m;Pji,
7TiPi,j=7Tij,i if ﬂij,iZWiPi,j,

hence P satisfies the detailed balance condition with respect to 7 (the condition
is obviously satisfied when i = j). Therefore, the random simulation of (f(,l),,eN
according to the transition matrix P will provide samples of the distribution 7 in the
long run as n tends to infinity, provided that the chain (f( »)neN 1S positive recurrent,
aperiodic, and irreducible.

In Table 7.1 we summarize the definitions introduced in this chapter and in
Chap. 6.

Table 7.1 Summary of Markov chain properties

Property Definition

Absorbing (state) Pi=1

Recurrent (state) P(T/ <oo| Xo=1i)=1
Transient (state) P(T] <oo|Xo=i)<1

Positive recurrent (state) Recurrentand E[T] | Xo = i] < 00
Null recurrent (state) Recurrentand E[T] | Xo = i] = 00
Aperiodic (state or chain) Period(s) = 1

Ergodic (state or chain) Positive recurrent and aperiodic
Irreducible (chain) All states communicate

Regular (chain) All coefficients of P" are > 0 for some n > 1
Stationary distribution 7 Obtained from solving 7 = m P
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Exercises

Exercise 7.1 We consider the Markov chain of Exercise 4.10-(a).

(a) Is the chain irreducible, aperiodic, recurrent, positive recurrent?
(b) Does it admit a stationary distribution?
(c) Does it admit a limiting distribution?

Exercise 7.2 We consider the success runs Markov chain of Exercise 4.10-(b).

(a) Is the success runs chain irreducible, aperiodic, recurrent, positive recurrent?
(b) Does it admit a stationary distribution?
(c) Does it admit a limiting distribution?

Exercise 7.3 We consider the Ehrenfest chain (4.3.2)—(4.3.3).

(a) Is the Ehrenfest chain irreducible, aperiodic, recurrent, positive recurrent?
(b) Does it admit a stationary distribution?
(c) Does it admit a limiting distribution?

Hint: Try a binomial distribution.

Exercise 7.4 Consider the Bernoulli-Laplace chain (X,,),cn of Exercise 4.9 with

state space {0, 1,2, ..., N} and transition matrix
r o 1 0 0 0 0
1/N? 2(N —1)/N? (N —1)?/N? 0 0 0
0 22/N? 4(N —2)/N? (N —2)2/N? 0 0
0 0 32/N? 0 0 0
P = s
0 0 0 32/N? 0 0
0 0 0 (N —2)?/N? 4(N —2)/N? 22/N? 0
0 0 0 0 (N —1)2/N? 2(N —1)/N* 1/N?
L o 0 0 0 0 1 o |
i.e.
k2 2k(N — k)? (N —k)?
Pk,k71=m, Pk,szv Pk,k+1=T, k=12,...,N—1

(a) Is the Bernoulli-Laplace chain irreducible, aperiodic, recurrent, positive recur-
rent?

(b) Does it admit a stationary distribution?

(c) Does it admit a limiting distribution?
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Exercise 7.5 Consider arobot evolving in the following circular maze, moving from
one room to the other according to a Markov chain with equal probabilities.

!
© @

® | @

Let X, € {0, 1, 2, 3} denote the state of the robot at time n € N.

(a) Write down the transition matrix P of the chain.

(b) By first step analysis, compute the mean return times po(k) from state k =
0, 1,2, 3 to state @®.

(c) Guess an invariant (or stationary) probability distribution [7, 7|, 73, 73] for the
chain, and show that it does satisfy the condition 7 = 7 P.

Exercise 7.6 A signal processor is analysing a sequence of signals that can be either
distorted or non-distorted. It turns out that on average, 1 out of 4 signals following a
distorted signal are distorted, while 3 out of 4 signals are non-distorted following a
non-distorted signal.

(a) Let X,, € {D, N} denote the state of the nth signal being analysed by the pro-
cessor. Show that the process (X,),>1 can be modeled as a Markov chain and
determine its transition matrix.

(b) Compute the stationary distribution of (X,);>1.

(c) In the long run, what fraction of analysed signals are distorted?

(d) Given that the last observed signal was distorted, how long does it take on average
until the next non-distorted signal?

(e) Given that the last observed signal was non-distorted, how long does it take on
average until the next distorted signal?

Exercise 7.7 Consider a Markov chain (X,),>0 on the state space {0, 1, 2, 3} with
transition probability matrix P given by

0 1 00
p_ |02 0 080
03 0 070
0406 0 0

(a) Draw the graph of this chain. Is the chain reducible?

(b) Find the recurrent, transient, and absorbing state(s) of this chain.

(c) Compute the fraction of time spent at state Q) in the long run.

(d) On the average, how long does it take to reach state Q) after starting from state

@?

3You may use the symmetry of the problem to simplify the calculations.
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Exercise 7.8 Consider the transition probability matrix

0 1 0 O
(01040203
0=i,j<3 71 0.2 0.2 0.5 0.1
030304 0

P=[P]

(a) Compute the limiting distribution [y, 71, 72, 73] of this Markov chain.
(b) Compute the average time 1io(1) it takes to the chain to travel from state (D to

state ©.
Hint: The data of the first row of the matrix P should play no role in the com-
putation of ug(k), k =0, 1, 2, 3.

(c) Prove by direct computation that the relation o = 1/0(0) holds, where 1 (0)
represents the mean return time to state @ for this chain.

Exercise 7.9 Consider the Markov chain with transition probability matrix

0 1/2 0 12

(7] |14 0 3/4 0
wido<ijss= 1 0 173 0 2/3
1/2 0 1/2 0

(a) Show that the chain is periodic* and compute its period.
(b) Determine the stationary distribution of this chain.

Exercise 7.10 The lifetime of a given component of a machine is a discrete random
variable T with distribution

P(T=1)=0.1, P(T=2)=02, P(T =3)=03, P(T =4)=04.

The component is immediately replaced with a new component upon failure, and the
machine starts functioning with a new component. Compute the long run probability
of finding the machine about to fail at the next time step.

Exercise 7.11 Suppose that a Markov chain has the one-step transition probability
matrix P on the state space {A, B, C, D, E} given by

0604 0 0 O
0307 0 0 O
P=({02 0 04 0 04
0.2 0202 0.2 0.2
0 0 0 0 1

Find lim,co P(X, = A | Xo = C).

4 A chain is periodic when all states have the same period.
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Exercise 7.12 Consider a Markov chain (X,,),>0 on the state space {0, 1, 2, 3, 4}
with transition probability matrix P given by

1/32/3 0 0 0
1/21/2 0 0 0
P=|0 0 1 00
0 0 1/76/70
1 0 0 0 0

(a) Draw the graph of this chain.

(b) Identify the communicating class(es).

(c) Find the recurrent, transient, and absorbing state(s) of this chain.
(d) Find lim,_P(X, =0| Xo =4).

Exercise 7.13 Three out of 4 trucks passing under a bridge are followed by a car,
while only 1 out of every 5 cars passing under that same bridge is followed by a
truck. Let X, € {C, T} denote the nature of the nth vehicle passing under the bridge,
n>1.

(a) Show that the process (X,),>; can be modeled as a Markov chain and write
down its transition matrix.

(b) Compute the stationary distribution of (X,),>1.

(c) In the long run, what fraction of vehicles passing under the bridge are trucks?

(d) Given that the last vehicle seen was a truck, how long does it take on average
until the next truck is seen under that same bridge?

Exercise 7.14 Consider a discrete-time Markov chain (X,),ey on S ={1,2,
..., N}, whose transition matrix P = (P; ;)< j<ny is assumed to be symmetric,
ie. P ;=P;j;,1 <i,j <N,

(a) Find an invariant (or stationary) distribution of the chain.
Hint: The equation 7 P = 7 admits an easy solution.

(b) Assume further that P;; =0,1 <i < N,and that P, ; > Oforall 1 <i < j <
N. Find the period of every state.

Exercise 7.15 Consider the Markov chain with transition matrix

— QR R R
S o ooT
S oo ©
SoOoT OO
o OO O

where p, g € (0, 1) satisfy p +¢q = 1.

(a) Compute the stationary distribution [y, 7y, 73, 73, m4] of this chain.
(b) Compute the limiting distribution of the chain.
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Exercise 7.16 Four players A, B, C, D are connected by the following network,
and play by exchanging a token.

At each step of the game, the player who holds the token chooses another player he
is connected to, and sends the token to that player.

(a) Assuming that the player choices are made at random and are equally distributed,
model the states of the token as a Markov chain (X,),>; on {A, B, C, D} and
give its transition matrix.

(b) Compute the stationary distribution [74, 7, m¢c, Tp] of (X;))p>1-

Hint: To simplify the resolution, start by arguing that we have 74 = mp.

(c) Compute the mean return times pp (i), i € {A, B, C, D}. On average, how long
does player D have to wait to recover the token?

(d) In the long run, what is the probability that player D holds the token?

Exercise 7.17 Consider the Markov chain with transition probability matrix

Q O =
S = O
o OO

witha+b+c=1.

(a) Compute the power P” for alln > 2.

(b) Does the chain admit a limiting distribution? If yes, compute this distribution.

(c) Does the chain admit a stationary distribution? Compute this distribution if it
exists.

Exercise 7.18 Consider a game server that can become offline with probability p
and can remain online with probability ¢ = 1 — p on any given day. Assume that
the random time N it takes to fix the server has the geometric distribution

P(N =k) =B -3, k=>1,

with parameter 3 € (0, 1). We let X,, = 1 when the server is online on day n, and
X, = 0 when it is offline.

(a) Show that the process (X,,),en can be modeled as a discrete-time Markov chain
and write down its transition matrix.

(b) Compute the probability that the server is online in the long run, in terms of the
parameters /3 and p.
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Exercise 7.19 Let (X,),cn be an irreducible aperiodic Markov chain on the finite
state space S = {1,2, ..., N}.

(a) Show that there exists a state i € {1, 2, ..., N} such that the mean return time
w; (i) from state i to itself is lower or equal to N, i.e. y; (i) < N.
(b) Show that there exists a state i € {1, 2, ..., N} such that the mean return time

wi (1) from state i to itself is higher or equal to N, i.e. u; (i) > N.

Exercise 7.20 Consider a Markov chain on the state space {1, 2, ..., N}. For any
i €{2,..., N — 1}, the chain has probability p € (0, 1) to switch from state @ to
state , and probability ¢ = 1 — p to switch from @ to . When the chain
reaches state @=(D it rebounds to state (2) with probability p or stays at state (D
with probability ¢. Similarly, after reaching state (V) it rebounds to state with
probability ¢, or remains at N with probability p.

(a) Write down the transition probability matrix of this chain.

(b) Is the chain reducible?

(c) Determine the absorbing, transient, recurrent, and positive recurrent states of
this chain.

(d) Compute the stationary distribution of this chain.

(e) Compute the limiting distribution of this chain.

Exercise 7.21 (Problem 6.9 continued). Let o > 0 and consider the Markov chain
with state space N and transition matrix given by

1 p o
0[+1, l,1+l—a+l

P 1= , i>1.

and a reflecting barrier at 0, such that Py ; = 1.

(a) Show that when av < 1 this chain admits a stationary distribution of the form
me=o N1 —a?)/2,  k=>1,

where the value of 7 has to be determined.
(b) Does the chain admit a stationary distribution when av > 1?
(c) Show that the chain is positive recurrent when o < 1.

Exercise 7.22 Consider two discrete-time stochastic processes (X, )nen and (¥y,) nen
on a state space S, such that

XnZYna nZTa

where 7 is a random time called the coupling time of (X,),en and (Y,,),en-.

(a) Show that for all x € S and n € N we have

PX,=x)<PY,=x)+P(r>n) xe€8S, neN.
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Hint: Use the law of total probability as P(A) = P(AN{r <n}) +P(AN{r >
n}).
(b) Show that for all » € N we have

sup |P(X,, = x) —P(Y, = x)| < P(1 > n), neN.

xeS

Problem 7.23 Reversibility is a fundamental issue in physics as it is akin to the idea
of “traveling backward in time”. This problem studies the reversibility of Markov
chains, and applies it to the computation of stationary and limiting distributions.
Given N > 1 and (Xj)k=0.1....~v @ Markov chain with transition matrix P on a state
space S, we let

YkI=XN_k, k=0,1,...,N,

denote the time reversal of (X;)i=0.1....N-

(a) Assume that X; has same distribution m = (71;);cs for every k =0, 1,..., N,
ie.
P(Xy =i) =m, ieS, k=0,1,...,N.

Show that the process (Yi)r—o.1.. .~ is a (forward) Markov chain ( i.e.
(Xk)k=0.1.....n has the backward Markov property), and find the transition matrix

[P(Kl+l = ] | Y, = l)]z]

in terms of P and 7.
Hint: Use the basic definition of conditional probabilities to compute

[PYpr =j | Yo =0l

~ has the Markov property

Py =j 1Y =in,....Yo=1i0) =PYpp1 = j | Yo =in).

(b) We say that (Xi)i=o.,1...n is reversible for m when (Xy)r—o.
(Y1)k=0.1.....ny have same transition probabilities.
Write down this reversibility condition in terms of P and 7. From now on we
refer to that condition as the detailed balance condition, which can be stated
independently of N.
Hint: By “same transition probabilities” we mean

IED()(lH-l =J | Xn - l) - ]P(YIH-I =J | Yn - l)

(c) Show that if (Xy)ren is reversible for 7, then 7 is also a stationary distribution
for (Xi)ren.
Hint: The fact that ), P;; = 1 plays a role here.
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(d)

(e)

®

(o)

(h)
®

@

Show thatif an irreducible positive recurrent aperiodic Markov chain is reversible
for its stationary distribution 7 then we have

Pry ko Pio ks * Py ey Proykie = Py ko Pk Py ko Pro iy (7.3.2)

for all sequences {k1, k», ..., k,} of states and n > 2.

Hint: This is a standard algebraic manipulation.

Show that conversely, if an irreducible positive recurrent aperiodic Markov chain
satisfies Condition (7.3.2) for all sequences {ki, k», . .., k, } of states,n > 2, then
it is reversible for its stationary distribution 7.

Hint: This question is more difficult and here you need to apply Theorem 7.8.

From now on we assume that S = {0, 1,..., M} and that P is the transition
matrix
1 i 1 i .
P =3 "o Pi,i=§, P =0 I<i<M-1,

of the modified Ehrenfest chain, with Poo = Po,1 = Pu.y—1 = Pu.m = 1/2.
Find a probability distribution 7 for which the chain (X} )ien is reversible.
Hint: The reversibility condition will yield a relation that can be used to compute
7 by induction. Remember to make use of the condition ), m; = 1.
Confirm that the distribution of Question (f) is invariant (or stationary) by check-
ing explicitly that the equality

m=mnP

does hold.

Show, by quoting the relevant theorem, that 7 is also the limiting distribution of
the modified Ehrenfest chain (X )>o.

Show, by the result of Question (h), that

. LM
lim E[X, | Xo=i] = —,
n—00 2

foralli =0,1,..., M.
Show, using first step analysis and induction on n > 0, that we have

M ) . M 11"
IE [Xn a _‘XO - l} - <l B _> <1 a _> ’ " 2 07
2 2 M

foralli = 0,1, ..., M, and that this relation can be used to recover the result of
Question (i).
Hint: Letting

. M .
hno):lE[Xn—?\Xo:z] n=0,
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in order to prove the formula by induction one has to

(i) show that the formula holds for /¢(i) when n = 0;
(ii) show that assuming that the formula holds for 4, (i), it then holds for
hn+1 (l)

It can help to start by proving the formula for /(i) when n = 1 by first step
analysis.



Chapter 8 ®)
Branching Processes i

Abstract Branching processes are used as a tool for modeling in genetics, biomolec-
ular reproduction, population growth, genealogy, disease spread, photomultiplier
cascades, nuclear fission, earthquake triggering, queueing models, viral phenomena,
social networks, neuroscience, etc. This chapter mainly deals with the computation
of probabilities of extinction and explosion in finite time for branching processes.

8.1 Construction and Examples

Consider a time-dependent population made of a number X,, of individuals at gener-
ation n > 0. In the branching process model, each of these X, individuals may have
a random number of descendants born at time n + 1.

Foreachk =1,2,..., X, we let Y; denote the number of descendants of indi-
vidual n° k. That means, we have Xo = 1, X; = Y|, and at time n + 1, the new
population size X, will be given by

X
Xpp1 =Y+ +Yx, =) ¥, (8.1.1)
k=1

where the (Y;)r>; form a sequence of independent, identically distributed, nonneg-
ative integer valued random variables which are assumed to be almost surely finite,
ie.

P(Y; < 00) = ZIP(Yk =n)=1.
n=0

Note that in this model the X, individuals of generation n “die” at time n + 1 as they
are not considered in the sum (8.1.1). In order to keep them at the next generation
we would have to modify (8.1.1) into
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Xn-H =Xn+Y1+"'+YX,,,
however we will not adopt this convention, and we will rely on (8.1.1) instead.

As a consequence of (8.1.1), the branching process (X,),cn is a Markov process
with state space S = N and transition matrix given by

1 0 0
P(Y,=0) P(Y, =1) P(Y; =2)
P=[P; ]i!jeN = Py Py Py ) (8.1.2)

P P P35

Note that state @ is absorbing since by construction we always have
P()’():]P)(X,H_1=0|Xn=0)=1, n e N.

Figure 8.1 represents an example of branching process with Xo =1 and Y, = 6,

hence

X =Yx, =Y =6,

then successively

Yi=1,2,..x, = (Y1,Y2, Y3, Y4, Y5, Ys) =(0,4,1,2,2,3)

Fig. 8.1 Example of branching process
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Fig. 8.2 Sample graph of a branching process

and
Xo =Y+ + Yy
=V1+VHh+YV3+Ys+Ys+ Y
=0+4+14+2+2+3
=12,
then
Yr=1,2,..x, = (Y1, Y2, Y3, Y4, Y5, Ys, Y7, Y3, Yo, Y10, Y11, Y12)
=1(0,2,0,0,0,4,2,0,0,2,0,1),
and

Xs3=Y+---+7Yx
=Y+ +YVs+Yu+Ys+ Y+ Y, +Ys+Yo+ Yo+ Y+ Y12
=04+2+40+0+0+4+2+0+0+2+0+1
=11.

The next Fig. 8.2 presents another sample tree for the path of a branching process.

In Fig. 8.2 above the branching process starts from Xy = 2, with X; = 3, X, =5,
X3 =9, X4 =9, Xs =9. However, in the sequel and except if otherwise specified,
all branching processes will start from Xy = 1.

See [SSBO8] and [IM11] for results on the modeling of the offspring distribution
of Y; based on social network and internet data and the use of power tail distribu-
tions. The use of power tail distributions leads to probability generating functions of
polylogarithmic form.
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8.2 Probability Generating Functions

Let now G (s) denote the probability generating function of X; = Y, defined as

e ¢}
Gi(s) = Els™ | Xo= 11 =E[ls"] =) s'P(i =h), ~1=s<1,
k=0

cf. (1.7.3), denote the probability generating function of the (almost surely finite)
random variable X; = Y;, with

G1(0) =P, =0),

Gi(1) =) P(Y;=n) =P(Y; <o0) =1,
n=0

pi=Gi(l) =Y kP(Y; =k) = E[X | Xo = 1] = E[Y{]. (8.2.1a)
k=0

More generally, letting G, (s) denote the probability generating function of X,
defined as

Gu(s) :=E[s* | Xo=11=) s'P(X, =k Xo=1), —1<s<],

k=0
n € N, we have
Go(s)=s, —1=<s=1,
G,(0)=P(X,=0]| Xog=1), neN, (8.2.2a)

oo
fn = E[X, | Xo=11=G,(1) = > kP(X, =k | Xo = 1), (8.2.2b)
k=0

cf. (1.7.5). When X = k we can view the branching tree as the union of k independent
trees started from X, = 1 and we can write X,, as the sum of independent random
variables

n

k
X, = ZX(” neN,
=1

where X,S” denotes the size of the tree n°l at time n, with X,(ll) =1,l=1,2,...,k.
In this case, we have
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E[s* | Xo

=k]

The next proposition provides an algorithm for the computation of the probability

generating function G,,.

Proposition 8.1 We have the recurrence relation

Gut1(8) = G (G1(s)) = G1(Gy(s), —1<s<1, mneN. (8.2.3)

Proof By the identity (1.6.13) on random products we have

Gn+1(S) =

I I I
WERYNE -

™M

gk

[
K

g Xn+1 | Xo =1]
= E[s" T | Xo = 1]

:E[ﬁsy”on 1]

~
Il
S

»
i
L

x~
Il
=}

k=0

E

&

E

-y
st
11
r k
sY’
11
r k
l_[sY’j| PX,=k|Xo=1)

Li=1

Xn:k]IP’(Xn:MXo:l)

ank:|]P’(X,,=k|X0=1)

k
(l_[lE [sY']> P(X,=k|Xo=1)
=1

(E[s"D'P(X, =k | Xo=1)

Instead of (8.2.3) we may also write

Gu(s) =

k=0
G, (E[s"])
G,(Gi(s)), —1<s<l.
O
Gi(Gi(---(Gi(s),--+)), —1=s=1, (8.2.4)
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and
Gu(s) = G1(Gu-1(5) = Gp—1(Gi(s)), —l=s=1
Mean Population Size

In case the random variable Y} is equal to a deterministic constant iz € N, the popula-
tion size at generation n > ( will clearly be equal to p"*. The next proposition shows
that for branching processes, this property admits a natural extension to the random
case.

Proposition 8.2 The mean population size |1, at generation n > 0 is given by
o =E[X, | Xo=11=(E[X; | Xo=1)"=p", nx1, (8.2.5)

where p = E[Y)] is given by (8.2.1a).

Proof By (8.2.4), (8.2.2b) and the chain rule of derivation we have

Hn = G;,(l)

= d G (G
=7 1(Gp—1(8))5=1

= G;_I(I)G/l (Gn—l(l))
= G, (DG} (1)

= [ X fn-1,

hence i1 = i, 1o = ft X pi1 = p%, u3 = pt X pp = 4>, and by induction on n > 1
we obtain (8.2.5). U

Similarly we find
E[X, | Xo =kl =kE[X, | Xo=1]=ku", n=1,

hence starting from X, = k > 1, the average of X, goes to infinity when > 1. On
the other hand, y,, converges to O when p < 1.

Examples

(i) Supercritical case. When i > 1 the average population size p,, = p" grows to
infinity as # tends to infinity, and we say that the branching process (X, ),en 1S
supercritical.

This condition holds in particular when P(Y; > 1) = 1 and Y; is not almost
surely equal to 1, i.e. P(¥Y; = 1) < 1. Indeed, under those conditions we have
P(Y; = 2) > 0and
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p=EMN]=) nPY=n)

n=1

> P(Y, = 1)+2Z]P’(Y1 =n)

n=2
=P =D+PY =2)
> Py, > 1)
=1,

hence p > 1.

(ii) Critical case. When o = 1 we have u,, = ()" = 1 for all n € N, and we say
that the branching process (X,,),en is critical.

(iii) Subcritical case. In case u < 1, the average population size u, = p" tends
to 0 as n tends to infinity and we say that the branching process (X, ),eN 1S
subcritical. In this case we necessarily have P(Y; = 0) > 0 as

1> p=E[Y]= an@(yl =n)

n=1

=) P(ri=n
n=1

=PY1 =2 1)

=1-P¥, =0,

although the converse is not true in general.

The variance 03 = Var[X, | Xo = 1] of X,, given that X, = 1 can be shown in a
similar way to satisfy the recurrence relation

2 2. n 2 2
0n+1_au +uan’

cf. also Relation (1.7.6), where o2 = Var[Y;], which shows by induction that

naz, uw=1,

or = Var[X, | Xo=1]= — n—1
O,ZMII—I — O_ZZIU/VH-](—I’ u ;é ]’

I=p k=0

n > 1cf. e.g. pages 180-181 of [KT81], and Exercise 8.3-(a) for an application. We
also have

Var[X, | Xo = k] = kVar[X, | Xo = 1] =ko?, k,neN,

due to Relation (1.6.12) for the variance of a sum of independent random variables.
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8.3 Extinction Probabilities

Here we are interested in the time to extinction'

Ty :=inf{n >0 : X, =0},
and in the extinction probability

ap :=P(Ty <00 | Xg=k)

within a finite time, after starting from X, = k. Note that the word “extinction” can
have negative as well as positive meaning, for example when the branching process
is used to model the spread of an infection.

Proposition 8.3 The probability distribution of Ty can be expressed using the prob-
ability generating function G, as

P(Ty=n|Xo=1 =Gu(0) = G4—1(0) = G1(G4-1(0)) = G»—1(0), n=1,

withP(To =0 Xo=1)=0.
Proof By the relation {X,,—; = 0} C {X,, = 0}, we have

{To=n} ={X, =0} N {X,_1 = 1} = {X, = 0} \ {X,—1 =0}

and
P(To=n|Xo=1 =P(X, =0}N{X,-1 =1} | Xo =1
=P({X, =03\ {X,-1 =0} | Xo=1)
=P{X, =0) -P{X,-1 =0} | Xo=1)
= G,(0) — G,—1(0)
=G1(Gp-1(0) — G4—1(0), n=1,
where we applied Proposition8.1. (I

First, we note that by the independence assumption, starting from Xy =k > 2
independent individuals, we have

=PIy <00 | Xo=k) = P(Th <00 | Xo =1 =(aDF, k>1. 83.1)
Indeed, given k individuals at generation 0, each of them will start independently a

new branch of offsprings, and in order to have extinction of the whole population, all
of k branches should become extinct. Since the k branches behave independently, oy

'We normally start from Xo > 1.
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is the product of the extinction probabilities for each branch, which yields o = (o )
since these extinction probabilities are all equal to «; and there are k of them.
The next proposition is a consequence of Lemma5.1.

Proposition 8.4 We have
a; = lim G,(0).
n—o0

Proof Since state Q) is absorbing, by Lemma 5.1 with j = 0 and i = 1 we find
ap=P(Ty<oco|Xo=1)=lim P(X, =01 Xo=1) = lim G,(0).
n—oQ n—oo

O

The next proposition shows that the extinction probability «; can be computed as
the solution of an equation.

Proposition 8.5 The extinction probability
g ZZ]P)(T() < o0 | Xo: 1)

is a solution of the equation

a=G(a). (8.3.2)
Proof By first step analysis we have
aq =P(T0<OO|X()=1)

00
k=1

=PV =0)+ Y P(Ty < 00| Xo = K)P(Y; = k)
k=1

=) ()P =k)
k=0

= Gi(a),

hence the extinction probability o, solves (8.3.2). ([

Note that from the above proof we find
a >PX,=0|Xg=1) =P, =0), (8.3.3)

which shows that the extinction probability is non-zero whenever P(Y; = 0) > 0.
On the other hand, any solution « of (8.3.2) also satisfies

a=G(Gi(®), a=G1(G(G(a))),
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and more generally
a=G,(a), n>1, (8.3.4)

by Proposition 8.1. On the other hand the solution of (8.3.2) may not be unique, for

example o = 1 is always solution of (8.3.2) since G (1) = 1, and it may not be equal
to the extinction probability. The next proposition clarifies this point.

Proposition 8.6 The extinction probability
(03] Z:IP)(T()<OO|X0:1)

is the smallest solution of the equation o = G ().

Proof By Proposition 8.4 we have o} = lim,,—, oo G,(0). Next, we note that the func-
tion s —> G (s) is increasing because

G\(s) =E[Y;s"'1>0, sel0,1).

Hence s —> G, () is also increasing by Proposition 8.1, and for any solution « > 0
of (8.3.2) we have, by (8.3.4),

0<G,(0) =Gy =0, n=z=l,
and taking the limit in this inequality as n goes to infinity we get
0<a = ,,11120 G,00) <,
by (5.1.5) and Proposition 8.4, hence the extinction probability «; is always smaller
than any solution « of (8.3.2). This fact can also be recovered from Proposition 8.4
and

a= lim G,(«)
n—o00

= lggo (G,,(O) + Zak]P’(Xn =k|Xo= 1))

k=1
> lim G,(0)
n—o00
= (1.
Therefore v is the smallest solution of (8.3.2). O

Since G1(0) = P(Y; = 0) we have
P(Y; =0) = G1(0) < Gi(v) = ay,

which recovers (8.3.3).
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On the other hand, if P(Y; > 1) = 1 then we have G(0) = 0, which implies
a1 = 0 by Proposition 8.6.

Note that from Lemma5.1, Proposition 8.4, and (8.3.1), the transition matrix
(8.1.2) satisfies

1 1

(67] 1

2

lim ([P"lio). .= | @ | =] (@)
A U o =1 ()’

Examples

(i) Assume that Y; has a Bernoulli distribution with parameter p € (0, 1), i.e.
Pri=)=p, PH=0=1-p.

Compute the extinction probability of the associated branching process.

In this case the branching process is actually a two-state Markov chain with tran-

sition matrix
|: 1 i| 7
l—pp

n—1

GO =P(X, =0 Xo=D=(=p Y p=1-p" (835
k=0

and we have

where we used the geometric series (A.2), hence as in (5.15) the extinction prob-
ability « is given by

a :]P’(T0<oo|X0:l):]P’<U{Xn:O}’X0:1>
n>1

= lm P(X,=0|Xo=1)
n—o0
= lim G,(0) =1,
n—o0
provided that p = IE[Y;] < 1, otherwise we have av; = 0 when p = 1. The value
of «; can be recovered using the generating function

Gi(s) = E[s"] = ZskIP’(Yl =k)=1-—p+ ps, (8.3.6)
k=0

for which the unique solution of G| () = « is the extinction probability a; = 1,
as shown in the next Fig. 8.3.
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0.8 -

0.6 -

G(s)

0.4 -

0.2

Fig. 8.3 Generating function of Y7 with p = 0.65

From (8.2.4) and (8.3.6) we can also show by inductiononn > 1 as in Exercise 8.2
that

n—1

Gu(s)=p"s+(1L—p) Yy p=1-p"+p's,
k=0

which recovers (8.3.5) from (1.7.5) or (8.2.2a) as
P(X,=0]|Xo=1)=G,0)=1-p".

We also have IE[X, ] = p",n > 0.

(ii) Same question as in (i) above for
PVi=2=p, PH=0=g=1-p.

Here, we will directly use the probability generating function

o0
Gi(s) = E[s"] = ZskIP(Yl =k)
k=0
=s"P(Y, =0) + s’P(Y; =2) =1 — p + ps’.
We check that the solutions of

Gi(a)=1—p+pa® =a,

ie.
pa* —a+q=pla—1(a—q/p) =0, (8.3.7)

2Remark that (8.3.7) is identical to the characteristic Eq.(2.2.15).
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with g = 1 — p, are given by

{1+\/1—4pq 1—1—4pq

1 ¢
T T }_{1,p}, pe©, 1.  (838)

Hence the extinction probability is oy = 1 if ¢ > p,anditisequaltoa; =¢g/p <
1if g < p, or equivalently if [E[Y;] > 1, due to the relation IE[Y;] = 2p.

(iii)) Assume that Y| has the geometric distribution with parameter p € (0, 1), i.e.
PYy=n)=0-pp", n=0,

with 4 = E[Y] = p/q. We have

o0 o0 .l _
Gi(s) = E[s"] = ;s"]}»(yl =n)=(1—p) gp”s" = 1= Ifs. (8.3.9)

The equation G| (a) = « reads

I-p
1 —pa

i.e.
po’ —a+q=pla—D(a—q/p) =0,

which is identical to (2.2.15) and (8.3.7) with ¢ = 1 — p, and has for solutions
(8.3.8). Hence the finite time extinction probability is

041=P(TQ<OO|XQ=1)
ki p > 1/2, (super)critical case,

= min <1z> s
p

I, p <1/2, (sub)critical case.

Note that we have oy < 1 if and only if IE[Y;] > 1, due to the equality E[Y;] =
p/q- As can be seen from Figs.8.4 and 8.5, the extinction probability «; is
equal to 1 when p < 1/2, meaning that extinction within a finite time is certain
in that case. Note that we also find
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0.5 -

Fig. 8.4 Generating function of Y7 with p =3/8 < 1/2and o) =1

2~

Fig. 8.5 Generating function of Y7 with p = 1/2and a1 =1

(iv)

k
P(Ty < 00 | Xo = k) = min <1, <2> )
p

k
<Z> , p > 1/2, (super)critical case,
= p

1, p < 1/2, (sub)critical case.

which incidentally coincides with the finite time hitting probability found in
(3.4.16) for the simple random walk started from k£ > 1.

Next in Fig. 8.5 is a graph of the generating function s —— G (s) for p = 1/2.
The graph of generating function in Fig. 8.6 corresponds to p = 3/4.

We also have u,, = (E[Y1])" = (p/q)",n = 1.

Assume now that Y| is the sum of two independent geometric variables with
parameter 1/2, i.e. it has the negative binomial distribution

n+r—1

IF’(len):< .

)qu’" =m+1q p"=m+1g’p", n>0,

with r = 2, cf. (1.5.12).
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a1=1/3
o 4 ! L L i
o 0.5 1 1.5 2

Fig. 8.6 Generating function of Y7 with p =3/4 > 1/2and oy =¢q/p =1/3

In this case we have?

Gi(s) = E[s"] = Zs"P(Yl =n)
n=0

[} 1 p 2
2 n.n —
= +1 = ., —l<s<l.
q n§:01<n )p''s (1 _ps) s

When p = 1/2 we check that G| («) = « reads
57 —4s* +45 — 1 =0,

which is an equation of degree 3 in the unknown s. Now, since ac = 1 is solution of
this equation we can factorise it as follows:

(s—D(*=3s+1) =0,

and we check that the smallest nonnegative solution of this equation is given by
1
a1 =506~ V5) ~0.382

which is the extinction probability, as illustrated in the next Fig.8.7. Here we have
E[Y;] =2.

The next graph illustrates the extinction of a branching process in finite time when
Y has the geometric distribution with p = 1/2, in which case there is extinction
within finite time with probability 1 (Fig.8.8).

In Table 8.1 we summarize some questions and their associated solution methods
introduced in this chapter and the previous ones.

3Here, Y) is the sum of two independent geometric random variables, and G| is the square of the
generating function (8.3.9) of the geometric distribution.
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Fig. 8.8 Sample path of a branching process (X,)n>0

Table 8.1 Summary of computing methods

How to compute Method
The expected value [E[ X] Sum the values of X weighted by their
probabilities
Uses of Gx (s) Gx(0)=P(X =0)
Gx(1) =P(X < 00)
Gy (1) = E[X]
The hitting probabilities g(k) Solve? g = Pg for g(k)
The mean hitting times % (k) Solve* h =1 + Ph for h(k)
The stationary distribution 7 Solve® 7 = mP for
The extinction probability c Solve G1(a) = o for v and choose the
smallest solution
" b a
l—a a a+b a+b
lim
n—o0
b 1—b b a
at+b a+b

4Be sure to write only the relevant rows of the system under the appropriate boundary conditions
b Remember that the values of 7 (k)have to add uptol
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Exercises

Exercise 8.1 A parent particle can be divided into 0, 1 or 2 particles with probabil-
ities 1/5, 3/5, and 1/5, respectively. It disappears after splitting. Starting with one
particle, the ancestor, let us denote by X, the size of the corresponding branching
process at the nth generation.

(a) Find P(X, > 0).
(b) Find P(X, = 1).
(c) Find the probability that X| = 2 given that X, = 1.

Exercise 8.2 Each individual in a population has a random number Y of offsprings,
with
PY=0=1/2, P =1 =1/2.

Let X, denote the size of the population at time n € N, with Xy = 1.

(a) Compute the generating function G, (s) = IE[s"] of Y fors € R.
(b) Let G,(s) = E[s*] denote the generating function of X,,. Show that

1
Gu(s) = 1= 5 + >

5ty SER (8.3.10)

(c) Compute the probability P(X,, = 0 | Xo = 1) that the population is extinct at
time n.

(d) Compute the average size E[X,, | X( = 1] of the population at step .

(e) Compute the extinction probability of the population starting from one individual
at time 0.

Exercise 8.3 Each individual in a population has a random number ¢ of offsprings,
with distribution

P =0)=0.2, PE¢=1)=05  P¢=2)=03.

Let X,, denote the number of individuals in the population at the nth generation, with
Xo=1.

(a) Compute the mean and variance of X5.

(b) Give the probability distribution of the random variable X5.

(c) Compute the probability that the population is extinct by the fourth generation.
(d) Compute the expected number of offsprings at the tenth generation.

(e) What is the probability of extinction of this population?
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Exercise 8.4 Each individual in a population has a random number Y of offsprings,
with
P(Y =0) =c, P(Y=1) =0, P(Y =2) =a,

wherea +b + ¢ = 1.

(a) Compute the generating function G(s) of Y fors € [—1, 1].

(b) Compute the probability that the population is extinct at time 2, starting from 1
individual at time 0.

(c) Compute the probability that the population is extinct at time 2, starting from 2
individuals at time 0.

(d) Show that when 0 < ¢ < a the probability of eventual extinction of the popula-
tion, starting from 2 individuals at time 0, is (c/a)?.

(e) What is this probability equal to when 0 < a < ¢?

Exercise 8.5 Consider a branching process (Z,),>o in which the offspring distribu-
tion at each generation is binomial with parameter (2, p), i.e.

P(Y =0)=¢° PY =1)=2pqg, PY =2)=7p?

withg :=1— p.

(a) Compute the probability generating function Gy of Y.

(b) Compute the extinction probability of this process, starting from Zy = 1.

(c) Compute the probability that the population becomes extinct for the first time in
the second generation (n = 2), starting from Zy = 1.

(d) Suppose that the initial population size Z is a Poisson random variable with
parameter A > 0. Compute the extinction probability in this case.

Exercise 8.6 A cell culture is started with one red cell at time 0. After one minute
the red cell dies and two new cells are born according to the following probability
distribution:

Color configuration Probability
2 red cells 1/4

I redcell + 1 whitecell |2/3
2 white cells 1/12

The above procedure is repeated minute after minute for any red cell present in the
culture. On the other hand, the white cells can only live for one minute, and disappear
after that without reproducing. We assume that the cells behave independently.

(a) What is the probability that no white cells have been generated until time n
included?

(b) Compute the extinction probability of the whole cell culture.

(c) Same questions as above for the following probability distribution:
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Color configuration Probability
2 red cells 1/3

1 red cell + 1 whitecell |1/2
2 white cells 1/6

Exercise 8.7 Using first step analysis, show that if (X,),>0 is a subcritical branch-
ing process, i.e. 4 = [E[Y]] < 1, the time to extinction Tj := inf{n > 0 : X, = 0}
satisfies IE[T, | Xo = 1] < oc.

Exercise 8.8 Consider a branching process (X,),>o started at X = 1, in which the
numbers Y} of descendants of individual n°k form an i.i.d. sequence with the negative
binomial distribution

P(Yy=n) =0+ Dg*p", n>0, k>1,

where0 <g=1—-—p < 1.

(a) Compute the probability generating function
[o.¢]

Gi(s):=E [SY*] = Zs”P(Yl =n)
n=0

of Vi, k > 1.
b) Compute the extinction probability o} := P(Ty < 0o | Xo = 1) of the branching
process (X,,),>0 in finite time.

Exercise 8.9 Families in a given society have children until the birth of the first
girl, after which the family stops having children. Let X denote the number of male
children of a given husband.

(a) Assuming that girls and boys are equally likely to be born, compute the proba-
bility distribution of X.

(b) Compute the probability generating function G (s) of X.

(c) What is the probability that a given man has no male descendant (patrilineality)
by the time of the third generation?

(d) Suppose now that one fourth of the married couples have no children at all while
the others continue to have children until the first girl, and then cease childbear-
ing. What is the probability that the wife’s female line of descent (matrilineality)
will cease to exist by the third generation?

Exercise 8.10 Consider a branching process (Z;)reny With Zg = 1 and offspring
distribution given by

l—p—gq

P(Zy=0)= ——

and P(Z, =k)=qp*', k=12.3,...,

where0 < p<land0<g <1—p.
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(a) Find the probability generating function of Z;.

(b) Compute E[Z;].

(c) Find the value of g for which IE[Z;] = 1, known as the critical value.

(d) Using the critical value of g, show by induction that determine the probability
generating function of Z; is given by

kp —(kp+p—1D)s

, —1<s<l1,
1 —p+kp—kps

Gz (s) =

forall k > 1.

Problem 8.11 Consider a branching process with i.i.d. offspring sequence (Yi)r>1.
The number of individuals in the population at generation n + 1 is given by the
relation X, =Y, 4+ -+ + Yx,, with Xo = 1.

(a) Let

n
Zy=)_ X
k=1

denote the total number of individuals generated from time 1 to n. Compute
[E[Z,] as a function of p = IE[Y]].
oo

(b) Let Z = Z X}. denote the total number of individuals generated from time 1

k=1
to infinity. Compute IE[Z] and show that it is finite when p < 1.

In the sequel we work under the condition p < 1.
(c) Let
H(s)=E[s”], -1<s<I,

denote the generating function of Z.
Show, by first step analysis, that the relation
H(s) =Gi(sH(s)), 0O0=s<I,

holds, where G (x) is the probability generating function of Y;.

(d) Inthe sequel we assume that Y| has the geometric distribution P(Y} = k) = ¢ pk,
k € N, with p € (0, 1) and g = 1 — p. Compute H (s) for s € [0, 1].

(e) Using the expression of the generating function H (s) computed in Question (d),
check that we have H (0) = limg\ o H(s), where H(0) =P(Z =0) =P(Y, =
0) = G1(0).

(f) Using the generating function H (s) computed in Question (d), recover the value
of IE[Z] found in Question (b).
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(2)

(h

®

Assume that each of the Z individuals earns an income Uy, k =1,2,...,Z,
where (Uy)i> is an i.i.d. sequence of random variables with finite expectation
[E[U] and distribution function F(x) = P(U < x).

Compute the expected value of the sum of gains of all the individuals in the
population.

Compute the probability that none of the individuals earns an income higher
than x > 0.

Evaluate the results of Questions (g) and (h) when Uy has the exponential dis-
tribution with F(x) =1 —e ™, x € R,.



Chapter 9 ®)
Continuous-Time Markov Chains Creck for

In this chapter we start the study of continuous-time stochastic processes, which are
families (X;);cr, of random variables indexed by R... Our aim is to make the tran-
sition from discrete to continuous-time Markov chains, the main difference between
the two settings being the replacement of the transition matrix with the continuous-
time infinitesimal generator of the process. We will start with the two fundamental
examples of the Poisson and birth and death processes, followed by the construction
of continuous-time Markov chains and their generators in more generality. From
the point of view of simulations, the use of continuous-time Markov chains does
not bring any special difficulty as any continuous-time simulation is actually based
on discrete-time samples. From a theoretical point of view, however, the rigorous
treatment of the continuous-time Markov property is much more demanding than its
discrete-time counterpart, notably due to the use of the strong Markov property. Here
we focus on the understanding of the continuous-time case by simple calculations,
and we will refer to the literature for the use of the strong Markov property.

9.1 The Poisson Process

The standard Poisson process (N;);cr, 1S a continuous-time counting process, i.e.
(N;)ier, has jumps of size +1 only, and its paths are constant (and right-continuous)
in between jumps. The next Fig. 9.1 represents a sample path of a Poisson process.

© Springer Nature Singapore Pte Ltd. 2018 211
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Nt
o7 !
; — |
0 7;1 7;2 Ts 7;4 7:?5 7:'(5 t

Fig. 9.1 Sample path of a Poisson process (N;);cRr,

We denote by (Tj)> the increasing sequence of jump times of (N;);er, , Which
can be defined from the (right-continuous) Poisson process path (N;);cr, by noting
that 7} is the first hitting time of state &, i.e.

Ty =inf{t e R, : N, =k}, k>1,

with
lim Tk = OQ.

k— 00

The value N, at time ¢ of the Poisson process can be recovered from its jump times
(T k=1 as

Ne= Y kligg, @ =Y I, teRy,
k=1 k=1

where
1ift > T,
Liz,000 () =
0if0 <r < Ty,
and
1if Ty <t < Tiyq, k>0,
Lz 1 (1) =
0if0§t<TkOI‘IZTk+1, k> 0.
with T, = 0.

In addition, (N;),er, is assumed to satisfy the following conditions:

(1) Independence of increments: forall0 <y < < --- < t, andn > 1 the incre-

ments
Ny —Ny,..., N, —N,_,,
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over the disjoint time intervals [fy, #1), [t1, 1), - .., [ti—2, ta—1), [ta—1, t,] are
mutually independent random variables.

(ii) Stationarity of increments: N;,, — N1, has the same distribution as N, — N;
forallh >0and 0 <s <'t.

The meaning of the above stationarity condition is that for all fixed k € N we have
P(Niyn — Nypn = k) = P(N; — Ny = k),

forallh >0and 0 <s <.

The stationarity of increments means that for all k € N, the probability P(N,;, —
Ny, = k) does not depend on i > 0.
Based on the above assumption, a natural question arises:

what is the distribution of N, at time t?

We already know that NV, takes values in N and therefore it has a discrete distribution
for all r € R;. It is a remarkable fact that the distribution of the increments of
(N;)er, , can be completely determined from the above conditions, as shown in the
following theorem.

As seenin the nextresult, the random variable N, — N, has the Poisson distribution
with parameter A(r — s).

Theorem 9.1 Assume that the counting process (N;);cr, satisfies the independence
and stationarity Conditions (i) and (ii) above. Then we have

—\(t—s) (/\(t - s))k

P(N, — N, =k) =e TR

keN, 0<s<t,
for some constant A > 0.
Theorem 9.1 shows in particular that
E[N; — Nj] = A —s) and Var[N, — Ni] = A\t — s),
0 < s <1, cf. Relations (14.4) and (14.5) in the solution of Exercise 1.3-(a).

The parameter A\ > 0 is called the intensity of the process and it can be recovered
given from P(N;, = 1) = Ahe™" as the limit

1
A= lim PV, = 1), ©.1.1)

Proof of Theorem 9.1. We only quote the main steps of the proof and we refer
to [BN96] for the complete argument. Using the independence and stationarity of
increments, we show that the probability generating function

Gi(w) :=E[L™], —1<uc<l,
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satisfies
G(u):=(Giw), -1<uc=<l,

which implies that .
G :=e"™, — —1<uc<l,

for some function f(u) of u. Still relying on the independence and stationarity of
increments, it can be shown that f (u) takes the form

fWy=Ax0~-u), —-1=<uc=l,

where \ > 0 is given by (9.1.1). O
In particular, given that Ny = 0, the random variable N, has a Poisson distribution

with parameter \z:

(/\t )k =\t

POV, =k) = < e,

teRy.

From (9.1.1) above we see that'
PNy =0)=eM=1—-XM+oh), h\0,
P(N, = 1) = hhe ™M ~ \h, h N\ 0,

and more generally that

P(Nyp =N, =0)=e M =1=Mi+o0(h), h\0, (9.1.2a)

P(Nyyp — N, = 1) = Xhie™ >~ Ah,  h N0, (9.1.2b)
22 22

P(Nyyp — N, =2) = h27e’A" ~ hz? h N\, 0, (9.1.2¢)

forallt € R, . This means that within “short” time intervals [kh, (k + 1)h] of length
h =t/n > 0, the increments N1y, — Ny, can be approximated by independent
Bernoulli random variables X, with parameter A2z, whose sum

n—1 n—1

D X =Y (Nusn — New) = Ny — No = N,
k=0 k=0

I'The notation fh) ~ h* means limp_q f(h)/hk =1, and f(h) = o(h) means limy,_.qo f(h)/
h=0.
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converges in distribution as n goes to infinity to the Poisson random variable N; with
parameter A¢. This remark can be used for the random simulation of Poisson process
paths.

More generally, we have

/\k
P(N;p — N, = k) ~ h"F, AN\ 0, >0.
In order to determine the distribution of the first jump time 77 we note that we have

the equivalence
(T} >t} < {N, =0},

which implies
P(Ty >t) =P(N, =0)=e™™, >0,

i.e. T} has an exponential distribution with parameter A > 0.
In order to prove the next proposition we note that more generally, we have the
equivalence
{T, >t} ={N, < n}, t>0, n>1.

Indeed, stating that the nth jump time 7, is strictly larger that ¢ is equivalent to saying
that at most n — 1 jumps of the Poisson process have occurred over the interval [0, ¢],
i.e. N; < n — 1. The next proposition shows that 7,, has a gamma distribution with
parameter (A, n) for n > 1, also called the Erlang distribution in queueing theory.

Proposition 9.2 The random variable T, has the gamma probability density function

xeR,n>1
Proof Forn = 1 we have

P(T) >t)=P(N, =0)=e™, reR,,
and by induction on n > 1, assuming that

s (AS)IHZ

P(T,_ =
(Ty—1 > 1) )\/t e (n—2)!s’
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at the rank n — 1 with n > 2, we obtain

P(T, >t)=P(T, >t >T,_1) +P(T,_1 > 1)
=P(N;,=n—-1)+P(T,_; >1)
A n—1 0 A n—2
— eiAtL + A/ ei/\S&d
t

(n—1)! (n—2)!
o] . \ n—1
- )\/ en O L eR,,
i (n— 1!
which proves the desired relation at the rank n, where we applied an integration by
parts on R to derive the last line. (|
Let now

Tk =Tig1 — T, k=1,

denote the time spent in state k € N, with 7j = 0. In addition to Proposition 9.2 we
could show the following proposition which is based on the strong Markov property,
see e.g. Theorem 6.5.4 of [Nor98], (9.2.4) below and Exercise 5.8 in discrete time.

Proposition 9.3 The random inter-jump times
Tk i= Tip1 — T

spent in state k € N form a sequence of independent identically distributed random
variables having the exponential distribution with parameter A > 0, i.e.

P(rg > to, 71 > t, ..., Th > t,) = ef)\(t0+t]+m+t,,)’ to, t1,..., 1, € R+.

Random samples of Poisson process jump times can be generated using the following
R code.

lambda = 2.0

n=10

for (k in 1:n){tauk <— rexp(n)/lambda; Ti <— cumsum(tauk)}
tauk

Ti

Similarly, random samples of Poisson process paths can be generated using the
following code.

n<—100

x<—cumsum(rexp(50,rate=0.5))

y<—cumsum(c(0,rep(1,50)))

plot(stepfun(x,y),xlim = ¢(0,10),do.points = F,main="1=0.5")
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In other words, we have

P(rg > tg, 71 > H, ..., Tn > 1t,) =P(19 > ty) X -+ X P(1;, > 1,) 9.1.3)

n
k=0

_ e—/\(to+---+zn)’

for all 7y, t1, ..., t, € R,. In addition, from Proposition 9.2 the sum
Ty=1+mn+ -+ 71, k>1,

has a gamma distribution with parameter (\, k), cf. also Exercise 9.12 for a proof in
the particular case k = 2.
As the expectation of the exponentially distributed random variable 7; with param-

eter A > 0 is given by
1

oo
E[7:] = A / xe Mdx = —,
0 A
we can check that the higher the intensity A (i.e. the higher the probability of having
a jump within a small interval), the smaller is the time spent in each state k € N on
average. Poisson random samples on arbitrary spaces will be considered in Chap. 1 1.

9.2 Continuous-Time Markov Chains

A S-valued continuous-time stochastic process (X;),cr, is said to be Markov, or to
have the Markov property if, for all t € [s, 0c0), the probability distribution of X,
given the past of the process up to time s is determined by the state X of the process
at time s, and does not depend on the past values of X, for u < s. In other words,
for all

O<si < - <Sp1<s<t

we have

IED(th = ] | X5 =iy, Xs,l,l =lp1,..., X‘vl = lO) = ]P(Xt = ] | X = ln)
9.2.1)
In particular we have

PX,=j| Xy=ipand X5, , =i,—1) =P(X, =j | Xy =1ip).

Sn—1
Example

The Poisson process (N;);cr, considered in Sect.9.1 is a continuous-time Markov
chain because it has independent increments by Condition (i) p. 212. The birth
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and death processes discussed below are also continuous-time Markov chains,
although they may not have independent increments.

More generally, any continuous-time process (X;),cr, With independent increments

has the Markov property. Indeed, for all j, i, ..., i; € S we have (note that X = 0
here)

PX,=Jj|Xs=1in, Xy, =lIn-t,..., Xy, =101)

P =g X =i, X =t X = 1)

 PXy =gy X, = dptyeees Xy, =11)

_ PX; —Xs=j—in, Xs =in,...., X5, =02, X5, = 01)

N P(Xs =inys..., Xy, =i, Xy, = i1)

P - Xy =) - i)PX =0, X, =, X, = 00, X = 0)

N P(Xy = in, X5, | =ln_1,..., Xy, = i2, X5, = i)

P, - X, = iy = P(X, — XSP: Jj— i,.,)IP(XS =1i,)

(X5 =1in)

B P(X; — X, =j—i,and X; =1i,)

B P(X; = iy)

- SETIEEI I Rt = X =i,

cf. (4.1.5) for the discrete-time version of this argument. Hence, continuous-time pro-
cesses with independent increments are Markov chains. However, not all continuous-
time Markov chains have independent increments, and in fact the continuous-time
Markov chains of interest in this chapter will not have independent increments.

Birth Process

The pure birth process behaves similarly to the Poisson process, by making the
parameter of every exponential inter-jump time dependent on the current state of the
process.

In other words, a continuous-time Markov chain (X f )ieR, such that®

PX2,=i+1|X=i)=PX", - X' =11X"=1i)
~ \h, h\ 0, i€Ss,

and

P(X2, =X 1 X =i) =P(Xl, — X0 =0 X! =)

=1—Nh+o(h), h\0, ieS, (922

is called a pure birth process with (possibly) state-dependent birth rates \; > 0,i € S,
see Fig.9.2. Its inter-jump times (74 )0 form a sequence of exponential independent
random variables with state-dependent parameters.

2Recall that by definition f (h) ~ g(h), h — 0, if and only if limj,_.o £ (h)/g(h) = 1.
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Ty T2T5Ta Ts Ts t

Fig. 9.2 Sample path of a birth process (X ﬁ’ )ieR,

This process is stationary in time because the rates \;, i € N, are independent of
time ¢. The Poisson process (N, );cr, is a pure birth process with state-independent
birthrates \; = A > 0,i € N.

As a consequence of (9.2.2) we can recover the fact that the time 7; ;4 spent in
state @ by the pure birth process (X f’ )ier, started at state @ at time O before it
moves to state has an exponential distribution with parameter ;. Indeed we
have, using the Markov property in continuous time,

P(riip1 > t+h| X5 =1i)

P(Tiip1 >t +h |Tijg1 > tand X2 =i) =
(Tii+1 ITid ) P(riio1 >t | X =1)

PXP,, =i Xg =)
COPXP =i | Xb=1i)
P(X" , =iand X2 = HP(X: = i)

t+h —
P(X? =iand X} = )P(X}) = i)
B P(X?,, =iand X5 =)

t+h

P(X? =iand X} =)

P(Xl,, =i, XV =i, X§=i)
T P(XP=iand X! =)
=P(X’, =il X =iand X} =1i)
=P(X’, =il X' =i
=PX)=i|X,=1i)
=P(riip1 > h | Xg=1)
=1—Nh+o(h), (9.2.3)

which is often referred to as the memoryless property of Markov processes. In other
words, since the above ratio is independent of # > 0 we get

P(rii41 >t +h | 71 > tand X§ = i) = P10 > h | X =),
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which means that the distribution of the waiting time after time ¢ does not depend
on t, cf. (12.1.1) in Chap. 12 for a similar argument.
From (9.2.3) we have

P(riip1 > 1 +h | X5 = i) —P(ry i > 1| X§ =)
hP(ii41 >t | X§ = i)
P(riip1 >t +h | X5 =i)
T MBraa >t Xp=0)
=P(rij41 > t+h| 7 >tand X =i) — 1
>~ =\, h— 0,

which can be read as the differential equation
d b
ElogP(Ti,iJrl >t Xy =1)=-M\;,

where “log” denotes the natural logarithm “In”, with solution

P(rii >t | Xo=i)=eM, teRy, (9.2.4)
i.e. 7; ;41 is an exponentially distributed random variable with parameter J;, and the
mean time spent at state (i) before switching to state is given by

Elrii | Xg=il=—. i€,
A

see (9.4.9) below for the general case of continuous-time Markov chains. More
generally, and similarly to (9.1.3) it can also be shown as a consequence of the
strong Markov property that the sequence (7}, j41) j>; is made of independent random
variables which are respectively exponentially distributed with parameters A;, j > i.

Letting Tf’j = T;i41 + -+ 7;_1,; denote the hitting time of state @ starting
from state (i) by the birth process (X?),cr .» we have the representation

b .
Xb=i+ Y Lizb ooy (®), 1 €Ry.
i<j<oo

Note that since the pure birth process has stationary increments, by Theorem 9.1 it
can have independent increments only when the rates \; = ) are state independent,
i.e. when (X tb),eR . is a standard Poisson process with intensity A > 0.
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x¢

Fig. 9.3 Sample path of a death process (X ,d) 1Ry

Death Process

A continuous-time Markov chain (X ;’)IER . such that

PX4, —X=—1|X =i)~ph, h\0, i€S,

t
P(X?,, — X =0 X! =i)=1—ph+oth), h\0, i€S,

is called a pure death process with (possibly) state-dependent death rates p; > 0,i €
S. Its inter-jump times (7% )= form a sequence of exponential independent random
variables with state-dependent parameters (Fig.9.3).

In the case of a pure death process (X f )ier, We denote by 7; ;_; the time spent in

state () by (X¢ ):er, before it moves to state . Similarly to the pure birth process,
that the sequence (7; j_1);<; is made of independent random variables which are
exponentially distributed with parameter 1., j < i, which

P(Tj,j—l > 1) = ef“f’, t e R+,

and |
E[7;1]=—, i€S.
i
Letting 7%, = 7;;1 4 - - - + 7j41.; denote the hitting time of state () starting from
state (1) by the death process (X 9y er . we have the representation

—oo<j<i

When (N, );cr, is a Poisson process, the process (—N;);er, is a pure death process
with state-independent death rates u, = A > 0,n € N.
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Xt
4 —o
3 .
2 L o ° ) —o e——o
1+ ]
0 : H H H N H H H : H
T Ty Ts Ty Ts Ts  Ts T: Ts To Tio t

Fig. 9.4 Sample path of a birth and death process (X;);er,

Birth and Death Process

A continuous-time Markov chain (X;);cr, such that, for alli € S,
PXiop — X, =11 X, =0) = Nh, h N\ 0, (9.2.5a)
P(Xyp — X, =—1|X,=10) = puh, h 0, and

P(Xion —Xe =01 Xy =i) =1—= i +pdh+o(h), h\0, (9.2.5b)

is called a birth and death process with (possibly) state-dependent birth rates A; > 0
and death rates p; > 0,7 € S (Fig.9.4).

The birth and death process (X;);cr, can be built as
X, =X"+x4,  teRy,

in which case the time 7; spent in state @ by (X/):cr, satisfies the identity in

distribution
Ti = min(7 41, Ti,i—1)

i.e. 7; is an exponentially distributed random variable with parameter \; + y; and

1

Elnl = -

Indeed, since 7; ;41 and 7; ;_; are two independent exponentially distributed random
variables with parameters \; and p;, we have

P(min(7r; ;41 and 7;;1) > 1) = P(7;;41 > tand 7;;_1 > 1)
=P(75,i41 > OP(13,-1 > 1)
— e_[()\i""ﬂi)’ t e Ry,
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hence 7; = min(7; ;4, 7;;—1) 1s an exponentially distributed random variable with
parameter \; + p;, cf. also (1.5.8) in Chap. 1.

9.3 Transition Semigroup

The transition semigroup of the continuous time Markov process (X;);cr, is the
family (P(?));cr, of matrices determined by

P i) =PX,y=j|X,=i), i,jeS, steRy,

where we assume that the probability P(X,,; = j | Xy = i) does not depend on
s € R, In this case the Markov process (X;);cr, i said to be time homogeneous.

Definition 9.4 A continuous-time Markov chain (X,),cr, is irreducible if for all
t > 0, P(¢) is the transition matrix of an irreducible discrete-time chain.

Note that we always have
P(0) = 1.

This data can be recorded as a time-dependent matrix indexed by S> = S x S, called
the transition semigroup of the Markov process:

[P®]) = [P = 1 X, =], s,

also written as

. P—z,.—z(t) P—Z,'—l(t) P—z:o(t) P—2:1(t) P—z:z(t)
< Py o(8) Poy—1(t) P_y0(2) Poy () Poyo(0) - -+
[P0 ]i,jES = | Po2a(t) Po—1(t) Poo(t) Poa(t) Poa(t) ---

< P o(t) Pi(t) Pio(t) Pra(t) Pia() ---

© Py o(t) Py_1(t) Pao(t) Pri(t) Pro(t) ---

As in the discrete-time case, note the inversion of the order of indices (7, j) between
P(X,1s = j | Xy =1i) and P, ;(¢). In particular, the initial state (@) correspond to a
row number in the matrix P(t), while the final state @ corresponds to a column
number.
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Due to the relation

Z]P’(X,H =j|X,=i)=1, i€S, 9.3.1)
Jjes

all rows of the transition matrix semigroup (P (#));cr, satisfy the condition

o0

Y P =1,

jes
fori € S. In the sequel we will only consider N-valued Markov process, and in this
case the transition semigroup (P (t));cr, of the Markov process is written as

[ Po,o(t) Po,1(2) Poa(t) ---7]

Pio(t) Pia(t) Pia(t) -

PO =[P0 | jen =
[ Pij ]”JEN Pro(t) Po(t) Pap(t) -

From (9.3.1) we have
(o]
Y P =1,
=0

foralli e Nandr € R,.
Exercise: Write down the transition semigroup [ P; (1) ]l. jeN of the Poisson process
(No)ier, -

We can show that

e—)\t e~ M At e—/\z
2
=\t =\t
[ P ® ]i,jeN =19 ¢ Are




9.3 Transition Semigroup 225

Indeed we have

]P)(NS—H =] and Ny = i)

Pi,j(t) - IP(NH—Z =] | Nv - l) -

P(Ny = i)
_ IP)(NS+1‘ — Ny = ] —iand N; = l) . ]P(NS—H — Ny = .] - l)]P)(NY = l)
B P(N, = i) B P(N, = i)
)/~
e O g,
=P(Ngy —N=j-i={ U=V
0 if j <i.
In case the Markov process (X;);cr, takes values in the finite state space {0, 1, ..., N}

its transition semigroup will simply have the form
[ Po,o(t) Poi(t) Poa(t) -+ Pon(r) ]
Pro@) Pia(t) Pia(t) - Pin()

P(t)=[ P, ]Osi,jSN = | Paot) Pri(t) Pap(t) -+ Pyn(0)

| Pno(t) Py1(t) Pya(t) -+ Py (1) |

As noted above, the semigroup matrix P (¢) is a convenient way to record the values
of P(X,.s = j | X; = i) in atable.

Proposition 9.5 The family (P (t)),cr, satisfies the relation

P(s+1) = P(s)P(t) = P(t)P(s), (9.3.2)

which is called the semigroup property.

Proof Using the Markov property and denoting by S the state space of the process,
by standard arguments based on the law of total probability (1.3.1) for the probability
measure P(- | Xo = i) and the Markov property (9.2.1), we have
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P it+s)=
=) Py =jand X, =1|Xo=i)=)_

leS

P(Xis =j | Xo=1)

9 Continuous-Time Markov Chains

PXits = Jj, Xs =1, Xo=1)

leS

P(X,1s=1j, Xs=1, Xo=1i)P(Xy; =1and Xy =1i)

=2 P(X, = [ and Xo = i)

leS

P(Xo = i)

=Y P(X,y=j | X, =land Xo = )P(X, =1 | Xo =)

leS

P(Xp =1i)

=Y Py =j | X, =DP(X, =1| Xo=i) =) Py(s)P,;(1)

leS

=[P(s)P()]i;,

leS

i,jeS,s,t e Ri. Wehave shown the relation

Pij(s+1) = Z Pii(s) P (1),

leS

which leads to (9.3.2).

From (9.3.2) property one can check in particular that the matrices P(s) and P (t)
commute, 1.€. we have

Example

P(s)P(1) = P(1)P(s),

S, t €R+.

O

For the transition semigroup (P(f)),er, of the Poisson process we can check by
hand computation that

P(s)P(r) =

r 2

0 e Ase™™

0 0 e

e—)\(.H-t) )\(S_I_t)e—)\(S-H)

O ef)\(s#»t)

0 0

lg(s +1).

A
e—)\s )\se—)\s 7SZe—/\s .

] i e—)\z /\te_)‘l
< | 0 e
0 0

2

)\(S + t) ef)\(s+t)

ef)\(s+t)

)\_(S + I)ZC—)\(S-H‘) L
2

2
A_tze_)‘t e
2
e N
ef/\t
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The above identity can be recovered by the following calculation, forall 0 <i < j,
which amounts to saying that the sum of two independent Poisson random variables
with parameters s and ¢ has a Poisson distribution with parameter s + ¢, cf. (14.7) in
the solution of Exercise 1.6-(a). We have P; j(s) = 0,7 > j,and P, ;(t) = 0,1 > j,
hence

o0 J
[PS)PD)]ij =) Pu)Pi(t) =Y Pry(s)Prj (1)

=0 I=i

! I =1 i
J— —As—At ()\S) ()\t)j _ s\ 1 J i . .A_l

j—i

1 j—i . 1 i
— e—)\s—)\t ( )(/\S)I(At)j—t—l — e—A(H—l)—(AS + )\t)j—l
(j—i)!l; ! (—0!

=P i(s+1), s.teR;.

9.4 Infinitesimal Generator

The infinitesimal generator of a continuous-time Markov process allows us to encode
all properties of the process (X;),cr, in a single matrix.

By differentiating the semigroup relation (9.3.2) with respect to r we get, by
componentwise differentiation and assuming a finite state space S,

P(t+h)— P(2) — lim P(t)P(h) — P(t)

P'(t) =1
() Jim

h AN h
. P)—PO) _
= PU)};{%T =P®)0,
where
P(h) — P(0)

= P'(0)=1i
Q (V) Hm 7
is called the infinitesimal generator of (X;)er, -

When S ={0, 1, ..., N} we will denote by J; ;, i, j €S, the entries of the
infinitesimal generator matrix Q = (A; ;)i jes, 1.€.
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Ao Ao Aoz o Ao |

/\1,0 /\1,1 )\1,2 )\I,N

_dP(®)

dt = [ iJ ]0<i j<N — A0 A Ao s Ao | 9.4.1)
[t=0 =)=

Q

L Av.o Ang Anz oo Ann
Denoting Q = [A; ;i jes, forall i € S we have
, d d
Z)\i"i = Z P; ;(0) = = Z P i(t)y=0 = E]lu:o =0,
Jjes Jjes jesS

hence the rows of the infinitesimal generator matrix Q = [A; ;i jes always add up

to 0, i.e.
Y Ni=Xi+ Y Ai=0,
leS 1#i
or
Ai=— i (9.4.2)
I#i

Note that a state () such that \;, j =0forall j € Sis absorbing.

P'(t)=P1)Q, >0, (9.4.3)

is called the forward Kolmogorov equation, cf. (1.2.2). In a similar way we can show
that

P'(t) = QP(1), t >0, 9.4.4)

which is called the backward Kolmogorov equation.
The forward and backward Kolmogorov equations (9.4.3)—(9.4.4) can be solved
either using the matrix exponential ¢'? defined as

o) oo
tﬂ t”
exp(rQ) =) —0"=li+) —0" (9.4.5)
n=0 """ n=1 "

or by viewing the Kolmogorov equations (9.4.3)—(9.4.4) component by component
as systems of differential equations.
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In (9.4.5) above, Q¥ = 14 is the identity matrix, written as

1 0---00
01---00
Li=|:: Do
00---10
00---01
when the state space is S = {0, 1, ..., N}. Using matrix exponentials, the solution

of (9.4.3) is given by

P(t) = P(0)exp(tQ) =exp(tQ), teR,.

We will often use the first order approximation in 2 — 0 of

SNy L. IS SR A
P(h):exp(hQ)zLH—Z;Q =la+h0+ 507+ 307+ 70"+,

n=1

given by
P(h)=Ta+hQ+oh), h\0, (9.4.6)

where o(h) is a function such that lim,_.oo(h)/h = 0, i.e.

T Xoo Ao Aoz o Ao

10 - 00 )\1,0 )\1,1 )\1,2 /\I,N
01.---00
Phy=|: : . : |4+h| X0 M1 A2 - Xy | +o(h), hN\ 0.
00 10
00 1

LAN0 Ava Ava oo A
Relation (9.4.6) yields the transition probabilities over a small time interval of length
h > 0, as:

Aijh +o(h), i#j, h\0,

PXepn = Jj | Xo =i) = P j(h) =
L+ Nih+o(h), i=j, h\0,

and by (9.4.2) we also have
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A jh +o(h), i, h\0,

P(Xyan = j | X, = i) = Py ;(h) =
Koo =TV =0 =P =0 S A o, i=j b0,
I£i
(9.4.7)

For example, in the case of a two-state continuous-time Markov chain we have

with «, 8 > 0, and

P(h)y =14+ hQ +o(h)

(10 —a «
= +h +o(h)
1 01 6 —p
[1—ah ah
= + o(h), (9.4.8)
Bh 1 —[(h

as h N\ 0. In this case, P (h) above has the same form as the transition matrix (4.5.1)
of a discrete-time Markov chain with “small” time step 2 > 0 and “small” transition
probabilities ~a and k3, namely h« is the probability of switching from state @ to
state @ and i3 is the probability of switching from state @ to state @ within a
short period of time 7 > 0.

We note that since

P(X,+h =] | X, = l) ~ A,',jh, h \ 0, i 75 j,

and
PXyn #j 1 X =) =1=Xjh+oh), h\0, i#]

the transition of the process (X;);cr, from state @ to state @ behaves identically
to that of a Poisson process with intensity J; ;, cf. (9.1.2a)—(9.1.2b) above. Similarly
to the Poisson, birth and death processes, the relation

PXipn =J 1 Xi =0) =Aijh+o(h), h\0, i#],

shows that the time 7; ; spent in state (i) “before moving to state (j) # (), i.e. given
the first jump is to state @, is an exponentially distributed random variable with
parameter )\; ;, i.e.

P(r; > 1) =e ™' teRy, (9.4.9)
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and we have
o0

1
E[7j]= M\ te”Nidt = —, i #j.
0 ij
When i = j we have

PXipn #1 | Xy =)= hY Ny=—Xih.  h\0,
1#i

and

P(Xion =i | X, =0)=1=hY Xy+o(h)=1+Nh+oh). h\0,
1#i

hence, by the same Poisson process analogy, the time 7; spent in state (i) before the
next transition to a different state is an exponentially distributed random variable

with parameter Z Aij,l.e.
J#i

P(1; > t) =exp _fZAw' = i, reRy.
J#

In other words, we can also write the time 7; spent in state @ as

T =minT; j,
j€s !
i

and this recovers the fact that 7; is an exponential random variable with parameter

E A, j» since

J#i

P(r; >t) =P <mi}17'i,j > t)

J#
=[P, >0
Jj€s
J#

exp —tZ)\i,j =eMi, reR,.
J#
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cf. (1.5.8) in Chap. 1. In addition we have

1 1

0
E[r;] = /\,/ texp| —t Ai, dt = = >
I£i

and the times (7;)ies spent in each state k € S form a sequence of independent
random variables.

Examples
(i) Two-state continuous-time Markov chain.

For the two-state continuous-time Markov chain with generator

- @
B =B

the mean time spent at state @ is 1/a,, whereas the mean time spent at state
@ is 1/3. We will come back to this example in more detail in the following
Sect.9.5.

(i1) Poisson process.
The generator of the Poisson process is given by A; ; = 1(j—ipn A, i # j,i.e.

A A 0
0 —X A
0= [>‘i~,j ]i,jEN =

From the relation P (h) = Iy + h Q + o(h) we recover the infinitesimal transi-
tion probabilities of the Poisson process as

P(Nyyn =Ny =1) =P(N;ypp =i+ 1| N, =1i) = Ah,
h\(0,i € N,and
P(Niyp — Ny =0) =P(Nywp =i | Ny =i)=1— M+ o(h),

h\0,i e N,
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(iii)

(iv)

Pure birth process.
The generator of the pure birth process on N = {0, 1,2, ...} is
-Xo Ao 0
o —-X XN -
0= [/\i»j ]i,jeN = ’

0 0 - X

in which the rate )\; is (possibly) state-dependent. From the relation

P(hy=la+hQ +o(h), h\0,

i.e.
-X Ao 0
1 00
010 0 =X A -
P(h) = 001 +h +o(h), h\0,

we recover the infinitesimal transition probabilities of the pure birth process as
PXipn —Xo =11 X, =1) =PXyyn =1+ 1| X, =10) = \ih,
h ™\ 0,i € N,and

PXion = Xe =01 X, =i) =PXipn =i | Xp =i) =1 = XNh +o(h),

h\0,i e N.
Pure death process.
The generator of the pure death process on —N = {..., =2, —1,0} is
0 po —po
o~ 0

Q= [)‘i,j ]i,_,'go =
= 0 0
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From the relation

0 po —po
00 1
S 010 =m0
P =] 1 oo0l+h S +o(h),

we recover the infinitesimal transition probabilities

PXen —Xe = =11 X, =0) =PXyp =i — 1| Xy = i) = pih,

i €8S, and

PXipn =i | Xy =) =PXpyp = Xe =0 Xp =i) =1 = pjh + o(h),

i €8, of the pure death process.
Birth and death process on {0, 1, ..., N}.

h\ 0,

h\.0,

h\0,

By (9.2.52)—(9.2.5b) and (9.4.7), the generator of the birth and death process

on{0,1,...,N}is

™ —\o o 0 0 «ov-nn 0 0
Wl =AM =i A0 e 0 0
[/\i,.i ]Oii,jgN = ’
0 0 0 0 -+ 0 py—1 —AN—1—pN-1 AN-1
L O 0 0O 0-.---0 0 LN —uN
with py = Ay = 0.
From the Relation (9.4.6) we have
Ph) =14+ hQ + o(h), h N\ 0,
and we recover the infinitesimal transition probabilities
P(Xion — X, =1 X, =1i) = N\Nh, hN\ 0, i=0,1,...,N,
and
P(Xip — X, =—1|X,=10) >~ u;h, hN\0, i=0,1,...,N,

and
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PXqn— X, =0 X, =i)=1—(\ +p)h+oh), h 0, i=01._N,
of the birth and death process on {0, 1, ..., N}, with yp = Ay = 0.
Recall that the time 7; spent in state (i) is an exponentially distributed random
variable with parameter \; + 1; and we have

Pi(t)=P(r; > 1) =e 'Vt eRy,

and
E[r] =

Ai i
In the case of a pure birth process we find
Pit)y=Pr>0=e", 1Ry,

and similarly for a pure death process. This allows us in particular to compute
the diagonal entries in the matrix exponential P(t) = exp(tQ),t € R,.
When S={0,1,..., N} with \; = Xand y; =, i =1,2,...,N—1, and
Ao = py = 0, the above birth and death process becomes a continuous-time
analog of the discrete-time gambling process.

9.5 The Two-State Continuous-Time Markov Chain

In this section we consider a continuous-time Markov process with state space
S = {0, 1}, in the same way as in Sect.4.5 which covered the two-state Markov
chain in discrete time.

In this case the infinitesimal generator Q of (X,),cr, has the form

-
0= : (9.5.1)
B =B

with a;, 8 > 0. The forward Kolmogorov equation (9.4.3) reads

—Q
P'(t) = P(t) x . t>0, (9.5.2)
B =B

i.e.
P o(t) Py (1) Poo(t) Po(t) —a «

Pl (1) P{(t) Py o(t) Pra(t) B8 -8
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or
Py o(t) = —aPyo(t) + BPo1(t), Py (t) = aPoot)— [Poi(t),
Po(t) = —aPio() + BP11(t), P{ () =aPo)—BP(t),
t > 0, which is a system of four differential equations with initial condition

Py 0(0) Po,1(0) 10
P0) = - —1,.
Pio(0) Pi1(0) 01

The solution of the forward Kolmogorov equation (9.5.2) is given by the matrix
exponential

-
P(@)=P0)exp(rQ) =exp(tQ) =exp | ¢ ,
p =B

which is computed in the next Proposition 9.6.

Proposition 9.6 The solution P(t) of the forward Kolmogorov equation (9.5.2) is
given by

[ Poo(t) Poi(1)
P@) = (9.5.3)
| Pro@) Pia(?)
i B + Le—f((l'+5) L _ Le—t(afﬁ)
a+p a+p a+pf a+p
ﬁ _ ﬁ eft(quﬂ) « 4 ﬁ eft(aJrﬁ)
La+0 a+p a+p8 a4+

teRy.

Proof We will compute the matrix exponential e’ by the diagonalization technique.
The matrix Q has two eigenvectors

1 -
and ,

1 B

with respective eigenvalues A; = 0 and A\, = —a — 3. Hence it can be put in the
diagonal form

Q=MxDxM!
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as follows:
164 «
0= X X
1 g 0 X B 1 1
a+p a+p
Consequently we have
00 o ., 00 o o
P(1) = exp(1Q) :;EQ :%a(MX Dx M

oo " 0 "
=Y =MxD'xM'=Mx Y =D"|xM"
n! n!
n=0 n=0
=M x exp(tD) x M™!

I6] «
1l -« et)\] 0 o+ ﬂ o+ 6
= X X
10 0 et 1 1
a+ 8 a+
I6] «
= X X
1 0 e !@t+d) 1 1
a+p a+p
1 ﬁ « e—l(a-&-{)’) o —«

a+8 ga Tass -3 8

B O et OO
a+p a+p a+p a+p

B B oy _© B ettt
a+pf a+p a+pf a+p

t > 0.

From Proposition 9.6 we obtain the probabilities

237
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/8 + aef(aJr@)h

(X | Xo=0) ot s

s

« .
PX,=1]Xo=0)= — (1 — e @ty
(X | Xo ) [3( e )

— — —h
PX, =0 Xg=1) = — (1 (a+)hy.
(Xn | Xo ) 3( e )

o+ ﬁe—(ﬂ-‘rﬂ)h

PX,=1|Xo=1) = , heR,.
(X | Xo=1) ot e Ry
In other words, (9.5.3) can be rewritten as
« , o
1— 1 — e—(u+!3)h 1— e—((!+“3)h
o+ 5( ) a+ ﬂ( )
P(h) = 5 , h>0,
1— e*(OH’JS)h 1— 1— e*(aJrﬂ)h
a+ ﬁ( ) a+ ﬁ( )
9.5.4)
hence, since
1—e @ ~pa+p),  h\0,
the expression (9.5.4) above recovers (9.4.8) as h \( 0, i.e. we have
1—ha ha
Ph) = +oth)=1la+hQ +o(h), h ™\ 0,
hG 1—hp

which recovers (9.5.1).
From these expressions we can determine the large time behavior of the
continuous-time Markov chain by taking limits as ¢ goes to infinity:

PX;=0]Xo=0) P(X;=1]| Xg=0) 1 0 «
tlin;o P(t) = lim = ,

20 px, =0 Xo=1) PX;=1]Xo=1) | *T7|3a

whenever a > 0 or 3 > 0, whereas if @ = 3 = 0 we simply have

10
0 1

and the chain is constant. Note that in continuous time the limiting distribution of
the two-state chain always exists (unlike in the discrete-time case), and convergence
will be faster when « + [ is larger. Hence we have
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im P(X, =1 Xo=0)=lmP(X, =1 | Xo=1) = ——

t—00 t—00 a+ g
and 5

lim P(X, =0 | X =0) = lim P(X, =0 | Xo = 1) =

t—00 t—00 o _|_ﬁ
and

. . Jé] « B 1/a 1/3
7=l ml= <a+ﬁ’ a+5> - (1/a+ /3’ 1/a+1/ﬂ)

appears as a limiting distribution as t goes to infinity, provided that (a, 8) # (0, 0).
This means that whatever the starting point X, the probability of being at @ after
a “large” time is close to /(o 4+ 3), while the probability of being at @ is close to

B/ (o + ).

0.0 0‘.1 012 013 0.‘4 015 0‘.6 0.7 0‘.8 0i9 110
1

0 T T T T T T T

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 9.5 Sample path of a continuous-time two-state chain with a = 20 and 5 = 40

Q.
=

0.8

0.6

0.4

0.2

0.0

T T T T T T T T T 1
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 9.6 The proportion of process values in the state 1 converges to 1/3 = a/(a + 3)
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Next we consider a simulation of the two-state continuous Markov chain with
infinitesimal generator
—20 20

Q
Il

40 —40

i.e.a = 20and 8 = 40. Figure 9.5 represents a sample path (x;),cr, of the continuous-
time chain, while Fig. 9.6 represents the sample average

t
y;=—/xsds, t €[0,1],
t Jo

which counts the proportion of values of the chain in the state @ This proportion is
found to converge to a/(a + (3) = 1/3, as a consequence of the Ergodic Theorem
in continuous time, see (9.6.4) below.

9.6 Limiting and Stationary Distributions

A probability distribution ™ = (71;);cs is said to be stationary for P (t) if it satisfies
the equation
TP(t) =, teR,.

In the next proposition we show that the notion of stationary distribution admits a
simpler characterization.

Proposition 9.7 The probability distribution T = (7;);es is stationary if and only if
it satisfies the equation
wQ = 0.

Proof Assuming that 7Q = 0, we have
X n
TP(t) =mexp(tQ) =7 » EQ"
n=0
o0 t”
s (Id + Z m Qn>
n=1

oo tn
T+ § _7T'Qn
n!
n=1

:71'7

since 7Q" = 1Q Q"' =0, n > 1. Conversely, the relation 7 = 7 P(t) shows, by
differentiation at r = 0, that
0=7P(0) =70Q.
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Aj.k @

Ajk
O,

i
m O,

Fig. 9.7 Global balance condition (continuous time)

O

When S = {0, 1, ..., N} and the generator Q has the form (9.4.1) the relation 1Q =
0 reads
moXo,j +TALj+ -+ 7mnIn; =0, j=0,1,...,N,

i.e.,

N
Zﬂ'i)\j,iz_ﬂ'j)\j,j’ j=0,1,...,N,
i=0

i#]
hence from (9.4.2) we find the balance condition
N N
DTN = D TiAjks
i=0 k=0
i#] -y

which can be interpreted by stating the equality between incoming and outgoing
“flows” into and from state @ are equal forall j =0,1,..., N (Fig.9.7).
Next is the continuous-time analog of Proposition 7.7 in Sect.7.2.

Proposition 9.8 Consider a continuous-time Markov chain (X;);cr, on a finite state
space, which admits a limiting distribution given by

T = tl_i)rgloIP(X, =j| Xo=i)= tl_l)rglo P (), jeS, 9.6.1)
independent of the initial state i € S. Then we have
TQ =0, (9.6.2)

i.e.  is a stationary distribution for the chain (X,;)er, -
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Proof TakingS = {0, 1, ..., N}wenote thatby (9.6.1) since the limiting distribution
is independent of the initial state it satisfies
[ lim Pyo(r) --- lim Py y(2)

—00 11— 00 :
lim P(t) = : . :
—00
lim PN’()(Z‘) --- lim PN’N(Z‘)
1—00 t—00

(7o m -+ TN ™

= * = s
L 770 T TN s
where 7 is the row vector
T = [mo, T1, ..., Tal.

By the forward Kolmogorov equation (9.4.3) and (9.6.1) we find that the limit of
P’(t) exists as r — 00 since

lim P'(¢)) = lim P(O)Q = | : | Q.
Y

On the other hand, since P’(¢) converges as t — oo we should have
lim P'(t) =0,
11— 00

for the integral

P(t) = P(0) —i—/ P'(s)ds (9.6.3)
0

to converge as t — oo. This shows that

wQ s
|=1]:|e=
w0 T
by (9.4.3), hence we have 1Q = 0, or ZW")‘U =0,jeS. O
ieS

Equation (9.6.2) is actually equivalent to
m=nla+hnQ), h=>0,

which yields the stationary distribution of a discrete-time Markov chain with transi-
tion matrix P(h) = Iy + hQ + o(h) on “small” discrete intervals of length & \ 0.
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Proposition 9.8 admits the following partial converse. More generally it can be
shown, cf. Corollary 6.2 of [Lal], that an irreducible continuous-time Markov chain
admits its stationary distribution 7 as limiting distribution, similarly to the discrete-
time Theorem 7.8, cf. also Proposition 1.1 p. 9 of [Sig] in the positive recurrent case.

Proposition 9.9 Consider an irreducible, continuous-time Markov chain (X;);cr,
on a finite state space, with stationary distribution T, i.e.

mQ =0,

and assume that the matrix Q is diagonalizable. Then (X,);cr, admits  as limiting
distribution, i.e.

lim P ;(t) =lim P(X, =j | Xo=i)=m;, jeES,
11— 00 —00
which is independent of the initial state i € S.

Proof Bye.g. Theorem 2.1 in Chap. 10 of [KT81], since the chain is irreducible, \; =

0is an eigenvalue of Q with multiplicity one and eigenvector u'” = (1, 1,...,1).In
addition, the remaining eigenvectors u®, ..., u™ e R" witheigenvalues \,, ..., \,
are orthogonal to the invariant (or stationary) distribution [, 75, .. ., m,] of (X;)er,
as  we have MN(u®, mpe = (Qu®, g = @®, QT m)pe = 77 QuP =0,
k =2,...,n. Hence by diagonalization we have Q = M ~1'DM where the matri-
ces M and M~ take the form
T e T, 1u§2)... ”(1n)
Msy - M, 142 W
M = o _’" and M~' = 2 ] 2 ,
Mn,l et Mn,n 1 lzt,(12) e uil”)
and D is the diagonal matrix D = diag(\;, A2, ..., A,). This allows us to compute

the transition probabilities of (X;);cr, as
P ) =P(X, =j | Xo=1i) =[exptQ)l;,; = [M~" exp(t D)M]; ;
where exp(¢ D) is the diagonal matrix
exp(tD) = diag(1, e, ..., e”™),

and the eigenvalues A, ..., A\, have to be strictly negative, hence we have
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lim  [P(X; =j | Xo=Dli<ij<n = Jim (M~ exp(t D)M11i,j<n

—00
1 u%z) ug”) 10 .-.-0 T - T
W w00 0| My -+ My,
K W@ o L0000 LMy - My
10 --- 07 mT e T
10 ---0 My, - Mo,
L1 0 -~ 0 LMy - Myp
_71—1 ﬂ—n_
T - T
L7l - Tn

]

The discrete-time Ergodic Theorem 7.12 also admits a continuous-time version with
a similar proof, stating that if the chain (X;);cr, is irreducible then the sample
average of the number of visits to state (i) converges almost surely to 7, i.e.,

t

1
lim — ]l{szi}dl‘ =T, i €8S. 9.6.4)

t—oo f 0

Examples

(i) Two-state Markov chain.
Consider the two-state Markov chain with infinitesimal generator

—a «@
g =B
the limiting distribution solves 7Q = 0, i.e.
0= —am + Bm
0 = am — pm,

with o + 7 = 1, i.e.

S A (9.6.5)
a+p a+p
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(i1) Birth and death process on N.
Next, consider the birth and death process on N with infinitesimal generator

X No 0 0 0
1 —A1— i A1 0 0
0 M2 —d—pp A 0o -
0=\, ]i,jeN =1 0 0 M3 —A3—p3 Az ocee |

the stationary distribution solves 7Q = 0, i.e.
0= —Xomo + p1my
0= Xomo — (A1 + p)m1 + pomr

0= A — (A2 + p2)m + p3ms3

0= >\j—l7rj—1 — ()\] =+ /lj)ﬂj +/1/j+17rj+17

i.e.
A0
T = —T
1
Ao AL+ g Ao AL+ 1 Ao Al Ao
mM=——")+——— A =——T"g+————7T)=——7(
M2 M2 H2 w2 K2
Al A2+ o Al Ao A2+ 2 A Ao A2 A1 Ao
mM=——"+t———Mm=———"0+t —————T)=———7
M3 M3 U3 4 M3 2 p M3 p2 p]
Aj - Xo
Tj4l = ——————T0.
Hjt1 e H

Using the convention

j-l J
)\j_l...,\():l—[,\lzl and uj-~-u1=l_[/iz=1
1=0 I=1

in the case j = 0, we have
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(iii)

9 Continuous-Time Markov Chains

hence

and

When \; = A\, i € N, and p; = p, i > 1, this gives
A /A
w iz

provided that A < p, hence in this case the stationary distribution is the geo-
metric distribution with parameter \/u, otherwise the stationary distribution
does not exist.

N

1y
i=0

7'(']':

Birth and death processon S = {0, 1, ..., N}.
The birth and death processonS = {0, 1, ..., N} has the infinitesimal generator
M —Xo Ao 0o - .- 0 0 0 0 7
W1 —=AL = AL e e 0 0 0
0 . I 0 0
Q=[N losijen =
0 0 0 : Do T 0
0 0 0 v 0 pn—1 —AN—1—[N-1 AN-1
L 0 0 0 v 0 0 UN —pN

we canapply (1.6.6) withA; =0,j > N,andu; =0, j = N + 1, which yields

Ajo1-+ Ao

je{0,1,...,N},
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and coincides with (9.6.5) when N = 1.
When \; = A\, i € N, and p; = p, i > 1, this gives

1=MNp (A .
ﬂj:—NH(_> ., j=0,1,...,N,
1= (A/p 1%

which is a truncated geometric distribution since 7; = 0 for all j > N and any
A > 0.

9.7 The Discrete-Time Embedded Chain

Consider the sequence (7,),cn the sequence of jump times of the continuous-time
Markov process (X,);cr, , defined recursively by Ty = 0, then

T, =inf{t >0 : X, # Xy},

and
Ty =inf{t > T, : X; # X1,}, n e N.

The embedded chain of (X,);cr, is the discrete-time Markov chain (Z,),en defined
by Zy = Xy and
Z,:=Xr, n>1.

The next Fig. 9.8 shows the graph of the embedded chain of a birth and death process.

The results of Chaps. 2—8 can now be applied to the discrete-time embedded chain.
The next Fig. 9.9 represents the discrete-time embedded chain associated to the path
of Fig.9.8, in which we have Zy =0, Z, =1, Z, =2, Z3 =3, Zy =4, Zs = 3,
Ze=4,Z7=3,...

0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 9.8 Birth and death process (X;);cr, with its embedded chain (Z,),en
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Fig. 9.9 Discrete-time embedded chain (Z,),en based on the path of Fig.9.8

For example, if Ao > 0 and py > 0, the embedded chain of the two-state
continuous-time Markov chain has the transition matrix

01
p_ [1 o]’ ©.7.1)

which switches permanently between the states @ and @
In case one of the states {0, 1} is absorbing the transition matrix becomes

10]
K 0_,/\0=0, >0,
0 11

P = _0 1_,)\0>O,,u1:O,
1o
0 1_,>\0=0, w =0.

Birth and Death Embedded Chain

More generally, consider now the birth and death process with infinitesimal generator

F—Xo Ao 0 - -er 0 o0 0 0 T
=M= AL 0 0 0 0
0=[N; ]ogi,_/'szv = :
0 0 0 il e 0
0 0 0 - - 0 pnN—1 —AN—1—HN—1 AN—I
L O 0 0 - -e 0 0 1N —un |
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Given that a transition occurs from state (7) in a “short” time interval [z, t + 4], the
probability that the chain switches to state is given by

P(X;yp =i+ 1and X, =1)
P(X;1p — X; #0and X, = i)
_ P(Xyyp =i+ land X, =1)

P — X, 01 X, =DP(X, =)

_ PXyn =i+ 11X, =1)

B IP)(Xz-~-h—xz5"é()|Xzzi)

. P(Xt+h_Xt=1|Xt=i)

B P(X,+h—X;750|X,=i)

N Aih

— Nih + ik
YT

PX;p=i+1]| X, =iand X,y — X, #0) =

AN\ 0, (€S,

where we applied (9.4.7), hence the transition matrix of the embedded chain satisfies

Ai
Pio=lmPX,y,=i+1|X,=iand X,y — X; #0) = , 1 €S.
it hl\o(z+h i | X, =i t+h — Xi #0) Nt i
9.7.2)
This result can also be obtained from (1.5.9) which states that
P( ) Ai (9.7.3)
Tii+1 < Tii—1) = : e
o U N
Similarly the probability that a given transition occurs from (i) to is
P(X,p=i—1]X,=iand Xippn— X, £0) = —— p\,0, i€S,
Ai + i
which can also be obtained from (1.5.9) which states that
Hi
P(7i,i- ii+l) = .
(Tii—1 < Tiiv1) N+
Hence we have
. . . Hi
P i =I111{‘I(1)P(Xz+h =i—1]|X,=iand X,y — X; #0) = Nt i €8,

and the embedded chain (Z,,),cn has the transition matrix
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P =[ ij ]i.jeS
r 0 1 0 0 T
m A 0 0 0 0
A1+ A+
0 T 0 0 0
0 0 0 [ 0
_ AN—
0 0 0 0 HUN-—1 0 N—1
AN—1 + piN—1 AN—1 + pN—1
L 0 1 0 .

provided that Ay > 0 and gy > 0. When N = 1, this coincides with (9.7.1). In case
Ao = py = 0, states @ and @ are both absorbing since the birth rate starting from

(0) and the death rate starting from @ are both 0, hence the transition matrix of the
embedded chain can be written as

P = [ Py ]05;,,‘51\7
r 1 0 0 0---0 0 0 0 ]
A
L — 0 0 0
A+ AL+
0 .. 0 0 0
. . 0
_ AN—
0 0 0 0 --- 0 HN-1 N-1
AN—1 + pn—1 AN—1+ N1
L 0 0 0 0---0 0 0 1 _
which is the transition matrix of a gambling type process on {0, 1, ..., N}. When

N =1 this yields P = I, which is consistent with the fact that a two-state Markov
chain with two absorbing states is constant.
For example, for a continuous-time chain with infinitesimal generator

—-10 10 0 0 0
10 =20 10 0 0
O=[Njlosja=| 0 10 =30 20 0 |,
0 0 10 —40 30
0 0 0 20 —20

the transition matrix of the embedded chain is
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01 0 0 0
120 1/2 0 0
P=[Pjlye,=]| 0 1/3 023 0
0 0 1/4 0 3/4
00 0 1 0

In case the states @ and @ are absorbing, i.e.

00 0 00
10-20 10 0 0

O=[ijloeijea=1]0 10 =30 20 0 |,
0 0 10 —4030
00 0 00

the transition matrix of the embedded chain becomes

1 0 0 0 0
1/2 0 1/2 0 0
0 1/3 0 2/3 0
0 0 1/4 0 3/4
00 0 0 1

P = [ Pij ]osi.,jf“ -

More generally, by (9.4.7) and (9.4.2) we could also show that the embedded chain
of a continuous-time Markov chain with generator Q of the form (9.4.1) has the
transition matrix

P = [ Pi ]i,jeS
[ o o2 dewvar _Aow
20,0 20,0 0,0 20,0
T S i NP Y AR Vi
ALl ALl ALl ALl
AN Ay 0 _ AN-LN
AN—IN—1 AN—1N-1 AN—1,N—-1
— N0 — AN’I _)\N’N_l
AN.N AN.N AN.N _

provided that \;; > 0,i =0,1,..., N.
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9.8 Mean Absorption Time and Probabilities

Absorption Probabilities

The absorption probabilities of the continuous-time process (X;);cr, can be com-
puted based on the behaviour of the embedded chain (Z,),en. In fact the continuous
waiting time between two jumps has no influence on the absorption probabilities.
Here we consider only the simple example of birth and death processes, which can
be easily generalized to more complex situations.

The basic idea is to perform a first step analysis on the underlying discrete-time
embedded chain. Assume that state @ is absorbing, i.e. Ay = 0, and let

Ty =inf{t e R, : X, =0}
denote the absorption time of the chain into state (0). Let now
gok) =P(Th <0 | Xo=k), k=0,1,...,N,
denote the probability of absorption in @ starting from state k € {0, 1, ..., N}.

We have the boundary condition go(0) = 1, and by first step analysis on the chain
(Zy)n=1 we get

A
K gtk + 1)+ X

(k) =
a Ak + e Ak +

gk -1, k=1,2,...,N—1.

When the rates Ay = A and p; = p are independent of k € {1,2,..., N — 1}, this
equation becomes

go(k) = pgok + 1) +qgok = 1),  k=1,2,....N -1,
which is precisely Eq. (2.2.6) for the gambling process with

= and q:L
A p A+ p

p

When Ay = pny = 0 we have the boundary conditions
90(0) =1 and go(N) =0
since the state @ becomes absorbing, and the solution becomes

(/N = (/DY
L= (/AN

when A # p, according to (2.2.11). When A\ # u, Relation (2.2.12) shows that

go(k) = k=0,1,...,N,
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N —k k
k= —=1——, k=0,1,...,N.
go(k) N N

Mean Absorption Time

We may still use the embedded chain (Z,,), <y to compute the mean absorption time,
using the mean inter-jump times. Here, unlike in the case of absorption probabilities,
the random time spent by the continuous-time process (X;),cr, should be taken into
account in the calculation. We consider a birth and death process on {0, 1, ..., N}
with absorbing states @ and @

Recall that the the mean time spent at state (i), given that the next transition is

from (i) to , is equal to
1

IE[Ti,iJrl]:;, i=1,2,....,N—1,

and the mean time spent at state (1), given that the next transition is from (1) to ,
is equal to

1
E[7,;1] = —, i=1,2,...,N—1.

1

We associate a weighted graph to the Markov chain (Z,,), iy that includes the average

E[7] =

Ai + i

of the time 7; = min(7;;_1, 7;,;4+1) spent in state @ before the next transition,
i=1,2,..., N — 1. In the next graph, which is drawn for N = 4, the weights are
underlined:

1 /(A + pa) Ar/(A1+ p1) w3/ (A3 + p3) A3/ (A3 + p3) 1
/(A1 + pa 1/(A\1 + pa) 1/(As + ps 1/(As + ps)
1/(A2 + p2) 1/(A2 + p2)
p2/ (A2 + p2) X2/ (A2 + p2)

with A() = U4 = 0.

Proposition 9.10 The mean absorption times
hon() =E[Ton | Xo=i], i=0,1,....N,

into states {0, N} starting from state i € {0, 1, ..., N} satisfy the boundary condi-
tions ho y(0) = ho n(N) = O the first step analysis equation

Hi
_"_
Ai A i N i

i

h ) =
on ) Ai + i

hon(G —1)+

hon (i + 1),
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Proof By first step analysis on the discrete-time embedded chain (Z,,),>; with tran-
sition matrix

- 0 1 0 0---00 0 -
M1 A
A1+ A1+
0 .. e 0 0
P=[Pylye=| L L 0 Il
0
0 0 0 0.0 0 N1
AN=1 + N—1
. 0 o0 o0 0 0 1 _
we have
how (D) = o (Bln] + how (i — D) + —=— (Elr] + hox (i + 1)
’ i+ i ’ Ai i ’

& ( L4 o 1)>+ A ( L ih (‘+1)>
= — 1 — 1 bl
/\i+ui >\i+/‘i 0N )\i+Ni )\i+,ui 0N

9.8.1)
i=1,2,...,N—1. 0

Note that by conditioning on the independent exponential random variables 7; ;|
and 7; ;11 we can also show that

Elr | 71 < Tiip]l = Eln | 11 <721l = E[1] = ,
Ai + i

i=1,2,...,N—1,cf (1.7.9) in Exercise 1.4-(a), hence (9.8.1) can be rewritten
as

how (@) = — (BL7: | 7001 < Taiia] oG = D)
+ i El7 | Tijv1 <Tiic1]l+h i+1)).
N (El7 | Tiit1 i—1]+hon( )

When the rates \; = A and p; = p are independent of i € {1,2,..., N — 1}, this
equation becomes

1 1%
h ) = —— h i+ 1
o,n (@) )\+u+)\+,u on(@@+ )+)\+,u

hon(G — 1),

i=1,2,..., N — 1, which is a modification of Eq. (2.3.6), by replacing the discrete
time step by the average time 1/(\ 4 p) spent at any state. Rewriting the equation
as



9.8 Mean Absorption Time and Probabilities 255

1 . .
hon() = m + phon(G+1)+qghonG — 1),

i=1,2,....,.N—1,or
A+ whon@) =14+ pA+wWhon(+ 1) +qgA+ whoni—1),
i=1,2,...,N —1, with

and q:L
A+ p A+p

p:

we find from (2.3.11) that, withr = q/p = u/A,

1 1 —rk
A+ mwhonk) = ——|k—N v |
q—r I—r

i.e.

_ k
1 (k__Nl (/)

Pon ) =12% = (u/MN

), k=0,1,...,N, (9.8.2)
w—A

when A # p. In the limit A — p we find by (2.3.17) that
1
hon(k)=—k(N —k), k=0,1,...,N.
2p

This solution is similar to that of the gambling problem with draw Exercise 2.1 as we
multiply the solution of the gambling problem in the fair case by the average time
1/(2w) spent in any state in {1,2, ..., N — 1}.

The mean absorption time for the embedded chain (Z,),cn can be recovered by
dividing (9.8.2) by the mean time IE[7;] = 1/(\ + 1) between two jumps, as

A+u<k_N1—UMMk>

=0,1,..., N, 9.8.3
A = (u/2Y 083

which coincides with (2.3.11) in the non-symmetric case with p = \/(A + u) and
p = u/(\+ p), and recovers (2.3.17), i.e.

k(N—k), k=0,1,...,N,
in the symmetric case A\ = p.

In Table 9.1 we gather some frequent questions and their corresponding solution
methods.
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Table 9.1 Summary of computing methods

How to compute Method
dP(t
The infinitesimal generator Q = (\; j);, jes 0= dt( ) = P'(0)
) [t=0
The semigroup (P (t))/cr, P(t) =exp(tQ),t € Ry,
P(h) =14+ hQ + o), h \, 0
The stationary distribution 7 Solve* 7Q =0 for w
The probability distribution of the time 7; ; Exponential distribution (A; ;)

spentini — j

The probability distribution of the time 7; spent | Exponential distribution Z il

at state (7) I£i
Ié] «
—a a a+B a+p
lim exp | ¢
—00
B - f__«
a+p6 a+p
Hitting probabilities Solve® g = Pg for the embedded chain
Mean hitting times Use the embedded chain with weighted links

using mean inter-jump times

*Remember that the values of 7(k) have to add up to 1
"Be sure to write only the relevant rows of the system under the appropriate boundary conditions

Exercises

Exercise 9.1 A workshop has five machines and one repairman. Each machine func-
tions until it fails at an exponentially distributed random time with rate ;» = 0.20 per
hour. On the other hand, it takes a exponentially distributed random time with (rate)
A = 0.50 per hour to repair a given machine. We assume that the machines behave
independently of one another, and that

(i) up to five machines can operate at any given time,
(i) at most one can be under repair at any time.

Compute the proportion of time the repairman is idle in the long run.

Exercise 9.2 Two types of consultations occur at a database according to two inde-
pendent Poisson processes: “read” consultations arrive at the rate (or intensity) Ag
and “write” consultations arrive at the rate (or intensity) Ay .

(a) What is the probability that the time interval between two consecutive “read”
consultations is larger than ¢ > 0?

(b) What is the probability that during the time interval [0, ¢], at most three “write”
consultations arrive?

(c) Whatisthe probability that the next arriving consultation is a “read” consultation?
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(d) Determine the distribution of the number of arrived “read” consultations during
[0, t], given that in this interval a total number of n consultations occurred.

Exercise 9.3 Consider two machines, operating simultaneously and independently,
where both machines have an exponentially distributed time to failure with mean 1/ .
There is a single repair facility, and the repair times are exponentially distributed with
rate \.

(a) In the long run, what is the probability that no machines are operating when
A=pu=17

(b) We now assume that at most one machine can operate at any time. Namely, while
one machine is working, the other one may be either under repair or already fixed
and waiting to take over. How does this modify your answer to question (a)?

Exercise 9.4 Passengers arrive at a cable car station according to a Poisson process
with intensity A > 0. Each car contains at most 4 passengers, and a cable car arrives
immediately and leaves with 4 passengers as soon as there are at least 4 people in
the queue. We let (X,;),cr, denote the number of passengers in the waiting queue at
time ¢t > 0.

(a) Explain why (X,)cr, is a continuous-time Markov chain with state space S =
{0, 1, 2, 3}, and give its matrix infinitesimal generator Q.

(b) Compute the limiting distribution 7 = [mo, 7y, 72, 73] of (X;)seR, -

(c) Compute the mean time between two departures of cable cars.

Exercise 9.5 [MT15] We consider a stock whose prices can only belong to the
following five ticks:

$10.01; $10.02; $10.03; $10.04; $10.05,

numbered k =1, 2, 3, 4, 5.

At time ¢, the order book for this stock contains exactly N,(k) sell orders at the price
tickn’k, k =1, 2, 3,4, 5, where (N,(k))te]R+ are independent Poisson processes with
same intensity A > 0. In addition,

e any sell order can be cancelled after an exponentially distributed random time with
parameter p > 0,

e buy market orders are submitted according to another Poisson process with inten-
sity 8 > 0, and are filled instantly at the lowest order price present in the book.

Order cancellations can occur as a result of various trading algorithms such as, e.g.,

CLINNT3

“spoofing”, “layering”, or “front running”.

(a) Show that the fotal number of sell orders L, in the order book at time ¢ forms a
continuous-time Markov chain, and write down its infinitesimal generator Q.

(b) It is estimated that 95% percent of high-frequency trader orders are later can-
celled. What relation does this imply between p and A?
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Exercise 9.6 The size of a fracture in a rock formation is modeled by a continuous-
time pure birth process with parameters

M=A+k"  k=>1,

i.e. the growth rate of the fracture is a power of 1 + k, where £ is the current fracture
length. Show that when p > 1, the mean time for the fracture length to grow to
infinity is finite. Conclude that the time to failure of the rock formation is almost-
surely finite.?

Exercise 9.7 Customers arrive at a processing station according to a Poisson pro-
cess with rate A = 0.1, i.e. on average one customer per ten minutes. Processing of
customer queries starts as soon as the third customer enters the queue.

(a) Compute the expected time until the start of the customer service.
(b) Compute the probability that no customer service occurs within the first hour.

Exercise 9.8 Suppose that customers arrive at a facility according to a Poisson
process having rate A = 3. Let N, be the number of customers that have arrived up
to time ¢ and let 7, be the arrival time of the nth customer, n = 1, 2, ... Determine
the following (conditional) probabilities and (conditional) expectations, where 0 <
h <th <tz <ly.

(@ P(N; =5| N, =1).
(b) E[N, N, (N, — N,
(© E[N, | T > 1l

Exercise 9.9 Let (X,);cr, be a birth and death process on {0, 1, 2} with birth and
death parameters \g = 2, A\ = o, A\, = 0, and py =0, p; = 3, pp = 2. Deter-
mine the stationary distribution of (X,)/cR, .

Exercise 9.10 Let (X;);cr, be a birth and death process on 0, 1, ..., N with birth
and death parameters \, = «(N — n) and p,, = [n, respectively. Determine the sta-
tionary distribution of (X)cr, .

Exercise 9.11 Consider a pure birth process with birthrates A\y = 1, A} = 3, A\, = 2,
A3 = 5. Compute Py ,(t) forn =0, 1, 2, 3.

Exercise 9.12 Consider a pure birth process (X;);cr, started at Xo = 0, and let T
denote the time until the kth birth. Show that

]P(T] > t and T2 >t ~|—S) = PO,O(t)(PO,O(S) —+ P().l(s)).

Determine the joint probability density function of (77, 7»), and then the joint density
of (ro, 1) :== (Th, T = Th).

3Recall that a finite-valued random variable may have an infinite mean.
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Exercise 9.13 Cars pass a certain street location with identical speeds, according to
a Poisson process with rate A > 0. A woman at that location needs 7 units of time
to cross the street, i.e. she waits until it appears that no car will cross that location
within the next 7" time units.

(a) Find the probability that her waiting time is 0.

(b) Find her expected waiting time.

(c) Find the total average time it takes to cross the street.

(d) Assume that, due to other factors, the crossing time in the absence of cars is an
independent exponentially distributed random variable with parameter p > 0.
Find the total average time it takes to cross the street in this case.

Exercise 9.14 A machine is maintained at random times, such that the inter-service
times (7x)k>0 are i.i.d. with exponential distribution of parameter ;¢ > 0. The machine
breaks down if it has not received maintenance for more than 7 units of time. After
breaking down it is automatically repaired.

(a) Compute the probability that the machine breaks down before its first mainte-
nance after it is started.

(b) Find the expected time until the machine breaks down.

(c) Assuming that the repair time is exponentially distributed with parameter A > 0,
find the proportion of time the machine is working.

Exercise 9.15 A system consists of two machines and two repairmen. Each machine
can work until failure at an exponentially distributed random time with parameter
0.2. A failed machine can be repaired only by one repairman, within an exponentially
distributed random time with parameter 0.25. We model the number X, of working
machines at time ¢ € R, as a continuous-time Markov process.

(a) Complete the missing entries in the matrix

gos5 o0
o0=1020 0O
0 O -04

of its generator.

(b) Calculate the long-run probability distribution [, 7|, m>] of X;.

(c) Compute the average number of working machines in the long run.

(d) Given that a working machine can produce 100 units every hour, how many units
can the system produce per hour in the long run?

(e) Assume now that in case a single machine is under failure then both repairmen
can work on it, therefore dividing the mean repair time by a factor 2. Complete
the missing entries in the matrix
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of the modified generator and calculate the long run probability distribution

[ﬂ-Oa T, 71-2] for Xl"

Exercise 9.16 Let X(¢) and X,(¢) be two independent two-state Markov chains on
{0, 1} and having the same infinitesimal matrix

e

poo—p]

Argue that Z(t) := X (t) + X»(¢t) is a Markov chain on the state space S = {0, 1, 2}
and determine the transition semigroup P(¢) of Z(¢).

Exercise 9.17 Consider a two-state discrete-time Markov chain (§,),>o on {0, 1}
with transition matrix
|: 0 1 :| . (9.8.4)

l—a «a
Let (N;);er, be a Poisson process with parameter A > 0, and let the
X, =€y, teRy,

i.e. (X;);er, 18 a two-state birth and death process.

(a) Compute the mean return time E[7 | Xo = 0] of X, to state @ where Ty is
defined as
Ty =inf{t > T, : X, =0}

and
T, =inf{t >0 : X, =1}

is the first hitting time of state (1). Note that the return time
(b) Compute the mean return time E[7] | X, = 1] of X, to state @ where 77 is
defined as
T/ =inf{t > Ty : X, =1}

and
To =inf{t >0 : X;, =0}

is the first hitting time of state @ The return time 7| to @ starting from @ is
evaluated by switching first to state @ before returning to state @

(c) Show that (X;);ecr, is a two-state birth and death process and determine its
generator matrix Q in terms of o and .
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Problem 9.18 Let (N,'),G]R+ and (Nf)te]R+ be two independent Poisson processes
with intensities \; > 0 and \, > 0.

(a) Show that (N,' + Ntz),eR+ is a Poisson process and find its intensity.
(b) Consider the difference

M, =N'— N} teRy,

and that (M,);cr, has stationary independent increments.
(¢) Find the distribution of M, — M,,0 < s < t.
(d) Compute
lim P(|M,| < ¢)
1—00

for any ¢ > 0.

(e) Suppose that N, denotes the number of clients arriving at a taxi station during
the time interval [0, 7], and that le denotes the number of taxis arriving at that
same station during the same time interval [0, ¢].

How do you interpret the value of M, depending on its sign?
How do you interpret the result of Question (d)?

Problem 9.19 We consider a birth and death process (X;);cr, on {0, 1, ..., N} with
transition semigroup (P (¢));cr and birth and death rates

A= (N —n)\, Ly = N, n=0,1,...,N.

This process is used for the modeling of membrane channels in neuroscience.

(a) Write down the infinitesimal generator Q of (X;);er, -
(b) From the forward Kolmogorov equation P’(t) = P(t)Q, show that for all n =
0,1,..., N we have

Py o) = =X Puo(t) + p1 Py i (1),
Py () = N1 Pk—1(8) — N+ 1) Pai (1) + pia1 Prier1 (1),
Py n@) = Av_1Pan-1(t) — pnPan(t),
k=1,2,...,N—1.
(c) Let
N N
Gils, ) =E[s¥ | Xo=k] =) s"P(X, =n|Xo=k) =Y 5" Pen(t)
n=0 n=0
denote the generating function of X, given that Xo =k € {0, 1, ..., N}. From

the result of Question (b), show that G (s, t) satisfies the partial differential
equation
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oG oG
a_tk(s’ 1) =AN(s — DGi(s, 1) + (4 A — p)s — )\sz)a—k(s, 1), (9.8.5)
s

with G (s,0) =s*,k =0,1,..., N.
(d) Verify that the solution of (9.8.5) is given by

1
Guls. 1) = g (B A pals = De™ M0k (i As — A(s — e~ AFHN=k,
k=0,1,...,N.
(e) Show that
k
E[X Xo =k :—)\_lr_ e_(/\"‘ﬂ)[ +)\k—l +A N—k
[X: | Xo = k] (/\+u)N( Iz Y+ N (4N
+ N——k(#_*_ )\)k()\ _ )\e_(”“)’)(ﬂ—}- )\)N—k—l.
A+ N

(f) Compute
tlim E[X; | Xo = k]
—00

and show that it does not dependon k € {0, 1, ..., N}.



Chapter 10 ®)
Discrete-Time Martingales oo

As mentioned in the introduction, stochastic processes can be classified into two
main families, namely Markov processes on the one hand, and martingales on the
other hand. Markov processes have been our main focus of attention so far, and in
this chapter we turn to the notion of martingale. In particular we will give a precise
mathematical meaning to the description of martingales stated in the introduction,
which says that when (X,),cn is a martingale, the best possible estimate at timen € N
of the future value X, attime m > n is X, itself. The main application of martingales
will be to recover in an elegant way the previous results on gambling processes of
Chap. 2. Before that, let us state many recent applications of stochastic modeling are
relying on the notion of martingale. In financial mathematics for example, the notion
of martingale is used to characterize the fairness and equilibrium of a market model.

10.1 Filtrations and Conditional Expectations

Before dealing with martingales we need to introduce the important notion of filtra-
tion generated by a discrete-time stochastic process (X, ),en. The filtration (F,)nen
generated by a stochastic process (X,,),en taking its values in a state space S, is the
family of o-algebras

fn :ZO—(XO’XI»”an)’ HEO,
which denote the collections of events generated by Xy, Xy, ..., X,. Examples of
such events include
{XO SaOa Xl Sala ey X}’l San}
for ag, ay, ..., a, a given fixed sequence of real numbers. Note that we have the

inclusion F,, C F,4+1,n € N.
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One refers to F,, as the information generated by (Xj)ren up to time n, and to
(Fu)nen as the information flow generated by (X,,),en. We say that a random variable
is F,-measurable whenever F can be written as a function F = f(Xo, X1, ..., X)
of (X(), X], ey X,,).

Consider for example the simple random walk

S =X1+Xo+--+ Xy, neN,

where (X)r>1 is a sequence of independent, identically distributed {—1, 1} valued
random variables. The filtration (or information flow) (F},),cn generated by (S,),en
is given by 7y = {0, 2},

fl = {Qa {Xl = 1}7{X1 = _1}79}7
and

F=c({p{Xi=1LX=1}{Xi=1.X=-1},{X;=-1, X, =1},
(X1 =-1,X,=—1}, 2}).

The notation F, is useful to represent a quantity of information available at time n,
and various sub o-algebras of F, can be defined such as e.g.

G ={0.{Xi=1X,=-1JU{X; =1, X, =1},
{Xl = 17X2 = 1}U{X1 = _15X2 = _1}59}5

which contains less information than F,, as it only tells whether the increments X,
X, have same signs.
We now review the definition of conditional expectation, cf. also Sect. 1.6. Given
F arandom variable with finite mean the conditional expectation IE[F | F, ] refers
to
E[F | Xo, X1, ... Xa] = E[F | Xo = ko, ... Xp = KnJkoXo.. k=X,

given that Xy, X, ..., X, are respectively equal to kg, k, ..., k, € S.

The conditional expectation IE[F | F,] is itself a random variable that depends
only on the values of Xy, X1, ..., X,, i.e. on the history of the process up to time
n € N. It can also be interpreted as the best possible estimate of F' in mean square
sense, given the values of X, Xy, ..., X, cf. (1.6.17).

A stochastic process (Z,,),cn is said to be F,-adapted if the value of Z, depends
on no more than the information available up to time » in F,, that means, the value
of Z, is some function of Xy, X;,..., X,,n € N.

In particular, any JF,-adapted process (Z,),cn satisfies

E[Z, | Fl=Z2,, nel.
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10.2 Martingales - Definition and Properties

‘We now turn to the definition of martingale.

Definition 10.1 An integrable,! discrete-time stochastic process (Z,)nen is a mar-
tingale with respect to (F,)nen if (Z,)nen 18 Fr-adapted and satisfies the property

E[Z,1 | Ful = Zy, neN. (10.2.1)
The process (Z,,),cn is a martingale with respect to (F;,),.en if, given the information
JF, known up to time n, the best possible estimate of Z, is simply Z,,.
Exercise. Using the tower property of conditional expectations, show that Defini-
tion (10.2.1) can be equivalently stated by saying that
E[M, | Fil =My, 0=<k<n.

A particular property of martingales is that their expectation is constant over time.

Proposition 10.2 Let (Z,,),en be a martingale. We have
E[Z,] =E[Zy], neN.
Proof From the tower property (1.6.10) we have:
E[Z,11] = E[E[Z,4, | 741l = E[Z,], n€N,
hence by induction on n € N we have

E[Z, 1] = E[Z,] = E[Z,_] = --- = E[Z,] = E[Z)], neN.

Examples of Martingales

1. Any centered® integrable process (S, ),y With independent increments is a mar-
tingale with respect to the filtration (F},),cy generated by (S, ),en.

Indeed, in this case we have

IE[Sn+1 | fn] - IE[Sn | fn] +IE[Sn+1 - Sn | fn]
= E[S, | Ful + E[Sy41 — Sl
—E[S, | Fal=S,, neNl.

1Integrable means IE[|Z,|] < coforalln € N.
2 A random variable X, is said to be centered if E[X,] = 0.
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In addition to being a martingale, a process (X, ),en With centered independent
increments is also a Markov process, cf. Sect.4.1. However, not all martingales
have the Markov property, and not all Markov processes are martingales. In addi-
tion, there are martingales and Markov processes which do not have independent
increments.

2. Given F e L*(£2) a square-integrable random variable and (F},),en a filtration,
the process (X,,)nen defined by X, := E[F | F,]is an (F,),en-martingale under
the probability measure P, as follows from the tower property:

E[X,41 | Ful = E[E[F | Fya] | Ful = E[F | Ful = X\, neN,
(10.2.2)
from the tower property (1.6.10).

10.3 Stopping Times

Next, we turn to the definition of stopping time. If an event occurs at a (random)
stopping time, it should be possible, at any time n € N, to determine whether the
event has already occured, based on the information available at time ». This idea is
formalized in the next definition.

Definition 10.3 A stopping time is a random variable 7 : £2 —> N such that
{tr >n}eF,, n e N. (10.3.1)

The meaning of Relation (10.3.1) is that the knowledge of {r > n} depends only on
the information present in F,, up to time n, i.e. on the knowledge of Xy, X1, ..., X,.
Note that condition (10.3.1) is equivalent to the condition

{r=nyeXF, neN,
since JF,, is stable by complement and {7 < n} = {7 > n}°.

Not every N-valued random variable is a stopping time, however, hitting times
provide natural examples of stopping times.

Proposition 10.4 The first hitting time
T, :=inf{lk >0 : X, =x}

of x € S is a stopping time.

Proof We have

(T, >n}={Xo#x, X1 #x, ..., X, #x}
={Xo#x}N{X;#x}N---N{X, #x} e F,, neN,
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since
(Xo£xteFoC F, (X1 £Zxte FiCcFu ..., {Xn#x}eF,, neN.
O
On the other hand, the first time
T = inf {k >0: Xy = 1—(1)1,112,1,%,1\/)([}
the process (X )xen reaches its maximum over {0, 1, ..., N} is not a stopping time.

Indeed, it is not possible to decide whether {T" < n}, i.e. the maximum has been
reached before time n, based on the information available at time 7.

Exercise: Show that the minimum 7 A v = min(7, ) of two stopping times is a
stopping time.

Definition 10.5 Given (Z,),cn a stochastic process and 7 : 2 —> N a stopping
time, the stopped process

(ZTAn)neN = (Zmin(‘r,n))nEN
is defined as
Z, ifn<rT,
ZTAn = Zmin(T,n) =
Z, ifn>rT,
Using indicator functions we may also write

ZT/\n - Zn IL{n<7'} + ZT]]-{nz'r}, n e N.

The following Fig. 10.1 is an illustration of the path of a stopped process.

10 12 14 16 18 20

Fig. 10.1 Stopped process
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The following Theorem 10.6 is called the stopping time theorem, it is due to
J.L. Doob (1910-2004).

Theorem 10.6 Assume that (M,,),cN is a martingale with respect to (F,)nen- Then
the stopped process (M x,)nen is also a martingale with respect to (F,)nen.

Proof Writing

n o0
M, = My + Z(Mz — M) =My + Z Ly<ny(M; — M;_y),
=1 =1

we find

TAR n

Mo pn = Mo + Z(Mz — M) = Mo+ Z Ly<ry(My; — Mj—1),
=1 =1

and for k < n we find

n

E[Mpn | Fi] = Mo+ Z]E[Il{lgr}(Mz — M_y) | F]
=1

n

k
= Mo+ Y E[lyery (M, — Mi_y) | Fe] + Y E[Ly=ry(M; — Mi_y) | Fi]
=1 I=k+1

k
=M, + Z(Mz — Mi_DE[Ly<r | Fi]
I=1

+ Y EB[E[M — M) 1y1cr | Fica] | Fe]
I=k+1

k
= M, + Z(Mz —M;_)y<n
=1

+ Y E[Lyoien E[(M; = Misy) | Fisa] | Fi]

I=k+1 e
TAk
= Mo+ Y (M — M_y)
=1
= TNk
k=0,1,...,n, where we used the tower property and the fact that

{fre=l}y={r>1—-1}eF_CF CF, 1<l <k.
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By Theorem 10.6 we know that the stopped process (M, )nen 1S @ martingale, hence
its expectation is constant by Proposition 10.2. As a consequence, if T is a stopping
time bounded by a constant N > 0, i.e. 7 < N, we have

[E[M;] = E[M;\y] = E[M:0] = E[Mo]. (10.3.2)

As a consequence of (10.3.2), if (M,,),en is a martingale and 7 < N and v < N are
two bounded stopping times bounded by a constant N > 0, we have

E[M:] =E[M,] = E[M,]. (10.3.3)

In case 7 is only a.s. finite, i.e. P(7 < 0o) = 1, we may also write

E(M,] = E [ lim M., | = lim E[M,.,] = E[M],
n—o00 n—oo

provided that the limit and expectation signs can be exchanged, however this may not
be always the case. In some situations the exchange of limit and expectation signs
can be difficult to justify, nevertheless the exchange is possible when the stopped
process (M;nn)nen is bounded in absolute value, i.e. |M,.,| < K a.s., n € N, for
some constant K > 0.

Analog statements can be proved for submartingales, cf. Exercise 10.2 for this
notion.

10.4 Ruin Probabilities

In the sequel we will show that, as an application of the stopping time theorem, the
ruin probabilities computed for simple random walks in Chap. 2 can be recovered in
a simple and elegant way.

Consider the standard random walk (or gambling process) (S, ),enon{0, 1, ..., B}
with independent {—1, 1}-valued increments with

]P(SrH—l _Sn=+1)=p and IP(SI‘1+1 —Sn=—1)=61» nEN,

as introduced in Sect.2.1. Let
TO,B 2 — N

be the first hitting time of the boundary {0, B}, defined by

T:=Tpp:=inf{n >0 : §, =BorS, =0}.
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One checks easily that the event {7 > n} depends only on the history of (Si)ren up
to time n since for k € {1,2,..., B — 1} we have

{r>n}={0<Sy<B}N{0< S <B}N---Nn{0 < S, < B},
hence 7 is a stopping time.
We will recover the ruin probabilities
P(S, =01 Sy =k), k=0,1,...,B,

computed in Chap. 2 in three steps, first in the unbiased case p = g = 1/2 (note that
the hitting time 7 can be shown to be a.s. finite, cf. e.g. the identity (2.2.29)).

Step 1. The process (S,),en 1 a martingale.

We note that the process (S,).cn has independent increments, and in the unbiased
case p = g = 1/2 those increments are centered:

1 1
B[S =S =1xp+ (=) xg=1x 7+ (1) x> =0, (10.4.1)

hence (S,,),en 1S a martingale by Point 1 p.265.

Step 2. The stopped process (S;ax)nen 1S also a martingale, as a consequence of
Theorem 10.6.

Step 3. Since the stopped process (S;an)nen 1S @ martingale by Theorem 10.6, we
find that its expectation IE[S; 1, | So = k] is constant in n € N by Proposition 10.2,
which gives

k=IE[So| So =kl =E[S;pn | So=k], k=0,1,...,B.
Letting n go to infinity we get

ELS, | So = k] =]E[lim Sorn | So =k]
n—0o0
= lim E[S;,, | So = k] =k,

n—oo

where the exchange between limit and expectation is justified by the boundedness
|S;an] < B a.s.,n € N. Hence we have

OxPS, =0|So=k +BxP(S, =B|Sy=k =E[S, | o=kl =k

P(S, =0|So =k +P(S, =B | Sy =k) =1,
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which shows that

k k
PSS, =B |So=k)=— and PSS, =0]|S =k =1——,
B B
k=20,1,..., B, which recovers (2.2.21) without use of boundary conditions, and

with short calculations. Namely, the solution has been obtained in a simple way with-
out solving any finite difference equation, demonstrating the power of the martingale
approach.

Next, let us turn to the biased case where p # ¢. In this case the process (S,),en
is no longer a martingale, and in order to use Theorem 10.6 we need to construct a
martingale of a different type. Here we note that the process

Sn
M, = <Z) , neN,
p

is a martingale with respect to (F,)en-
Step 1. The process (M},),cn 1s @ martingale.

Indeed, we have

E[M,1 | F,] = E [(% S"H }:E[(%)Sﬂﬂ_s’l (%)Sﬂ

() e[
)]

_ <%>S (%]P’(Snﬂ —S, =D+ (Z) P(S, 1 — S, = —1))

() () )

) o

n € N. In particular, the expectation of (M,),cn is constant over time by Proposi-
tion 10.2 since it is a martingale, i.e. we have

|

k
(2) =E[My|So=kl=E[M,|So=kl, k=0,1,....,B, neN.
p
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Step 2. The stopped process (M, )nen 18 also a martingale, as a consequence of
Theorem 10.6.

Step 3. Since the stopped process (M, ) ey remains a martingale by Theorem 10.6,
its expected value IE[M ., | So = k] is constant in n € N by Proposition 10.2. This
gives

k
<%> =IE[My | So =kl =E[M.,, | So = kI.

Next, letting n go to infinity we find

k
<1> =E[M, | So = k] = lim E[M,,, | So = k]
p n—0oQ

=1E[1im Mo | So =k]
n—0o0
=IE[M, | So = k],

hence

k
<3> = E[M, | So = k]
p

a\° q\" g\’ q\’
:(_) P<M7=<—> |50=k>+<_> ]P’(M7=(—) |50=k)
p p p p
q\” q\"
2(_> p(zm:(—) |So=k>+P(MT=1ISo=k>‘
p p
Solving the system of equations
7\* a\* a\*
<_) =<—) IP’(MT=<—) |So=k)+}P’(MT=1|S0=k)
p p p
a\*
IP’(MT:(—) \So=k>+P(M =1]S=k=1,
p

gives

B
P(S, =B | Sy=k =P (MT ~ (i) [0 = k) (10.42)
p

_(g/p)F -1

= =0,1,...,B,
(q/p)° —1
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and

PSS, =0|So=k =P(M, =1|S,=k)
G-t

(q/p) -1’

_ @/’ - (q/p)*
(g/p)E—1

’

k=0,1,..., B, which recovers (2.2.11).

10.5 Mean Game Duration

In this section we show that the mean game durations IE[7 | Sy = k] computed in
Sect.2.3 can also be recovered as a second application of the stopping time theorem.

In the case of a fair game p = ¢ = 1/2 the martingale method can be used by
noting that (S,f — n)nen 1S also a martingale.

Step 1. The process (S? — n),ey is a martingale.
We have

E[S;, — (4 1) | F]=E[S, + Suie1 — S))> = (n+ 1) | F]
=E[S; + (Spt1 — S0)> +285,(Sus1 — S) — (n + 1) | F]
=[S, —n — 1| F ]+ E[(Sus1 — S0)* | Ful + 2E[S,(Sps1 — Su) | Ful
=82 —n— 1+ E[(Sps1 — S | Ful + 28, E[Su1 — S | Fil
=Sy —n—1+E[(Sis1 — S0+ 28, E[Su11 — S
=82 —n—1+E[(S1 — S)*]
=S8—n, neN

Step 2. The stopped process (S2,, — T A n),en is also amartingale, as a consequence
of Theorem 10.6.

Step 3. Since the stopped process (S2,, — T A n),en is also a martingale, its expec-

tation ]E[Sfm — 7 An| Sy =k]isconstant in n € N by Proposition 10.2, hence we
have

K =E[S;—0]|S=k]=E[S?

TAR

—TAn| S =k,

and after taking the limit as n goes to infinity,
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since $2, €[0,B?] for all neN and n+—> 7 An is nondecreasing, and this

TAR
gives® *

kK =E[S? — 7| Sy = k]
= E[S? | Sy = k] — E[7 | Sy = k]
=B™P(S, =B |Sy=k)+0>xP(S, =0| Sy =k) —E[r | Sy = kI,

i.e.

E[r | So = k] = B*P(S, =B | Sy = k) — k*

— BZE _ k2
B
=k(B —k),

k=0,1,..., B, which recovers (2.3.17).

Finally we show how to recover the value of the mean game duration, i.e. the mean
hitting time of the boundaries {0, B} in the non-symmetric case p # q.

Step 1. The process S, — (p — g)n is a martingale.

In this case we note that although (S,,),cn does not have centered increments and is
not a martingale, the compensated process

Sp—(p—q)n, neN,

is a martingale because, in addition to being independent, its increments are centered
random variables:

E[S, =S 1—(p—-—I=E[S, - S, 1]-(p—q) =0,
by (10.4.1).

Step 2. The stopped process (S;nn — (p — @) (T A R))uen 18 also a martingale, as a
consequence of Theorem 10.6.

3By application of the dominated convergence theorem.
4By application of the monotone convergence theorem.
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Step 3. The expectation E[S;r, — (p — q)(T An) | Sp = k] is constantin n € N.

Step 4. Since the stopped process (S:n, — (p — q)(T A n)),en 1S a martingale, we
have

k=1TE[So— 0] So =kl =E[S;nn — (p —q)(T An) | So = kI,
and after taking the limit as n goes to infinity,
k = lim ]E[ST/\n - (P - Q)(T/\n) | SO = k]
n— 00
=]E[lim Sipm—(p—q) lim 7 An | Sozk]
n—00 n—o00
=E[S; —(p — )7 | So = k],

which gives

k=E[S; —(p—q)T | So = k]
=IE[S; | So =k] — (p — @)E[7 | So = k]
=BxPS,=B|Sy=k+0xP(S;=0]|Sy=k) —(p—q)E[T| S = k],

i.e.

(p—@E[T | So=kl=BxP(S; =B | S =k) —k

_pla/p—1
(q/pE—-1 "
from (10.4.2), hence
(q/p)* —1

1
E[r | Sy =k] = <B —k), k=0,1,...,B,
pP—q

(g/p)E—1

which recovers (2.3.11).
In Table 10.1 we summarize the family of martingales used to treat the above
problems.

Table 10.1 List of

" Probabilities
martingales - -
Problem Unbiased Biased
q\*
Ruin probability Sn <7)
p
Mean game S,% —n Sp—(p—q)n
duration
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Exercises

Exercise 10.1 Consider a sequence (X, ),>1 of independent Bernoulli random vari-
ables with
PX,=1)=PX, =-1)=1/2, n>1,

and the process (M,,),cn defined by M, := 0 and

n
M, = Zz"*lxk, n>1.
k=1

See (Fig. 10.2), Note that when X; = X, = --- = X, = —l and X,, = 1, we have

- k=1 1 -2 1
M,1=—ZZ + 2 I—ﬁ‘Fz =1, n>1.
k=1

(a) Show that the process (M,),cn is a martingale.
(b) Is the random time
T:=inf{ln>1: M, =1}

a stopping time?
(c) Consider the stopped process

M,=1-2" ifn <,
MTAn = Mnﬂ{n<7'} + ﬂ{rfn} =
M, =1 ifn>r,

n € N, See (Fig. 10.3). Give an interpretation of (M, ,;),cn in terms of betting
strategy for a gambler starting a game at My = 0.

(d) Determine the two possible values of M., and the probability distribution of
M, at any time n > 1.

(e) Show, using the result of Question (d), that we have

E[M: ] =0, neN.

(f) Show that the result of Question (e) can be recovered using the stopping time
theorem.

Exercise 10.2 Let (M,),cn be a discrete-time submartingale with respect to a fil-
tration (F,),en, With Fo = {#, £2}, i.e. we have

M, < E[M,y1 | Fol,  n=0.
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Fig. 10.2 Possible paths of My,
the process (M;,)nen 74
6 +
5 +
4 +
3 +
2 +
1 +
O -
14
24
34
4+
54
6+
74
Fig. 10.3 Possible paths of Mrpn
the stopped process 11
(M7 An)neN 0 + A / n
a1t 2 3 4 5
21+
34
44
-5+
-6 +
T+
-8 +
-9+
10 +
11 4
12 4
-13 +
141
15 1

(a) Show that we have E[M, ] > [E[M,], n >0, i.e. a submartingale has an
increasing expectation.

(b) Show that independent increment processes whose increments have nonnegative
expectation are examples of submartingales.

(¢) (Doob-Meyer decomposition) Show that there exists two processes (N,),en
and (A,),en Such that

(i) (Np)nen is a martingale with respect to (F,),en,
(1) (A,)nen is non-decreasing, i.e. A, < A1, a.s.,n € N,
(iii) (A,)nen is predictable in the sense that A, is F,_;-measurable, n € N, and

(iv) M, =N,+A,,neN.
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Hint: Let Ag = 0 and
An+1 = An + ]E[MIH—I - Mn | ﬁl]v n = Oa

and define (N,),cn in such a way that it satisfies the four required properties.

(d) Show that for all bounded stopping times ¢ and 7 such that ¢ < 7 a.s., we have
E[M,] < E[M-].

Hint: Use the Doob stopping time Theorem 10.6 for martingales and (10.3.3).

Exercise 10.3 Consider an asset price (S,),—0.1,...y Which is a martingale under the
risk-neutral measure P*, with respect to the filtration (F,),cn. Given the (convex)
function ¢(x) := (x — K)™, show that the price of an Asian option with payoff

¢<Sl+52+"'+SN>

N

is upper bounded by the price of the European call option with maturity N, i.e. show

that S S S
E* [¢< L ”)]51E*[¢(SN)].

Hint: Use in the following order:

(i) the convexity inequality

¢<x1 +xz+~-~+xn) _ 0@ +0() + - 4 dlx)

n n
(i1) the martingale property of (Si)keN,
(iii) the conditional Jensen inequality ¢(IE[F | G]) < IE[¢(F) | G],
(iv) the tower property of conditional expectations.
Exercise 10.4 A process (M,),cn is a submartingale if it satisfies
My <IE[M, | F]l, k=0,1,...,n
(a) Show that the expectation [E[M,,] of a submartingale increases with time n € N.

(b) Consider the random walk given by Sy := 0 and

n
S, :=Zxk=xl+xz+--.+x,,, n>1,
k=1
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where (X, ),>; is an i.i.d. Bernoulli sequence of {0, 1}-valued random variables
with P(X,, = 1) = p, n > 1. Under which condition on « € R is the process
(S, — an),en a submartingale?

Exercise 10.5 Recall that a process (M,,),cn is a submartingale if it satisfies
My <IE[M, | F], k=0,1,...,n

(a) Show that any convex function (¢(M,)),en of a martingale (M,,),cn is itself a
submartingale. Hint: Use Jensen’s inequality.

(b) Show that any convex nondecreasing function ¢(M,,) of a submartingale (M,,),,en
remains a submartingale.

Problem 10.6 (a) Consider (M),),cn a nonnegative martingale. For any x > 0, let
T :=inf{n >0 : M, > x}.

Show that the random time 7, is a stopping time.
(b) Show that for all n > 0 we have

[E[M,]
P (k max M; > x> < — (10.5.1)

=0,1,...,n X

Hint: Use the Markov inequality and the Doob stopping time Theorem 10.6 for
the stopping time 7.

(c) Show that (10.5.1) remains valid when (M,,),cn is a nonnegative submartingale.
Hint: Use the Doob stopping time theorem for submartingales as in Exercise 10.2-
(d).

(d) Show that for any n > 0 we have

E[(M,)?
IP’( max MkEX)S#, x> 0.
k=0,1,...,n X
(e) Show that more generally we have
E[|M,|?
IP’( max Mkzx>§M, x >0,
k=0,1,...,n xP

foralln > 0and p > 1.

(f) Given (Y,),>1 a sequence of centered independent random variables with same
mean IE[Y,] = 0 and variance o> = Var[Y,], n > 1, consider the random walk
S, =Y1+Y,4+---4+Y,,n>1,with §; = 0.
Show that for all n > 0 we have

2
no

Pl max |Si]>x)<—, x > 0.
k=0,1,....n x2
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(g) Show that for any (not necessarily nonnegative) submartingale we have

]E[M;']
P{ max M;>x) < —2-, x >0,
k=0,1,..., n X

where zt = max(z, 0), z € R.
(h) A process (M,),cn is a supermartingale’ if it satisfies

E[M, | Fx]l <My, k=0,1,....n

Show that for any nonnegative supermartingale we have

IP’( mle M, > x , x> 0.
n

) < IE[Mo]
X

slyeees

(i) Show that for any nonnegative submartingale (M), cy and any convex nonde-
creasing nonnegative function ¢ we have

< ]E[QS(Mn)]’
X

P <k=%}f‘,’f.,n ¢(My) = x)
Hint: Consider the stopping time

¢ :=inf{n >0 : M, > x}.

(j) Give an example of a nonnegative supermartingale which is not a martingale.

5“This obviously inappropriate nomenclature was chosen under the malign influence of the noise
level of radio’s SUPERman program, a favorite supper-time program of Doob’s son during the
writing of [Doo53]”, cf. [Doo84], historical notes, p. 808.



Chapter 11 ®)
Spatial Poisson Processes e

Spatial Poisson process are typically used to model the random scattering of config-
uration points within a plane or a three-dimensional space X. In case X = R is the
real half line, these random points can be identified with the jump times (7} )¢>; of
the standard Poisson process (N;);cr, introduced in Sect.9.1. However, in contrast
with the previous chapter, no time ordering is a priori imposed here on the index
set X.

11.1 Spatial Poisson (1781-1840) Processes

In this section we present the construction of spatial Poisson processes on a space of
configurations of X C R4, d > 1. The set

QX = {uj = (xi)lN:I C X, N € NU {OO}} N

is called the space of configurations on X C R?. The next figure illustrates a given
configuration w € 2%,

X
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Given A a (measurable) subset of X, we let

wA) =#rew : x e A} =) 1ax)

XEW

denote the number of configuration points in w that are contained in the set A.

Given p: X — R, a nonnegative function, the Poisson probability measure
PX with intensity o(dx) = p(x)dx on X is the only probability measure on £2%
satisfying

(i) For any (measurable) subset A of X such that

g(A) = / p(x)dx =/ Ta(x)px)dx < oo,
A R4

the number w(A) of configuration points contained in A is a Poisson random
variable with intensity o (A), i.e.

A n
PX(we 2% : wA) =n) = e—”“)@, eN.
n'
(i) In addition, if A, Ay, ..., A, are disjoint subsets of X with o(A;) < oo,
k=1,2,...,n,the N'-valued random vector

Wi (WA, ..., w(A,), we N,

is made of independent random variables for all n > 1.

In the remaining of this chapter we will assume that o(X) < oo for simplicity.
The Poisson measure PX can also be defined as

— 1
Bl =e Y [ fn o) otds) ALY
n: Jxn
n=0

for F written as

o0
F(w) = Z Liwoxy=ny frn(x1, X2, .0, Xp)

n=0
where f,, is a symmetric integrable function of w = {x1, x2, ..., x,} whenw(X) = n,
n > 1, cf. e.g. Proposition 6.1.3 and Sect. 6.1 in [Pri09].

By applying the above to

F(w) = Lxy=n Lan (x1, X2, ..., X)),
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we find that the conditional distribution of w = {x1, x2, ..., x,,} giventhatw(X) = n
is given by the formula

PX({xy, ..., x,} C Aand w(X) = n)

) o
PX({x1..... ) CA | wX)=n)= PX(w(X) = n)

1
T PXwX) =n)

(oA
_<_O_(X)> _ (11.1.2)

Epx [11w00)=n Lan (X1, X2, « . ., Xp)]

In many applications the intensity function p(x) will be constant, i.e. p(x) = A > 0,
x € X, where A > 0 is called the intensity parameter, and

J(A):)\/dxz)\/ Ta(x)dx
A X

represents the surface or volume of A in R?. In this case, (11.1.2) can be used to
show that the random points {xi, ..., x,} are uniformly distributed on A" given that
{w(A) = n}.

11.2 Poisson Stochastic Integrals

In the next proposition we consider the Poisson stochastic integral defined as

/X fEwdx) =" fx),

XEW

for f anintegrable function on X, and we compute its first and second order moments
and cumulants via its characteristic function.

Proposition 11.1 Let f be an integrable function on X. We have

Epx [exp (1/ f(x)w(dx)):| = exp ([ (e — l)a(dx)) .
X X

Proof We assume that o(X) < oco. By (11.1.1) we have

]EIP(’,‘ |:exp (i/xf(x)w(dx)>:|

o0
_ 1 :
— o) Zomfx...fxez(fmw @) g (dxy) - -~ o (diy).
=
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0§ if () !
=e 7 — eV WMo(dx
% (fpereran)

= exp (/X(e"f@ - 1)0(dx)> . 0

The characteristic function allows us to compute the expectation of f y f(X)w(dx),as

IEpx |:/ f(x)w(dx)i| = —ii Epx |:exp <i5/ f(x)w(dx)>i|
" LJx de 7 X le=0

d .
= —i—exp (/ (/W — l)a(dx))
de X le=0

= / f(x)o(dx),
X

for f an integrable function on X. As a consequence, the compensated Poisson
stochastic integral

/ f@wdx) — / f(x)o(dx)
X X
is a centered random variable, i.e. we have
Epx |:/ f(x)w(dx) —/ f(x)a(dx)] =0.
X X

The variance can be similarly computed as

2
Epx {( / f(x)(w(dx)—a(dx))> } = /X |f () Po(dx),
X

for all f in the space L?(X, o) of functions which are square-integrable on X with
respect to o(dx).
More generally, the logarithmic generating function

log Ex [exp ( / f(x)w(dx)ﬂ = f @ Do =3 / f'x)o(dx),
X X v Ux

shows that the cumulants of f v f(x)w(dx) are given by

Ko =/f”(x)a(dx), n>1. (11.2.1)
X
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11.3 Transformations of Poisson Measures
Consider a mapping 7 : (X, o) —> (Y, p), and let
7o % — QY
be the transformed configuration defined by
W) = {t(x) : x € W}, we 2%,

as illustrated in the following figure.

Proposition 11.2 The random configuration

Y. — F

w FH—> Ty (w)

has the Poisson distribution Pﬁ with intensity |1 on Y, where p is defined by

p(A) = /X La(7(x))o(dx) = /X L4y (0o (dx) = o(r7 ' (A),

for A a (measurable) subset of X.

Proof We have

P} (r.w(A) = n) = PX(w(t7'(A) =n)
_—o(r(A) (U(T_I(A)))n
—e T
_ ety (AT
n!
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More generally we can check that for all families A;, A,, ..., A, of disjoint subsets
of X and ky, ks, ..., k, € N, we have

PX(fw e 2% : nw(A) =ky, ..., w(A,) = k,))

=[[PX(rwa) =k}

i=1

=[[PY (" (a0) = ki)

i=1

n n -1 Ai ki
= exp (— Z O'(Tl(Ai))> 1_[ w

i=1 i=1

=exp< ZMA >>H (M(A ))

=[Pl (wa) =k}
i=1
=P} ({w(A) = ki, ..., w(A,) = k.}).
O

The next figure illustrates the transport of measure in the case of Gaussian intensities

For example in the case of a flat intensity p(x) = A on X = R, the intensity becomes
doubled under the mapping 7(x) = x/2, since

PX (rw([0, 1) = n) = PX(w(r7'([0, 1])) = n)

_ ool 10.11) (a(r7([0, 11)))"
n!
e M Q2" /nl.
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0 )//
0

Exercise 11.1 Consider a standard Poisson process (N;);er, on R with intensity
A = 2 and jump times (7})x>1. Compute

Exercises

E[T\+ T, + T3 | N, =2].

Exercise 11.2 Consider a spatial Poisson process on R? with intensity A = 0.5 per
square meter. What is the probability that there are 10 events within a circle of radius
3m.

Exercise 11.3 Some living organisms are distributed in space according to a Poisson
process of intensity § = 0.6 units per mm>. Compute the probability that more than
two living organisms are found within a 10 mm? volume.

Exercise 11.4 Defects are present over a piece of fabric according to a Poisson
process with intensity of one defect per piece of fabric. Both halves of the piece is
checked separately. What is the probability that both inspections record at least one
defect?

Exercise 11.5 Let A\ > 0and suppose that N points are independently and uniformly
distributed over the interval [0, N]. Determine the probability distribution for the
number of points in the interval [0, A] as N — oo.

Exercise 11.6 Suppose that X (A) is a spatial Poisson process of discrete items
scattered on the plane R? with intensity A = 0.5 per square meter. We let

D((x,y),r) = {u,v) €eR* : (x —uw)* + (y —v)* < r%

denote the disc with radius r centered at (x, y) in R?. No evaluation of numerical
expressions is required in this exercise.

(a) What is the probability that 10 items are found within the disk D((0, 0), 3) with
radius 3 meters centered at the origin?
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(b) What is the probability that 5 items are found within the disk D((0, 0), 3) and 3
items are found within the disk D((x, y), 3) with (x, y) = (7,0)?

(c) What is the probability that 8 items are found anywhere within
D((0,0),3)J D((x, y), 3) with (x, y) = (7,0)?

(d) Given that 5 items are found within the disk D((0, 0), 1), what is the probability
that 3 of them are located within the disk D((1/2, 0), 1/2) centered at (1/2, 0)
with radius 1/2?



Chapter 12 ®)
Reliability Theory i

This chapter consists in a short review of survival probabilities based on failure
rate and reliability functions, in connection with Poisson processes having a time-
dependent intensity.

12.1 Survival Probabilities

Let T : 2 — R, denote (random) the lifetime of an entity, and let P(7 > r) denote
its probability of surviving at least 7 years, t > 0. The probability of surviving up to
a (deterministic) time T, given that the entity has already survived up to time ¢, is
given by

P(r > Tand 7 > 1)

P(r > 1)
P(r >T)
T P(r>1)’

Pr>T|7>1t)=

0<r<T.

Let now
P(r<t+h|7T>1)

h El

() = }lll\r‘% teRy,

denote the failure rate function associated to 7. Letting A = {7 <t + h} and B =
{r > t} we note that (£2 \ A) C B,hence AN B = B\ A, and
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P(r<t+h|T>1)

() = lim
hNO

h
1 . P(r<t+4+handT > 1)
= lim
P(r > 1) i\O h
1 . Pr>t)—P(r>t+h)
= lim
P(r > t) 1\O h

d
7 logP(T > t)
1

d
- _md_zP(T > 1) (12.1.1)

1 d
—WERU),

where the reliability function R(t) is defined by

R(t) :=P(r > t), teR,.

This yields
R'(t) = —AOR(),

with R(0) = P(7 > 0) = 1, which has for solution

R(t) =P(1 > t) = R(0) exp (—/ /\(u)du> = exp (—/ )\(u)du) ,
0 0
(12.1.2)

t € R;. Hence we have

T
Pir>T|7>1t)= % = exp <—/ )\(u)du) , tel0,T]. (12.1.3)

In case the failure rate function \(¢) = ¢ is constant we recover the memoryless
property of the exponential distribution with parameter ¢ > 0, cf. (9.2.3).
Relation (12.1.2) can be recovered informally as

P(r>T)= [[ Pr>t+dt|7>0)= ] exp(=At)dr),

O0<t<T O<t<T

which yields
12
P(r > t) = exp (—/ A(s)ds) , teRy,
0

in the limit.
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12.2 Poisson Process with Time-Dependent Intensity

Recall that the random variable 7 has the exponential distribution with parameter

A > 0if

P(r>t)=e™, >0,

cf. (1.5.3). Given (7,,),>0 a sequence of i.i.d. exponentially distributed random vari-
ables, letting
Tn=7-0+"'+7—n—1’ n>1,

and
N; Zzﬂ[z,,oo)(f), teRy,

n>1

defines the standard Poisson process with intensity A > 0 of Sect.9.1 and we have

—\(t—s) (A(t - s))k

P(N, — Ny =k)=e A )

k> 0.

The intensity of the Poisson process can in fact made time-dependent. For example
under the time change
X = N/O' A(s)ds
where (A(u)),er, is a deterministic function of time, we have
, k
( I ,\(u)du) .
PX,— X, =k) = a0 exp (—/ )\(u)du) , k>0

In this case we have

PXion— X, =0) =" L o(h) =1 = X0)h+o(h), h N0, (12.2.1)
and

PXiopn— X, =) =1—e" 4L o(h) ~ X(t)h, h\ 0, (12.2.2)

which can also viewed as a pure birth process with time-dependent intensity. Letting
7o denote the first jump time of (X;),cr, , we have

R(t) =P(ry > 1) = P(X, = 0) = exp (-/ A(u)du) . 1>=0,  (1223)
0
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hence by (12.1.3) we find
PXiop =0 X, =0)=P(rp>t+h|m>1)
=e " L o(h) =1 = AO)h +o(h), h\ 0,
and
PXip > 11X, =0)=P(ro<t+h|mg>0)=1-P(ry>t+h|7>1)
=1l—eMx~XOh+oh), h\0,

which coincide respectively with P(X,y, — X; =0) and P(X,4, — X; = 1)
in (12.2.1) and (12.2.2) above, as (X;);cr, has independent increments.

Cox Processes

The intensity process A(s) can also be made random. In this case, (X;);cr, is called
a Cox process and it may not have independent increments. For example, assume
that (A\,).cr, is a two-state Markov chain on {0, A}, with transitions

POvin =ATA=0)=ah,  h\0,

and
P =01 A =) = 0h, h N\ 0.

In this case the probability distribution of N, can be explicitly computed, cf. Chap.
VI-7 in [KT81].

Renewal Processes

A renewal process is a counting process (N;);cr, given by

N, = Zk]l[rk,rkﬂ)(l‘) = Z Lizo0 (1), 1 €Ry,
k=1 k=1

in which 7, = Ty — Ti, k € N, is a sequence of independent identically distributed
random variables. In particular, Poisson processes are renewal processes.

12.3 Mean Time to Failure

The mean time to failure is given, from (12.1.1), by

* d *® d
E t—P t)dt = — t—P t)dt
(] /0 SBG <) /0 SBG >

=—f tR’(t)dt:/ R(t)dt, (12.3.1)
0 0

provided that lim,\ o #R(¢) = 0. For example when 7 has the distribution function
(12.2.3) we get
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]E[T]:/ R(t)dt:/ exp (—/ A(u)du) dt.
0 0 0

In case the function A(#) = A > 0 is constant we recover the mean value

[o.¢] 1
]E = _/\rdt = —
7] /o ¢ A

of the exponential distribution with parameter A > 0.

Exercise

Exercise 12.1 Assume that the random time 7 has the Weibull distribution with
probability density

A 6]
f3(x) = Bl e, xeR,

where 3 > 0 is a called the shape parameter.

(a) Compute the distribution function F3 of the Weibull distribution.
(b) Compute the reliability function R(¢) = P(7 > 1).

(¢c) Compute the failure rate function A(¢).

(d) Compute the mean time to failure.



Appendix A
Some Useful Identities

Here we present a summary of algebraic identities that are used in this text.

Indicator functions
1 ifxeA, 1 ifa<x<b,

Ta(x) = Tigp)(x) =
0 ifx ¢ A. 0 otherwise.

Binomial coefficients
n n!
= k=0,1,...,n.
k (n —k)'k!

Exponential series

oo
n
X

et = ZH’ x eR. (A.1)
n=0

Geometric sum

. I pitl
> ok = . r#l (A.2)
1—r
k=0
Geometric series
o0
B 1
Zr =T —1l<r<l. (A.3)
k=0 -
Differentiation of geometric series
o0 o0
0 o 1 1
k-l = = L —l<r<l. A4
Z 3}’2 orl—r (A-=r)? (AD
k=1 k=0
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Binomial identities

kbn k (a+b)n
% ()
Z (n> o
k=0
I’l> — non— 1

n (”) kpn—k _ n! ket

k (n— !k —1)!
n—1
Z k+1lpn—1—k
T (n—l— K)lk!
:nn <”_1> k1 pn—1-k
k=0 k
=na@+b"", n>1,
" n d < [n
k< >akbnk Za_Z( )akbnk
= k Oa = k
0
= a—(a+b)"
aaa(a+ )
=na(a +b)"', n>1.

Sums of integers

ikz n(n—}—l).
k=1 2

ikz _n(n+DHQ2n+1)
= T.

Taylor expansion
00k

a X

1+ x) —Zﬁa(a— ) x-x (a—(k—1)).
k=0

Differential equation

The solution of f'(t) = cf(¢) is given by f(¢) = f(0)e”

teRy.

(A.5)

(A.6)

(A7)

(A.8)

(A.9)
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Solutions to Selected Exercises and Problems

Chapter 1 - Probability Background

Exercise 1.2 We write

N
Z:ZXk

k=1

where P(N =n) =1/6,n =1,2,...,6,and X} is a Bernoulli random variable with

parameter 1/2,k =1,2,...,6.
(a) We have

6
7
E[Z] = E[E[Z | N]] = ZIE[Z | N =n]P(N =n) = T

n=1

where we applied (A.6). Concerning the variance, we have
) ) 14
IE[Z7] = E[IE[Z" | N]] = 3

where we used (A.7) and (B.1), hence

Var[Z]—IE[Z2]—(1E[Z])2—5_£_ﬂ
B =3 16 a8
(b) We find
1 0 n \"
]P)Z:l =z ~ = ... .
Z=h=y¢ > (l)(2> 1=0.1,...,6
n=max(1,l)
(c) We have

© Springer Nature Singapore Pte Ltd. 2018
N. Privault, Understanding Markov Chains, Springer Undergraduate
Mathematics Series, https://doi.org/10.1007/978-981-13-0659-4

(B.1)

(B.2)

(B.3)
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o I 1\ (n) 7
E[Z] = I;lmz =)= Egl; (§> <z> =
which recovers (A.7), and where we applied (A.5). We also have
E[Z%] = 26:121@(2 =)= 14
- 1=0 IR

which recovers (B.3).

Exercise 1.3

(a) Weassume that the sequence of Bernoulli trials is represented by a family (Xj )>1
of independent Bernoulli random variables with distribution P(X; = 1) = p,
P(Xy =0)=1— p,k > 1. We have

N
Z=X+Xo+ - +Xy=) X
k=1

and, since E[X] = p,

E[Z] =) (Z ]E[Xk]> P(N =n)=p Y nP(N =n)=pE[N].

n=0 \k=1 n=0

Next, the expectation of the Poisson random variable N with parameter A > 0
is given as in (1.6.4) by

o]

0 M\ & X

E[N] = ZnIP’(N =n) = e’Aan = e Z i e et = A,
n=0 n=0 ' n=0 '

(B.4)

where we used the exponential series (A.1), hence [E[Z] = pA. Concerning the
variance we have, since ]E[X,f] = p we find

N 2
E[Z*] = E (Z Xk> = p(1 — p)E[N] + p’E[N?].
k=1

Next, we have

00 00 A
[E[N?] = ZnZP(N =n)=¢e " anm/\ + A2,

n=0 n=0

hence
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Var[N] = [E[N?] — (IE[N])? = ), (B.5)

and Var[Z] = [E[Z%] — (E[Z])? = pA\.

(b) Forl € N,using (1.3.1) with B = {Z = [} and the fact that Z X has abinomial
k=1
distribution with parameter (n, p), we have

00 N (/\ )1
IP’(Z:Z)=ZP<ZXk=l‘N=n)IP’(N=n)= ) o-p

I
n=0 k=1

hence Z has a Poisson distribution with parameter p\.
(c) From Question (b), Z is a Poisson random variable with parameter p\, hence
from (B.4) and (B.5) we have [E[Z] = Var[Z] = pA.

Exercise 1.5 Since U is uniformly distributed given L over the interval [0, L], we
have

1
foir=y(x) = ;]l[o,y](x), xeR, y>0,

hence by the definition (1.5.7) of the conditional density fy .-, (x) we have

fw.n(x, y) = fuir=y(x) fL(y) = Ljo,,1(x) Ljo,00) (¥ (B.6)

Next, we from (B.6) we get

X—Z

Jw,r-v)(x, 2) = fw,n(x, x + 2) = L0,00)(*) L0,00) ()€™

Exercise 1.6

(a) Assuming that X and Y are independent Poisson random variables with param-
eters A\ and y, we have

n )\ n
P(X+Y =n)=Y P(X =kand X+Y=n)=efw%

k=0

. (B.7)

hence X + Y has a Poisson distribution with parameter A + .
(b) We have

PX=k|X+Y = )_P(X=kandX+Y=n)_(n)( A >k< I )nfk
= =n)= P(X+Y =n) “\) W+ Ntu ,
(B.8)

hence, given X 4+ Y = n, the random variable X has a binomial distribution
with parameters n and \/(\ + w).
(c) In this case, using the exponential probability density f4(x) = 01o,o0) (x)e~?,
x € R, we find
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PX=k=1|1 ! ! k
or=0=(1-515) (733)

Therefore X 4 Y has a negative binomial distribution with parameter (r, p) =
(2,1/(0 4 1)), cf. (1.5.12), and we have

PX=kPY =n—k 1

P(X =k | X+Y =n)= — ,
( | X+Y=n PX +Y =n) nt 1

k=0,1,...,n,

which shows that the distribution of X given X + Y = n is the discrete uniform
distribution on {0, 1, ..., n}.
(d) Incase X and Y have the same parameter, i.e. A\ = u, we have

1

—, k=0,1,...,n,
2n

IP’(X:k|X+Y=n)=(Z>

which becomes independent of A\. Hence, when A is represented by a random
variable A with probability density x — f,(x) on R, from (B.8) we get
PX=k|X+Y=n=2"().k=0,1,...,n

Exercise 1.7 Let C; denote the color of the first drawn pen, and let C, denote
the color of the second drawn pen. We have P(C; = R) =P(C; = G) = 1/2 and
P(C;, =Rand C; = R) =2/3,P(C, = R and C; = G) = 1/3. On the other hand,
we have

IP’(C2=R)=]P’(C2=RandC1 =R)+P(C2=Randcl ZG)
=P(C;=R|Ci=RP(C,=R)+P(C;=R|C, =G)P(C, =GC)
2 1+1 1 1
=-X-4+-X=-==2
372 32 2
and

P(C; =G) =P(C; =G and C; = R) + P(C, = G and C; = G)
1
=P(C;=G|Ci=RPC1 =R +P((,=G | €= GPF(C = GC) = 7.

Finally, the probability we wish to compute is

PCi=R|Cy= Ry = LC1=RandC2r=R) 0 _ric, =gl =R _2
1= == P(C; = R) T "=, =R T 3

Exercise 1.8

(a) The probability that the system operates is

3
P(X >2) = (2>p2(1 -p)+p=3p*-2p
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where X is a binomial random variable with parameter (3, p).
(b) The probability that the system operates is

1 1
1

/ ]P’(X22|p:x)dIP’(p§x)=/ P(X22|p=x)dx=§,

0 0

similarly to Exercise 1.6-(b).
Chapter 2 - Gambling Problems
Exercise 2.1

(a) By first step analysis we have

fk)y =0 =2r)f(k) +rflk+1)+rfk—=1),

which yields the equation

f(k):%f(k+1)+%f(k—1), 1<k<S—-1, (B.9)

with the boundary conditions f(0) =1 and f(S) = 0, which is identical to
Equation (2.2.18).
We refer to this equation as the homogeneous equation.

(b) According to the result of (2.2.19) in Sect. 2.2 we know that the general solution
of (B.9) has the form

fk)y=Ci+Cok, k=0,1,...,8
o . S—k
and after taking into account the boundary conditions we find f (k) = ——,

S
k=0,1,...,8.
(c) By first step analysis we have

h(k) = (1 —2r)(1 + h(k)) + r(1 + h(k + 1) +r(1 + h(k — 1))
=1+ (1 = 2r)hk) + rhk + 1) + rh(k — 1),

hence the equation

1 1 1

hk)=—+ zhtkk+ 1)+ zh(k—1), 1<k<S-1,

2r 2 2
with the boundary conditions #(0) = Oand 4 (S) = 0, whichisidentical to (2.3.6)
by changing & (k) into 2r x h(k) in (2.3.6).

(d) After trying a solution of the form h(k) = Ck?* we find

okt = +1C(k+1)2+1C(k 1)2
T2 2 ’
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hence C should be equal to C = —1/(2r), hence k —> —k?/(2r) is a particular
solution.

Given the hint, the general solution has the form A (k) = C; + Crk — k%/2r,
k=0,1,...,S, which gives

k(S —k
h(k)= %, k=0,1,...,S, (Bl())
r

after taking into account the boundary conditions.

(f) Starting from any state® e{1,2,...,8 — 1}, the mean duration goes to infinity
when r goes to zero.
Problem 2.7
(a) We have
gk) =pglk +1)+qgtk—1), k=12,...,8, (B.11)
with
9(0) = pg(1) + qg(0) (B.12)

(b)

()

(d)

for k = 0, and the boundary condition g(S) = 1.

We observe that the constant function g(k) = C is solution of both (B.11) and
(B.12) and the boundary condition g(§) = 1 yields C = 1, hence g(k) = P(W |
Xo=k)=1forallk=0,1,...,S.

We have

gk)=1+pgk+1)+qgk—-1), k=1,2,...,5-1, (B.13)
with g(0) = 1 4+ pg(1) + qg(0) for k = 0, and the boundary condition g(S) =
%ase p # q. The solution of the homogeneous equation

gk) = pglk +1)+qgk — 1), k=1,2,...,5—-1,
hasthe form g(k) = C; + Cz(q/p)k,k =1,2,...,8 — 1,and we can check that

k — k/(p — q) is a particular solution. Hence the general solution of (B.13) has
the form

k
g = ——— +Ci +Caq/p)'. k=0.1,....8,

with
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S
0=g(S) = - +C1 + Ca(q/p)°,

1
Pﬂm=P“H+Cﬁ=1+PMD=1+P<ZTE+Cr+Q%>,

which yields
S—k
g(k) = E[Ts | Xo = k] = +—L—(a/p)* — @/p)).
p—q ((P—q
k=0,1,...,8S.

Case p = q = 1/2. The solution of the homogeneous equation is given by
gk)=Ci+Cok, k=1,2,...,85—-1,

and the general solution to (B.13) has the form g(k) = —k*> + C| + Cak, k =
1,2,..., S, with

0=g(S) =—8>+C + (8,

g0) G gD —1+Ci+ G
= — =1 =1 _—,
2 2 + 2 + 2

hence
gk) =E[Ts | Xo=kl=S+k+ DS —k), k=0,1,...,8.
(e) When p # g we have

1—(q/p)
1—(q/p)S’

and when p =q¢ =1/2wefind p, =k/S,k=0,1,...,S.

(f) Theequality holds because, given that we start from state m attime 1, whether
Ts < Tp or Ts > T does not depend on the past of the process before time 1. In
addition it does not matter whether we start from state at time 1 or at time
0.

(g) We have

kaZP(Ts<T0|X0=k)= :O,l,...,S,

PXy=k+1, Xo=k, Ts < Tp)

P(Xg =k and Ty < Tp)
P(Ts <To | Xo=k+1)  pit
PTs<To | Xo=h ' m

PXi=k+1|Xo=kand Ts < T) =

)
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k=0,1,..., 8 — 1. By the result of Question (e), when p # ¢ we find

1— k+1
P(X1:k+1|X0:kandTS<TO):pr)k’
1—(q/p)
k=1127---75_1,andincasep:q:1/2Weget
k+1
P(X1=k+1|X0=kande<T0)=%,

k=1,2,...,S — 1. Note that this probability is higher than p = 1/2.
Similarly, we have

P(X, =k—1|Xo=kand Ty < Ts)
P(Xi=k—1, Xo=kand Ty < Ty)

- P(Xo = k and Ty < Ts)

P(To <Ts| Xo=k—1)  1—p

P(To < Ts | Xo = k) —1 1 — pr

)

k=1,2,..., S — 1. When p # g this yields

(q/p)*' —(q/p)S
(q/p)*—(q/p)S

k=1,2,...,8—1,and when p = g = 1/2 we find

P(Xlzk—1|X0=kandT0<T5)=q

S+1—-k

P(Xi=k—1]| Xog=kand Tt T¢) = ——
(X | Xo and Ty < Ts) 350

k=1,2,..., S — 1. Note that this probability is higher than g = 1/2.
We find

h) =1+ pP hik + 1) + (1 —p@) hk — 1), (B.14)
Pk Pk

k=1,2,...,8 —1, or, due to the first step equation py = ppi+1 + qpr—1,
pch(k) = pi + ppiyith(k + 1) + qpe—1th(k = 1), k=1,2,...,8—1,

with the boundary condition 2(S) = 0. When p = ¢ = 1/2 we have p; = k/S
by Question (e), hence (B.14) becomes

h(k)—1+k+lh(k+1)+k_lh(k D, k=12 S—1
- 2k 2k T o '
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(G) We have to solve
1 1
kh(k):k+§(k+1)h(k+1)+§(k—1)h(k—1), k=1,2,....,58—1,

with the boundary condition 4 (S) = 0. Letting g(k) = kh(k) we check that g(k)
satisfies

1 1
g(k)=k+zg(k+1)+§g(k—1), k=1,2,...,8 -1, (B.15)

with the boundary conditions g(0) = 0 and g(S) = 0. We check that g(k) = Ck?
is a particular solution when C = —1/3, hence the solution of (B.15) has the form
g(k) = —k3/3 + C; + C,k, by the homogeneous solution given in Sect. 2.3,
where C; and C; are determined by the boundary conditions 0 = g(0) = C; and

1
0=g(S) = —§S3 +Ci + G,

i.e. C; =0 and C, = 5%/3. Consequently, we have g(k) = k(S* — k*)/3, k =

0,1,...,.S5, hence we have
5?2 — k2
h(k) =E[Ts | Xo =k, Ts < Tol = 7 k=1,2,...,8.
Chapter 3 - Random Walks
Exercise 3.1
4 4
(a) We find (3 =\,)= 4 paths, as follows.
4 4 4! . -,
(b) Ineach of the 3)=\)=3 = 4 paths there are 3 steps up (with probability

p) and 1 step down (with probability ¢ = 1 — p), hence the result.
(c) We consider two cases depending on the parity of n and k.

(i) In case n and k are even, or written as n = 2n’ and k = 2k’, (3.3.3) shows
that

P(Sn =k | S =0) =P(Sy, =2k | Sp=0) = ( " )p‘”*")/zq(""‘)/z,

(n+k)/2
—n<k<n.
(ii) In case n and k are odd, or written as n = 2n’ + 1 and k = 2k’ + 1, (3.3.4)
shows that
n
P(S, =k |So=0) = (nth)/2 4 n=)/2 —n<k<n.
( | So =0) ((n+k)/2)p q n=<k=n
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1 3 4 - 1 2
n n n n

Fig. B.1 Four paths leading from 0 to 2 in four steps

(d) By a first step analysis started at state 0 we have, letting p,  := P(S, = k),
Pn+lk = PPnk—1 1 qPui+1, foralln € Nand k € Z.
(e) We consider two cases depending on the parity of n 4+ 1 + k.

(i) If n + 1+ k is odd the equation is clearly satisfied as both the right hand
side and left hand side of (3.4.25) are equal to O.

(i1)) If n 4+ 14k is even we have pp, k—1 + qPn.k+1Pn+1.k» Which shows that
Pn.x satisfies Equation (3.4.25). In addition we clearly have

poo=P(So=0)=1 and por=P(S=k) =0, k#0.

Exercise 3.9

(a) Since the increment X takes its values in {—1, 1}, the set of distinct values in
{So, S1, ..., S,} is the integer interval

|: inf Sp, sup Sk],
k=0.1,....n k=0,1,....n

Rn=1+( sup Sk)—( inf Sk>
k=0.1,...n k=0,1,....n

elements. In addition we have Ry = 1 and R; = 2.

(b) Ateach time step k > 1 the range can only either increase by one unit or remain
constant, hence Ry — R;_; € {0, 1} is a Bernoulli random variable. In addition
we have the identity

which has

{Rk — Re—1 = 1} = {Sk # So, Sk # S1,--+s Sk # Sk}
hence, applying the probability IP to both sides, we get
PRy — Re1 =) =P(S —So #0, St =81 #0,..., S — Si—1 #0).

(c) By the change of index
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(X1, Xo, ooy Xim1, Xi) > (Xi, Xyt -+, X2, X1)

under which X; + X, + --- 4+ X; becomes Xy + -+ -+ X341, =1,2,...,k,
we have

PRk — R =D =P(X1 #0, X1 + X, #0,..., Xi+---+ X #0),

for all k > 1, since the sequence (X )= is made of independent and identically
distributed random variables.
(d) We have the telescoping sum

n
Ry=Ry+» (Ri—Ri-1). neN.
k=1

(e) By (1.2.4) we have

P(Th =00) =P (ﬂ{To > k}) = klirgo P(Ty > k),

k>1

since {Tp > k+ 1} = {To > k}, k > 1, i.e. ({Ty > k})x>1 is a decreasing se-
quence of events.

(f) Noting that Ry — R;_; € {0, 1} is a Bernoulli random variable with [E[R; —
kal] = P(Rk — Rk,1 = 1), we find

E[R,] = ZIP(TO > k).
k=0

(g) Let € > 0. Since by Question (e) we have P(Ty = 00) = limy_, P(Tp > k),
there exists N > 1 such that

IP(Ty = 00) — P(Tp > k)| <&, k> N.

Hence for n > N we have

I ¢ N
IP’(Tozoo)——ZIP’(TO>k) < —+e.
n n

k=1

Then, choosing Ny > 1 such that (N + 1)/n < € forn > Ny, we get

1 1 1 ¢
‘IP(TO = 00) = ~E[R,]| < — + |P(Ty = 00) — — Y P(Ty > k)| < 2¢,
n n n P
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n > Ny, which concludes the proof.

(h) From Relation (3.4.15) in Sect. 3.4 we have P(Ty = +00) = |p — ¢/, hence by
the result of Question (g) we get lim,,— o, [E[R,]/n = |p — ¢q|, when p # ¢, and
lim, o IE[R,]/n =0when p =¢q = 1/2.

Chapter 4 - Discrete-Time Markov Chains

Exercise 4.10

(a) Let S, denote the wealth of the player at time n € N. The process (S,),en i a
Markov chain whose transition matrix is given by

1000O0O0 -
q 0p 00O -
q 00 p 0O -
P=[Pjl;es=|gq000po-
q0000O0©Pp-

Aftern time stepswehave P(S, =n+ 1| Sp = 1) = p",n > 1,and P" is given
by

T 1 000 00 0 0 -7
1—p"0---0p" 0 0 0 0
1—p"0---00 p" 0 0 0

P =[[P");], y=|1—P 0--00 0 p" 0 0 :

TS 0. 00 0 0 pr O
1—p"0---00 0 0 0 p

(B.16)
in which the n columns n° 2 to n + 1 are identically 0.
(b) In this case the transition matrix P becomes

P = [ Pij ]i,jeN =

ESEESEES IS
oo oo
N eNoNe el
o oOoOT OO
O OO0 O
s I e N e Ne Nel

and by induction on n > 2 we find
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q qp qp* ... qp" ' p" 0 0 0
q qp qpi . qp”‘i 0 p" 0 0
n q qp qp~ ... gp"— 0 0 p" O --.
Fr=lgapap* .. qp 0 0 0 pr - |- (B.17)
2 ...gp™ 0 0 0

Chapter 5 - First Step Analysis

Exercise 5.5 This exercise is a particular case of the Example of Sect. 5.1, by taking
a:=03,b:=0,c:=0.7,d . =0,a:=0,3:=03,v:=0,n:=0.7.

Exercise 5.6 We observe that state (3) is absorbing:
0.5

0.5

Let h3(k) := [E[T5 | Xo = k] denote the mean (hitting) time needed to reach state
after starting from state k = 0, 1, 2, 3. We have

1 1
h3(0) =1+ §h3(0) + §h3(2)

1
h3(1) = 1+ Sh3(0)

1 1
h3(2) =1+ §h3(0) + 5h3(1)

h3(3) =0,

which yields i3(3) = 0, h3(1) = 8, h3(2) = 12, h3(0) = 14. We check that h3(3) <
h3(1) < h3(2) < h3(0), as can be expected from the graph.

Exercise 5.7

(a) The chain has the following graph:
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0.5 0.5

Note that this process is in fact a fair gambling process on the state space
{0, 1,2, 3}.

(b) Since the states @ and @ are absorbing, by first step analysis we find

2 1
g0(0) =1, go(1) = 3 go(2) = 3 go(3) = 0.

(c) By first step analysis we find
ho3(0) =0, hos(1) =2, ho3(2) =2, ho33)=0.

Exercise 5.9
(a) Letting f(k) :=P(Ty < oo | Sy = k) we have the boundary condition f(0) = 1
and by first step analysis we find that f (k) satisfies

fy=pftk+D+qfk—=1, k=1,
which is (2.2.6), and has the general solution
f)=Ci+Cr*, keN, (B.18)

where r = q/p, by (2.2.16).

(i) Incaseq > p, f(k) would tend to (positive or negative) infinity if C, # O,
hence we should have C, = 0, and C; = f(0) = 1, showing that f(k) =1
for all k € N.

(i) Incase g < p, the probability of hitting @ in finite time starting from @
becomes 0 in the limit as k tends to infinity, i.e. we have

lim f(k)= lim P(Ty <0 | So=k) =0, keN,
k— 00 k— 00

which shows that C; = 0.

On the other hand, the condition f(0) =1 yields C, = 1, hence we find
fk) = (q/p)* forall k > 0.

(b) Letting h(k) := IE[Ty | Sop = k] we have the boundary condition #(0) = 0 and
by first step analysis we find that A (k) satisfies
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h(k) =1+ ph(k +1) + qhtk — 1),  k>1,

which is (2.3.6) and has a general solution of the form
1
h(k)=Ci+ Cor* + ——k, ke, (B.19)
q—p

by (2.3.9). Next, we note that by the Markov property we should have the de-
composition

hk+1) =E[Ty | So =k + 1]
=IE[Ty | So = 11 + E[To | So = k]
=h(1)+h(k), ke,

i.e. the mean time to go down from k£ 4 1 to 0 should be the sum of the mean
time needed to go down one step plus the mean time needed to go down k steps.
This shows that

h(k) = h(0) + kh(1) = kh(1),

hence by (B.19) we have C; = C, =0, k(1) = 1/(g — p), and

k
h(k) = ——, k e N.

Exercise 5.10 First, we take a look at the complexity of the problem. Starting from

@ there are multiple ways to reach state @ without reaching @ or @ For
example:

13=34+4+145, or 13=14+6+3+4+3, or 1I3=1+14+2+143+1+4, etc.
Clearly it would be difficult to enumerate all such possibilities, for this reason we
use the framework of Markov chains. We denote by X,, the cumulative sum of dice

outcomes after n rounds, and choose to model it as a Markov chain with n as a time
index. We can represent X, as

Xn = igkv n = 0’
k=1

where (£, )i>1 is a family of independent random variables uniformly distributed over
{1,2,3,4,5, 6}. The process (X,),>0 is a Markov chain since given the history of
(Xk)k=0.1.....n Up to time n, the value

Xn+l =X, + fnJrl
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depends only on X, and on &, which is independent of Xy, X1, ..., X,,. The
process (X,),>0 is actually a random walk with independent increments &, &, . . ..
The chain (X,,),>0 has the transition matrix

T01/6 1/6 1/6 1/6 1/61/6 0 0 0 0 0 ---7
0 0 1/61/61/61/61/61/6 0 0 0 0
00 0 1/61/61/61/61/61/6 0 0 0
00 0 0 1/61/61/61/61/61/6 0 0
00 0 0 0 1/61/61/61/61/61/6 0 ---
00 0 0 0 0 1/61/61/61/61/6 1/6 ---
[Plim=]0 0 0 0 0 0 0 1/61/61/61/61/6 -
’ 00 0 0 0 0 0 0 1/61/61/61/6 ---
00 0 0 0 0 0 0 0 1/61/61/6 -
00 0 0 0 0 0 0 0 0 1/61/6---
00 0 0 0 0 0 0 0 0 0 1/6--
00 0 0 0 0 0 0 0 0 0 0

Letting A := {11, 12, 13, 14, 15, 16}, we are looking at the probability

go ‘= ]P(XTA = 13 | X() = O)
of hitting the set A through and the set 13 after starting from state 0. More generally,
letting

g :=P(Xr, =13 | X0 =0)

denote the probability of hitting the set A through the set 13 after starting from state k,
we have g = 0 for all k > 14. By first step analysis we find the system of equations

6
1
k) =- i kEN,
g(k) 6 IE:l i+

with solution

_ 73 . 72 7 _ 1
g1 = & gs = R g9 = R gio = 5
and
70— 76 x 6% —4 x 7P x 6°
go = ~ (0.181892636.
61
Exercise 5.11

(a) The transition matrix is given by
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(b)

X oo o X
X oo O X
X O o X
X o O© X
X O © O X
XS © O O X

The information contained in the first and last lines of the matrix is not needed
here because they have no influence on the result. We have g(0) = 0, g(5) = 1,
and

gky=gxgk—1)+pxgk+1), 1 <k<4. (B.20)

When p = g = 1/2 the probability that starting from state @ the fish finds the
food before getting shocked is obtained by solving Equation (B.20) rewritten as

1 1
g(k):zxg(k—l)—i—zxg(k—i—l), 1 <k<4

Trying a solution of the form g(k) = C| + kC, under the boundary conditions
g(0) =0 and g(5) = 1, shows that C; = 0 and C, = 1/5, which yields g(k) =
k/5,k=0,1,...,5.

Exercise 5.12

(a)

(b)

The transition matrix is given by

"1 0 0 0 .
1 0 0 0
1/21/2 0 0

1/4 1/4 1/4 1/4

0
0
0
1/5 15 1/5 1/5 1/5 0

0
0
0
1/31/31/3 0 0
0
/

We have
mfl1 1mfl
h = —(1+hok) =1+ — ho(k), > 1,
o(m) kZ:;m(+o<)> +m§o(> m>

and ho(0) =0, ho(1) = 1.

(c) We have

m—1

1
ho(m) =14 —> "hotk) =hom — 1)+ —,  m > 1,
m =0 m
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hence
m

1 |
ho(m)=ho(m—1)+—=;;, m>1.

Exercise 5.13

(a) Assuming that it takes one day per state transition, the graph of the chain can be
drawn as

where state @ represents the tower, states @ and @ represents the tunnel, and

state @ represents the outside.
(b) We have

(c) By first step analysis we find

1 1 1
h3(0) = 5(1 + h3(0)) + 5(3 + h3(0)) + 3

i.e. h3(0) =5, i.e. 4 times steps on average to reach the exit, plus one time step
from the exit to the outside.

Exercise 5.14 The average time ¢ spent inside the maze can be quickly computed

by the following first step analysis using weighted links:

1 1 2
IZEX(f+3)+6X2+gX(t+5),

which yields r = 21. We refer to Exercise 5.13 and its solution for a more detailed
analyis of a similar problem.

Exercise 5.15 The chain has the following graph:
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(a) Letus compute
go(k) =P(Tp < oo | Xg =k) =P(X7,,, =0 Xo=4k), k=0,1,2,3.
Since states @ and @ are absorbing, by first step analysis we have
90(0) =1
go(1) = 0.1 x go(0) + 0.6 x go(1) + 0.1 x go(2) + 0.2 x go(3)

90(2) = 0.2 x go(0) + 0.3 x go(1) + 0.4 x go(2) + 0.1 x go(3)

90(3) =0,

1.e.
go(0) =1

go(1) = 0.1+ 0.6 x go(1) + 0.1 x go(2)

90(2) = 0.2+ 0.3 x go(1) + 0.4 x go(2)

90(3) =0,

which has for solution gy(0) = 1, go(1) = 8/21, go(2) = 11/21, go(3) = 0, cf.
also (5.1.10).
(b) Let
ho3(k) =IE[Ty3 | Xo = k]

denote the mean time to reach the set A = {0, 3} starting fromk = 0, 1, 2, 3. By
first step analysis, we have
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ho3(0) =0
ho3(1) =0.1 x140.6 x (1 +hp3(1)) +0.1 x (14+ho3(2)+0.2x (1+ho3(3))
ho3(2) =02x140.4 x (1 +ho3(1)) +03 x (14+ho3(2)+0.1x 1A+ ho3(3)

ho3(3) =0,

ho,3(0) =0
ho3(1) =140.6 x ho3(1) +0.1 x ho3(2)
ho3(2) =140.4 x ho3(1) +0.3 x ho3(2)
ho3(3) =0,

which has for solution /g 3(0) = 0, ho3(1) = 10/3, ho3(2) = 10/3, ho3(3) =
0.

Note that the relation % 3(1) = ki 3(2) can be guessed from the symmetry of the

problem.
Xo = k]
= ]E [C(Xo) ‘ XO == k] + ]E |:Z 6ic(Xi)
i=1

=ck)+ Y P E [Z Ble(Xp)
i=1

jes

Exercise 5.19 We have

h(k) =B [Z Ble(X))
i=0

X0=k}
X1=j:|

=c(k)+B)_ PuE {Z Ble(Xi)| Xo = ,1
i=0

jes
However, this type of equation may be difficult to solve in general. We refer to
Problem 5.22 for a particular case with explicit solution.

=c(k)+B)_ Pejh(j), kes.

jes

Problem 5.21

(a) The boundary conditions g(0) and g(N) are given by ¢g(0) = 1 and g(N) = 0.
(b) We have
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gk) =P(To < Ty | Xo =k) =Z]P’(To <Ty | X1 =DP(X) =1]| Xo=k)
1=0

N

N
=Y g0Pu.  k=0.1,....N.
1=0

(c) We find

1 0 0

(2/3)* (2/3)* 2/3?

0

1/33

[ Pt/ ]051‘,;‘53 = 1/33

0

2/3* (2/3)* (2/3)°

0 0 1

(d) Letting g(k) = 1 — k/N, we check that g(k) satisfies the boundary conditions
g(0) = 1 and g(N) = 0, and in addition we have

Soon =3 o (5) (1-5) A
L= Ly \N N N

1=0

_(i_k k_H E\N!

o N/)\N N
N —k

=— " —gk), k=0,1,....N,
N g(k)

which allows us to conclude by uniqueness of the solution given two boundary
conditions, cf. Exercise 5.9 for cases of non-uniqueness under a single boundary
condition.

(e) The boundary conditions /#(0) and h(N) are given by 2(0) =0 and h(N) =0
since the states @ and (/) are absorbing.

() We have

h(k) = E[Ton | Xo = k]
N

=Y (+E[Toy | X; =IDPX; =1 | Xo =k)
=0
N N N
=Y U+E[Toy | Xi=Pu=Y P+ Elloy| X1 =Py
=0 =0 =0
N—1 N-1

=14 ElTon | X1 =Py =1+ Y h()P.
=1 =1

(B.21)
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k=1,2,...,N —1.
(g) In this case, the Equation (B.21) reads

h(0) =0,

A =1+ S0 + 202
o 9 9

h2)=1 2hl 4h2
@ =1+ 5h() + 5h)

h(3) =0,
which yields 2(0) = 0, (1) = 3, h(2) = 3, h(3) = 0.

Problem 5.22

(a) Since we consider the time until we hit either O or N, we have 2 (N) = 0 as well

as h(N) =0.
(b) We have

Xo = k}
T—1

7—1
hk) =E [Z X;
i=0
X;
1

:IE[XO‘onk]—HE{

Xo=k

T2 T2
=k+plE|:ZX,~+]’X1=k+1:|+qIE X,-+1‘X1=k—1i| (B.22)
i=0 1
T—1 —
=k+p]E|:ZX,-‘X0:k+1:| +qE | x,
i=0 i=0
—k+phk+1) +qhtk—1), 1<k<N-—1,

Xo=k— 1} (B.23)

where we used the fact that 7 — 1 in (B.22) becomes 7 in (B.23).

From now on we take p = g = 1/2.

(c) We check successively that (k) = C, h(k) = Ck, h(k) = Ck?* cannot be solu-
tion and that (k) = Ck? is solution provided that C = —1/3.

(d) The general solution has the form i (k) = —Kk3 /3 + C; + Csk, and the boundary
conditions show that

0="h(0)=Ci,

N3
0=nh(N) =—T+C1 + 2N,



Appendix B: Solutions to Selected Exercises and Problems 319
hence C; =0, C, = N?/3, and

IS kok o, ) N +k
htk)=——+ N"===-(N"—k)=k(N—k)——, k=0,1,...,N.
3 3 3 3
(B.24)
(e) When N =2 we find h(1) = 1 since starting from k = 1 we can only move to
state 0 or state N = 2 which ends the game with a cumulative sum equal to 1 in
both cases.
(f) (i) We find an average of

E[Ton | Xo =4] =4(70 — 4) = 4(70 — 4) = 264 months = 22 years.

(ii) By (B.24) we find
4 2 2
h(4) = 3(70 —4%) = $6512K = $6.512M.

(iii) In that case we find $4K x 264 = $1056K = $1.056 M.

(iv) It appears that starting a (potentially risky) business is more profitable on
the average than keeping the same fixed initial income over an equivalent
(average) period of time.

Chapter 6 - Classification of States

Exercise 6.1

(a) The graph of the chain is
1/3

Losogpogho
1

This Markov chain is reducible because its state space can be partitioned into
two communicating classes as S = {0} U {1, 2, 3}.

(b) State (0) has period 1 and states (1), (2), (3) have period 3.

(c) We have

1
po,0=P(To<oo|Xo=O):IP’(T0=1|X0=O)=§,

and )
IP(T0=OO|X0=0)=1—P(T0<OO|X0=0)=§

We also have
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HD(Ro<0<>|Xo=0)=}P’(To=OO|X0=0)Z(HD(TO<OO|X0=0))”

n=1
2 /1)
:5'12](5) _ 1

(d) There are no absorbing states, state @ is transient, and states @, @, @ are
recurrent by Corollary 6.6. State@is transient since P(Ry < oo | Xg =0) =1,
as expected according to (5.4.3).

Exercise 6.3

(a) The chain has the following graph

0T K

1/4

1/4

(b) All states @, @, @ and @ have period 1, which can be obtained as the
greastest common divisor (GCD) of {2, 3} for states @, @, @ and {4, 6,7}
for state @ The chain is aperiodic.

(c) State @ is absorbing (and therefore recurrent), state @ is transient because

1
F(T§ = 00|Xp = 0) = 7 > 0.

and the remaining states @, @, @ are also transient because they communicate

with the transient state @, cf. Corollary 6.6. By pathwise or first step analysis
we can actually check that

P(T{ = 00| X = 0)

1 3
= Z(P(T(; =oo|Xg=1) +P(T0r =00|Xg =2) -|—P(T6 =o00|Xg = 3)) = T

(d) The Markov chain is reducible because its state space S = {0, 1, 2, 3, 4} can be
partitioned into two communicating classes {0, 1, 2, 3} and {4}.

Exercise 6.4 The graph of the chain is
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(a) The chain is reducible and its communicating classes are {0}, {1}, {3}, {5}, and
{2,4}.

(b) States @, @, @ are transient and states @, @, @ are recurrent.

(c) State @ has period 0, states @ and @ have period 2, and states @, @, @
are aperiodic.

Exercise 6.5

(a) The graph of the chain is

0.3
0.8 0.3
1 0.2 0.4
w

The chain is reducible, with communicating classes {0, 2}, {1}, {3}.

(b) States @, @, @ have period 1 and state @ has period 0. States @ and @
are transient, states @ and @ are recurrent by Theorem 6.9 and Corollary 6.6,
and they are also positive recurrent since the state space is finite. There are no
absorbing states.

Chapter 7 - Long-Run Behavior of Markov Chains

Exercise 7.5

(a) We have
0 05 0 05
05 0 05 0O
0 05 0 05
05 0 05 0

(b) By first step analysis and symmetry of the maze we have po(1) = po(3), hence

po(0) =4, po(l) =3, po(2) =4, po(3) =3.
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The symmetry of the problem shows that we have, (1) = po(3), which greatly
simplifies the calculations.

(c) Clearly, the probability distribution (mg, 7y, 72, 73) = (1/4, 1/4,1/4,1/4) is
invariant and satisfies the condition m = 7 P, see also Exercise 7.14.

Exercise 7.6

(a) Clearly, the transition from the current state to the next state depends only on the
current state on the chain, hence the process is Markov. The transition matrix of
the chain on the state space S = (D, N) is

p— l—a a | 1/4 3/4
- b 1—-b| |1/4 3/4|°

(b) The stationary distribution m = (7p, 7wy ) is solution of 7 = 7 P under the condi-
tionmp + my = 1, whichyields7mp = b/(a +b) = 1/4andy =a/(a +b) =
3/4.

(c) Inthelong run, by the Ergodic Theorem 7.12 we find that the fraction of distorted
signals is mp = 1/4 = 25%.

(d) The average time hy (D) = uy(D) to reach state @ starting from state @

satisfies
pn(D) =1 —a)(1 + py(D)) +a (B.25)

hence uy (D) = 1/a = 4/3.
(e) The average time pp(N) to reach state @ starting from state @ satisfies
pp(N) = (1 =b)(1 + pp(N)) +b (B.26)
hence uy (D) = 1/b = 4.

Exercise 7.7

(a) The chain has the following graph:
0.6

0.4

The chain is reducible and its communicating classes are {0, 1, 2} and {3}.
(b) State@is transient because P(T5 = 00 | Xg =3) = 0.4+ 0.6 = 1, cf. (6.3.1),
and states @, @, @ are recurrent by Theorem 6.9 and Corollary 6.6.
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(c) It suffices to consider the subchain on {0, 1, 2} with transition matrix

0
2
3

1 0
P=[02008],
0.3 0 0.7
and to solve ™ = 7715, i.e. which yields m; = 7 and 0.3m, = 0.8m; = 0.8y,
with 1 = o + 7T + Ty = 271'() + 871'()/3, i.e. T = 3/14, T = 3/14, Ty = 4/7,
and the fraction of time spent at state @ in the long run is 3/14 ~ 0.214 as the
limiting and stationary distributions coincide.

(d) Letting ho(k) denote the mean hitting time of state @ starting from state @,

we have
ho(0) =0
ho(1) = 0.2(1 + ho(0)) + 0.8(1 + 1o(2))
ho(2) = 0.3(1 + ho(0)) + 0.7(1 4+ ho(2))
ho(3) = 0.4(1 + ho(0)) + 0.6(1 + ho(1)),

hence hy(0) =0, ho(1) = 11/3, ho(2) = 10/3, ho(3) = 16/5, and the mean
time to reach state @ starting from state @ is found to be equal to 7o (2) = 10/3,
which can also be recovered by pathwise analysis and the geometric series

o0
0.3 10
ho(2) = 03> kO = ——— = —.
po (1-0.7) 3

Note that the value of /¢(2) could also be computed by restriction to the sub-
chain {0, 1, 2}, by solving

ho(0) =0
ho(1) = 0.2(1 + ho(0)) + 0.8(1 + h1p(2))
ho(2) = 0.3(1 + ho(0)) + 0.7(1 + ho(2)).

Exercise 7.8
(a) First, we note that the chain has finite state space and it is irreducible, positive
recurrent and aperiodic, hence by Theorem 7.8 its limiting distribution coincides
with its stationary distribution which is the unique solution of m = 7w P. After
calculations, this equation can be solved as
7T0=CX161, 7T1=CX460, 7T2=CX320, 7T3=CX170.
The condition

l=mg+m+m+m=cx161 +c x 460+ c x 320+ ¢ x 170

shows that
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161 460 320 170

- _ 29 -2 =" ®2
e T T BT n (B.27)

o

(b) We choose to solve this problem using mean return times since po(i) = ho(i),
i =1, 2,3, however it could also be solved using mean hitting times A; (j). We
have

10(0) = 1+ pp(1),

po(1) = 0.1+ 0.4(1 + po(1)) + 0.2(1 + 10(2)) + 0.3(1 + 0(3))
=1+ 0.4u0(1) + 0.2010(2) + 0.310(3),

10(2) = 0.2+ 0.2(1 + p1o(1)) + 0.5(1 + 1o(2)) + 0.1(1 + 1o(3))
=1+ OZuo(l) + 05/14)(2) + 0.1/1,0(3),

po(3) =14 0.3p0(1) +0.440(2),

hence
790

950 860
) =— 2) = 22 _ 20
po(1) 61’ Ho(2) E Ho(3) 6l

Note that the data of the first row in the transition matrix is not needed in order
to compute the mean return times.

(c) We find
) 14 po(ly = 14 550 _ 1614950 _ 1111
PO =2 ot =2 161 = 161 161"

hence the relation myp = 1/1((0) is satisfied from (B.27).

Exercise 7.9

(a) All states of this chain have period 2.

(b) The chain is irreducible and it has a finite state space, hence it is positive re-
current from Theorem 6.11. By Proposition 6.14, all states have period 2 hence
the chain is not aperiodic, and for this reason Theorem 7.2 and Theorem 7.8
cannot be used and the chain actually has no limiting distribution. Nevertheless,
Theorem 7.10 applies and shows that the equation m = 7w P characterizes the
stationary distribution.

Exercise 7.10 We choose to model the problem on the state space {1, 2, 3, 4},
meaning that the replacement of a component is immediate upon failure. Let X,
denote the remaining active time of the component at time n. Given that at time n
there remains X, = k > 2 units of time until failure, we know with certainty that
at the next time step n + 1 there will remain X,_; = k — 1 > 1 units of time until
failure. Hence at any time n > 1 we have

Xn:4 :>Xn+1:3 :>Xn+2:2 :>Xll+3:1’
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whereas when X,, = 1 the component will become inactive at the next time step and
will be immediately replaced by a new component of random lifetime 7" € {1, 2, 3}.
Hence we have

P(Xyp1=k| X, =1)=PT =k), k=1,2,3,4,

and the process (X,),en is a Markov chainon S = {1, 2, 3, 4}, with transition matrix

P(Y =1) P(Y =2) P(Y =3) P(Y =4) 0.1 0.2 0.3 0.4

b 1 0 0 0 11 0 0 o0
- 0 1 0 0 1o 1 0 0

0 0 1 0 0 0 1 0

We now look for the limit lim,,_, o, P(X,, = 1). Since the chain is irreducible, aperi-
odic (all states are checked to have period one) and its state space is finite, we know
by Theorem 7.8 that 7| = lim,_, o, P(X, = 1), where m = (7, m2, 73, m4) is the
stationary distribution 7 uniquely determined from the equation m = 7P, as fol-

lows:
m =0.1m +m

m = 0.2m + ™3

w3 = 0371 + 74

T4 = 0.471'1.

hence m, = 0.97, 73 = 0.77;, w4 = 0.47, under the condition m; + 7 + w3 +
ms =1, i.e. mp +0.9m + 0.77; + 0.4m = 1, which yields m; = 1/3, m = 9/30,
w3 = 7/30, m4 = 4/30. This result can be confirmed by computing the limit of matrix
powers (P"),cn as n tends to infinity using the following Matlab/Octave commands:

P =1[0.1,0.2,0.3,0.4;
1,0,0,0;

0,1,0,0;

0,0,1,0:]
mpower(P,1000)

showing that

0.33333 0.30000 0.23333 0.13333
lim P — 0.33333 0.30000 0.23333 0.13333
n—>00 0.33333 0.30000 0.23333 0.13333
0.33333 0.30000 0.23333 0.13333

Exercise 7.11 The graph of the chain is as follows:
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0.4
We note that the chain is reducible, and that its state space S can be partitioned into
4 communicating classes:

S={A, B}U{C}U{D}U{E},
where A, B are recurrent, E is absorbing, and C, D are transient.

Starting from state @, one can only return to @ or end up in one of the absorbing
classes {A, B} or {E}. Let us denote by

Tiapy =inf{n >0 : X, € {A, B}}

the hitting time of {A, B}. We start by computing P(T(4,5, < 00 | Xg = C). By first
step analysis we find that this probability satisfies

P(Tiapy <0 | Xo=C)=02+04xP(Tapy <0 | Xo=C)+0.4 x0,

hence P(T{4,py < 00 | Xo = C) = 1/3, On the other hand, {A, B} is a closed two-
state chain with transition matrix

l—a a 106 04
b 1—-b|710307])

hence, starting from any state within {A, B}, the long run probability of being in A
is given by

lim P(X, = A | Xo € {A, B))
n—oo

lim P(X,=A| Xo=B)——————
i B¢ X0 =Bpx, e (4, B)

b P(Xo = A) N P(Xo = B)
T a+b <IP>(X0 € {A,B)) P(X,e€{A, B}))
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0.3 3

T03+04 7

Since

{Xo =A} C{Tap <n} C{Tap <00}, neN,
we conclude that

a:=Ilim P(X,=A]|Xo=0C)
n—00
= lim P(Ty3 <ocoand X, = A | Xo = C)
n—00

= lim P(Txp <ocand X,17,, = A | Xo =C)
n—oo

=P(Tap <00 | Xo=C) lim P(X,47,, =A | Tap < 00 and Xg = C)

Z]P)(TA,B < | XO = C)
x lim P(X,i7,, = A| Tap <00, X1,, € {A, B}, Xo=C)

n—oo

=P(Tiap <00| Xo=C) lim P(X, = A | X, € {A, B})
n—oo

where we used the strong Markov property, cf. Exercise 5.8.
Exercise 7.12
(a) The chain has the following graph:

g 1/2 17

ROL
1 1

(b) The communicating classes are {0, 1}, {2}, {3}, and {4}.

(c) States @ and @ are transient, states @ and @ are recurrent, and state @ is
absorbing (hence it is recurrent).

(d) By (4.5.7) we have

1/2 3
lim P(X, = 0| Xo=4) = lim P(X, = 0| Xo=0) = — 12 3
n—>00 n00 2/3+1/2 1

cf. also the Table 8.1.

Exercise 7.13

(a) The transition matrix P of the chain on the state space S = (C, T) is given by
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4/5 1/5
3/4 1/4 |

(b) The stationary distribution m = (¢, 7r) is solution of 7 = 7 P under the con-
dition ¢ 4+ 77 = 1, which yields 7¢ = 15/19 and 77 = 4/19.
(c) In the long run, applying the Ergodic Theorem 7.12 we find that 4 out of 19

vehicles are trucks.
(d) Let ur(C) and pr(T) denote the mean return times to state @ starting from

@ and @, respecticely. By first step analysis we have

4
pur(C) =1 +§NT(C)

3
pr(T) =1+ ZHT(C)

which has for solution 7 (C) = 5 and p7(T) = 19/4.
Exercise 7.15

(a) We solve the system of equations
mo=¢q(mo+m +m+m3)+ 7T =q+ pmy
T = PTo
— _ 2
T2 = pT = P™To

3
T3 = Py = P Mo

4
T4 = pT3 = p To,

whichyields | =mg+m +m +m + 74 =m0(1 + p + p*+ pP+ pY, and

1
7TO=1+p+p;-+p3+p4
m=1+p+ﬁ;pﬂuﬂ
= 1+p+p;3+p3+p4
= 1+p~|—p;4—|—p3+p4
R R

(b) Since the chain is irreducible and aperiodic with finite state space, its limiting
distribution coincides with its stationary distribution.
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Exercise 7.16

(a) The transition matrix P is given by

0 1/2 0 1/2
1/3 0 1/31/3
01 0 0
1/21/2 0 0

P =

(b) The chain is aperiodic, irreducible, and has finite state space hence we can apply
Theorem 7.8 or Theorem 7.10. The equation 7P = 7 reads

LR
—TB —TpD
0 1/2 0 1/2 13y
1/3 0 1/31/3 STA + e+ 57D
mP = [ma, T, T, Tp] X 0o 1.0 0 |= 2 lﬂ_ 2
1/21/2 0 0 L
L §7TA+§7TB }

= [m4, B, Tc, TD],
i.e. 14 = mp = 2wc and wp = 37, which, under the condition w4 + 75 +

e +7p=1,givesma = 1/4, 75 =3/8, mc =1/8, 7p = 1/4.
(c) We solve the system

1 1 1
5 + 5 (I+pp(B) =1+ END(B)

up(A) =
1 1 1 1
up(B) = 33 (1 + pup(A) + 3 (I +pupC) =1+ g(HD(A) + up(C))

up(C) =1+ pp(B)

1 1 1
pp(D) = 3 (I +pp(A) + 3 (I+ppB) =1+ E(ND(A) +1p(B)),

which has for solution pp(A) =8/3, up(B)=10/3, pup(C)=13/3,
up(D) = 4. On average, player D has to wait up(D) = 4 time units before
recovering the token.

(d) This probability is mp = 0.25, and we check that the relation (D) = 1/mp = 4
is satisfied.

Exercise 7.17 Clearly we may assume that ¢ < 1, as the case ¢ = 1 corresponds
to the identity matrix, or to constant a chain. On the other hand, we cannot directly
apply Theorem 7.8 since the chain is reducible. The chain has the following graph:


https://doi.org/_7
https://doi.org/_7
https://doi.org/_7

330 Appendix B: Solutions to Selected Exercises and Problems

b

(a) By observation of
1 0 0
Pr= 0 1 0
a(l+¢) b(1+¢) ¢?

and
1 0 0

P’ = 0 1 0
al+c+cd) b(l+c+2) A3

we infer that P” takes the general form

O =
— o
(=2l en)

P =

S

an n Cn

where a,, b, and ¢, are coefficients to be determined by the following induction
argument. Writing down the relation P"*! = P x P" as

1 0 0 100 1 00
prl = 0 1 0 =|010|x|0 10
Any1 bny1 copr abc a, by, c,
shows that we have the recurrence relations
_ n—1 __ 1 — Cn
Uit = a + cay, a, =a—+ac+---+ac —al_c,
1 — CI‘L

by41 = b+ cb,, which yield

by=b+bc+---+b"'=b

Cny1 = C X Cp,

Cnt1 = cn ’
hence
1 0 0
0 1 0

1—c" 1-c"

1—c 1—c

a
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(b) From the structure of P" it follows that the chain admits a limiting distribution

lim P" =

n—00

1 0 O

O 1 o0

a b
0

l—c 1—-c¢

which is dependent of the initial state, provided that ¢ < 1. The limiting proba-

bilities
lim P(X, =0 | Xo =2) = ,
n— 00 1—c¢
resp.
. b
lim P(X,=1]|Xo=2) = ,
n— 00 1—c¢

correspond to the probability of moving to state @, resp. the probability of
moving to state @, given one does not return to state @

In addition we have P(T) = oo | X9 = 2) = a + b > 0, hence state @ is tran-
sient and the chain is not recurrent.

(c) By solving the equation m = P we find that the chain admits an infinity of
stationary distributions of the form (mg, 71, 0) with 9 4+ 7y = 1 when ¢ < 1.
We also note that here, all limiting distributions obtained in Question (b) are
also stationary distributions on every row.

Exercise 7.18

(a) The process (X,)qen is a two-state Markov chain on {0, 1} with transition matrix

[+ 4]

P q
and o = 1 — 3. The entries on the second line are easily obtained. Concerning
the first line we note that P(N = 1) =  is the probability of switching from 0O
to 1 in one time step, while the equality P(N = 2) = 3(1 — 3) shows that the
probability of remaining at O for one time step is 1 — 3.

(b) This probability is given from the stationary distribution (g, 71) asm = 3/(p +
B).

Exercise 7.20

(a) The N x N transition matrix of the chain is
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qg p O 0 0O
qg 0 p 0 0O
0 g O 0 0O
SN
000 . . 0poO
000 -+ - ¢ p
(000 -~ -~ 0 gq p|

(b) The chain is irreducible if p € (0, 1), and reducible if p =0 or p = 1.

(c) If p € (0, 1) there are no absorbing states and all states are positive recurrent. If
p = 0, state 1 is absorbing and all other states are transient. If p = 1, state N is
absorbing and all other states are transient.

(d) The equation ™ = 7P yields

7T2=£7T1 and 7TN=£7TN_1, k=1,2,...,N—1,
q q

and
pimy —m—) =q(me —m)  k=2,3,...,N—1

We check that 7, given by
k—1
71'/(:%7(1, k=],2,...,N,
q
satisfies the above conditions. The normalization condition

N N k—1 N-1 k N
L= (/)
1=Zﬂkzmz%zmz<£> el VL

l—p/q

shows that

m=—2>t31 2 k=1,2,...,N,
1 —(p/g@)N ¢g*!

provided that 0 < p # g < 1. When p =g = 1/2 we find that the uniform

distribution |
= —, k=1,2,...,N,
N
is stationary. When p = 0 the stationary distribution is 1y =[1,0,...,0,0],

and when p = litis 1y =[0,0,...,0,1].
(e) The chain has finite state space and when p € (0, 1) it is irreducible and aperi-
odic, hence its limiting distribution coincides with its stationary distribution.



Appendix B: Solutions to Selected Exercises and Problems 333

Problem 7.23
(a) We have

P(Yy41 =jand Y, =1i)
P, =1i)

IP(Y;H-I =J | Yn == l) ==

_ PXy—n-1=1)

T
PXy_p=i|XNno1=j)=—-LP;;.
]P)(XN,,,:Z.) ( N—n l| N—n—1 ]) T Jsi

On the other hand, we have

PYur1=j, Yy =in, ..., Yo =)
P(Y, =i,,.... Yo = io)
_ PXnopr = J, Xnon = lny oo, XN = o)
B P(Xn_p =in, ..., Xy = io)
=P(Xy 1 =jand Xy, =iy)
X]P(XN—11+1 =in-t1,-.., Xy =0 | Xn—n-1 = J, Xn—n = ip)
P(XN-nt1 = in-1,..., Xy =1p)
_ PXy_n1 =)
— P(Xy-n =)

HD(Yn-k—l=J-|Yn=in’-~-aY0=i0)=

. . 71—'
IP(Xan =i, | Xy_po1 = ]) = _JPjvill’

In

and this shows that

. . . . . Ui
Py =jlYy=iyn,....Y0=i0) =Py =j | Y, =iy = 7T__]Pj.i,,7

In

i.e. the time-reversed process (Y,,),=0.1
(b) We find

.....

=P, (B.28)

ie.
TPy =7 P,

which is the detailed balance condition with respect to the probability distribu-

tion T = (7});es-
(c) We have

7'(']' = Zﬂ—jpj,i = ZT(,’P,'J = [7TP]J'.

i i
(d) According to the detailed balance condition (B.28) we have
n—1 n—1

Tki s
Pty Pro s = -+ Proyki = Py 1_[ Pri ki = Pro ky H — Pk
k,

i=1 i=1 i
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n—1

n—1
T p Poi =P P
kn ki kivi,ki = Tkiky kiv1.ki»
T i=1 i=1

holds for all sequences {k, ks, ..., k,} of states and n > 2.
If the Markov chain satisfies

P ko Preo s~ + Py ki Proy ke = Prey ko P by + Py o Pho iy
then by summation over the indexes k», k3, ..., k,_1, using the matrix power
relation

n—1
[P ]i,j = E Pi,kz Pstk3 t Pkn—lvj’
kaseeoskn—1

we get
[P iy b Pov s = Pry s [P" i iy -

On the other hand, by taking the limit as n goes to infinity Theorem 7.8 shows
that
lim [P" "y, = lim [P"]y, 1, = m,

n—oo

since the limiting and stationary distributions coincide, and we get
Tk Pl ki = Prey e Ty »

which is the detailed balance condition.
The detailed balance condition reads

1 i
iPipi=mi| = — =
Tl 7r(2 M

i+1
2M

k]

) = Tip1 Piy1i = Tiq

hence . .
iy 1—i/M  M—i

m G+D/M i+l

which shows that

T

M—-i+D)M—-i+2) M-DM M! <M>
— . 0 )

i i—1) T 2 1T ham—iyT

i=0,1,..., M, where the constant my > 0 is given by

M
1= Zm :WOZ(A;[> :7r02M’
i i=0
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hence 7y = 2™ and

(g) We have

[7Pl; = Pipr,imip1 + Piymi + Py iy
1i+1M+11i—1 M+1 1 /M

= — —_— | = — — X =
2M oM \i+1 2M\2  2M i—1 2M 2\

_ 1 /(M

C2M\ )

which is also known as Pascal’s triangle.

(h) The chain is positive recurrent, irreducible and aperiodic, therefore by Theo-
rem 7.8 it admits a limiting distribution equal to 7.

(i) We have
M
lim [E[X, | Xo =i] = lim ZjIP’(Xn =j| Xo=1)
n—oo n—00
j=0
M M
=D J im P(X, = Xo=0)=) jm;
Jj=0 j=0
_ % M _MMX‘:I M- M
—2M ._0] ] _2M ._Oj!(M_l—j)!_ 23
J=! Jj=
independently of i =0, 1,..., M.
(j) Clearly, the relation
M

M : .
]EXO—?‘X()ZZ :l—7

holds when n =0. Next, assuming that the relation holds at the rank n > 0 we
have

. M .
hi) =B | Xup1 = 5 [ Xo =1
M . M )
=P ;nE Xn+1—7)X1=l+1 + P ;IE Xn-&-l_?‘Xl:l

M .
+P;E [xn+1 - |xi=i- 1}
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(Lo \g|x M‘X—'+1+1]EX M‘X—'
=\3 M n+l1 5 1=1 3 n+l1 5 1 =1

L E|x M‘X—' 1
M n+l ) 1 =1

(e -5 3-8
(-9 () e

foralli =0,1,..., M.

+

Taking the limit as n goes to infinity we get

: M . (. M 1\"
lim IE Xn__‘X():l = lim (i — — 1 — — :O7
n—o0 2 S 3 i

hence lim [E[X,] = M/2,foralli =0, 1, ..., M, which recovers the result of
n— o0
Question (i).

Chapter 8 - Branching Processes

Exercise 8.2
(a) We have

11
Gl(s):]E[sy]zsoP(Y:O)—i—slIP(Yz1)=§+§s, s € R.

(b) We prove this statement by induction. Clearly it holds at the order 1. Next,
assuming that (8.3.10) holds at the order n > 1 we get

1
@Hmzaﬂmm=G4ﬁ_§+%>

_ 1 n 1 | 1 s\ | 1 n s
) 2 on on ) on+l on+l’
(c) We have

1

(d) We have

1
E[X, | Xo = 1]= G} (s)s=1 = BIN]" = 7.
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(e

The extinction probability «is solution of G () = o, i.e. = 1/2 + /2, with
unique solution a = 1.

Exercise 8.3

(a)

(b)

()
(d)

We have G (s) = 0.2 4+ 0.5s + 0.3s2 and
E[X,]=E[]=G{(1)=054+2x03=1.1,

hence
E[X,] = (G|(1))* = (E[£])? = (1.1)?,

by Proposition 8.2. On the other hand, we have

Gy(s) = G1(G1(5))
= G1(0.2 4+ 0.55 + 0.35%)
= 0.312 + 0.31s + 0.261s% + 0.09s> + 0.027s*,

with
G5(s) = 0.31 4 0.522s + 0.27s + 0.108s>
and
G5(s) = 0.522 + 0.54s + 0.324s7,
hence
G,(1) = (Gi(1)?* = (1.1)> =121 and  Gj(1) = 1.386,
and

E[X2] = G4(1) + G,(1) = 1.386 + 1.21 = 2.596.

By (1.7.6) this yields
Var[X,] = 2.596 — (1.21)%.

We have G(s) = 0.312 + 0.31s + 0.2615% + 0.09s® + 0.027s*, hence
P(X,=0)=0312, P(X,=1) =031, P(X,=2)=0.26l,

and
P(X, =3)=0.09, P(X, =4)=0.027.

We have P(X4 = 0) = G4(0) = G2(G2(0)) =~ 0.44314.
We have IE[X 0] = (IE[X;,])'° = (G/l(l))10 = (1.1)'% = 2.59, since the mean
population size grows by 10% at each time step.
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(e) The extinction probability « solves the equation
a=G(a) =0.2+40.5a + 0.307,

ie 0302 —0.5a+0.2=0.3(a—1)(a—2/3) =0, hence o = 2/3.
Exercise 8.4

(a) We have Gi(s) =P(Y =0) +sP(Y = 1)+ s’P(Y =2) =as’+bs+c, s €
R.

(b) Letting X, denote the number of individuals in the population at generation
n > 0, we have

P(X,=0]Xo=1) = G(G,(0)) = G (c) = ac* + bc +c.
This probability can actually be recovered by pathwise analysis, by noting that

in order to reach {X, = 0} we should have either

(i) Y, = 0 with probability c, or
(i) Y; = 1 with probability b and then Y; = 0 with probability ¢, or
(iii) Y; = 2 with probability a and then Y; = 0 (two times) with probability c,

which yields P(X, = 0| Xo = 1) = ¢ + bc + ac?.
(c) We have
PX,=0|Xo=2)=(PX>,=0]| Xy =1)? = (ac® + bc + ¢)?,

asin (8.3.1).
(d) The extinction probability «; given that X = 1 is solution of G (a) = o, i.e.

ac? +ba+c=a,

or
Ozaaz—(a—i—c)a—l—c:(a—l)(aoz—c)

from the condition @ + b + ¢ = 1. The extinction probability «; is known to be
the smallest solution of G () = «, hence itis a; = ¢/a when 0 < ¢ < a. The
extinction probability a, given that Xy = 2 is ap = (a;)>.

(e) WhenO <a < cwehave o = 1.

Exercise 8.6

(a) When only red cells are generated, their number at time n — 1is s”~!, hence the
probability that only red cells are generated up to time n is

1 1 2 1 on-1 n—1 1 2k 1 21
-x[=) x---x[- = | | - - , n=>0.
4 4 4 o \4 4
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(b) Since white cells cannot reproduce, the extinction of the culture is equivalent to
the extinction of the red cells, and this question can be solved as in the framework
of Exercise 8.3. The probability distribution of the number ¥ of red cells produced
from one red cell is

1 2 1
P(Y=0)=—, PY=1 =, P(Y=2)=-,
( ) =1 ( )=3 ( )=
which has the generating function

Gi(s) =PY =0) +sP(Y = 1) + s’P(Y =2)

L S S S OSSP
234 T S,

hence the equation G («) = « reads
302 —4a+1=3(—-1(a—-1/3) =0,

which has o« = 1/3 for smallest solution. Consequently, the extinction probabil-
ity of the culture is equal to 1/3.
(c) The probability that only red cells are generated from time O to time 7 is

1 l 2 1 on—1 n—1 1 2k 1 m_1
— X — X o0 X — = l_[ — = — s
3 3 3 3 3
k=0
n > 0. The probability distribution
P(Y—O)—1 P(Y—l)—2 P(Y—2)—l
- - 6 9 - - 2 9 - - 3 k
of the number Y of red cells has the generating function

Gi(s) = P(Y = 0) +sP(Y = 1) + s*P(Y = 2)

Ls s _ e tasd)
=—-4+-+—=—=— s + 4s),
6 273 12

hence the equation G (o)) = a reads 1 + 3a + 202 = 6a;, or
202 —3a+1=2(a—1)(a—1/2) =0,

which has o = 1/2 for smallest solution. Consequently, the extinction probabil-
ity of the culture is equal to 1/2.

Exercise 8.9

(a) Wehave P(X =k) = (1/2)"*, k e N.
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(b) The probability generating function of X is given by

= 1o 5\ 1
— X1 = k = = — - =
Gx(s) =E[s*] = 3 s'P(X = k) = 22(2) —
k=0 k=0
—1<s<l1.
(c) The probability we are looking for is
1 3
P(X3=0]Xo=0)=Gx(Gx(Gx(0)) = i

=12

(d) Since giving birth to a girl is equivalent to having at least one child, and this
happens to each couple with probability 1/4, the probability we are looking for

is equal to

1 3 1 32 11 1-3/43 37
x4 (= - 7X#:1—(3/4)3:f=0.578125.
473737\8) 4T3 13 64

It can also be recovered from

37 27s

G (s) = G2(G2(G(s))) = ata

ats = 0, where G 7 is the probability generating function Gz (s) = 1/4 4 3s/4.

Problem 8.11
(a) We have

n n n—1
1— "
E[Z,]=Y EXd=)Y r=p) uf :“ﬁ . neN.
k=1 k=1 k=0
(b) We have
o0 o0
IE[Z]=1E|:ZXk:|=Z Z neN,

k=1 k=1

provided that p < 1.
(c) We have

H(s) =E[s* | Xg=1] = Z sE[s? | Xo = 1])"IP>(Y1 =k) =G (sH(5)).
k=0

(d) We have
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_ _ —p
H(s) =Gi(sH(s)) = T= psHG)'
hence
psH*(s) — H(s) +q =0,
and

1+l —4pgs 1—/1—4pgs

1
H =
*) 2ps 2ps

where we have chosen the minus sign since the plus sign leads to H (0) = 400
whereas we should have H(0) = P(Z = 0) < 1.Inadditionwehave u = p/q <
1 hence p < 1/2 < g and the minus sign gives

1-Vl—-4pg _1-lg—pl_

H(l) = = 1.
€)) o 2
(e) We have
1—(1-=-2
lim H(s) = lim ~— L= 2P95) _ bz _0) = B(Y, = 0) = H(0).
sN\OF sN\OF 2ps
(f) We have

pq 1 — 1 —4pgs

H'(s) = —
(%) ps/1—4pgs 2ps?
and
Hy—=_ P4 1=vl=4pg_ pg 1-G@=p)
rv/1—4pg 2p g —p) 2p
-4 _4__r __r
q-p g-—p l—u

with u = p/q for p < 1/2, which shows that

E[Z] =
L—p

and recovers the result of Question (b).
(g) We have

4 00 4
E LX; Uk:| =) E [Z Up | Z = n} P(Z = mELU|E(Z] = E[U)]; ’_‘u

n=0 k=1

(h) We have
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o0
P(U; < x, k=1,2,...,Z)=ZIP’(Uk<x, k=1,2,....,n)P(Z=n)
n=0

> (F)'P(Z =n) = H(F(x)).
n=0

(i) We have

We find

PUy <x, k=1,2,...,27)

H(F(x))=H{ —e™)

1—/1—4dpg(l —e>)
2p(1 — e=™) ’

Chapter 9 - Continuous-Time Markov Chains

Exercise 9.1 We model the number of operating machines as a birth and death
process (X;);er, on the state space {0, 1, 2, 3,4, 5}. A new machine can only be
added at the rate )\ since the repairman can fix only one machine at a time. In order to
determine the failure rate starting from state k € {0, 1, 2, 3, 4, 5}, let us assume that
the number of working machines at time ¢ is X; = k. It is known that the lifetime
7; of machine i € {0, ..., k} is an exponentially distributed random variable with
parameter ;o > 0. On the other hand, we know that the first machine to fail will do
so at time min(7y, 72, ..., Tx), and we have

Pmin(r, 7, ..., %) > 1) =Py >t, > t,..., 7% > 1)
=P(r > OP(r, > 1) P(me > 1) = ") =™,

t € R4, hence the time until the first machine failure is exponentially distributed
with parameter ki, i.e. the birth rate pi; of (X,)er, is e = kp, k=1,2,3,4,5.

Consequently, the infinitesimal generator Q of (X;);er, is given by

= A 0 0 0 0
b= = A A 0 0 0
10 2u —2u—=A A 0 0
Q= 0 0 3u —3u—A A 0 ’
0 0 0 dp —du—X A
0 0 0 0 Su —5u

with A = 0.5 and p = 0.2. We look for a stationary distribution of the form
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T = (o, 71, T2, M3, T4, T5)

by solving mQ = 0, which yields

A A A A A
T = —My, My = —Tm, N3 = —Ty, T4= —m3, 5= —Tm2a,
1 0 2 2M1 3 3M2 4 4M3 5 5M4
i.e.
A A2 A3 A 2
T = —my, My = —", T3=—="0, T4=—"T0, T5= ——=T70,
1 " 0 2 202 0 3 30 0 4 e 0 5 5u5 0

which is a truncated Poisson distribution with

A A2 A3 A4 A3 _q
7T()+;7T0+2—u2ﬂ'0+ 3!#37T0+4!”47T0+ S!Msﬂo— ,
hence
1
o =
O 1+)\+)\2+)\3+)\4+)\5
woo 2p? 0 3 At 5o

e

12 4 Mt NP2 4 NP3+ A ujal+ N5

Finally, since 75 is the probability that all 5 machines are operating, the fraction of
time the repairman is idle in the long run is

)\5
Ty = .
712015 + 1200F + 60X + 200312 4 SA 4 A

Note that of at most two machines can be under repair, the infinitesimal generator Q
of (X;);er, will become

=2 2\ 0 0 0 0
nwoo— =2 2A 0 0 0
_ 0 2u —2u—2A 2\ 0 0
0= 0 0 3u —3pu—2A 2 0
0 0 0 4u —4dp—X A

0 0 0 0 Sp —5u

Exercise 9.2

(a) Since the time TkR spent between two Poisson arrivals n° k and k + 1 is an

exponentially distributed random variable with parameter \g, the probability
we are looking for is given by
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(b)

(©

(d
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P(rf > 1) = e,

where NX denotes a Poisson process with intensity Ag.
This probability is given by

P(NY <3) =P(NY =0) +P(N = 1) + P(NY =2) + P(N,)” =3)

/\2 t2 )\3 l‘3
=e—/\wt+)\wte—)\wt+e—>\wt v; +e—/\wt vg ,

where N¥ denotes a Poisson process with intensity Ay .

This probability is given by the ratio P(7R < W) = Az /(A\w + Ag) of arrival
rates, as follows from the probability computation (1.5.9), where 7% and 7V are
independent exponential random variables with parameters Ag and Ay, repre-
senting the time until the next “read”, resp. “write” consultation.

This distribution is given by P(N® =k | N® + Y = n) where NX, N}V are in-
dependent Poisson random variables with parameters Azt and Ayt respectively.
We have

P(NR =kand NR+ N =n)
P(NF + N =n)

)\ k n—k
=<n>< R ) ( Aw )  k=0.1,....n,
k) \Or+xw ) O+ 0w

cf. (B.8) in the Exercise 1.6.

P(NF =k | NF+NY =n) =

Exercise 9.3

(a)

(b)

The number X, of machines operating at time ¢ is a birth and death process on
{0, 1, 2} with infinitesimal generator

—A A 0
O=| p —A+p A
0 24 —2u

The stationary distribution 7 = (g, 71, ) is solution of 7Q = 0 under the
condition 7y + 7 + m = 1, which yields

2u? 201 A2 >

(o, 1, ™) = <2‘u2 20 A2 202 4 20 4+ N2 202 2 0 + A2

i.e. the probability that no machine is operating is 7o = 2/5 when A = p = 1.

The number X, of machines operating at time ¢ is now a birth and death process
on {0, 1}. The time spent in state @ is exponentially distributed with average
1/A. When the chain is in state @ one machine is working while the other one
may still be under repair, and the mean time IE[7, | X; = 1] spent in state @
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before switching to state @ has to be computed using first step analysis on the
discrete-time embedded chain. We have

E[Ty | Xo = 1]

1 1
=P(X) < X,,) x (ﬁ +E[Ty | Xo = 1]) +P(X, < X)) x -

1
= ;-i—P(X)\ <Xﬂ) x E[Ty | Xo = 1]

1 A
=—+ —I[T)| Xo=1],
PR [To | Xo ]

where, by (9.7.2) and (9.7.3) or (1.5.9), P(X) < X,,) = A\/(\ + p) is the prob-
ability that an exponential random variable X with parameter A > 0 is smaller
than another independent exponential random variable X, with parameter . > 0.
In other words, P(X, < X,) is the probability that the repair of the idle machine
finishes before the working machine fails. This yields

A+p

E[Ty | Xo=1]1=~—",
w

hence the corresponding rate is u?/(\ + 1) and the infinitesimal generator of
the chain becomes

—) by —A A
Q: 1 1 = /,(,2 /_Lz
E[To | Xo=1] E[Ty| Xo=1] Ap A+p

The stationary distribution © = (g, 71) is solution of 7Q = 0, i.e.

2

0
A+ p

0= —Amg +m

2
O=/\7T0—7T1

At p

under the condition 7y + 7 = 1, which yields

u? A+ A2 )

(mo. m) = (u2+/\u+/\2’ P2+ A+ N

i.e. the probability that no machine is operating when A = = 1is mp = 1/3.

Exercise 9.6 The size of the crack is viewed as a continuous-time birth process
taking values in {1, 2, 3, ...} with state-dependent rate A\, = (1 + k)", k > 1. Let
us denote by 7; the time spent at state k € N between two increases, which is an
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exponentially distributed random variable with parameter \;. The time it takes for
o0 [e.¢]

the crack length to grow to infinity is Z T. It is known that Z T < 0o almost

k=1 k=1
[}

surely if the expectation IE |:Z Tk:| is finite, and in this situation the crack grows to

k=1
infinity within a finite time. We have

IE|:;7’;{| ZIE[Tk Z)\_ Z(1+k)p'

k=1 "k k=1

By comparison with the integral of the function x — 1/(1 + x)” we get

1 o0 1 1
[ZTk] =Z(l+k>ﬂ 5/0 T+ = -1 =%

provided that p > 1. We conclude that the time for the crack to grow to infinite length
is (almost surely) finite when p > 1. Similarly, we have

1 o0 1
[Zn} =Z<1+k)p Z/I Tror™ =

hence the mean time for the crack to grow to infinite length is infinite when p < 1.

Exercise 9.7

(a) This time is the expected value of the third jump time 73, i.e.
3 .
E[T3] = E[1p] + E[ry] + [E[n] = 3= 30 minutes.

(b) This probability is

P(Ngo < 3) = P(Neo = 0) +P(Ngo = 1) + P(Ngp = 2)
= e N1 + 60X + (601)2/2)
=25e¢7% ~0.062.

Exercise 9.8

(a) By the independence of increments of the Poisson process (NV,),cr, we find

P(N, =5and N, = 1)

P(N, = 1)
_ P(N,—N,=4and N, =1) PN, — N, =HP(N, = 1)
- P(N, = 1) B P(N;, = 1)

P(N,=5|N, =1) =
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(A(t3 - tl))4 e*/\(fzftl)

:]P)(th_Ntl =4)= 4'

(b) We expand N,, into the telescoping sum
N[4 = (Nf4 - Nl3) + (N[3 - Nfz) + (le - N[]) + (NI] - NO)
of independent increments on disjoint time intervals, to obtain

E[N, N,,(N;; — N,,)]
= N1ty — B)(t — 1) + N11(55 — ) (1 + Mtz — 1))
X1t — 1) (13 — 1) + N2t (1 + M) (3 — 1).

(¢c) Wehave {T, >t} = {N, < 1},t € R, hence

]E[Ntz | T, > 1] = ]E[sz | N; < 1] E[szl{N,lgll]’

PN, < 1)

by (1.6.6). Now, using the independence of increments between N,, — N,, and
N,,, we have

E[N, 1y, <iy] = E[(Ny, — N;) Liw, <131 + E[N,, Ly, <1y]
= E[N, — N, JP(N,, = 1) + E[N, Ly, <iy],

hence
1
E[N, | T > 1] =E[N, | N, < 1] = W]E[Ntzl{N,lgl}]
P(N, = 1) Atje— M
= [E[N,, — N, — = Ath — 1 _ .
N =Nt gy, =) =M~ S e

Exercise 9.10 This is an extension of Exercise 9.9. The generator of the process is
given by

. —a(N—-1)—-p0p a(N—-1)--- 0 0 0
0= : : S : :

0 0 0 - B(N=1) —a—B(N-1) a

0 0 0 - 0 BN — BN

Writing the equation 7Q = 0 shows that we have —aNmy + 87 =0,
Bk + Dyt — (@(N — k) + BT + (N — (k — D))mg_; =0, k=1,2,....N—1,

and ary_; — N7y = 0, from which we deduce the recurrence relation
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aN—k

Bmﬂ'k, kIO,l,...,N—l,

Tk+1 =

and by inductiononk = 1,2, ..., N we find

(' NN -1 (N—k+1)
”‘(E) Kl ™

o k N! o k N
- (5) N -kt~ (E) (k)”“’

k=0,1,...,N. The condition my+ 7 + ---+ my = 1 shows that my = (1 +
a/B)~"N and we have

a \r g\ W
n=(ah) (55) woew fmore

hence the stationary distribution 7 is a binomial distribution with parameter (N, p) =

(N, a/(a+B)).

Exercise 9.11 The generator Q of this pure birth process is given by

-1 1 0 0 O ---
0-33 00 ---
0=\, ]i,jeN =| 0 0-22 (5) ’

0 0 0 =5

hence the forward Kolmogorov equation P’(z) = P(t) Q yields
Py o(t) = —Poo(t),
Py 1 (t) = Poo(t) —3Py1(1),

Py, (t) =3Po1(t) —2P2(2),

Py 5(t) =2Poa(t) — SPos(1).
The first equation is solved by (A.9) as

Poo(t) = Poo(O)e™ =e™', teRy,
and this solution can be easily recovered from

P(),()(l) =PX;,=0|Xo=0)=P(rp >1) = e_’, e R+.
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The second equation becomes

Py (1) =e™" =3Py (1), (B.29)
and has the solution

1
P (1) = E(eft —e ), reR,.

The remaining equations can be solved similarly by searching for a suitable particular
solution. For

, 3. _
Py, (1) = E(e T—e ) —2Pa(1),

we find 3

Py, (t) = 5e*3f(1 —e)?,  reRy, (B.30)
and for

Pis(t) =3e (1 —¢€')* = 5Py 5(1),
we find

1
Pys(t) = Ze—Sf(ef — 131 +3¢), reR,. (B.31)

Exercise 9.12 Noting that the two events
(T >t, h>t+s}={X, =0, 0< X, <1}
coincides for all s, r € R, we find that

P(Ty >tand T, >t +s) =P(X, =0and X,,;, € {0, 1} | Xo =0)
=P(X,1,€{0,1} | X, =0)PX,=0] Xog=0)
=P(X; €{0,1} | Xo = 0OP(X; =0 | Xo =0)
=PX;=0|Xo=0+PX;=1]|Xo=0)P(X, =01 Xo=0)
= Po,o(®)(Po.o(s) + Po1(s)).

Next, we note that we have
Aot
Pyo(t)y =™, telR,,
and

Ao _ _
Py (1) = e (e™ —e™),  reRy,
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hence
—Xo(t+s) )‘0 —Xo(t+s) —Xot—Ais
P(T)y >tand 5 >t +s5) =¢e +ﬁ(e 0 —e l)
1= A0

_ Al e_)\U(H_S) _ >‘0 e—)\ot—Alx
Al — o A= o

Then, since

oo [e.¢]
P(Ty >xand T > y) = / / S, v)dudv,
x y

by (1.5.4) we get
2
Jyox

— 3_2 Le*)\oy _ Le*)\oxfx\l(yﬂr)
Oyox \ A1 — N\o Al — Xo

fam)(x,y) = P(T; > x and T» > y)

— _)\Ogeﬂ\ox#\](yﬂc) — )\0)\167)‘0)(7/\‘@7)‘),
dy

provided that y > x > 0. When x > y > 0 we have

S, y) =0.
The density of (79, 71) is given under the change of variable Ty = 79, T} = 79 + 71,
by

—Aos—A
S (5,1) = firy (s, s +1) = AoAe ™V 5.1 e Ry,

which shows that 7y, 7 are two independent exponentially distributed random vari-
ables with parameters A\ and )\, respectively.

Exercise 9.13 Let (N;);cr, denote a Poisson process with intensity A > 0.

(a) This probability is equal to
PNy =0)=P(ry > T) =e M.

(b) Let ¢ denote the expected time we are looking for. When the woman attempts
to cross the street, she can do so immediately with probability P(Ny = 0) =
P(t9 > T), in which case the waiting time is 0. Otherwise, with probability
1 — P(N7 = 0), she has to wait on average (using Lemma 1.4 and (1.6.14))
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1
Elro |70 <T]= WE[TOE{T0<T}]

by T
= —7/\7“‘/. xe_“dx
1—e 0

1=+ AT)e M
T —eMT)

for the first car to pass, after which the process is reinitialized and the average
waiting time is again ¢. Hence by first step analysis in continuous time we find
the equation

t=0xP(N;y =0)+ (E[ro | 7o < T1+1) x P(rp < T)
1=+ AT)e

3 +1(1—eT) (B.32)

with unknown ¢, and solution t = (" — 1 — AT)/\.
(c) Denoting by ¢ the mean time until she finishes crossing the street we have, by
first step analysis in continuous time,

t = E[TLiren) + (7o + D 1iran)]

0 T
= AT/ e Mds + )\/ (s + e Mds
T 0

T
=TP(ro>T)+ /\/ se Mds +1P(ry < T)
0

1 —e (14 AT)
A

=Te M + +1(1 =,

which yields t = (e — 1)/\.

(d) In this case, T becomes an independent exponentially distributed random vari-
able with parameter 1 > 0, hence we can write

e A
N A D)

if u > A\ witht =+ooif p < A

Exercise 9.15
(a) The generator Q of (X,),cr, is given by
—-0.5 0.5 0

0= 02 —0.450.25
0 04 —04



352 Appendix B: Solutions to Selected Exercises and Problems

(b) Solving for 7Q = 0 we have

—-0.5 0.5 0
wQ = [mg, 7, M| X 0.2 —0.45 0.25
0 04 —-04

0.5 x o4+ 0.2 x 7 g

=|05xmm—045x7m 404 xm, = [0, 0, 0],
0.25 x T —04x T

i.e. mg = 0.4 x m; = 0.64 x m, under the condition 7y + m; + m = 1, which
gives mp = 16/81, m; = 40/81, m, = 25/81.

(c) In the long run the average is 0 x mp + 1 x m; +2 x m = 40/81 + 50/81 =
90/81.

(d) We find 100 x 90/81 = 1000/9.

(e) We have
-05 05 0
o= 02 —-0.7 05 |,
0 04 —04

and solving w7 Q = 0 shows that

032 08 1

—, ——, —— | =[0.15094, 0.37736, 0.47170] .
212 212" 2.12

[770,771,772]=[

Exercise 9.16 Both chains (X;(?)):;cr and (X, (¢));cr have the same infinitesimal
generator
A A
€= [ p —u} '

The infinitesimal generator of Z(¢) := X;(¢) + X»(¢) is given by
—2X  2A 0
Boo=A=p A,
0 2u —2u

as the birth rate A is doubled when both chains are in state @, and the death rate
is also doubled when both chains are in state @ Recall that by Proposition 9.6, the
semi-groups of X (#) and X,(¢) are given by

P(X1(1) =01 X,1(0) =0) P(X,(r) =1]X,(0) =0)

PX1(0) =01X,0)=1 PX,(r)=1]X1(0) =1)
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L + Le—t(M-u) A _ A e_r(’\’”‘)
Atp Atp A A+p
K Left(/\ﬂn A i H o1 O+
Atp o Atp A A+p

As for the transition semi-group of Z(t), we have

2

H A t(/\JrL))
Pyo) =PZt)=0|Z0)=0) = — + —— / .
0.0(t) = P(Z(1) = 0| Z(0) )(HHHMe

For Py ;(t) we have

Po1(t) =P(Z(t)=1]Z(0) =0)
= P(X,(t) = 0and X»(t) = 1 | X;(0) = 0 and X»(0) = 0)
+P(X,(t) = 1 and X>(t) = 0 | X;(0) = 0 and X,(0) = 0)
=PX1(®) =1] X1(0) =0)P(X2(1) =0 | X2(0) = 0)
+P(X1 (1) =0 X1(0) = 0OP(X2(r) = 1] X2(0) =0)
=2P(X;(1) =1 X1(0) =0)P(X2(t) =0 ] X2(0) = 0).

Starting from Z(0) = 1 and ending at Z(¢) = 1 we have two possibilities (0, 1)
or (1, 0) for the terminal condition. As for the initial condition Z(0) = 1 the two
possibilities (0, 1) and (1, 0) count for one only since they both give Z(0) = 1.
Thus, in order to compute P; | () we can choose to assign the value 0 to X (0) and
the value 1 to X,(0) without influencing the final result, as the other choice would
lead to the same probability value. Hence for P ;(f) we have

Pa) =P(Z@)=1120)=1)
=P(X;(z) =0and X,(t) =11 X;(0) =0and X,(0) = 1)
+P(X(t) = 1and X2(z) =0 | X;(0) =0and X,(0) = 1)
=PX1(1) =0 X;(0) =0P(Xz(1) =1] X2(0) = 1)
+P(X,1(1) =11 X,1(0) = 0OP(X2(1) =0 X2(0) = 1).

Concerning P; o(¢) we have

Pro(t) =P(Z() =01 2(0) =1
=P(X;(t) =0and X5(r) =0 | X;(0) = 0 and X,(0) = 1).

On the other hand, we have

Pty =P(Z#)=21Z0)=1)
=P(X,(t) = land X»(t) = 1 | X,(0) = 0 and X»(0) = 1)
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=PXi1() =1]X(0) =0)P(X,(t) = 1] X2(0) = D).

Exercise 9.17 Starting from state @ the process X, = &y, stays at state @ during
an exponentially distributed Poisson interjump time with parameter ), after which
N; increases by one unit. In this case, {5, = 0 becomes £y, 1 = 1 with probability 1,
from the transition matrix (9.8.4), hence the birth rate of X, from state @ to state @
is A. Then, starting from state @, the process X, stays at @ during an exponentially
distributed time with parameter A\. The difference is that when N, increases by one
unit, £y, = 1 may move to &y,41 = 0 with probability 1 — v, or remain at {y,+; = 1
with probability «. In fact, due to the Markov property, X, will remain at 1 during
an exponentially distributed time whose expectation may be higher than 1/\ when
a > 0. We will compute the expectation of this random time.

(a) We have

1 : 1
IE[TorlXo:I]:a<X+IE[TO’ |X0:1]>+(l—a)x <X+0>

1 r
Tt oE[T] | Xo =1],

hence
1

E[T;|Xo=1]=m

(B.33)

and
22—«

r 1 r
E[T; |X0=O]=X+1><IE[T0 |X0=1]=)\(1—_a).

Note that (B.33) can also be recovered from (5.3.3) by letting » = 1 — « and
multiplying by the average Poisson interjump time 1/\.
(b) We have

1
E[T] | Xo=1] = 1t oE[T] | Xo=1]+ (1 — E[T] | Xo =0]

2 —
= )\a—i-aIE[THXo: 1],

since ]E[TI’ | Xo = 0] = 1/, hence

2—«

E[T] | Xo=1] = o)

(c) This continuous-time first step analysis argument is similar to the one used in
the solution of Exercise 9.3. Since

1

E[T] | Xo=1] = =)’
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it takes an exponential random time with parameter A\(1 — «) for the process
(X/)ier, to switch from state @ to state @ Hence the death rate is

1
—— = A1 — ),
E[T§ | Xo=1]
and the infinitesimal generator Q of X; is
—-A A N \
1 1 =

E[Tj | Xo=1] E[I] | Xo=1] (I—x —(1—a)\

Problem 9.18

(a) We need to show the following properties.

(i) The process (N! + N?)cr, is a counting process. Clearly, the jump heights
are positive integers and they can only be equal to one since the probability
that N)' and N? jumps simultaneously is 0.

(i) The process (Nt1 + Ntz),dR+ has independent increments.

Letting0 < ) <t < - -+ < t,, the family

(N4 N2 = (VL 4 N2 ) N+ NE = (V) ND)
=(N)=N! +N}-=N} .....N,=N!+N—-N;})

1"

is a family of independent random variables. In order to see this we note
that N! — N is independent of

1 1 1 1
N  —N, ,,....N,— N,
and of
2 2 2 2
N, =N, ,....N;, =N,
hence it is also independent of
1 1 2 2 1 1 2 2
Ntn—l - Nlnfz + an—l - anfz’ . le o Ntl + Nf2 - Nll’

Similarly it follows that Nl% — Nt%q is independent of

1 2
Ntn—l anfz >

—N! +N;

-1

. NL=N!+ N - N,

hence N} + N,% — (N}

I

+ Niil) is independent of
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— N?

2"

+ N?

1

— N!

2

1
Nln—l

2 2
.. N} = N!+N. - N..
This shows the required mutual independence by induction on n > 1.

(iii) The process (N,1 + N,z),eR+ has stationary increments. We note that the
distributions of the random variables N, — N\, and N, — NZ,, do not
depend on & € R, hence by the law of total probability we check that

PNy + Ny — (NL + N2 =)

= ZIP(N,IM — Ny = k)IP’(Nirh - Ns2+h =n—k)
k=0

is independent of & € R,..

The intensity of Nl1 + N,2 is A1 + M.
(b) (1) The proof of independence of increments is similar to that of Question (a).
(i) Concerning the stationarity of increments we have

PM;1p — M, =n) = P(er+h - N12+h - (Ns1+h - Ns2+h) =n)
=P(N'y, — Ny — (N2, = N2 =n)

oo
= ZP(N}H, — Nl =n+OPWNE, — N2y =6
k=0

which is independent of 7 € R since the distributions of N, o — N 1 4, and
N?, — N2, are independent of 7 € R

(¢) Forn € N we have

P(M, = n) = P(N! — N? =n)
Z P(N! = n + k)P(N? = k)

k=max(0,—n)

e} n+k n
—e it ATt
k!'(n + k)!

k=max(0,—n)

_ ﬁ n/2 ef()\1+)\2)t i (t /)\1)\2)n+2k
Ao (n+k)'k!

k=max(0,—n)

)\ Vl/z
= (—1) e_(A‘+A2>’I|n\(2t\/)\1)\2),

where

& (x/z)nJer
I,(x) = _— x >0,
kg(; k!(n + k)!
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is the modified Bessel function with parametern > 0. Whenn < 0, by exchang-
ing A\; and X\, we get

A n/2
P(M, =n) =P(—M, = —n) = (A—‘> e~ NN 28 /A \),
2

hence in the general case we have

A n/2
P(M, =n) = (/\_;> e” WLt N),  nelZ,

which is known as the Skellam distribution.
(d) From the bound' Iy (y) < C.y"eY, y > 1, we get

A n/2
P(M; =n) < Cne*(AIHz)t ()\_1) (2tm)|n|ezrm
2

A n/2
P <A_‘> @A),
2

which tends to 0 as ¢ goes to infinity when \; # ),. Hence we have?

lim P(M,| < ¢) = > lim P(M,|=k) =0, ¢>0. (B34

—c<k<c

(e) When M, > 0, M, represents the number of waiting customers. When M, < 0,
— M, represents the number of waiting drivers. Relation (B.34) shows that for
any fixed ¢ > 0, the probability of having either more than ¢ waiting customers
or more than ¢ waiting drivers is high in the long run.

Problem 9.19
(a) We have
—NA NA [0 0 0 0
poo —p—=N-=-DX (N=DX - .- 0 0 0
o=\ . I o , |
0 0 0 (N—Dp —(N—=Du—X A
0 0 0O . ... 0 N# 7N/1'

(b) The system of equations follows by writing the matrix multiplication P’(z) =
P(t)Q term by term.
(c) We apply the result of Question (b) to

ISee e.g. Theorem 2.1 of [Laf91] for a proof of this inequality.
Treating the case A\| = )y is more complicated and not required.
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0Gy
=, 0= Zs P, ),
and use the expression
oG
—k(s 1= Zns” P (0).

(d) We have

{)Gk

o
ANGs = DGy (s, 1) + (u+ A — p)s — )\.vz)ﬂ(x, fH— (5.1)

= (= DO+ (N — k)((s — e~ AT 4 g +u) ( (s — Dre~ AL 4 5 +;A)N7k71e—<’\+“)‘
+(s — DA+ p)ku((x - 1)11570‘4'“)1 + As + /1)k7 (7(x - 1))\5—()\+u)t + As + ;L)Nikef(/\#’“)t

k N—k
T — 1>((J — Dpe= O 4N 4 u) N/\(—(s ~ e~ AFE 4 4 u)

+()\s2 —(A=ps — ;/,) (N — k)()\efo‘ﬁ“)r - )\) ((.v — l);l,ei()‘Jr”)t + As + /1,)k (—(s - 1))\6,()\+#), + As + ;I)N_k_l
7(ue_()‘+“)t + )\)k((s - l)ue_(A_Hm + As + u)k71 (7(3‘ - l))\e_(A_Hl)’ +As + ;L)Nik ()\sz —A—=ps — u)
=0.

(e) This expression follows from the relation

0G
ELX, | Xo =kl = (5. Djsm

and the result of Question (d).

() We have
) A+ )kt Nk (+ N1 NX
lim E[X, | Xo=k]l=k=—"—"——(u+ X + (N —h) AV = T
Jim ELX, | Xo = ] YL (e =+ ( ) B Nt

Chapter 10 - Discrete-Time Martingales
Exercise 10.2
(a) From the tower property of conditional expectations we have:

IE[M11+1] = IE[]E[MVL+1 | ]:n]] = IE[MVL]’ n>0.

(b) If (Z,)nen is a process with independent increments have negative expectation,
we have

]E[Zn-H | ]:n] = IE[Zn | ]:n] +]E[Zn+l -Z, | ]:n]
=E[Z, | Ful+ E[Zy11 — Z,]
<IE[Z, | Fal = Zy, n>0.
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(c) Welet Ag:=0, A1 := A, + E[M,y, — M, | F,],n >0, and
N, =M,—A,, nelN. (B.35)
(i) Forall n € N, we have

E[Nyt1 | Ful = E[Myy1 — Apsr | Fal
=E[M,1 — Ay — E[Myyy — M, | Ful | Ful
=E[M,1 — A, | Ful — E[E[M, 1 — M, | Ful | Ful
=E[M,1 — Ay | Ful = E[M,p1 — M, | F]
= —E[A, | /] + E[M, | F,]1= M, — Ay = Ny,

hence (N,),en is a martingale with respect to (F;,),en-
(i1) For all n € N, we have

An+l - An = ]E[Mn-H - M, | fn]
= ]E[Mn+1 | Fn] - E[M, | fn]
= ]E[Mn+1 | fn] - Mn > 0,

since (M),),cn 1s a submartingale.

(iii) By induction we have A, = A, + E[M,+; — M, | F,], n € N, which is
JF.-measurable if A, is F,,_i-measurable, n > 1.

(iv) This property is obtained by construction in (B.35).

(d) For all bounded stopping times ¢ and 7 such that 0 < 7 a.s., we have [E[N,;] =
[E[N-] by (10.3.3), hence

IE[M,] = [E[N,] + E[A,]
N;]1+ E[A,]
N:1+ E[A/]

M:],

IA

— — —. —

E
E
E

by (10.3.3), since (M,),cn is a martingale and (A,),cy is nondecreasing.
Chapter 11 - Spatial Poisson Processes

Exercise 11.2 The probability that there are 10 events within a circle of radius 3
meters is

9 A 10 9 2 10
e’%’\( ) _ 67%/2( 7/2)

~ 0.0637.
10! 10! 0.063

Exercise 11.3 The probability that more than two living organisms are in this mea-
sured volume is
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(106)*
")

P(Nz3)=1—P(N52)=1—e1°9<1+100+
62
=1—e_6<1+6+5>:1—25e‘620.938.

Exercise 11.4 Let X4, resp. Xp, the number of defects found by the first, resp.
second, inspection. We know that X 4 and X p are independent Poisson random vari-
ables with intensities 0.5, hence the probability that both inspections yield defects
is

P(X4 >Tand Xp > 1) =P(X, > DP(Xp > 1)
=1 -PX4=0)(1—-PXz=0))
=(1-e9)2~0.2212.

Exercise 11.5 The number X of points in the interval [0, A] has a binomial dis-
tribution with parameter (N, A/N), i.e.

k N—k

and we find
A MV N LAk
am PXy = k) = 27 lim_ <1‘ﬁ) 11 N )= W

which is the Poisson distribution with parameter A > 0.

Exercise 11.6

(a) Based on the area 77> = 9, this probability is given by e~"/2(97/2)1°/10!.
(b) This probability is
5 3
e—97/2 Om/2) « e=97/2 Om/2) _
5! 3!

(c) This probability is e =7 (97)8/8!.

(d) Since the location of points are uniformly distributed by (11.1.2), the probability
that a point in the disk D((0, 0), 1) is located in the subdisk D((1/2,0), 1/2)
is given by the ratio w/4/m = 1/4 of their surfaces. Hence, given that 5 items
are found in D((0, 0), 1), the number of points located within D((1/2, 0), 1/2)
has a binomial distribution with parameter (5, 1/4), cf. (B.8) in the solution of
Exercise 1.6 and Exercise 9.2-(d), and we find the probability

5 3 245
(3>(1/4) 3/4” = 517 ~ 0.08789.
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Chapter 12 - Reliability and Renewal Processes

Exercise 12.1

(a) We have
Fg(t) =P(r <1) / ' fatodx =6 / ey [e—xﬁ]‘ | _ e’
=P(r<t) = x)dx = X X = — _q_ ,
B A B A .

t eRy.
(b) We have )
Rt)=P(r>t)=1—-Fst)=e", teR;.

(c) We have

d .
At =~ log R0 = i’ 1 eR..

(d) By (12.3.1) we have

IE[7] =foo R(t)dt:/oo e "dr.

0 0

In particular this yields IE[7] = /7/2 when 3 = 2.
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