
Geometric group theory

Lecture Notes∗

M. Hull

1 Introduction

One of the main themes of geometric group theory is to study a (finitely generated) group G in
terms of the geometric properties of the Cayley graph of G. These “geometric properties” come
in the form of quasi-isometry invariants. Our goal this semester is to look as some specific quasi-
isometry invariants such as Dehn functions, hyperbolicity, growth functions, and amenabiliity and
try to understand what algorithmic, algebraic, and analytic properties of groups they are capturing.

We begin by giving necessary definitions and establishing the notation that we will use through-
out.

Word metric and Cayley graphs Let G be a group generated by S ⊆ G; for convenience, we
will always assume that our generating sets are symmetric, that is S = S−1. A word in S is a finite
concatenation of elements of S. For such a word W , let ‖W‖ denote its length. If two words W
and U are letter for letter equivalent, we write W ≡ U , and if W and U represent the same element
of the group G, we write W =G U . For an element g ∈ G, let |g|S denote the length of the shortest
word in S which represents g in the group G. Given g, h ∈ G, let dS(g, h) = |g−1h|S . dS is called
the word metric on G with respect to S.

We let Γ(G,S) denote the Cayley graph of G with respect to S. This is the graph whose vertex
set is G and there is an oriented edge e labeled by s ∈ S between any two vertices of the form g
and gs. We typically identify the edges labeled by s and s−1 with the same endpoints and consider
these as the same edge with opposite orientations. Lab(e) denotes the label of the edge e; similarly,
for a (combinatorial) path p, Lab(p) will denote the concatenation of the labels of the edges of p.
Also for such a path p, we let p− and p+ denote the intial and the terminal vertex of p respectively,
and `(p) will denote the number of edges of p. The metric obtained on the vertices of Γ(G,S) by
the shortest path metric is clearly equivalent to the word metric dS ; identifying each edge with the
unit interval [0, 1] in the natural way allows us to extend this metric to all of Γ(G,S).

Metric spaces Throughout these notes, we denote a metric space by X and its metric by d (or
dX if necessary). For x ∈ X and n ≥ 0, let Bn(x) = {y ∈ X | d(x, y) ≤ n}, that is the closed ball

∗Disclaimer: Nothing in these notes is my own original work. However, most of the material is standard so I
will not attempt to provide citations for every result. The interested reader is referred to the standard text [5]. For
further resources, see [8, 16, 18, 24, 26, 34].
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of radius n centered at x. For a subset A ⊆ X, we usually denote the closed n-neighborhood of A
by A+n, that is A+n = {x ∈ X | d(x,A) ≤ n}.

A path in X is a continuous map p : [a, b] → X for some [a, b] ⊆ R. We will often abuse
notation by using p to refer to both the function and its image in X. As above, we let p− = p(a)
and p+ = p(b). Similarly, a ray is a continuous map p : [a,∞) → X, and a bi-infinite path is a
continuous map p : (−∞,∞)→ X.

A geodesic is a path p which is also an isometry onto its image (see below for the definition of
an isometry). Equivalently, A path p is a geodesic if `(p) = d(p−, p+) where `(p) denotes the length
of p, and is defined as

`(p) = sup
a≤t1≤...≤tn≤b

n−1∑
i=1

d(p(ti), p(ti+1))

where the supremum is taken over all n ≥ 1 and all possible choices of t1, ..., tn
1. Geodesic rays and

bi-infinite geodesics are defined similarly. X is called a geodesic metric space if for all x, y ∈ X,
there exists a geodesic path p such that p− = x and p+ = y. Note that geodesic metric spaces are
clearly path connected. For x, y in a geodesic metric space X, we let [x, y] denote a geodesic from
x to y.

We will usually assume throughout these notes that X is a geodesic metric space. However,
most statements and proofs will also work under the weaker assumption that X is a length space,
that is a path connected space such that for any x, y ∈ X, d(x, y) = inf{`(p) | p− = x, p+ = y}.

Let X and Y be metric spaces and f : X → Y . If f is onto and for all x1, x2 ∈ X, dX(x1, x2) =
dY (f(x1), f(x2)), then f is called isometry. If f is onto and there is a constant λ ≥ 1 such that for
all x1, x2 ∈ X,

1

λ
dX(x1, x2) ≤ dY (f(x1), f(x2)) ≤ λdX(x1, x2).

Then f is called a bi-lipschitz equivalence. In this case, we say that X and Y are bi-lipschitz
equivalent and write X ∼lip Y . Now suppose there are constant λ ≥ 1, C ≥ 0, and ε ≥ 0 such that
f(X) is ε-quasi-dense in Y , i.e. f(X)+ε = Y , and for all x1, x2 ∈ X,

1

λ
dX(x1, x2)− C ≤ dY (f(x1), f(x2)) ≤ λdX(x1, x2) + C.

Then f is called a quasi-isometry, or a (λ, c, ε)-quasi-isometry if we need to keep track of the
constants. In this case we say X and Y are quasi-isometric and write X ∼qi Y . Note that unlike
isometries and bi-lipschitz equivalences, quasi-isometries are not required to be continuous.

If the condition that f is onto (or f(X) is quasi-dense) is dropped from the above definitions,
then f is called an isometric embedding, bi-lipschitz embedding, or a quasi-isometric embedding
respectively.

Exercise 1.1. Show that ∼lip and ∼qi are both equivalence relations on metric spaces.

Exercise 1.2. Let X and Y be bounded metric spaces. Prove that X ∼qi Y .

Exercise 1.3. Suppose S ⊆ G and T ⊆ G are two finite generating sets of G. Show that (G, dS) ∼lip
(G, dT ), and hence Γ(G,S) ∼qi Γ(G,T ).

1In general this may be infinite, but we will usually only consider rectifiable paths, that is paths p for which
`(p) < ∞.
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It follows from this exercise that any finitely generated group is canonically associated to a
∼qi-equivalence class of metric spaces. We will often abuse notation by considering the group G
itself as a metric space, but it should be understood that the metric on G is only well-defined up
to quasi-isometry.

If P is a property of metric spaces such that whenever X ∼qi Y , X has P if and only if Y
has P , then P is called a quasi-isometry invariant. If G is a finitely generated group, then for any
two choices of finite generating sets the corresponding Cayley graphs will have exactly the same
quasi-isometry invariants. Hence these invariants are inherent properties of the group G.

Group actions Let G be a group acting on a metric space X. We will always assume that such
actions are by isometries, that is for all x, y ∈ X and g ∈ G,

d(x, y) = d(gx, gy).

There is a natural correspondence between actions of G on X and homomorphisms ρ : G →
Isom(X), where Isom(X) denotes the group of all isometries of X. We say the action is faithful
if the corresponding homomorphism is injective. This is equivalent to saying for all g ∈ G, there
exists x ∈ X such that gx 6= x. The action is called free if for all x ∈ X, StabG(x) = {1}, where
StabG(x) = {g ∈ G | gx = x}; equivalently, for all x ∈ X and for all g ∈ G, gx 6= x. The action
is called proper2 if for any bounded subset B ⊆ X, {g ∈ G | gB ∩ B 6= ∅} is finite. The action
is called cobounded if X/G is bounded, or equivalently there exists a bounded subset B ⊆ X such
that

X =
⋃
g∈G

gB

The following lemma is fundamental to geometric group theory. It was first proved by Efremovic.

Lemma 1.4 (Milnor-Svarč Lemma). Let G be a group acting properly and coboundedly on a geodesic
metric space X. Then G has a finite generating set S and

Γ(G,S) ∼qi X.

Proof. Fix a point o ∈ X. Since the action of G is cobounded, there exists a constant K such that
for all x ∈ X, there exists g ∈ G such that d(x, go) ≤ K. Let S = {g ∈ G | d(o, go) ≤ 2K + 1}. By
properness, the set S is finite. Note that if s1, s2 ∈ S, then d(o, s1s2o) ≤ d(o, s1o) + d(s1o, s1s2o) =
d(o, s1o) + d(o, s2o) ≤ 2(2K + 1). Similarly, it is easy to show by induction that for all g ∈ 〈S〉,
d(o, go) ≤ |g|S(2K + 1).

Now fix g ∈ G, and let p be a geodesic from o to go. Choose points o = x0, x1, ..., xn = go
on p such that d(xi, xi+1) = 1 for 0 ≤ i ≤ n − 2 and d(xn−1, xn) ≤ 1. For each 1 ≤ i ≤ n − 1,
choose hi ∈ G such that d(xi, hio) ≤ K, and set h0 = 1 and hn = g. By the triangle inequality,
d(o, h−1i hi+1o) = d(hio, hi+1o) ≤ 2K + 1 for all 0 ≤ i ≤ n− 1. Hence h−1i hi+1 ∈ S. Furthermore,

h1(h
−1
1 h2)(h

−1
2 h3)...(h

−1
n−1hn) = hn = g

2This is the metric version of properness. There is also a topological version, where bounded is replaced by
compact.
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Thus g ∈ 〈S〉, and since g is arbitrary we get that S generates G. Furthermore, |g|S ≤ n and
by our choice of xi, n − 1 < d(o, go) ≤ n. Let f : G → X be the function defined by f(g) = go.
Then we have shown that

|g|S − 1 ≤ d(o, go) ≤ (2K + 1)|g|S .

Furthermore, our choice of K implies that f(G) is K-quasi-dense in X. It follows easily that the
map f is a quasi-isometry from G with the metric dS to X.

Corollary 1.5. 1. If G is finitely generated and H is a finite index subgroup of G, then H is
finitely generated and G ∼qi H.

2. If N E G is a finite normal subgroup of G and G/N is finitely generated, then G is finitely
generated and G ∼qi G/N .

3. If M is a closed Riemannian manifold with universal cover M̃ , then π1(M) is finitely generated

and π1(M) ∼qi M̃ .

4. If G is a connected Lie group with a left-invariant Riemannian metric and Γ ≤ G is a uniform
lattice in G, then Γ is finitely generated and Γ ∼qi G. It follows that any two uniform lattices
in the same connected Lie group are quasi-isometric to each other.

One important example that follows from Corollary 1.5(3) is if Sg is a closed, orientable surface
of g with g ≥ 2, then Sg can be equiped with a hyperbolic Riemannian metric which allows us to

identify the universal cover S̃g with the hyperbolic plane H2. Thus, π1(Sg) ∼qi H2.

In geometric group theory, we are often concerned with connections between the algebra and
the geometry of a group G. When G = π1(M) for a Riemannian manifold M , then the algebra of G
is determined by the topology of M while the geometry of G is determined up to quasi-isometry by
the geometry of M̃ . The geometry/topology of M̃ is determined locally, and in some ways globally,
by the geometry/topology of M . These connections lead to a fruitful interplay between geometry,
topology and (geometric) group theory.

Definition 1.6. Fintely generated groups G1 and G2 are commensurable if each Gi contains a
finite-index subgroup Hi such that H1

∼= H2. If each Gi contains a finite-index subgroup Hi and
each Hi contains a finite normal subgroup Ni such that H1/N1

∼= H2/N2, then G1 and G2 are
called weakly commensurable.

Examples 1.7. 1. Any two finite groups are commensurable.

2. If G is any finitely generated group and K is any finite group, then G and G × K are
commensurable.

3. For all n,m ≥ 2, Fn is commensurable with Fm.

4. For all g, g′ ≥ 2, π1(Sg) is commensurable with π1(Sg′).

It is easy to see that (weak) commensurability is an equivalence relation on finitely gener-
ated groups. From Corollary 1.5, any two (weakly) commensurable groups are quasi-isometric.
The above examples allow us to see some group theoretic properties which are not quasi-isometry
invariants. For example, from (1), many algebraic properties such as being abelien, nilpotent,
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solvable, or even simple are not quasi-isometry invariants. Similarly, from (2) it follows any group
theoretic property P which passes to subgroups and for which there exists a finite group which
does not have P is not a quas-isometry invariant, even for infinite groups. However, some of these
properties only fail to be quasi-isometry invariants becuase of this issue with finite groups. The
following definition captures this notion:

Definition 1.8. Let P be a property of groups. A group G is said to be virtually P if G has a
finite index subgroup H such that H has the property P .

It turns out that being virtually abelian and virtually nilpotent are both quasi-isometry invari-
ants. This is a consequence of Gromov’s polynomial growth theorem which we will discuss later. On
the other hand, being virtually solvable is not a quasi-isometry invariant, though some important
subclasses of solvable groups are preserved under quasi-isometries and this is still an active area of
research (see, for example, [11, 14]).

From examples (3) and (4) above we can also see that the rank of a groups, that is the minimal
size of a finite generating set is not quasi-isometric invariant. In addition the ordinary group
homology/cohomology is not a quasi-isometry invariant, though there do exist “coarse” versions of
homology and cohomology which do provide quasi-isometry invariants (see [32]).

2 Dehn functions and algorithmic problems

2.1 Group presentations

Given a set S, we denote the free group on S by F (S). Recall that the elements of this group
are equivalence classes of words in S, where words two words are equivalent if you can obtain one
from the other by adding or removing subwords of the form ss−1 finitely many times. Equivalently,
F (S) can be defined as the unique group (up to isomorphism) such that for any group G and any
function f : S → G, there is a unique homomorphism f̄ : F (S)→ G extending f . If S = {s1, ..., sn},
we typically denote F (S) by Fn.

Given a subset R ⊆ G, where G is a a group, the normal closure of R, denoted 〈〈R〉〉, is defined
as the intersection of all normal subgroups of G which contain R. Equivalently,

〈〈R〉〉 = {f−11 r1f1f
−1
2 r2f2...f

−1
k rkfk | k ≥ 0, fi ∈ G, ri ∈ R±1}.

Given a set S and R ⊆ F (S), we say that

〈S|R〉 (1)

is a presentation of the group G if G ∼= F (S)/〈〈R〉〉. In this case S is called the set of generators and
R is called the set of relations of the presentation. The presentation is called finite if both S and
R are finite sets, and G is called finitely presentable if G has a finite presentation. For convenience
we will always assume that our set of relations is symmetric, that is r ∈ R implies r−1 ∈ R. We
will also abuse notation and write G = 〈S|R〉 to indicate that 〈S|R〉 is a presentation for the group
G.

Exercise 2.1. Identify the groups given by the following presentations:
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1. 〈a | an = 1〉.

2. 〈a1, ..., an | ∅〉.

3. 〈a, b | [a, b] = 1〉.

4. 〈a, b | an = bm = 1〉.

Given a group presentation 〈S|R〉 for a group G, there is an associated CW-complex Y with
π1(Y ) ∼= G, called the presentation complex. This Y contains a single vertex v, one edge (labeled
by s) with both ends glued to v for each s ∈ S, and one 2-cell Π for each r ∈ R, glued to the
1-skeleton of Y such that ∂Π is labeled by r.

The universal cover Ỹ is called the Cayley complex associated to 〈S|R〉. Note that the 1-skeleton
of the Cayley complex can be naturally identified with Γ(G,S), and the 2-skeleton of Ỹ is obtained
by gluing, for each g ∈ G and r ∈ R, a 2-cell with boundary a loop based at g and labeled by r.

2.2 Van Kampen Diagrams

Suppose 〈S | R〉 is a presenation for a group G and W is a word in S. Then W =G 1 if and only if
there exist r1, ..., rk ∈ R and f1, ..., fk ∈ F (S) such that

W =F (S) f
−1
1 r1f1...f

−1
k rkfk. (2)

We now show how this can be encoded geometrically. Let ∆ be a finite, connected, simply
connected, planar 2-complex in which every edge is oriented and labeled by an element of S. If e is
an edge of ∆ with label s and ē is the same edge with the opposite orientation, then Lab(ē) = s−1.
Labels of paths in ∆ are defined the same as in Cayley graphs. If Π is a 2-cell of ∆, then Lab(∂Π)
is the word obtained by choosing a base point v ∈ ∂Π and reading the label of the path ∂Π starting
and ending at v. Note that a different choice of basepoint results in a cyclic permutation of the
word Lab(∂Π), so we consider Lab(∂Π) as being defined only up to cyclic permutations. Lab(∂∆)
is defined similarly. ∆ is called a van Kampen diagram over the presentation 〈S | R〉 if for every
2-cell Π of ∆, (a cyclic permutation of) Lab(∂Π) belongs to R. In this case it can be shown by a
reasonably straightforward induction on the number of 2-cells of ∆ that Lab(∂∆) =G 1. It turns
out the converse is also true.

Exercise 2.2. Suppose G is a group with presentation 〈S | R〉 and ∆ is a van Kampen diagram over
〈S | R〉. Prove that Lab(∂∆) =G 1.

Lemma 2.3 (van Kampen Lemma). Suppose 〈S | R〉 is a presentation for a group G and W is a
word in S. Then W =G 1 if and only if there exists a van Kampen diagram ∆ over the presentation
〈S | R〉 such that Lab(∂∆) ≡W .

Proof. If W is the boundary label of a van Kampen diagram, then W =G 1 be the previous exercise.
Now suppose that W =G 1. Then there exist r1, ..., rk ∈ R and f1, ..., fk ∈ F (S) such that

W =F (S) f
−1
1 r1f1...f

−1
k rkfk.
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Each word of the form f−1i rifi is the label of a van Kampen diagram consisting of a path labeled
by fi connected to a 2-cell with boundary label ri. glueing the initial points of each of these paths
together produces a van Kampen diagram with boundary label f−11 r1f1...f

−1
k rkfk (sometimes called

a “wedge of lollipops”). Now f−11 r1f1...f
−1
k rkfk can be transformed into the word W by a finite

sequence of moves consisting of adding or deleting subwords of the form ss−1. One can check that
if one of these moves is applied to a word U produces U ′ and U is the boundary label of a van
Kampen diagram, then there is a natural move on the diagram which produces a new van Kampen
diagram with boundary label U ′. It follows that the “wedge of lollipops” diagram can be modified
by a finite sequence of moves to produce a van Kampen diagram with boundary label W .

Exercise 2.4. Suppose ∆ is a van Kampen diagram over a presentation 〈S|R〉 for a group G, and
p is a closed (combinatorial) path in ∆. Prove that Lab(p) =G 1.

From this exercise, it follows that if you fix a vertex v ∈ ∆, there is a well-defined, label
preserving map from the 1-skeleton of ∆ to Γ(G,S) which sends v to 1.

A van Kampen diagram can be interpreted topologically as follows: Any word W defines a path
in the Cayley graph Γ(G,S), and W =G 1 if and only if this path is a loop. In this case, then there
is a homotopy which contracts this loop to a point in the Cayley complex corresponding to the
presentation 〈S|R〉. A van Kampen diagram is a combinatorial descriptions of such a homotopy.

2.3 Dehn functions

Given a van Kampen diagram ∆, let Area(∆) be the number of 2-cells of ∆. For a fixed group
presentation 〈S | R〉 and a word W in S such that W =G 1, let

Area(W ) = min{Area(∆) | ∆ is a van Kampen diagram over 〈S | R〉 and Lab(∂∆) ≡W}.

equivalently, Area(W ) is equal to the minimal k such that is equal to a product of k conjugates of
elements of R (see (2)).

Exercise 2.5. Let W be a word in S such that W ≡W1UW2 and let (some cylic shift of) UV −1 ∈ R
with V possibly the empty word. We say that W ′ is obtained from W by an R–move if W =F (S)

W1VW2. Given G = 〈S|R〉 and a word S such that W =G 1, prove that Area(W ) is equal to the
minimal number of R moves needed to transform W into the empty word.

The Dehn function of a finitely presented group G, denoted δG, is the function δG : N → N
defined by

δG(n) = max
‖W‖≤n

Area(W )

Of course, this depends not only on G, but also on the chosen presentation of G. In order
to make the Dehn function of G independent of the presentation (as is suggested by the notation
δG), we consider this function as defined only up to the following equivalence relation: functions
f, g : N→ N are equivalent if there exist constant A1, B1, C1 and A2, B2, C2 such that for all n ∈ N,

f(n) ≤ A1g(B1n) + C1n and g(n) ≤ A2f(B2n) + C2n.
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Note that the linear term in the above equivalence is indeed necessary, since even the trivial
group has the presentation 〈s | s = 1〉 and Area(sn) = n.

Exercise 2.6. (a) Show that this is indeed an equivalence relation.

(b) Show that f1(n) = 1, f2(n) = logn, and f3(n) = n are all equivalent.

(c) Show that two polynomials p and q are equivalent if and only if they have the same degree.

(d) Show that 2n and 3n are equivalent.

Exercise 2.7. Prove that a finite group has at most linear Dehn function.

Exercise 2.8. Prove that a finitely generated abelian group has at most quadratic Dehn function,
and that the Dehn function of Z2 is equivalent to n2.

Examples 2.9. 1. If G is nilpotent of class c, then δG(c) ≤ nc+1

2. If G is the fundamental group of a compact, orientable surface of genus g ≥ 2, then Dehn’s
algorithm shows that δG is linear.

3. The Dehn function of BS(1, 2) = 〈a, t | t−1at = a2〉 is equivalent to 2n

4. For G = 〈a, b, c | ab = c, ac = a2〉, δG is equivalent to 22
..
.2
n

, where this tower has length
log2(n).

5. SL(2,Z) has linear Dehn function. SL(3,Z) has exponential Dehn function. For m ≥ 5, the
Dehn function of SL(m,Z) is quadratic [35]. The Dehn function of SL(4,Z) is unknown, but
is conjectured to be quadratic.

If M is a Riemannian manifold and G = π1(M), then the Dehn function δG is equivalent to the
isoperimetric function on the universal cover M̃ , that is the function which measures the maximal
area of a disc whose boundary is a curve of length at most n [6].

Definition 2.10. Give an presentation 〈S|R〉 for a group G, A Tietze transformation on 〈S|R〉
one of the following four types of operations:

1. (Add a generator) 〈S|R〉 → 〈S ∪ {t}|R ∪ {t−1W}〉, where t /∈ S and W is any word in S.

2. (Remove a generator) 〈S|R〉 → 〈S \ {s}|R′〉, where s ∈ S and there exist a word W in S \ {s}
such that s =G W and R′ is obtained from R by replacing each occurence of s±1 with W±1.

3. (Add a relation) 〈S|R〉 → 〈S|R ∪ {W}〉 where W ∈ 〈〈R〉〉 in the free group F (S).

4. (Remove a relation) 〈S|R〉 → 〈S|R \ {U}〉 where U ∈ R such that U ∈ 〈〈R \ U〉〉 in the free
group F (S).

Exercise 2.11. Check that applying one Tietze transformation to a group presentation produces a
presentation with equivalent Dehn function.

Theorem 2.12. [24, Proposition 2.1] Suppose G1 = 〈S1|R1〉 and G2 = 〈S2|R2〉 with both pre-
sentation finite. Then G1 is isomorphic to G2 if and only if there is a finite sequence of Tietze
transformations which turn 〈S1|R1〉 into 〈S2|R2〉.
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It follows from the previous theorem and exercise that the Dehn function of a finitely presented
group G is independent of the choice of finite presentation up to the equivalence relation given
above. We next prove that the Dehn function is also a quasi-isometry invariant.

Theorem 2.13. Suppose G is finitely presented and H is finitely generated. If G ∼qi H, then H
is finitely presented and δG is equivalent to δH .

Proof. Let 〈S|R〉 be a finite presentation for G and let T a finite generating set for H. Let
M = max{‖r‖ | r ∈ R}. Let f : Γ(H,T )→ Γ(G,S) be a (λ, c, ε) quasi-isometry. Let p be a closed
(combinatorial) path in Γ(H,T ), and let v1, v2, ..., vn, vn+1 = v1 denote the vertices of p. Let q
be the closed path in Γ(G,S) formed by connecting each f(vi) to f(vi+1) by a geodesic. Since
dT (vi, vi+1) = 1, dS(f(vi), f(vi+1)) ≤ λ + c, and hence `(q) ≤ (λ + c)n. Since q is a closed path,
Lab(q) =G 1, so there exists a van Kampen diagram ∆ with Lab(∂∆) ≡ Lab(q). We also choose ∆
such that Area(∆) ≤ δG((λ+c)n). We identify the 1-skeleton of ∆ with its image in Γ(G,S) under
the natural map ∆(1) → Γ(G,S) which sends ∂∆ to q. Now we build a map g : ∆(1) → Γ(H,T )
for each interior vertex v ∈ ∆, choose a vertex u ∈ Γ(H,T ) such that dS(v, f(u)) ≤ ε, and set
g(v) = u. Each exterior vertex v ∈ ∆ lies on some geodesic [f(vi), f(vi+1)]; if v is closer to f(vi) we
set g(v) = vi, otherwise we set g(v) = vi+1. Now if two vertices v and u are adjacent, then we join
g(v) and g(u) by geodesics in Γ(H,T ). Note that for such u and v, dS(f(g(u)), f(g(v))) ≤ 2ε+ 1,
and hence dT (g(u), g(v)) ≤ (2ε+ 1 + c)λ. It follows that if Π is a 2-cell of ∆, there is a closed loop
in g(∆(1)) corresponding to the image of ∂Π of length at most (2ε+1+c)λ`(∂Π) ≤ (2ε+1+c)λM .

Let R′ = {r ∈ F (T ) | ‖r‖ ≤ (2ε + 1 + c)λM and r =H 1}. From above, we have that there is
a van Kampen diagram ∆′ whose 1-skeleton is g(∆(1)) and each two cell is labeled by an element
of R′. Hence ∆′ is a van Kampen diagram over 〈T | R′〉 and W ≡ Lab(∂∆′). Thus 〈T | R′〉 is a
presentation for H, in particular H is finitely presented. Furthermore,

Area(W ) ≤ Area(∆′) = Area(∆) ≤ δG((λ+ c)n)

since W is an arbitrary word of length n, we get that δH(n) ≤ δG((λ + c)n). Reversing the
roles of G and H in the above proof will result in the reverse inquality (with possibly different
constants), hence δG is equivalent to δH .

Corollary 2.14. Finite presentability is a quasi-isometry invariant.

2.4 Algorithmic problems

The following algorithmic problems were introduced by Max Dehn in 1911.

Word Problem: Given a presentation 〈S | R〉 of a group G, find an algorithm such that for
any word W in S, the algorithm determines whether or not W =G 1.

Conjugacy Problem: Given a presentation 〈S | R〉 of a group G, find an algorithm such that
for any two words W and U in S, the algorithm determines whether or not W and U represent
conjugate elements of the group G.

Isomorphism Problem: Find an algorithm which accepts as input two group presentations
and determines whether or not they represent isomorphic groups.

9



Exercise 2.15. Describe an algorithm which solves the word problem for the standard presentation
of Zn, that is 〈a1, ..., an | [ai, aj ], 1 ≤ i < j ≤ n〉.

Note that the word problem is equivalent to deciding whether a given element of F (S) belongs
to the normal subgroup 〈〈R〉〉. It is not hard to see that there is an algorithm for listing all elements
of the normal subgroup 〈〈R〉〉, but by itself this algorithm will not be able to certify that a given
element g /∈ 〈〈R〉〉.

The following is a classical result in computability and group theory, first proved by Novikov in
1955; another proof was given by Boone in 1958.

Theorem 2.16 (Novikov-Boone). There exists a finite group presentation for which the word
problem is undecidable.

Note that the word problem can be viewed as a special case of the conjugacy problem, since
W =1 G if and only if W is conjugate to 1 in G. It follows that any group with undecidable
word problem will also have undecidable conjugacy problem. There do, however, exist group
presentations with decidable word problem but undecidable conjugacy problems.

Similarly, the isomorphism problem is undecidable in general, though as with the other algo-
rithmic problems it can solved in certain special cases, that is if one only considers presentations
which represent groups belonging to a specific class of groups.

Proving the existence of a group with undecidable word problem is quite difficult, but once it
is known that such a group exists many other algorithmic questions about groups can be reduced
to the word problem and hence proved to be undecidable in general. For more details, see the
Adian-Rabin theorem.

Given a van Kampen diagram ∆, we define the type of ∆ by the ordered pair of natural numbers
(Area(∆), `(∂∆)).

Exercise 2.17. Show that for a finite presentation 〈S|R〉 and a fixed type (k, n), there are only
finitely many van Kampen diagrams over 〈S|R〉 of type (k, n).

A function f : N → N is called recursive is there exists an algorithm which computes f(n) for
all n ∈ N.

Theorem 2.18. Let G be a finitely presented group. The following are equivalent.

1. δG is recursive.

2. There exists a recursive function f : N→ N such that for all n ∈ N, δG(n) ≤ f(n).

3. The word problem in G is solvable.

Proof. Fix a finite presentation 〈S|R〉 for the group G.

(1) =⇒ (2)

Trivial.

(2) =⇒ (3)

10



Let W be a word in S with W =G 1 and ‖W‖ = n. By assumption, there exists a van Kampen
diagram ∆ with Lab(∂∆) ≡ W and Area(∆) ≤ δG(n) ≤ f(n). However, by the previous exercise
there are only finitely many van Kampen diagrams of type (k, n) with 1 ≤ k ≤ f(n). Hence one
can list all of these diagrams; if a some diagram in this list has boundary label W , then W =G 1,
otherwise W 6=G 1.

(3) =⇒ (2).

Fix n ∈ N, and let Rn be the set of words W in S such that ‖W‖ ≤ n and W =G 1. This
set can be explicitly computed by applying the algorithm which solves the word problem in G to
each word of length at most n. Now for each W ∈ Rn, we can compute Area(W ) by listing all van
Kampen diagrams of type (1, ‖W‖), then type (2, ‖W‖) etc. Since we know W =1 G, there must
be some k such that this list produces a van Kampen diagram with boundary label W and area k;
if k is the smallest natural number for which such a diagram occurs, then Area(W ) = k. Hence we
can compute the area of each of the the finitely many words in Rn, and by definition δG(n) is the
maximum of these areas.

Corollary 2.19. Solvability of the word problem is a quasi-isometry invariant.

The Dehn function can be interpreted as a measure of the geometric complexity of the word
problem in a group G. In particular, the Dehn will give an upper bound on the time complexity of
the word problem in G. In general, however, this upper bound is far from being sharp as can be
seen in the following example:

Example 2.20. Recall that for G = BS(1, 2) = 〈a, t|t−1at = a2〉, δG ∼ 2n. However, the time
complexity of the word problem in G is at most polynomial in n. Indeed, G is isomorphic to

the subgroup of GL(2,Q) generated by

(
1 1
0 1

)
and

(
1
2 0
0 1

)
, so the time complexity of the word

problem in G is at most the time complexity of multiplying 2× 2 matrices.

3 Hyperbolic groups

3.1 Hyperbolic metric spaces

Before we define hyperbolic groups, we need to defined hyperbolic metric spaces and study some
basic properties of their geometry. In particular, we need to show that hyperbolicity is invariant
under quasi-isometry in order for hyperbolicity to be well-defined in the world of groups.

The following is the mostly commonly cited definition of hyperbolicity and is attributed to Rips.

Definition 3.1 (Slim Triangles or the Rips Condition). Let δ ≥ 0. We say that a geodesic metric
space X is δ–hyperbolic if for any geodesic triangle T in X with sides p, q, r and any point a ∈ p,
there exists b ∈ q ∪ r such that d(a, b) ≤ δ.We say X is hyperbolic if it is δ–hyperbolic for some
δ ≥ 0.

A triangle T which satisfies the conditions in this definition is called δ-slim.
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Exercise 3.2. Let X be a δ-hyperbolic geodesic metric space and P = p1p2...pn a geodesic n-gon in
X for n ≥ 3. Let a be a point on pi for some 1 ≤ i ≤ n. Prove that there exists j 6= i and b ∈ pj
such that d(a, b) ≤ (n− 2)δ. (In fact, n− 2 can be replaced by log2(n)).

Examples 3.3. 1. If X is a bounded metric space, then X is δ-hyperbolic for δ = diam(X).

2. R with the standard metric is 0-hyperbolic.

3. Is X is a simplicial tree, that is a connected graph with no cycles equipped with the combi-
natorial metric, then X is 0-hyperbolic (equivalently, every triangle is a tripod).

4. Generalizing the previous two examples, a 0-hyperbolic geodesic metric space is called a
R-tree. Some more examples of R-trees:

(a) X = {(x, y) | x ∈ [0, 1], y = 0} ∪ {(x, y) | x ∈ Q, y ∈ [0, 1]} with the metric
d((x1, y1), (x2, y2)) = |y1|+|x2−x1|+|y2| when x1 6= x2 and d((x1, y1), (x2, y2)) = |y2−y1|
otherwise.

(b) X = R2 with the following metric: If the line containing (x1, y1) and (x2, y2) passes
through the origin, then d((x1, y1), (x2, y2)) is the usual Euclidean distance. Otherwise,
d((x1, y1), (x2, y2)) =

√
x21 + y21 +

√
x22 + y22.

5. Rn with the Euclidean metric is not hyperbolic for any n ≥ 2.

6. The classical hyperbolic space H2 is δ-hyperbolic. Recall that a triangle T in H2 with angles
α, β, and γ has area = π − α − β − γ. For a point x on T , consider the largest semi-circle
contained in T and centered at x. This semi-circle has area at most the area of T which
is at most π; this provides a bound on the radius of the semi-circle, which can be explicity

computed to show that H2 is δ–hyperbolic for δ = 4 logϕ, where ϕ = 1+
√
5

2 is the golden
ratio.

7. From the previous example, it follows that Hn is δ-hyperbolic for all n ≥ 2.

8. If (X, d) is any metric space, then we can define a new metric d̂ on X by d̂(x, y) = log(1 +
d(x, y)). Then (X, d̂) is 2 log 2 hyperbolic.

9. O(n, 1), U(n, 1), SP (n, 1) are all hyperbolic when given left-invariant Riemannian metrics.

Definition 3.4. Let X be a metric space and A, B closed subsets of X. The Hausdorff distance
between A and B is the infimum of all ε such that A ⊆ B+ε and B ⊆ A+ε. We denote this distance
by dHau(A,B).

Exercise 3.5. Verify that dHau is a metric on the set of closed subsets of X.

Definition 3.6. Suppose X is a metric space and p : [a, b]→ X is a (λ,C)-quasi-isometry onto its
image in X. Then p is called a (λ,C) quasi-geodesic.

If p is continuous (and hence a path), then we say that p is a (λ,C) quasi-geodesic path if for
any subpath q of p,

`(q) ≤ λd(q−, q+) + C

12



Note that, in general, quasi-geodesic are not required to be continuous.

Given these definitions, being a quasi-geodesic path depends only on the image of p while being
a quasi-geodesic depends on the chosen parameterization. However, any quasi-geodesic path is in
fact a quasi-geodesic when it is parameterized by arc length, that is when p : [a, b] → X is such
that for all a ≤ s < t ≤ b, `(p|[s,t]) = |t − s|. Furthermore, the next lemma shows that every
quasi-geodesic is close to a quasi-geodesic path.

Lemma 3.7. Let p : [a, b]→ X be a (λ, c)–quasi-geodesic. Then there exists λ′, c′, and D depending
only on λ and c and there exits a (λ′, c′) quasi-geodesic path p′ with the same endpoints as p such
dHau(p, p′) < D

sketch. Define p′(t) = p(t) for all t ∈ Z ∩ [a, b]. Now “connect the dots” by geodesics. Verifying
that p′ satisfies the above conditions is straightforward.

Exercise 3.8. Let p : [a, b]→ X be a geodesic and let f : X → Y be a (λ, c) quasi-isometric embed-
ding. Prove that f ◦ p is a (λ, c) quasi-geodesic.

Definition 3.9. Suppose X is a metric space and p is a path in X. p is called a k-local geodesic if
every subpath of p of length ≤ k is a geodesic.

Remark 3.10. Quasi-geodesic rays, bi-infinite quasi-geodesics, local geodesic rays, and bi-infinite
local geodesics are all similarly defined in the obvious ways.

We will assume for the rest of this section that X is a geodesic and δ-hyperbolic metric space.

Lemma 3.11. Let p be a (rectifiable) path in X from x to y. Then for any geodesic [x, y] and any
point a ∈ [x, y], there exists b ∈ p such that

d(a, b) ≤ δ| log2(`(p))|+ 1

Proof. We assume that p is paramterized such that p : [0, 1] → X and for all 0 ≤ i < j ≤ 1,
`(p|[i,j]) = 1

j−i`(p). Choose N such that 2N ≤ `(p) ≤ 2N+1. Let z1 = p(12). Let T1 be a triangle
with sides [x, y], [x, z1], and [z1, y]. Since T1 is δ-slim, there exists a point b1 ∈ [x, z1] ∪ [z1, y] with
d(a, b1) ≤ δ. If b1 ∈ [x, z1], let z2 = p(14) and T2 = [x, z1][x, z2][z1, z2]; if b1 ∈ [z1, y], let z2 = p(34)
and T2 = [z1, y][z1, z2][z2, y]. We apply slimness to T2 and b1 to find a point b2 on one of the
other two sides of T2 that is δ close to b1. We then define z3 as the midpoint of the subpath of p
that is “above” the side of T2 containing b2 and T3 as the triangle which contains the side of T2
that contains b2 and geodesics connecting the endpoints of this side to z3. Continue this process
inductively until we obtain bN .

Note that by construction, for each 1 ≤ i ≤ N − 1, d(bi, bi+1) ≤ δ, and hence d(a, bN ) ≤ Nδ ≤
δ| log2(`(p))|. Furthermore, bN belongs to a geodesic q with endpoints on p such that `(q) ≤ `(p)

2N
.

Let b ∈ p be the closest endpoint of q to bN , hence d(b, bN ) ≤ 1
2`(q) ≤ 1. Thefore,

d(a, b) ≤ d(a, bN ) + d(bN , b) ≤ δ| log2(`(p))|+ 1.
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Theorem 3.12 (Morse Lemma). Let X be a δ-hyperbolic metric space. Then for any λ ≥ 1,
C ≥ 0, there exists K = K(δ, λ, C) such that for any geodesic p and any (λ,C)-quasi-geodesic q
with p− = q− and p+ = q+, dHau(p, q) ≤ K.

Proof. Note that, by Lemma 3.7, we can assume that q is a quasi-geodesic path. Let D =
supx∈p{d(x, q)}; our first goal will be to bound D in term of δ, λ and C. Since p and q are
compact, there is point x0 ∈ p which realizes this supremum. In particular, the the interior of
BD(x0) does not intersect q. Now choose y ∈ [p−, x0] such that d(x0, y) = 2D, or if no such y exists
then set y = p−. Choose z ∈ [x0, p+] similarly. By definition of D, there exists some y′, z′ ∈ q such
that d(y, y′) ≤ D and d(z, z′) ≤ D. By the triangle inequality,

d(y′, z′) ≤ d(y′, y) + d(y, z) + d(z, z′) ≤ 6D

If q′ is the subpath of q joining y′ to z′, then since q is a (λ,C)-quasi-geodesic, `(q′) ≤ 6λD+C.
Let c = [y, y′]q′[z′, z], and note that l(c) ≤ 6λD + C + 2D and d(x0, c) = D. By Lemma 3.11,
d(x0, c) ≤ δ| log2(`(c))|+ 1, and combinging this with the previous estimates gives

D ≤ δ| log2(6λD + 2D + C)|+ 1.

This equation implies that D must be bounded in terms of δ, λ and C.

It remains to show that q is contained in a bounded neighborhood of p. Suppose q = q1q2q3
such that q2 is a maximal subpath of q which lies outside p+D. Now every point of p is within D
of some point on either q1 or q3; by connectedness of p, there must exist some x ∈ p and y ∈ q1,
z ∈ q3 such that d(x, y) ≤ D and d(x, z) ≤ D. In particular, this means that `(q2) ≤ λ(2D) + C.
It follows that q is contained in the 2λD +D + C neighborhood of p.

Corollary 3.13. Let X be a δ-hyperbolic metric space. Then for any λ ≥ 1, C ≥ 0, there exists
κ = κ(δ, λ, C) such that for any (λ,C)-quasi-geodesics p and q with p− = q− and p+ = q+,
dHau(p, q) ≤ κ.

Exercise 3.14. Prove that there exist λ ≥ 1 and C ≥ 0 such that for any K ≥ 0, there exists a
(λ,C)-quasi-geodesic q in R2 such that dHau(q, [q−, q+]) ≥ K.

Exercise 3.15. Let X be a geodesic metric space. Prove X is hyperbolic if and only if for all λ ≥ 1,
C ≥ 0 that there exists δ′ such that for any triangle T in X whose sides are (λ,C)-quasi-geodesics
is δ′-slim.

Proposition 3.16. Let X be a hyperbolic metric space. Suppose Y is a geodesic metric space and
f : Y → X is a quasi-isometric embedding. Then Y is hyperbolic.

Proof. Let f : Y → X be a (λ, c) quasi-isometric embedding and let pi : [ai, bi]→ Y be geodesics for
1 ≤ i ≤ 3 such that T = p1p2p3 is a geodesic triangle in Y . By Exercise 3.8 f(T ) = f(p1)f(p2)f(p3)
is a (λ, c) quasi-geodesic triangle in X, and hence f(T ) is δ′–slim for some δ′ depending only on δ,
λ, and c by Exercise 3.15.

Now let x be a point on p1 and let x′ = f(x) ∈ f(p1). Then there exists some y′ ∈ f(p2)∪ f(p3)
such that dX(x′, y′) ≤ δ′. Without loss of generality, suppose y′ ∈ f(p2) and y′ = f(p2(s)) for some
a2 ≤ s ≤ b2. Let y = p2(s). Then dY (x, y) ≤ λδ′ + λc, hence T is (λδ′ + λc)–slim.
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Corollary 3.17. Suppose X and Y are geodesic metric spaces and X ∼qi Y . Then X is hyperbolic
if and only if Y is hyperbolic.

Definition 3.18. A finitely generated group G is hyperbolic if for some (equivalently, any) finite
generating set S, Γ(G,S) is a hyperbolic metric space.

Remark 3.19. By the Milnor-Svarc Lemma, a group G is hyperbolic if and only if G admits a
proper, cobounded action on a geodesic hyperbolic metric space.

Examples 3.20. 1. Finite groups are hyperbolic.

2. Z is hyperbolic. More generally, any group which is virtually Z, such as Z/2Z ∗ Z/2Z.

3. Fn is hyperbolic for any n ≥ 1.

4. SL(2,Z) is virtually free and hence hyperbolic.

5. If M is a closed hyperbolic manifold, then π1(M) is hyperbolic. In particular, if S is an
orientable surface of genus g, then π1(S) is hyperbolic if and only if g ≥ 2.

6. Zn is hyperbolic if and only if n = 1.

Definition 3.21. A group is called elementary if it contains a cyclic subgroup of finite index

There are three types of elementary groups: every elementary group is either finite, finite-by-Z,
or finite-by-D∞, where D∞ is the infinite dihedral group. All elementary groups are hyperbolic,
but there will be a number of results which only hold for the non-elementary hyperbolic groups.

Lemma 3.22. Suppose p is a k-local geodesic in X from x to y for k > 8δ. Then

1. p ⊆ [x, y]+2δ.

2. [x, y] ⊆ p+3δ.

3. p is a (λ, c)-quasi-geodsic path for λ = k+4δ
k−4δ and c = 2δ.

Proof. (1) Choose a point a ∈ p which maximizes the distance to [x, y]. Choose b, c ∈ p such that a
is the midpoint of the subpath of p from b to c and 8δ < d(b, c) ≤ k. (if such points do not exist, we
use the endpoints of p instead and an obvious modification of the following arguement will work).
Choose b′, c′ as the points on [x, y] closest to b and c respectively, and consider the quadrilateral
(b′, b, c, c′). a must be 2δ from one of the other sides of this quadrilateral by hyperbolicity. If a
is within 2δ of a point on [b′, b] or [c, c′], it would contridict our choice of a as the point which
maximizes the distance to [x, y]. Hence a is within 2δ of a point on [b′, c′] ⊆ [x, y].

(2) Now let a ∈ [x, y]. Since p is connected, there exists some b ∈ p such that d(b, [x, a]) ≤ 2δ
and d(b, [a, y]) ≤ 2δ. Applying hyperbolicity to the triangle spanned by b and the two points which
realize these inequalities produces the desired result.

(3) We subdivide p into subpaths p = p1p2...pn+1 such that `(pi) = k′ = k
2 + 2δ for 1 ≤ i ≤ n

and 0 ≤ `(pn+1) = η < k′. Note that
`(p) = nk′ + η
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Now let ai = (pi)−, and let a′i be a point on [x, y] with d(ai, a
′
i) ≤ 2δ. We first need to show

that each a′i is “between” a′i−1 and a′i+1 on [x, y], which will imply that x = a′1, a
′
2...a

′
n+1, y forms

a monotone sequence along [x, y].

Let x0 ∈ pi−1 with d(ai−1, x0) = 2δ and y0 ∈ pi with d(ai+1, y) = 2δ. Note that d(x0, y0) =
2k′ − 4δ = k, hence a geodesic [x0, y0] can be chosen as a subpath of p. Consider the triangle T
with endpoints ai−1, a

′
i−1, and x0. By hyperbolicity, T ⊆ B3δ(ai−1). Since d(ai−1, ai) = k′ > 6δ, T

does not intersect B3δ(ai). Similarly, a triangle with endpoints ai+1, a
′
i+1, and y0 will not intersect

B3δ(ai). Now we apply hyperbolicity to the quadrilateral with vertices a′i−1, x0, y0, a
′
i+1 and the

point ai, we get a point a′′i ∈ [a′i−1, a
′
i+1] with d(ai, a

′′
i ) ≤ 2δ. By hyperbolicity of the triangle

(ai, a
′
i, a
′′
i ), d(ai, z) ≤ 3δ for any point z which is between a′i and a′′i . In particular, neither a′i−1 nor

a′i+1 are between a′i and a′′i , and since a′′i ∈ [a′i−1, a
′
i+1], we must also have a′i ∈ [a′i−1, a

′
i+1].

Since x = a′1, a
′
2...a

′
n+1, y forms a monotone sequence along [x, y], we get that

d(x, y) =

n∑
i=1

d(a′i, a
′
i+1) + d(a′n+1, y)

Now for each 1 ≤ i ≤ n, d(a′i, a
′
i+1) ≥ k′ − 4δ, and d(a′n+1, y) ≥ η − 2δ. Hence,

d(x, y) ≥ nk′ − 4δn+ η − 2δ = `(p)− 4δn− 2δ

Finally, since n ≤ `(p)
k′ ,

d(x, y) ≥ (
k′ − 4δ

k′
)`(p)− 2δ.

Finally, it only remains to note that every subpath of p is again a k-local geodesic to which the
above proof applies.

Corollary 3.23. Suppose p is a k-local geodesic in X for k > 8δ. Then either p is constant or
p− 6= p+.

3.2 Algorithmic and isoperimetric characterizations of hyperbolic groups

Given a group presentation 〈S|R〉 and a word W in S, Dehn’s algorithm is the following procedure:
First freely reduce W ; if this produces the empty word, the algorithm stops. Now if W is freely
reduced and non-empty, search W for subwords U such that U is also a subword of relation (or a
cyclic shift of a relation) r ∈ R and ‖U‖ > 1

2‖r‖. If no such subword exists, the algorithm stops.
If such a U exists, then there is a (possibly empty) word V (the complement of U in r) such that
UV −1 =G 1 and ‖V ‖ < ‖U‖. In this case, the algorithm replaces U with V and repeats.

If the presentation 〈S|R〉 is finite, then Dehn’s algorithm terminates after finitely many steps
for any word W .

Definition 3.24. Let 〈S|R〉 be a finite presentation for a group G. Dehn’s algorithm solves the
word problem for 〈S|R〉 if for any non-empty word W for which Dehn’s algorithm stops, W 6=G 1.

Exercise 3.25. Find a group presentation for which Dehn’s algorithm does not solve the word
problem.
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Exercise 3.26. Suppose 〈S|R〉 is a finite presentation for a group G for which Dehn’s algorithm
solves the word problem. Prove that G has linear Dehn function.

Theorem 3.27. For any finitely generated group G, the following are equivalent.

1. G is hyperbolic.

2. G has a finite presentation 〈S|R〉 for which Dehn’s algorithm solves the word problem.

3. G is finitely presented and has linear Dehn function.

4. G is finitely presented and has subquadratic Dehn function.

Exercise 3.28. Suppose G and H are hyperbolic. Prove that G ∗H is hyperbolic.

Proof. (1) =⇒ (2)

Let S be a finite, symmetric generating set of G, and let δ be the hyperbolicity constant of
Γ(G,S). Let R = {U | U is a word in S , ‖U‖ ≤ 16δ, U =G 1}. We will show that 〈S|R〉 is a
presentation for G for which Dehn’s algorithm solves the word problem.

Let W be a non-empty word in S such that W =G 1. Let p be the path in Γ(G,S) with p− = 1
and Lab(p) ≡ W . By assumption, p is not constant and p− = p+, so by Corollary 3.23, p is not a
k-local geodesic for any k > 8δ. This means that p contains a subpath q with `(q) ≤ 8δ such that
q is not a geodsic. Let r be a geodesic from q− to q+. Then `(r) < `(q) ≤ 8δ, so qr−1 is a closed
loop with `(qr−1) ≤ 16δ. This means that Lab(qr−1) ∈ R, and since `(r) < `(q), Dehn’s algorithm
will not stop on W .

Thus we have shown that every word in S which is equal to 1 in G by be reduced to the empty
word via Dehn’s algorithm using only relations from R. Therefore, 〈S|R〉 is a finite presentation
for G and Dehn’s algorithm solves the word problem for 〈S|R〉.

(2) =⇒ (3) by Exercise 3.26.

(3) =⇒ (4) is trivial.

We will need a few auxillary results before proving the final implication. First, however, I
would like to highlight the following consquence of the above theorem, which is a purely algebraic
consequence of the geometric assumption of hyperbolicity.

Corollary 3.29. If G is a hyperbolic group, then G is finitely presented.

In fact, this corollary is a special case of a more general finiteness phenomenon for hyperbolic
groups which we will see later when we introduce the Rips complex.

Now, we return to the proof of Theorem 3.27.

Given a polygon P = p1p2...pn in X, we say P is t-slim if for any point a ∈ pi, there exists
j 6= i and a point b ∈ pj such that d(a, b) ≤ t. We define the thickness of P , denoted t(P ), as the
minimal constant t such that P is t-slim. Clearly, if X is non-hyperbolic it will have triangles of
arbitrarily large thickness. We will show that in this case there are polygons or arbitrarily large
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thickness t whose perimeter length is linear in t. Next we will show that the area of a polygon P
is bounded below by a quadratic function of the thickness of P . These results together will finish
the proof of Theorem 3.27.

For the next two lemmas I am following the proofs from [28].

Lemma 3.30 (Thick polygons with linear perimeter). Suppose a geodesic metric space X is not
hyperbolic. Then for all t0 ≥ 0, there exists t ≥ t0 such that X contains a polygon of thickness t
whose perimeter length is at most 46t.

Proof. Let T = pqr be a geodesic triangle in X with x = p− = q−, y = q+ = r−, and z = p+ = r+.
Let a ∈ p a point such that d(a, q) = d(a, r) = t ≥ t0, and b ∈ q, c ∈ r such that d(a, b) = t = d(a, c).
Let e ∈ [b, y] such that d(d, e) = 7t (or e = y if no such point exists). Let f be the point of [y, c]
which is closest to e.

Case 1: d(e, f) ≥ 4t. In this case we analyze the triangle with vertices b, c, and y. Choose a
point o ∈ [b, y] which maximizes d(o, [y, c]). Note that by our assumption, d(o, [y, c]) ≥ 4t ≥ 1

2d(b, c)

(hence this is an example of a wide triangle). Let D = d(o, [y, c]), and let g ∈ [o, y] with d(o, g) = 3d
2

and i ∈ [o, b] with d(o, i) = 3D
2 (as usual, choose g and i to be the endpoints if needed). By definition

of o, there exist h, j ∈ [y, c] with d(g, h) ≤ D and d(i, j) ≤ D. In case i = b, we set j = c, and if
g = y, then h = g = y.

Now we show the quadrilateral Q with vertices [g, h, i, j] is D
2 -thick. Indeed, d(o, [h, j]) ≤

d(o, [y, c]) = 2D. Since d(o, g) = 3D
2 and d(g, h) ≤ D, d(o, [g, h]) ≥ D

2 . Similarly, if i 6= b,
d(o, [i, j]) ≥ D

2 . For the case i = b, observe that d(b, c) ≤ D
2 , and since d(o, c) ≥ D we must have

d(o, [b, c]) ≥ D
2 . Hence, t

2 ≤
D
2 ≤ t(Q).

Finally, d(g, h) and d(i, j) are both bounded by D, d(g, i) ≤ 3D, and hence the triangle inequal-
ity gives d(h, j) ≤ 5D. Therefore the length of the perimeter of Q is at most 10D ≤ 20t(Q).

Case 2: d(e, f) ≤ 4t. First, we are going to show that for any k ∈ [e, f ], d(a, k) ≥ t. First note
that d(f, c) ≥ d(b, e)− d(b, c)− d(e, f) ≥ 7t− 2t− 4t = t.

Now, the following two inequalities can be extracted via applying the triangle inequality to the
relevent sequences of points, which can be easily traced out if the right picture is drawn.

d(x, z) ≤ d(x, b) + d(b, c) + d(c, z) ≤ d(x, b) + d(c, z) + 2t. (3)

d(x, e) + d(z, f) ≤ d(x, a) + d(a, k) + d(k, e) + d(z, a) + d(a, k) + d(k, f)

substituting d(b, e) + d(c, f) ≥ 7t + t, d(e, f) ≤ 4t, and d(x, z) = d(x, a) + d(a, z) into the above
equation gives

d(x, b) + d(z, c) + 8t ≤ d(x, z) + 2d(a, k) + 4t

Summing this with 3 produces d(a, k) ≥ t, as desired.

We now continue constructing the desired polygon. Let g ∈ [x, a] and i ∈ [a, z] with d(g, a) =
d(a, i) = 3t (as usual, we may need to choose the end points, and the proof is easily modified to
work in this case). Furthermore, we can assume that there are points h ∈ [x, b] and j ∈ [z, c] such
that d(g, h) ≤ 2t and d(i, j) ≤ 2t. If these points do not exists, then we will get a wide triangle,
and we can then procede as in Case 1.
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Now the inequalites d(a, g) = 3t and d(g, h) ≤ 2t implie that d(a, [g, h]) ≥ t. Similarly,
d(a, [i, j]) ≥ t. It follows that the hexigon H with vertices [g, h, e, f, j, i] is at least t-thick, since the
distance from a to any other side of H is at least t.

It only remains to esitmate the perimeter of H. I will leave this as an exercise, but using known
lengths and estimating the rest with the triangle inequality will produce a bound on the perimeter
of 46t.

Exercise 3.31. Show the hexegon H constructed in the above proof as perimeter ≤ 46t.

The following lemma can be proved in the context of general geodesic metric spaces. However,
we will restrict our attention to the case of Cayley graphs of finitely presented groups. This
restriction is purely for convenience of notation, there are no essential differences in the following
proofs for general geodesic metric space once a suitable notion of area is defined.

Given a polygon P = p1...pn in a Cayley graph Γ(G,S), let Lab(P ) ≡ Lab(p1)...Lab(pn). Also,
we slightly modify our notion of thickness for such polygons by only measuring distance between
points which are vertices of the Cayley graph. This change decreases the thickness of a polygon by
at most 1, so it clearly does not affect our previous result.

Lemma 3.32 (Thick polygons have quadratic area). Let G be a group given by a finite presentation
〈S|R〉, and let M = maxr∈R{‖r‖}. Let P be a polygon in Γ(G,S) of thickness t with W ≡ Lab(P ).
Then Area(W ) ≥ 4

M3 t
2.

Proof. By definition of thickness, there exists some side p of P and a vertex a ∈ p such that
d(a, P \ p) ≥ t. Let q be the remaining sides of P , so P = pq.

We now fill the closed loop pq with a van Kampen diagram ∆. We now set x0 = y0 = a and
inductively define a sequence of simple closed paths, zi = xiyi for 0 ≤ i ≤ 2t

M + 1 which satisfy the
following properties:

1. xi is a subpath of p containing xi−1.

2. For every vertex b ∈ yi, d(a, b) ≤ Mi
2 .

3. The subdiagram ∆i bound by zi = xiyi contains the maximal area over all simple closed
paths which satisfy the first two properties.

Increasing xi is necessary, we can assume that each yi has no edges in common with p. Further-
more, if i ≤ 2t

M then yi does not intersect q, since if b ∈ yi, d(a, b) ≤ Mi
2 < t. Suppose b is a vertex

of both yi−1 and yi. Then b is a vertex of ∂∆i, and since b does not belong to the boundary of ∆,
there must exist some 2-cell Π such that b ∈ ∂Π but Π does not belong to ∆i. But since b ∈ yi−1,
d(a, b) ≤ M(i−1)

2 , and the definition of M gives that for any vertex c ∈ ∂Π, d(b, c) ≤ M
2 . Hence

∆i could be enlarged by adding Π without violating the first two conditions, which contradicts the
third condition of the definiton of ∆i. Thus the vertices of yi and yi−1 are disjoint.

It follows that every edge of yi belongs to the boundary of a 2-cell which is contained in ∆i

but not in ∆i−1. Let mi be the number of such faces , and note that mi is at least `(yi)
M . Since yi

and yi−1 are disjoint, xi must contain at least 2 more vertices then xi−1, one on each end. Thus,
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`(xi) ≥ 2i, and since each xi is a subpath of a geodesic, d((xi)−, (xi)+) ≥ 2i. yi has the same
endpoints as xi, so `(yi) ≥ 2i, which implies that mi ≥ 2i

M . Finally, we get

Area(∆) ≥

2t
M

+1∑
i=1

mi ≥

2t
M

+1∑
i=1

2i

M
≥ 4t2

M3
.

Combining the previous two lemmas gives the following corollary, which finishes the proof of
Theorem 3.27 (in particular, it shows that (4) =⇒ (1) part the proof of Theorem 3.27).

Corollary 3.33. Let G be a finitely presented group which is not hyperbolic. Then the Dehn
function of G is at least quadratic.

Exercise 3.34. Suppose G has a presentation 〈S|R〉 with sublinear Dehn function. Prove that
R = ∅, so in fact G is the free group on S.

3.3 More properties of hyperbolic groups

In addition to having solvable word problem, the other two classical algorithmic questions of Dehn
are solvable for hyperbolic groups.

Theorem 3.35. If G is a hyperbolic group, then the conjugacy problem is solvable in G.

Theorem 3.36 (Sela,...). The isomorphism problem is solvable for presentations of hyperbolic
groups.

Hyperbolicity also implies a number of algebraic properties of the group. In particular, there
are strong restrictions on subgroups of hyperbolic groups:

Theorem 3.37 (Strong Tits alternative). Let G be a hyperbolic group and let H ≤ G. Then either
H is virtually cyclic or H contains a subgroup isomorphic to F2.

It is also important to note that subgroups of hyperbolic groups, even finitely presented sub-
groups, are not necessarily hyperbolic.

The above dichotomy implies, for example, that G contains no subgroups isomorphic to Z2. It
also implies that G cannot be decomposed as a direct product of two infinite subgroups.

Theorem 3.38. If G is hyperbolic and G = A×B, then either A is finite or B is finite.

Morever, all infinite normal subgroups of hyperbolic groups must fall into the second case in
this dichotomoy.

Theorem 3.39. If G is hyperbolic and non-elementary then every infinite normal subgroup of G
contains a subgroup isomorphic to F2. In particular, |Z(G)| <∞.
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Furthermore non-elementary hyperbolic groups have lots of these normal subgroups and hence
are very far from being simple. A group G is called SQ-universal if every countable group can
be embedded in some subgroup of G. It is a classical theorem of HNN and F2 is SQ-universal.
Olshanskii extended this to all non-elementary hyperbolic groups.

Theorem 3.40. [29] Every non-elementary hyperbolic group is SQ-universal.

Since there are uncountably many finitely generated groups and every finitely generated group
has only countably many finitely generated subgroups, this theorem implies the following.

Corollary 3.41. Every non-elementary hyperbolic group has uncountably many normal subgroups.

Theorem 3.42. If G is a hyperbolic group, then G contains only finitely many conjugacy classes of
elements of finite order. More generally, G contains only finitely many conjugacy classes of finitie
subgroups.

Finally, hyperbolicity also has implications for the homology of a group. This is based on the
following result of Rips.

Proposition 3.43. Let G be generated by a finite set S such that Γ(G,S) is δ-hyperbolic. Then
for all d ≥ 4δ + 1, the Rips complex Pd(X) is contractible. In particular, if G is torsion-free, then
the quotient Pd(X)/G is a finite K(G, 1).

Corollary 3.44. If G is a torsion-free hyperbolic group, then there exists N ∈ N such that Hn(G) =
{0} for all n > N .

If G is a hyperbolic group with torsion, then the action on the Rips complex is still sufficient
to prove the following, see [15, Remark 7.3.2].

Corollary 3.45. If G is any hyperbolic group, then Hn(G) is finitely generated for all n ≥ 1.

4 Growth in groups

4.1 Basic properties and examples

Definition 4.1. Let G be a group generated by a finite set S. Then the growth function of G,
γG : N→ N, is defined by

γG(n) = |{g ∈ G||g|S ≤ n}

Exercise 4.2. Let G be a group generated by a finite set S. Let x, y ∈ G. Show that for all n ≥ 0,
|Bn(x)| = |Bn(y)| where these balls are taken in the metric space (G, dS).

We consider these functions up to the following equivalence relation: Given f, g : N → N, we
say thatf � g if there exist constants A and B both ≥ 1, such that for all n ∈ N,

f(n) ≤ Ag(Bn).

We say that f ∼ g if f � g and g � f .
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Exercise 4.3. 1. Check that this is an equivalence relation.

2. Check that the equivalence class of a polynomial only depends on its degree.

3. Check that for any a, b > 1, an ∼ bn.

Up to this equivalence it is straightforward to check that γG is independent of the choice of
finite generating set of G. Morevoer,

Lemma 4.4. If G ∼qi H, then γG ∼ γH .

Proof. Let S and T be finite generating sets for G and H respectively and let f : (G, dS)→ (H, dT )
be a (λ, c)–quasi-isometric embedding. Fix x ∈ G and y = f(x) ∈ H.

First observe that for any p, q ∈ G, if f(p) = f(q) then d(p, q) ≤ λc. Hence f is at most
m–to-one, where m = |{g ∈ G||g|S ≤ λc}.

Now for any point p ∈ Bn(x), d(f(p), y) ≤ λn + c. Hence f(Bn(x)) ⊆ Bλn+c(y). Since f is at
most m–to-one, we get

|Bn(x)| ≤ m|Bλn+c(y)|

And hence γG(n) ≤ mγH(λn+c) ≤ mγH((λ+c)n). By symmetry of the quasi-isometry relation
the result follows.

Corollary 4.5. If G and H are finitely generated groups and G is quasi-isometrically embedded in
H, then γG � γH .

Note that the embedding in this corollary is geometric and not necessarily algebraic; that is,
(G, dS) may be quasi-isometrically embedded in H as a metric space but G may not be isomorphic
to a subgroup of H.

Remark 4.6. If M is a Riemannian manifold, then γπ1(M)(n) ∼ V ol
M̃

(n), where V ol
M̃

(n) is the

volume of a ball of raduis n in M̃ .

If γG(n) ∼ 2n, we say that G has exponential growth; otherwise, G has sub-exponenital growth
(see Lemma 4.12). If γG(n) ∼ nk for some k ∈ N, we say G has polynomial growth. If nk � γG(n)
for all k ∈ N, we say that G has super-polynomial growth

Exercise 4.7. Compute the growth functions for Fn and Zn.

Corollary 4.8. Zn ∼qi Zm if and only if n = m.

Recall that in the case of (non-abelian) free groups, Fn ∼qi Fm for all n,m ≥ 2.

Exercise 4.9. The (integral) Heisenberg group is the group of matricies of the form
1 a c

0 1 b
0 0 1

 | a, b, c ∈ Z

 ,

or equivalently the group given by the presentation 〈a, b, c | ac = ca, bc = cb, c = [a, b]〉. Show that
the Heisenberg group has growth equivalent to n4.
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Exercise 4.10. Show that if H is finitely generated and H ≤ G, then γH � γG.

Exercise 4.11. Show that if H is a quotient of G, then γH � γG.

The above exercises imply the following.

Lemma 4.12. For any finitely generated group G, γG(n) � 2n.

Example 4.13. Suppose G is a hyperbolic group. If G is elementary, then G ∼qi Z and hence
γG(n) ∼ γZ(n) ∼ 2n+1. If G is non-elementary, then by the Tit’s alternative for hyperbolic groups
G contains a subgroup isomorphic to F2, so by the above exercises γG(n) ∼ 2n.

4.2 Nilpotent groups

3

We begin by recalling the definition and some basic properties of nilpotent groups. Given a
group G and g, h ∈ G, the commutator of g and h is [g, h] := g1h−1gh. Given subgroups H1 and
H2 of G, let [H1, H2] be the subgroup generated by {[g, h] | g ∈ H1, h ∈ H2}.

Definition 4.14. Given a group G, let γ1(G) = G and let

γi(G) = [γi−1(G), G]

This produces a sequence of normal subgroups G D γ1(G) D ... called the lower central series.

Definition 4.15. A group G is nilpotent if γk+1(G) = {1} for some k ≥ 1. The nilpotenecy class
of G is the minimal such k.

Note that every nilpotent group is solvable and a group is abelian if and only if it is nilpotent
of class 1.

It is straigtforward to check that the identities [xy, z] = [x, [y, z]][y, z][x, z] and [x, yz] =
[x, y][y, [x, z]][xz]4 hold in any group (or perhaps some slight variation of these).

Suppose G is generated by a finite set S. Applying this identity inductively gives that for any
g, h ∈ G, [g, h] is equal to a product of commutators of elements of S and an element of γ2(G). A
similar argument shows that any element of γ2(G) is equal to a product of commutators of the form
[[s1, s2], s3] with each si ∈ S and an elemement of γ3(G). Continuing inductively, we get a similar
statement for each γi(G). Now if G is nilpotent of class k, then γk+1 = {1} and hence the above
argument shows that γk(G) will be generated by a finite set of k-fold commutators of elements of
S. Hence γk−1(G) will also be finitely generated, continuing in this way we get the following.

Lemma 4.16. If G is nilpotent and finitley generated, then each γi(G) is finitely generated.

It is relatively straightforward to prove that a nilpotent group has at most polynomial growth.
Later we will compute the precise degree of growth of a nilpotent group, but this is a little more
complicated, and we will only give a sketch of the proof.

3The primary reference I am using for this section is [9]
4these are wrong, but something similar works
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Proposition 4.17. Let G be a finitely generated nilpotent group. Then for some d ∈ N, γG(n) � nd.

Proof. We proceed by induction on the nilpotency degree of G. Suppose G is nilpotent of class k
and the proposition holds for all groups of nilpotency class at most k − 1. Let G be generated by
a finite set S = {s1, ..., sm}. Let T be a finite generating set for [G,G] which contains all i–fold
commutators of elements of S for all 1 ≤ i ≤ k. Let g ∈ G such that |g|S ≤ n, and let W be a word
in S such that W =G g. Our goal will be show that

g = sk11 ...s
km
m b

Where each ki is equal to the number of times si occurs in the word W minus the number of
occurences of s−1i and b ∈ [G,G] with |b|T ≤ nk. Since [G,G] is nilpotent of class k − 1 we get
a polynomial bound on the number of such b by induction and hence a polynomial bound on the
number of g with |g|s ≤ n.

We start by commuting each occurence of s1 in the word W to the front. When we commutate
s1 by an element si, we add a commutator sis1 = s1si[si, s1]. When we commute a occurence of
s1 with one of these commutators we add an element of γ2(G), and so on. Eventually, we get a
word of the form sk11 U where U is a word in S \ {s1} and elements belonging to the terms of the
lower central series. Then we repreat this for all other letters in the original word until we get the
desired normal form.

Note that we have to commute at most n2 generators with generators. But then we commute at
most n3 generators with commutators. In the end we get that b is a product of at most n2 + ...+nk

elements, and each of these elements is at worst a k-fold commutator of elements of S. Hence
|b|T ≤ nk. If [G,G] has growth bounded above by nl, then γG(n) � nm+kl

Note that from the definition of γi+1(G), [γi(G), γi(G)] ≤ γi+1(G), hence γi(G)/γi+1(G) is an
abelian group. If G is finitely gnerated and nilpotent of class k, then each of these quotients is a
finitely generated abelian group and hence isomorphic to Zmi ×Ai where each mi ≥ 0 and each Ai
is a finite abelian group. Define the homegeneous dimension of G by

d(G) =
k∑
i=1

imi

Remark 4.18. For nilpotent groups, the numbers mi above are quasi-isometry invariants.

Theorem 4.19. If G is nilpotent, then γG(n) ∼ nd where d = d(G).

The proof again proceeds by induction on the nilpotency degree of G. If G is nilpotent of class
k, then let K = γk(G). The G/K is nilpotent of class k − 1 and d(K) = d(G)− kmk, where mk is
defined as above. Hence the growth of G/K is ∼ nd−kmk by induction. Let S be a finite generating
set for G and consider the quotient G/K with the image of S as its finite generating set. Then the

quotient map ϕ : G → G/K surjects BG
n (1) onto B

G/K
n (1). If B

G/K
n (1) = {q1, ..., qN}, for each qi

let gi ∈ ϕ−1(qi). Note that by assumption N ∼ nd−kmk .

For the lower bound, note that every element g of BG
n (1) is equal to an element of the form gik

for some 1 ≤ i ≤ N and some k ∈ K. Since k = g−1i g, |k|S ≤ 2n. Hence |BG
n (1)| ≥ N · |BG

2n(1)∩K|
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For the upper bound, BG
2n(g) contains all of the elements of the for gik where 1 ≤ i ≤ k and

|k|S ≤ n, hence |BG
2n(1)| ≤ N · |BG

n (1) ∩K|.
For both cases, we need to be able to count the number of elements in BG

n (1) ∩K. Now K is
abelian and hence has growth nmk , however in order to count BG

n (1) ∩K we need to understand
the distortion of K in G.

Definition 4.20. Let G be generated by a finite set S and let H be a subgroup of G generated by
a fintie set T . Then the distortion of H in G is

∆H
G (n) = max{|h|T | |h|S ≤ n}

It is straightforward to show that up to the equivalence relation defined on growth functions
that the distortion of H in G is independent of the choices of finite generating sets. Hence one can
assume that T ⊆ S, and it follows easily that n � ∆H

G (n), for any finitely generated groups G and
H ≤ G. In case ∆H

G (n) ∼ n, we say that H is undistorted in G. This is equivalent to the inclusion
map (H, dT )→ (G, dS) being a quasi-isometric embedding.

Examples 4.21. 1. If G = BS(1, 2) = 〈a, t | t−1at = a2〉 and H = 〈a〉, then ∆H
G (n) ∼ 2n.

2. If G is the Heisenberg group and H = 〈c〉, then ∆H
G (n) ∼ n2.

3. A fundamental property of hyperbolic groups is that every cyclic subgroup is undistorted.

We refer to [9] for a proof of the following proposition.

Proposition 4.22. Let G be a nilpotent group of class k let K = γk(G). Then ∆K
G ∼ nk.

This proposition together with the above argument complete the proof of Theorem 4.19.

4.3 Solvable and Linear groups

Definition 4.23. A group G is called solvable if there exists a sequence of normal subgroup of G

G = G0 D G1 D ... D Gk = {1}

Such that each quotientGi/Gi+1 is abelian. If such a sequence exists with each quotientGi/Gi+1

cyclic, then G is called polycyclic.

If G is nipotent, then since each term in the lower central series is finitely generated this sequence
can be refined to a sequence with cyclic quotients, hence all nilpotent groups are polycyclic. Clearly
all polycyclic groups are solvable.

Theorem 4.24 (Milnor-Wolf). If G is solvable, then either G has exponential growth or G is
virtually nilpotent.

Definition 4.25. A group G is called linear if for some field k and some n ≥ 1, G is isomorphic
to a subgroup of GL(n, k).
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Theorem 4.26 (Tit’s altenerative). If G is finitely generated and linear, then either G is virtually
solvable or G contains a subgroups isomorphic to F2.

Theorem 4.27. If G is either solvable or linear, then either G has exponential growth or G is
virtually nilpotent and hence has polynomial growth.

In light of the above results, Milnor asked whether or not there exists groups whose growth is
both super-polynomial and sub-exponential. These groups are called groups of intermediate growth,
there existence was proven by Grigorchuk.

Theorem 4.28. Groups of intermediate growth exist.

4.4 Gromov’s polynomial growth theorem-overview

Theorem 4.29. Suppose G is a finitely generated group with γG � nd for some d ∈ N. Then G is
virtually nilpotent.

Since we will be frequently passing to subgroups of finite index throughout the proof, we first
observe the following basic properties of this process.

Exercise 4.30. Let G be a finitely generated group.

1. If H1 and H2 are finite index subgroups of G, then H1 ∩H2 is a finite index subgroup of G.

2. If H1 is a finite index subgroup of G and H2 is a finite index subgroup of H1, then H2 is a
finite index subgroup of G.

3. For any i ≥ 1, G has only finitely many subgroup of index i.

4. If ϕ : G → H is a homomorphism and H1 is a finite index subgroup of H, then ϕ−1(H) is a
finite index subgroup of G.

The main step in proving this theorem is the following:

Theorem 4.31. Suppose G is a finitely generated group with γG � nd for some d ∈ N. Then there
exists a non-trivial homomorphism ϕ : G1 → Z. Where G1 is a fintie index subgroup of G.

Note that passing to a subgroup of finite index is necessary in this theorem. The infinite dihedral
group D∞ is generated by two elements of order two, hence there is no non-trival map D∞ → Z.
However D∞ is itself virtually Z and hence has linear growth. Note also that D∞ is solvable of
class 2.

Exercise 4.32. Prove that for a finitely generated group G, there exists a non-trivial homomorphism
ϕ : G→ Z if and only if the abelianization G/[G,G] is infinite.

Exercise 4.33. Let G be virtually solvable. Prove that there exists a non-trivial homomorphism
ϕ : G1 → Z where G1 is a fintie index subgroup of G

Gromov’s theorem follows easily from Theorem 4.31 together with the following lemma.

Lemma 4.34. Let G be finitely generated and let ϕ : G→ Z be a non-trivial homomorphism with
kernel K. Then
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1. If γG(n) � nd then K is finitely generated and γK(n) � nd−1.

2. If K is virtually solvable then G is virtually solvable.

Proof. (1). Let s ∈ G such that ϕ(s) = 1, and let t1, ..., tm ∈ K such that G = 〈s, t1, ..., tm〉. Let
sj,i = s−jtis

j . Since K is normal each sj,i ∈ K. Morever, if W is a word in S = {s, t1, ..., tm}, then
W represents an element of K if and only if the number of occurences of s minus the number of
occurences of s−1 is zero. It is straightforward to show that any such word is equal to a product of
the elements sj,i for j ∈ Z and 1 ≤ i ≤ m. Hence this set of elemets generates K.

Now for a fixed 1 ≤ i ≤ m consider A = {sε00,is
ε1
1,i...s

εn
n,i | εj ∈ {0, 1} for 1 ≤ j ≤ n}. Since each

|sj,i|S ≤ 2j+1, each g ∈ A satisfies |g|S ≤
∑n

j=0(2j+1) ≤ n2. There are � n2d elements of G inside

Bn2(1) but there are 2n+1 sequences (ε0, ..., εn) with each εj ∈ {0, 1}. Hence for some sufficiently
large n, where are two distinct such sequences (ε0, ..., εn) and (δ0, ..., δn) with εn 6= δn such that

sε00,is
ε1
1,i...s

εn
n,i = sδ00,is

δ1
1,i...s

δn
n,i.

Assuming εn = 1 and hence δn = 0, we get

sn,i = s
−εn−1

n−1,i s
−ε1
1,i s

−ε0
0,i s

δ0
0,is

δ1
1,i...s

δn−1

n−1,i.

Hence sn,i ∈ 〈s0,i, ..., sn−1,i〉. Conjugating the above equality by s gives that sn+1,i ∈
〈s0,i, ..., sn,i〉 = 〈s0,i, ..., sn−1,i〉, so by induction sj,i ∈ 〈s0,i, ..., sn−1,i〉 for all j ≥ n. Repeating
this argument for each 1 ≤ i ≤ m gives a finite generating set for K.

Hence we can assume that T = {t1, ..., tm} is a finite generating set for K. Then {gsi | g ∈
K, |g|T ≤ n

2 , 1 ≤ i ≤ n
2 } ⊆ BG

n (1), and this set contains |BK
n
2

(1)| · n2 elements. Hence γK(n2 ) ≤
2
nγG(n) � nd−1.

(2). Let K1 be a finite index solvable subgroup of K. Let K2 be the intersection of all conjugates
of K1 in K; since there are only finitley many of these K2 will again be a finite index subgroup,
but now K2 is also normal in K. Let G1 = 〈K2, s〉. Since K2 is normal in K, K ∩G1 = K2, that
is K2 is equal to the kernel of ϕ|G1 . Since K2 is solvable and G1/K2

∼= Z, G1 is solvable.

If k1, ..., kn are a set of coset representatives for K2 in K, then K = ∪ni=1kiK2. But G = KG1

and K2 ⊂ G1, so G = ∪ni=1kiG1, hence G1 has finite index in G.

Proof of Gromov’s Theorem given Theorem 4.31. We induct on d. If d = 0 then G is finite and the
theorem is trivial. Assume now that the theorem holds for all finitely generated groups of growth
� nd−1 and G satisfies γG(n) � nd. Hence G has a non-trivial homomorphism to Z by Theorem
4.31, and by part 1 of the previous lemma the kernel K of this map has growth � d− 1. Hence the
inductive hypothesis implies that K is virtually nilpotent, so by part 2 of the lemma G is virtually
solvable. Hence the Milnor-Wolf Theorem implies that G is virtually nilpotent.

In order to prove Theorem 4.31, Gromov constructs a space Y on which G acts by isometries.
This space Y is called an asymptotic cone, we will study the construction in the next subsection.
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Theorem 4.35. If G is finitely generated and then there exists a metric space Y together with an
action of G on Y by isometries such that Y is complete, geodesic, and homogeneous. If, in addition,
γG(n) is bounded by a polynomial, then Y is locally compact and finite-dimensional.

Remark 4.36. Since Y is a complete, locally compact, geodesic metric space it is also proper, that
is all closed balls in Y are compact, by the Hopf-Rinow Theorem.

Given such a space we can apply deep results of Gleason-Mongomery-Zippin which gave a
solution to Hilberts 5’th problem.

Theorem 4.37. Give Y as in Theorem 4.35, Isom(Y ) is a lie group with finitely many connected
compenents.

Gromov’s proof of Theorem 4.31 is based on studying the action on G on Y and using properties
of lie groups together with the Tit’s alternative.

4.5 Asymptotic cones

Gromov’s construction is the space Y is based on creating a notion of limits for metric spaces;
That is Gromov described what it means for (certain types of) sequences of metric spaces (Xi, di)
to converge to a limiting metric space Y . This convergence is now called Gromov-Hausdorff con-
vergence. Van den Dries and Wilkie showed how some tools from non-standard analysis could be
used to give another, similar type of limiting procedure on metric spaces which simplified Gromov’s
construction. This is the approach we will take.

Definition 4.38. An ultrafilter (on N) is a finitely additive probability measure µ : 2N → {0, 1}.
That is, µ(N) = 1 and for any disjoint sets A and B, µ(A ∪B) = µ(A) + µ(B).

An ultrafilter is called principal if for some finite A ⊆ N , µ(A) = 1. Equivalently, µ is principle
if for some x ∈ N, for any A ⊆ N µ(A) = 1 if and only if x ∈ A.

A non-principal ultrafilter is an ultrafilter such that µ(A) = 0 for all finite A ⊆ N.

Throughout the rest of this section, we will fix a non-principal ultrafilter ω. Note that the
existence of such an ultrafilter is equivalent to the axiom of choice. Given a property P which
depends on a natural number i, we say P holds µ–almost surely if µ({i | P holds for i}) = 1.

Definition 4.39. Let ai be a sequence of real numbers. Then limµ ai = a if for all ε > 0,
µ({i | |ai−a|)}) = 1. In this case, a is called the µ–ultra-limit of the sequence (ai). If for all N ≥ 0,
µ({i | ai ≥ N}) = 1 then we say limµ ai =∞. limµ ai = −∞ is defined similarly.

If the ordinary limit exists then it is equal to the µ–ultra-limit (since µ is non-principal). The
advantage of using ultra-limits is that they always exist; that is, for any sequence (ai) of real numbers
limµ ai is a well-defined element of R ∪ {±∞}. This follows easily from the same argument as the
standard proof that every sequence on a closed interval has a convergent subsequence. Similarly,
the standard argument that limits are unique also shows that ultra-limits are unique. In addition,
It is easy to see that if limµ ai = a then some subsequence of ai converges to a. From this is is easy
to derive that all of the standard limit laws from calculus still apply to µ–ultra-limits (the limit of
a sum is the sum of the limits, etc).
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Given a sequence of sets Xi, the ultra-product of Xi with respect to µ is defined as the set of
sequences (xi) with xi ∈ Xi modulo the equivalence relation (xi) ∼ (yi) if µ({i | xi = yi}) = 1. We
denote this ultra-product by ΠµXi. When each Xi has some fixed (first-order) structure i.e. if each
one is a group, ring, poset, graph, ect, then the ultra-product inherits that same structure. When
each Xi is equal to a fixed X, this is called an ultra-power of X and denoted by Xµ.

Suppose now that (Xi, di) is a sequence of metric spaces. Let us first consider the ultra-product
ΠµXi with the function d : ΠµXi → R ∪ {∞} which is d((xi), (yi)) = limµ di(xi, yi). This function
d does satisfy the triangle inequality, but it fails to be a metric for a number of reasons. First of
all, there can be distinct sequences (xi) and (yi) such that d((xi), (yi)) =∞. For each space, let oi
be some fixed basepoint in Xi. and consider only the {(xi) ∈ ΠµXi | limµ di(oi, xi) <∞}. On this
subset the triangle inequality implies that all distances will be finite. However, there may still be
distinct sequences (xi) and (yi)) such that d((xi), (yi)) = 05. This condition defines an equilvalence
relation ∼ on the set of sequenes; that is (xi) ∼ (yi) if and only if d((xi), (yi)) = 0. If idenitify any
two sequences which are equivalent in this way then we will get that the induced function d on is
an honest, well-defined metric on the quotient. That is,

µ

lim (Xi, oi) = {(xi) ∈ ΠXi |
µ

lim di(oi, xi) <∞}/ ∼

With the metric d defined by d((xi), (yi)) = limµ di(xi, yi). This space is called the µ–ultra-limit
of the metric spaces Xi. Points in the space limµ(Xi, oi) are equivalence classes of sequences, but
we will often abuse notation by thinking of the sequences themselves as the points. However, it
is important to remember that not every sequence in ΠXi defines a point in the ultra-limit, only
sequences which are a finite distance from the sequence of basepoints.

The asympotic cone of a space X is a special case of the above construction. Let (X, d) be
a metric space, let oi ∈ X, and let ei be a sequence of real numbers with ei → ∞. Let Xi be
the metric space (X, d/ei), that is Xi is the same as X with the metric re-scaled by 1

ei
. The the

asymptotic cone of X with respect to oi and ei is defined by Coneµ(X, ei, oi) = limµ(Xi, oi).

If X ′ ⊆ X, and each oi ∈ X ′, then Coneω(X ′, ei, oi) ⊆ Coneω(X, ei, oi).

Lemma 4.40. If X ′ is an ε-quasi-dense subset of X, then there exists o′i ∈ X ′ such that
Coneω(X ′, ei, o

′
i) = Coneω(X, ei, oi).

Proof. Choose o′i ∈ X ′ such that d(oi, o
′
i) ≤ ε. Then limµ d(oi,o

′
i)

ei
≤ limµ ε

ei
= 0. Hence (oi) and

(o′i) are the same point in Coneω(X, ei, oi), and it follows that Coneω(X, ei, oi) = Coneω(X, ei, o
′
i).

Now Coneω(X ′, ei, o
′
i) is a subset of Coneω(X, ei, o

′
i) by definition. However, for any point (xi) ∈

Coneω(X, ei, o
′
i), we can choose x′i ∈ X ′ with d(xi, x

′
i) ≤ ε. By the same arguement as above (xi)

and (x′i) define the same point in Coneω(X, ei, o
′
i), hence Coneω(X ′, ei, o

′
i) = Coneω(X, ei, oi).

Example 4.41. Cone(Z, ei, (0)) is isometric to R. First, by the previous Lemma, Cone(Z, ei, (0)) =
Cone(R, ei, (0)). Now consider the function f : R → Cone(R, ei, (0)) defined by f(x) = (xei).This

is a well-defined point of Cone(R, ei, (0)) since limµ |xei|
ei

= |x| <∞. Furthermore, for any x, y ∈ R,

d(f(x), f(y)) = limµ |xei−yei|
ei

= |x− y|. Hence f is an isometric embedding.

5At this point d is a pseudo-metric. What follows is the standard way to build a metric space out of a pseudo
metric space.
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It only remains to show that f is surjective. Let (xi) ∈ Cone(R, ei, (0)) with d((0), (xi)) = x.

This means that limµ |xi|
ei

= x. Suppose that xi ≥ 0 µ.–almost surely. Then f(x) = (xi), otherwise
f(−x) = (xi).

Generalizing the above example, for Zn the the word metric coming from the standard gener-
ating set and any scaling sequence (ei), Cone(Zn, ei) is isometric to Rn with the `1–metric.

In general, the construction of the asymptotic cone depends on all of the choices made in the
construction.

We start by listing some basic properties of the asymptotic cone.

Definition 4.42. A metric space X is called homogeneous if for any x, y ∈ X there exists an
isometry f : X → X such that f(x) = y.

Lemma 4.43. Let X be any metric space, oi a sequence of points in X and ei a sequence of real
numbers ei →∞. Then Y = Cone(X, ei, oi) is complete, and

1. If X is homogeneous then Y is homogeneous and independent of the sequence of basepoints
(up to isometry).

2. If X is geodesic then Y is geodesic.

Proof. The proof that Y is complete is a standard diagonal argument, only a slight variation of the
proof that R constructed as Cauchy sequences of rationals is complete. For a detailed proof, see
[22].

Suppose X is homogeneous and (xi), (yi) ∈ Y . Let fi be an isometry of xi such that f(xi) = yi.
Let f : Y → Y be defined by f((ai)) = (fi(ai)). Since each fi is an isometry it is easy to see that
f is an isometry and clearly f((xi)) = (yi). Similarly, if oi and o′i are two sequences of basepoints
and fi(oi) = o′i, then the corresponding f is an isometry from Cone(X, ei, oi) to Cone(X, ei, o

′
i)

Suppose X is a geodesic metric space and x = (xi), y = (yi) are points in Y . Let li = d(xi,yi)
ei

,
and let γi : [0, liei] → X be a geodesic from x to y. Note that l = limµ li is equal to d(x, y) Let
γ : [0, l]→ Y be defined by γ(t) = (γi(tei)), where if t > li we let γi(tei) = yi. It is a straightforward
computation to show that γ is a geodesic from x to y.

Note that the final part of the proof shows that any two points in Y can be connected by a
geodesic which is a limit of geodesics in X. However, Y may also contain geodesics which are not
limits of geodesics from X.

We will assume from now on that all spaces under consideration are homogeneous, hence the
previous Lemma implies that each asymptotic cone is independent of the choice of basepoints.
Hence from now on we will supress this from the notation, that is we will denote the asymptotic
cone asociated to a scaling sequence (ei) by Coneµ(X, (ei)).

Lemma 4.44. If X1 ∼qi X2, then for any scaling sequence (ei), Coneµ(X1, (ei)) and
Coneµ(X2, (ei)) are bi-lipscitz equivalent. In particular, they are homeomorphic.
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Proof. Exercise.

Remark 4.45. This Lemma implies that topological properties of the asymptotic cone are quasi-
isometry invariants of the space X.

We return now to the case where G is group generated by a finite set S. By Lemma 4.40, we will
get the same space whether we consider an asymptotic cone of (G, dS) or of Γ(G,S). Since (G, dS)
is homogeneous we get that any asymptotic cone is homogeneous and independent of the choice of
basepoints; for convenience we will always choose the basepoints to be the constant seqence (1).
Since Γ(G,S) is geodesic we get that any asymptotic cone is geodesic. Note that geodesic spaces
are always (path) connected and locally (path) connected. By Lemma 4.44 the asymptotic cones of
G are independent of the choice of finite generating set up to bi-lipschitz equivalence. In general,
however, the asymptotic cone does depend on the choice of scaling sequence (ei). Hence we will
denote the asymptotic cone of G with respect to the scaling sequence (ei) by Coneµ(G, (ei)), and
note that this is well-defined up to bi-lipshitz equivalence.

Note that the action of G on itself by left multiplication induces an action of Gµ(ei) = {(gi) ∈
Gµ | limµ |gi|S

ei
< ∞} on Cone(G, (ei)); that is for any (gi) ∈ Gµ and any (xi) ∈ Cone(G, (ei)),

(gi) · (xi) = (gixi). Since G naturally embeds into Gµ as the (equivalence classes of) constant
sequences, we get an induced action of G on Cone(G, (ei)) by isometries.

Thus we have shown the first part of Theorem 4.35. We now show the second part.

Definition 4.46. A subset S of a metric space X is called η-separated if for all x, y ∈ S, d(x, y) > η.

Lemma 4.47. If G is finitely generated and γG(n) ≤ nd, then for some (ei) Cone(G, (ei)) is locally
compact and finite dimensional.

Proof. Fix ε > 0. We first show the following:

Claim: For some sequence (ei) satisfying log i ≤ ei ≤ i, for any j ≥ 4 any ei
j –separated subset

in B ei
4

(1) has at most jd+ε elements ω–almost surely.

The proof of this claim is quite technical, we refer to [9] for a full proof. The basic idea is
to choose some ji for which the claim does not hold and then cover each B i

4
(1) by disjoint balls

of radius i
2j1

. Then we can find j2 such that the claim does not hold for the sequence i
j1

and

cover the corresponding balls by disjoint balls of radius i
2j1j2

. Repeating this process using non-
standard induction will eventually yield some large ball which contains too many points for the
given polynomial bound on the growth function of the group.

Let ei be the sequence for which the claim holds. Let δ > 0 and choose j ≥ 4 such that
1
j < δ. The claim gives a uniform bound of jd+ε on the size of a 1

j –separated subset of B 1
4
(1) in

the metric space (G, dSei ). Hence every 1
j separated subset of B 1

4
(1) in Cone(G, (ei)) also has at

most jd+ε elements. Choosing a maximal 1
j –separated subset we get that this ball is covered by

finitely many balls of size δ for any δ > 0, i.e. B 1
4
(1) is totally bounded. Since Cone(G, (ei)) is a

complete metric space, the Heine-Borel theorem implies that the closure of B 1
4
(1) is compact, and

since Cone(G, (ei)) is homogeneous it follows that it is locally compact.
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Next we show that the asymptotic cone is finite dimensional. Since we are working in a metric
space the usual topological covering dimension is bounded above by Hausdorff dimension. Hence is
suffices to show that the asymptotic cone has finite Hausdorff dimension. Now, suppose α > d+ ε.
As above, for all j ≥ 4 B 1

4
(1) can be covered by t balls of radius 1

j with t ≤ jd+ε. This implies that

the Hausdorff measure

µα(B 1
4
(1)) ≤

t∑
i=1

(
1

j
)α ≤ jd+ε−α → 0 as j →∞

Hence the Hausdorff dimension of B 1
4
(1)) is at most α. Now Cone(G, (ei) is a complete, locally

compact, geodesic metric space, and it follows that all closed balls in Cone(G, (ei)) are compact.
Hence Cone(G, (ei) can be covered by countably many balls of radius 1

4 , since µα is countably
additive we get that µα(Cone(G, (ei)) = 0. Hence DimHaus(Cone(G, (ei)) ≤ α.

Remark 4.48. Since α and ε are abitrary in the above proof, we in fact get that
DimHaus(Cone

µ(G, (ei)) ≤ d.

Given (ei) as in the previous Lemma, we let Y denote Coneµ(G, (ei) from now on.

Finally, in order to complete the proof of Gromov’s polynomial growth theorem we need the
following lemma about the action of G on the asymptotic cone. Let η : Gµ(ei) → Isom(Y ) be
the homomorphism corresponding to this action, and let K denote the kernel of η; that is, K =
{g ∈ G | gx = x ∀ x ∈ Y }. Note that g ∈ K if and only if for all x = (xi) ∈ Coneµ(G, (ei),

limµ d(xi,gxi)
ei

= 0.

Isom(Y ) is a lie group with a topology generated by basic open sets around id of the form
UN,ε = {f | d(x, f(x)) ≤ ε ∀ x ∈ BN (1)}.

Lemma 4.49. Suppose K is a finite index subgroup of G, and suppose K is not virtually abelian.
Let T be a finite generating set for K. Then for all neighborhoods U of id in Isom(Y ) there exists
a sequence (gi) ∈ Gµ such that

1. For all k ∈ K, (g−1i kgi) ∈ Gµ(ei).

2. For some t ∈ T , η(t) ∈ U .

In particular, there is a homomorphism ηU : K → Isom(Y ), namely ηU (k) = (g−1i kgi), such that
the image of ηU has a non-trivial intersection with U .

Proof. For a fixed t ∈ T , if {|g−1tg|S | g ∈ G} is bounded then t has finitely many conjugates in
K, hence the centralizer of t is a finite index subgroup of K. Since the center K is equal to the
intersection of the centralizers of the elements of T and K is not virtually abelian, at least one
t ∈ T has infinite index centralizer and hence {|g−1tg|S | g ∈ G} is unbounded.

Next we note that for k ∈ K, g, x ∈ G,

dS(x, g−1kgx) ≤ dS(x, kx) + 2|g|S (4)
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The proof of this inequality is straitforward and left as an exercise for the reader.

Now let Uε,N be a basic open set around id in Isom(Y ). From above there exists a sequence (hi)
such that for some t ∈ T , |h−1i thi|S ≥ εei. Let hi = t1,i...tli,i with each tj,i ∈ T . Let gj,i = t1,i...tj,i
(g0,i = 1). Let

M j
i = max

t∈T,x∈BNei
(1)
d(x, g−1j,i tgj,ix)

By assumption, M li
i > εei and since t ∈ K, M0

i < εei µ–almost surely. By 4, |M j
i −M

j+1
i | ≤

2|ti,j |S ≤ 2C, where C = maxt∈T |t|S . Hence there exists some 1 ≤ ji ≤ li such that

|M ji
i − εei| ≤ 2C. (5)

Define gi := gji,i. 5 implies that for any t ∈ T , (g−1i tgi) ∈ Gµ(ei). Since any k ∈ K is a finite product

of elements of T , the same holds for all k ∈ K by the triangle inequality. Hence k → (g−1i kgi)
is a homomorphism K → Gµ(ei), and hence we get an induced action of K on Y . We denote the

corresponding homomorphism ηU : K → Isom(Y ). Applying 5 again we get that for all t ∈ T and
for all x ∈ BN (1), d(x, tx) ≤ ε, hence ηU (t) ∈ U . Furthermore, if t and xi realize the maximum in
the definition of M ji

i µ–almost surely, then d(xi, txi) = ε, thus ηU (t) 6= id.

Finally, the last ingredient in the proof of Gromov’s theorem is the following theorem of Jordan
about finite subgroups of Lie groups.

Theorem 4.50 (Jordan’s Theorem). Let L be a lie group with finitely many connected components.
Then there exists q = q(L) such that every fintie subgroup of L has an abelian subgroup of index
≤ q.

Proof of Theorem 4.31. Given a finitely generated group G, we have constructed a space Y as
above and a homomorphism η : G → Isom(Y ), where Isom(Y ) is a lie group with finitely many
connected components. Let L be the connected component of the identity in Isom(Y ); replacing
G by a finite index subgroup we can assume that η : G→ L. Now there are two cases.

Case 1: The image of G in L is infinite. In this case we consider the adjoint representation,
ad : L → GL(n,R), whose kernel is the center of L. If ad(η(G)) is finite, then η(G) has a finite
index subgroup which is contained in the center of L. Hence a fintie index subgroup of maps to an
abelian group (namely Z(L)) with infinite image, so we are done by Exercise 4.32. If ad(η(G)) is
infinite, then since it is a quotient of G its growth is polynomially bounded, and hence the Tit’s
alternative implies that ad(η((G)) is virtually solvable. Thus a finite index subgroup of ad(η(G))
admits a non-trivial map to Z by Exercise 4.33, and so a finite index subgroup of G itself admits
such a map.

Case 2: The image of G in L is finite. In this case K = Ker(η) is a finite index subgroup of
G. If K is virtually abelian, then a finite index subgroup of K is an infinite abelian group which
clearly admits a non-trivial map to Z. Hence we can assume K is not virtually abelian and apply
Lemma 4.49. Let q be given by Jordan’s theorem and let H be the intersection of all subgroups of
K of index ≤ q.
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Since L is a lie group, it has the no small subgroups property, that is for every n there exists
an open neighborhood U around id which contains no non-trivial elements of order n (this can
be easily derived from the fact that for any open set U around the orign in Rn there exists an
open set V such that for all v ∈ V , {v, 2v, ..., nv} ⊂ U and the fact that the exponential map is a
diffeomorphism from a small neighborhood of the origin in Rn to a small neighborhood around id
in L). Hence for any n ≥ 1 there a homomorphism ηU : K → L and an element t ∈ K such that
ηU (t) ∈ U \ {id}.Hence |ηU (K)| ≥ |〈ηU (t)〉| ≥ n. If some ηU (K) is infinite then we proceed as in
Case 1, so we can assume from now on that each ηU (K) is finite. By Jordan’s Theorem, ηU (K) has
a subgroup A of index at most q which is abelian. Hence η−1U (A) has index at most q in K, which

means that H ≤ η−1U (A). Thus ηU (H) is an abelian group with |ηU (H)| = |ηU (K)|
[ηU (H):ηU (K)] ≥

n
[H:K] . In

particular, H (which is a finite index subgroup of G) has arbitrarily large finite abelian quotients,
hence H/[H : H] must be infinite. Thus H has a non-trivial map to Z by Exercise 4.32.

Corollary 4.51. The following are equivalent for a finitely generated group G:

1. γG is equivalent to a polynomial.

2. γG is bounded by a polynomial.

3. G is virtually nilpotent.

Corollary 4.52. If G is quasi-isometric to a nilpotent group then G is virtually nilpotent.

Theorem 4.53. If G is quasi-isometric to an abelian group then G is virtually abelian.

Before leaving the world of asymptotic cones, we mention that they can be used to characterize
hyperbolic groups.

Theorem 4.54. G is hyperbolic if and only if every asymptotic cone is an R–tree.

5 Amenable Groups

6

5.1 Invariant measures and Folner sequences

Definition 5.1. A (discrete) group G is amenable if G has a finitely additive left-invariant prob-
ability measure. That is there exists a function µ : 2G → [0, 1] such that

1. For all disjoint sets A,B ⊆ G, µ(A ∪B) = µ(A) + µ(B)

2. For all A ⊆ G and g ∈ G, µ(gA) = µ(A).

3. µ(G) = 1.

6The main references for this section are [9] and [20].
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Example 5.2. Let G be a finite group. For any A ⊆ G, definte µ(A) = |A|
|G| . Clearly µ is a finitely

additive left-invariant probability measure, hence G is amenable.

Exercise 5.3. Show that G has a finitely additive left-invariant probability measure if and only if
G has a finitely additive right-invariant probability measure if and only if G has a finitely additive
bi-invariant probability measure.

Exercise 5.4. Let G amenable, prove that every subgroup of G is amenable and every quotient of
G is amenable.

This definition is short and beautiful, but for infinite groups it is difficult to verify. The following
more geometric definition is often useful. For conveience we give the definition for finitely generated
group but it can be easily adapted to all countable groups.

Let G be generated by a finite set S. Given A ⊆ G, define ∂A = {g ∈ G | dS(g,A) = 1} =
A · S4A .

Definition 5.5. Let G be generated by a finite set S. A Folner sequence for G is a sequence of
finite subsets of G, Fn, such that

|∂Fn|
|Fn|

→ 0 as n→∞

Exercise 5.6. Prove that Fn is a Folner sequence for G if and only if for all g ∈ G,

|gFn4Fn|
|Fn|

→ 0 as n→∞

As a consequence of this exercise, Folner sequences are independent of the choice of generating
set of G.

Remark 5.7. The condition in this exercise is used to define a Folner sequence for a countable
group.

Exercise 5.8. Consider Z with the standard generating set. Let Fn = [−n, n]. Then for all n,
|∂Fn| = 2 but |Fn| = 2n+ 1. Hence Fn is a Folner sequence for Z.

Theorem 5.9. G is amenable if and only if it contains a Folner sequence.

We will prove one direction of this theorem and refer to [20] for the other.

Proof. Suppose G contains a Folner sequence Fn. Let ω be a non-principal ultra-filter, and for each
A ⊆ G define

µ(A) =
ω

lim
n→∞

|A ∩ Fn|
|Fn|

Clearly µ(G) = 1. If A and B are disjoint, then for all Fn |(A∪B)∩Fn| = |A∩Fn|+ |B ∩Fn|,
hence µ(A ∪B) = µ(A) + µ(B).

Now, given g ∈ G,

µ(A) − µ(gA) = limω |A∩Fn|−|gA∩Fn|
|Fn| = limω |A∩Fn|−|A∩g−1Fn|

|Fn| ≤ limω |(A∩Fn)4(A∩g−1Fn)|
|Fn| ≤

limω |Fn∩g−1Fn|
|Fn| = 0.

Thus, µ is a finitely additive left-invariant probability measure on G.
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Given a left-invariant probability measure µ on G, there exists a left-invariant linear functional
`∞(G) → R given by integration with respect to µ, that is f →

∫
fdµ. This functional is left-

invariant with respect to the action of G on `∞(G), that for all f ∈ `∞(G) and for all g ∈ G,∫
g · fdµ =

∫
fdµ. Here g · f(x) = f(g−1x).

We now prove two more closure properties of amenable groups.

Lemma 5.10. Suppose H and K are amenable and there is a short exact sequence

1→ K → G→ H → 1.

Then G is amenable

Proof. Let ϕ : G → H with ker(ϕ) = K. Let µK and µH be finitely-additive, left-invariant prob-
ability measures on H and K respectively. Note that µK can be naturally extended to any coset
gK by defining µK(A) = µK(g−1A) for any A ⊆ gK. Now, given a subset A ⊆ G, we define a
function fA : H → R by fA(h) = µK(A ∩ ϕ−1(h)). Clearly fA ∈ `∞(H), so we can define µ(A) by
the formula

µ(A) =
1

2

∫
fAdµH

Clearly µ(G) = 1. If A and B are disjoint, then fA∪B = fA+fB, and hence µ(A∪B) = µ(A)+µ(B).
Now, given g ∈ G and A ⊆ G, for each h ∈ H gA ∩ ϕ−1(h) = A ∩ ϕ−1(ϕ(g−1)h), that is fgA =
ϕ(g) · fA. Hence the left-invariance of integration on H gives∫

fgAdµH =

∫
ϕ(g) · fAdµH =

∫
fAdµH

Hence µ(gA) = µ(A).

Lemma 5.11. If G1 ≤ G2 ≤ ... and G =
∞⋃
i=1

Gi where each Gi is amenable, then G is amenable.

Proof. If µi is a finitely additive left-invariant probability measure on Gi, then for each A ⊆ G we
can define µ(A) = limω(µi(A ∩Gi) where ω is a non-principle ultrafilter.

Combining together some previous theorems and exercises we get the following.

Theorem 5.12. The class of amenable group is closed under taking subgroups, quotients, exten-
sions, and direct limits.

Corollary 5.13. Every solvable group is amenable.

Definition 5.14. The smallest class of groups which contains all fintie and all abelian groups
and is closed under taking subgroups, quotients, extensions, and direct limits is called the class of
elementary amenable groups.

We now return to considering amenable groups from the more geometric perspective of Folner
sequences. We fix a group G generated by a finite set S for the rest of this section.
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Lemma 5.15. G is non-amenable if and only there exists constants D ≥ 2 and β > 1 such for any
non-empty finite set A,

|A+D| ≥ β|A|

Proof. If G is non-amenable, then there exists ε > 0 such that for any finite set A, |∂A| ≥ ε|A|.
Since A+1 = A t ∂A, it follows that |A+1| ≥ (1 + ε)|A|.

Now suppose for any non-empty finite set A, |A+D| ≥ β|A|. After possibly increasing D, we
can assume that β ≥ 2. Note that A+D = A ∪ ∂A+D−1, hence |∂A+D−1 \ A| ≥ |A|. If m = |S|,
then |∂A+D−1| ≤ mD−1|∂A|. In particular,

|∂A ≥ 1

mD−1 |∂A
+D−1| ≥ 1

mD−1 |A|

Thus |∂A||A| ≥
1

mC−1 holds for all finite sets A, so G has no Folner sequence and hence is non-
amenable.

Theorem 5.16. Every finitely generated group of sub-exponential growth is amenable.

Proof. Let G be a non-amenable group generated by a finite set S, let Bn denote the ball of radius
n centered at 1 with respect to the metric dS . Lemma 5.15 shows that there exists β > 1 such that
for all n,

|Bn+1| ≥ β|Bn|.

It follows inductively that |Bn+1| ≥ βn|B1|, hence

lim sup
n→∞

n
√
|Bn| ≥ β > 1.

Hence G has exponential growth.

Note that the converse of this does not hold, because there are solvable (hence amenable) groups
of exponential growth.

Theorem 5.17. Let G and H be finitely generated groups. If G is amenable and H ∼qi G, then
H is amenable.

Proof. Let f : G → H and g : H → G be (λ,C, ε) quasi-isometries which are quasi-inverse to each
other. Let K be a constant such that for all x ∈ G, d(x, g(f(x)) ≤ K. Assume that G is non-
amenable and D,β are given by Lemma 5.15. Let b be a constant such that f and g are both at
most b−−to−−1. After possibly increasing D, we can assume that β > b2.

Let A be a finite subset of G. By our choice of b, |f(A)| ≥ 1
b |A|. By Lemma 5.15, |f(A)+D| ≥

β|f(A)|. Now let y ∈ f(A)+D, and let y′ ∈ f(A) such that d(y, y′) ≤ D. Then d(g(y′), A) ≤ K, so
d(g(y), A) ≤ d(g(y), g(y′) + d(g(y), A) ≤ λD + C +K. This shows that

g(f(A)+D) ⊆ AλD+C+K .
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Hence

|AλD+C+K | ≥ |g(f(A)+D)| ≥ 1

b
|f(A)+D| ≥ β

b
|f(A)| ≥ β

b2
|A|

Therefore, H is non-amenable by Lemma 5.15.

5.2 Paradoxical decompositions

Example 5.18. F2 is not amenable. Suppose for the sake of contradiction that µ is a left-invariant
finitely additive probability measure on F2. Let {a, b} be a free generating set for F2. Let A± be
the set of reduced words in F2 that start with a±1 and B± the set of reduced words that start with
b±1. Note that F2 = a−1A+ ∪A−, and since these sets are disjoint 1 = µ(F2) = µ(a−1A+ ∪A−) =
µ(a−1A+) + µ(A−) = µ(A+) + µ(A−). Also, F2 = b−1B+ ∪ B−, so similarly 1 = µ(B+) + µ(B−).
But A± and B± are all disjoint, so µ(A+∪A−∪B+∪B−) = µ(A+) +µ(A−) +µ(B+) +µ(B−) = 2,
which is a contradiction.

Corollary 5.19. Any group containing F2 is non-amenable. In particular, every non-elementary
hyperbolic group is non-amenable and every linearly group is either virtually solvable or non-
amenable.

By embedding the free group into the group of rotations of the sphere, SO(3), one can use this
paradoxical decomposition of F2 to build a paradoxical decomposition of a closed ball in R3. This
is called the Banach-Tarski paradox, for details see [20].

6 Bass-Serre Theory

6.1 Graphs of groups

Bass-Serre theory gives a correspondence between splittings of a group and actions on trees. Here
a “splitting” really refers to a graph of groups decomposition, the simplest examples of which are
amalgamated products and HNN extensions.

Definition 6.1. Let G1 be a group with presentation 〈S1|R1〉 and G2 a group with presentation
〈S2|R2〉. Suppose C1 ≤ G1, C2 ≤ G2, and ϕ : C1 → C2 is an isomorphism. Then the amalgamted
product of G1 and G2 over C1 = C2 is the group given by the presentation

〈S1 t S2|R1 tR2 t {c = ϕ(c)|∀ c ∈ C1}〉

For the sake of notation, we typically refer to the isomorphic subgroups C1 and C2 by a single
letter C and denote the amalgamated produce of G1 and G2 over C by G1∗CG2. Note, however, that
this depends on the isomorphism ϕ even though this is supressed from the notation. Alternatively,
one can consider the inclusion maps C → C1 ≤ G1 and C → C2 ≤ G2 and define the amalgamted
product as the pushout of the corresponding diagram.

If C = {1}, then this is called the free product of G1 and G2 and denoted G1 ∗G2.

This construction occurs naturally in topology throught the well-konwn Van-Kampen Theorem
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Theorem 6.2. If a topological space X is the union of two open, path connected subspaces Y and
Z such that Y ∩ Z is non-empty and path connected, then

π1(X) ∼= π1(Y ) ∗π1(Y ∩Z) π1(Z)

Example 6.3. Let γ be simple closed curve on S2 which cuts the surface into two tori with boundary.
Each of these tori has a free fundamental group and γ is the boundary curve.

π1(S2) ∼= F2 ∗Z F2

Definition 6.4. Let G be a group given by a presentation 〈S, |R〉, and let C1, C2 be subgroups of
G with ϕ : C1 → C2 an isomorphism.The HNN-exention of G over C1 = C2 is given by

〈S ∪ {t}|R ∪ {t−1ct = ϕ(c)|∀ c ∈ C1}〉

Topologically HNN exensions can be realized by glueing a cylinder onto a space X with the ends
attaching to homeomorphic subspaces of X. Again, we typically identify the isomorphic group C1

and C2 and write them with a single letter C. We denote the HNN-extension by G∗C .

Example 6.5. BS(n,m) = 〈a, t|t−1ant = am〉. These groups, called Baumslag-Solitar groups, are
exatly the HNN-exentions of Z. Note that Z2 = BS(1, 1).

A group G splits as an HNN-extension if G ∼= A∗C or as an amalgamated product if G = A∗CB.
The splitting as an amalgamated produce is called trivial if either C = A or C = B. Any other
splitting of G is called non-trivial.

This is a simplified version of the main theorem of Bass-Serre Theory.

Theorem 6.6. A group G acts on a tree with no global fixed point if and only if G splits non-trivially
as an HNN-extension or an amalgamated product.

In order to state the full version of the fundamental theorem we need to define a graph of
groups. For this purpose, it is most convenient to word with Serre’s definition of a graph.

Definition 6.7. A graph is composed of two sets, V and E, together with a function α : E → V
and fixed point free involution −1 : E → E. We also define ω : E → V by ω(e) = α(e−1). For
simplicity we denote a graph by the pair (V,E).

Definition 6.8. A graph of group G consists of a connected graph (V,E) and a collection of vertex
groups, {Gv|v ∈ V }, and edge groups, {Ge|e ∈ E} such that Ge = Ge−1 , together with injective
homomorphisms αe : Ge → Gα(e). We refer to (V,E) as the underlying graph of G.

Given a graph of groups G, a path in G is a sequence (g0, e1, g1, ..., en, gn) such that (e1, ..., en)
is an edge path in the underlying graph, and each gi ∈ Gvi where vi = α(ei+1). We define an
equivalence relation on paths generated by the following two elementary equivalences:

1. (..., g, e, 1, e−1, h, ...) ∼ (..., gh, ...)

2. (..., g, e, h, ...) ∼ (..., gαe(x), e, ωe(x
−1)h, ...) for any x ∈ Ge.
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Definition 6.9. Let G be a graph of groups. The fundamenatal group of G, π1(G), is defined as
the set of equivalences class of closed paths based at a fixed vertex with multiplication given by
concatenation.

It is straitforward to check that up the isomorphism π1(G) is independent of the choice of
basepoint.

Examples 6.10. 1. If all vertex groups of G are trivial, then π1(G) is just the usual fundamenal
group of the underlying graph (V,E). In particular, it is a free group.

2. If G has one vertex v and one edge e, then π1(G) ∼= Gv∗Ge .

3. If G has two vertices u and v and one edge e, then π1(G) ∼= Gv ∗Ge Gu.

If G = π1(G), then G is called a graph of groups decomposition of G. If G has one edge, i.e. if it
corresponds to an amalgamated product or HNN-extension, then it is called a one-edge splittings
of G.

We now state the main theorem of Bass-Serre Theory:

Theorem 6.11. Let G be a group and let G be a graph of groups decomposition of G. Then there
exists a tree TG, called the Bass-Serre tree on which G acts by automorphisms with each vertex
stabilizer conjugate into a vertex group of G, each edge stabilizer conjugate into an edge group of
G, and TG/G isomorphic to the underlying graph of G.

Conversely, if G acts by automorphisms on a tree T without inverting edges, then G has a graph
of groups decomposition GT with underlying graph T/G such that for each vertex v and each edge
e of T/G, Gv is the stabilizer of a lift of v and Ge is the stabilizer of a lift of e.

Morever, G and GTG are isomorphic as graphs of groups and T and TGT are isomorphic as
G–spaces.

We give only a brief sketch of the proof and refer to [33] for details.

Given G, define TG to be the set of paths (g0, e1, g1, ..., en, 1) based at a fixed vertex v0 modulo
the same equivalenc relation as before. There is a natural (covering) map TG → (V,E) given by
(g0, e1, g1, ..., en, 1)→ ω(en). The action of π1(G) on TG is given by [p][q] = [qp], where p is a closed
path based at v0. It remains to show that TG is, in fact, a tree.

Given G acting on a tree T , define (V,E) to be the graph T/G. To each vertex v, choose a lift ṽ
and define Gv = StabG(v). Note that for any two distinct lifts ṽ and ṽ′, there exists g ∈ G such that
gṽ = ṽ′, hence g−1StabG(ṽ)g = StabG(ṽ′). Hence the isomorphism type of Gv is independent of the
choice of lift. For each edge e we define Ge similarly using a lift e, and if v = α(e) then there exists
some g ∈ G such that gṽ = α(ẽ). Hence Ge = StabG(ẽ) ⊆ StabG(α(ẽ) = gStabG(ṽ)g−1 = gGvg

−1,
and this allows us to define the inclusion map αe : Ge → Gv. It remains to show that the map
sending each StabG(ṽ)→ Gv extends to an isomorphism G ∼= π1(G).

Here are some theorems which follow easily from the main theorem of Bass-Serre Theory.
Corollaries:

Theorem 6.12. G is a free group if and only if G has a free action on a tree.

Corollary 6.13. Every subgroup of a free group is a free group.
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Theorem 6.14 (Kurosh). Let H be a subgroup of a free product ∗i∈IGi. Then H is a free products
of subgroups of conjugates of the Gi’s and a free group.

6.2 Groups acting on trees

Let T be a tree and let f be an isometry of T . f is called elliptic if it fixes a point of T , that is
for some x ∈ T f(x) = x. Let `(f) = infx∈T d(x, f(x)). f is called hyperbolic if `(f) > 0. Clearly
every elliptic isometry is not hyperbolic, but in general (hyperbolic) metric spaces there may be
isometries which are not hyperbolic or elliptic (i.e. parabolic isometries). For trees, however, these
do not occur.

Lemma 6.15. Let f be an isometry of a tree T . Then either f is hyperbolic or elliptic. Morever,
if f is hyperbolic then T contains a unique embedded line, called the axis of f on which f acts as
a non-trivial translation.

Proof. Let f be an isometry of a tree T , and let x ∈ T . Let m be the midpoint of the segment
[x, f(x)]. Let o be the center of the tripod with vertices x, f(x), and f2(x).

Case 1: d(x, o) ≤ d(x,m). In this case m is on the segment [o, f(x)] and f(x) is on the segment
[f(x), f2(x)] = [f(x), o] ∪ [o, f2(x)]. However

d(f(x),m) = d(x,m) = d(f(x), f(m))

Hence f(m) = m and f is an elliptic isometry.

Case 2: d(x, o) < d(x,m). In this case o ∈ [m, f(m)] so f(o) ∈ [f(m), f2(m)]. Then d(o, f(o)) =
d(f(x), f2(x)) − 2d(o, f(x)) = d(x, f(x) − 2(12d(f(x), f2(x)) − d(o, f(m)) = 2d(o, f(m) If follows
that f(m) ∈ [o, f(o)] ⊆ [m, f2(m)]. Hence, the f -translates of the segment [m, f(m)] form a line
that is invariant under f .

If f is a hyperbolic isometry, then it acts as a translation on its axisy by `(f).

Lemma 6.16. Suppose f, g are isometries of a tree T . If Fix(f) ∩ Fix(g) = ∅, then fg is a
hyperbolic isometry.

Proof. Let x ∈ Fix(f) and y ∈ Fix(g) such that d(x, y) = d(Fix(f), F ix(g)). Observe that
d(y, fg(y)) = d(y, x) + d(x, fg(y)), otherwise y would not be the closest point to x fixed by g. But
d(x, fg(y)) = d(f(x), fg(y)) = d(x, y). Hence d(y, fg(y)) = 2d(x, y). Similarly d(y, (fg)2(y)) =
4d(x, y) = d(y, fg(y)), hence fg is a hyperbolic isometry.

Lemma 6.17. If f and g are hyperbolic isometries of a tree with disjoint axis, then fg is a
hyperbolic isometry.

Theorem 6.18 (Helly’s Theorem for trees). If Y1, ..., Yn are closed subtrees of a tree T and Ti∩Tj 6=
∅ for all i, j, then

n⋂
i=1

Yi 6= ∅
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Proof. If n = 3, choose xk ∈ Xi ∩Xj and let o be the center of the tripod x1, x2, x3. A standard
induction extends this to the general case.

A group G acting on a tree is elliptic if there exists x ∈ T such that gx = x for all g ∈ G.
Before we refered to this type of action as trivial.

Corollary 6.19. If g1, ..., gn are isometries of a tree and Fix(gi) ∩ Fix(gj) 6= ∅ for all i, j, then
〈g1, ...., gn〉 is elliptic.

Corollary 6.20. Suppose G is generated by a fintie set S and G acts on a tree T such that for all
s, t ∈ S, s is elliptic and st is elliptic. Then G is elliptic.

Corollary 6.21. If G is finite, then every action of G on a tree has a global fixed point.

Lemma 6.22. Ping Pong Lemma.

Lemma 6.23. Suppose g and h are hyperbolic isometries of a tree T such that Axis(g) ∩Axis(h)
is compact. Then there exists n ∈ N such that 〈gn, hn〉 ∼= F2.

This argument can be generalized to groups acting on hyperbolic metric spaces, in particular
the following is one of the main ingredients in the Tit’s alternative for hyprebolic groups.

Theorem 6.24. Let G be a hyperbolic group and let g and h be elements of infinite order. Then
there exists n ∈ N such that 〈gn, hn〉 ∼= F2.

6.3 Stallings Theorem and Dunwoody’s Theorem

Definition 6.25. Ends of a group.

Proposition 6.26. Every 2-ended group is virtually Z.

Theorem 6.27 (Stallings). Let G be a finitely generated group. Then G splits over a finite subgroup
if and only if e(G) > 1.

Corollary 6.28. If G splits over a finite subgroup and G ∼qi H, then H splits over a finite
subgroup.

Definition 6.29. A group G is called accessible if G has a graph of groups decomposition with
finite edge groups in which all vertex groups have at most one end. Such a graph of groups is called
a Dunwoody decomposition of G.

Theorem 6.30 (Dunwoody Accessibility). Every finitely presented groupis accessible.

Remark 6.31. Dunwoody also has an example of a finitely generated group which is not accessible.

We will sketch the main ideas in Dunwoody’s proof of both Stalling’s Theorem and Dunwoody’s
Accessibility Theorem; for details see [10]. We restrict to the case of a finitely presented group G.
Associated to a finite presentation of such a group is a 2–complex, L, called the presentation
complex whose univeral cover K = L̃ is called the Cayley complex (see Section 2.1)
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Definition 6.32. A track τ in a 2-complex K is a connected subset which satisfies

1. τ ∩K(0) = ∅

2. For each edge e, τ ∩ e is finite.

3. For each 2-cell σ, τ ∩σ consists of a finite collection of disjoint straight arcs connecting points
on ∂σ.

Dunwoody’s proof proceeds via the following steps:

1. If K has more then one end, then there exists a track τ which intersects finitely many edges
of K and which separates K into two infinite components.

2. A collection of minimal such tracks which do not intersect on edges of K can be rearranged
to gives a disjoint collection of minimal tracks.

3. Using such a rearrangment, one can find a minimal track τ such that for all g ∈ G, either
gτ = τ or gτ ∩ τ = ∅.

4. Given such a τ , the connected components of K \
⋃
g∈G gτ naturally form the vertices of a

tree T which two such vertices adjacent if they ar separated by a translate of τ .

5. If the stabilizer of one of these components is not one ended, a new set of tracks can be
constructed in this componenet as above an arranged to be disjoint from all the original
tracks. Note that the new set of tracks projects to a track on L disjoint from the projection
of the original track τ .

6. Finally, there is a univeral upper bound on the number of disjoint (non-parallel) tracks in
any finite 2-complex, so the above procedure cannot repreat indefinitely.

Papasoglu-Whyte showed that the one-ended vertex groups in a Dunwoody decomposition of a
finitely generated group are invariant under quasi-isometry. From this we derive the following:

Theorem 6.33. If G ∼qi Fk, then G is virtually a free group.

Proof. If G ∼qi Fk, then G is finitely presented and hence accessible. Fk has no one-ended sub-
groups, hence the Dunwoody decomposition of G has only finite vertex groups. The result now
follows from the fact that a graph of groups with all vertex groups finite is virtually free.

Staillings showed that ends can be described in terms of cohomology, in particlar if G has
cohomolgical dimension 1 then G is torsion-free and has at least 2 ends. Hence Stallings Theorem
implies the following, which was generalized to arbitrary (non-finitely generated) groups by Swan.

Theorem 6.34 (Stallings-Swan). G is a free group if and only if cd(G) = 1.
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