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Abstract. We prove that symmetric Meixner distributions, whose prob-
ability densities are proportional to |Γ(t + ix)|2, are freely infinitely di-
visible for 0 < t ¬ 1

2 . The case t = 1
2 corresponds to the law of Lévy’s

stochastic area whose probability density is 1/cosh(πx). A logistic distri-
bution, whose probability density is proportional to 1/cosh2(πx), is also
freely infinitely divisible.
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1. INTRODUCTION

The free convolution µ� ν of probability measures µ and ν on R is the distri-
bution of X + Y , where X and Y are free self-adjoint random variables following
the distributions µ and ν, respectively. A probability measure ν on R is said to be
freely infinitely divisible if, for any n ∈ {1, 2, 3, . . .}, there exists νn such that

ν = νn � . . .� νn.︸ ︷︷ ︸
n times

This concept was introduced in [17] and its basic characterization was established
in [8]. The most important freely infinitely divisible distributions are Wigner’s
semicircle law and the free Poisson law.

Recent work has increased examples of probability measures which are infini-
tely divisible in both senses, classical and free: Gaussian distribution [7], chi-square
distribution (1/

√
πx)e−x1[0,∞)(x) dx [6], positive Boolean stable law with stabil-

ity indexα ∈
(
0, 12

]
[5], and Student distribution 1

B(1/2,n−1/2)(1+x2)−n 1R(x) dx

for n = 1, 2, 3, . . . [10]. It is not yet clear whether a general theory of the intersec-
tion of free and classical infinite divisibility exists. We will add two more exam-
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ples, Meixner distributions and the logistic distribution, which may contribute to a
solution.

We will prove that symmetric Meixner distributions

ρt(dx) :=
4t

2πΓ(2t)
|Γ(t+ ix)|2 dx, x ∈ R,

are freely infinitely divisible for 0 < t ¬ 1
2 , where Γ(z) is the gamma function

defined by

Γ(z) =
∞∫
0

tz−1e−t dt, z > 0.

The gamma function satisfies the functional relation Γ(z + 1) = zΓ(z), which
extends Γ to a meromorphic function in C with poles at z = 0,−1,−2,−3, . . . (see
[1], Chapter 6). The measures ρt are probability distributions of a Lévy process,
called a Meixner process [16], since the characteristic function of ρt is given by

(1.1) ρ̂t(z) =

(
1

cosh(z/2)

)2t

.

Hence ρt is classically infinitely divisible for any t > 0. The measure ρt orthog-
onalizes Meixner–Pollaczek polynomials {P (t)

n (x)}∞n=0 which satisfy the recur-
rence relation (see [11])

xP (t)
n (x) = P

(t)
n+1(x) +

n(n+ 2t− 1)

4
P

(t)
n−1(x), n  1,

with initial conditions P (t)
0 (x) = 1, P

(t)
1 (x) = x.

If t = 1
2 , the measure ρ1/2 coincides with

µ1(dx) =
1

cosh(πx)
dx, x ∈ R,

which is the law of Lévy’s stochastic area1

1

2

1∫
0

(B1
t dB

2
t −B2

t dB
1
t ),

where (B1
t , B

2
t ) is a standard two-dimensional Brownian motion [13]. The mo-

ments mn of the rescaled measure

1

2 cosh(πx/2)
dx

1This measure is also called the hyperbolic secant distribution.
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are Euler numbers (with positive signs):

(m0,m2,m4,m6,m8, . . .) = (1, 1, 5, 61, 1385, 50521, . . .), m2n+1 = 0, n  0.

See [1], Chapter 23, for Euler numbers.
The logistic distribution

µ2(dx) =
π

2 cosh2(πx)
dx, x ∈ R,

is know to be classically infinitely divisible [9], and we are going to prove that
it is also freely infinitely divisible. This measure orthogonalizes continuous Hahn
polynomials {Pn(x)}∞n=0 which satisfy the recurrence relation (see [11])

xPn(x) = Pn+1(x) +
n4

4(4n2 − 1)
Pn−1(x), n  1,

with initial conditions P0(x) = 1, P1(x) = x.
The moments m′n of the rescaled measure

π

4 cosh2(πx/2)
dx

are

(m′0,m
′
2,m

′
4,m

′
6,m

′
8, . . .) =

(
1,

1

3
,
7

15
,
31

21
,
127

15
, . . .

)
, m′2n+1 = 0, n  0,

which can be written as m′n = |(2 − 2n)Bn| in terms of Bernoulli numbers Bn

(see [1]).

2. PRELIMINARIES

Let C+ and C− be the upper half-plane and the lower half-plane, respectively.
Basic tools for proving free infinite divisibility of a probability measure µ are the
Cauchy transform

Gµ(z) :=
∫
R

1

z − x
µ(dx), z ∈ C+,

and its reciprocal Fµ(z) := 1/Gµ(z). Let Γα,M be a truncated cone

Γα,M := {z ∈ C+ : Im z > M, |Re z| < αIm z}, α,M > 0.

The reciprocal Cauchy transform maps C+ to C+ analytically, and satisfies
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ImFµ(z)  Im z for z ∈ C+. For any 0 < ε < α and µ, there exist M > 0 and a
unique univalent inverse map F−1µ from Γα−ε,(1+ε)M into C+ such that Fµ(Γα,M )

⊃ Γα−ε,(1+ε)M and Fµ ◦ F−1µ = Id in Γα−ε,(1+ε)M (see [8]).
Free convolution and free infinite divisibility can be characterized by the Voicu-

lescu transform of µ defined by

(2.1) ϕµ(z) := F−1µ (z)− z

in a domain of the form Γβ,L.

THEOREM 2.1 (Bercovici and Voiculescu [8]). (1) The free convolution µ�ν
is a unique probability measure such that

ϕµ�ν(z) = ϕµ(z) + ϕν(z)

in a common domain of the form Γβ,L.
(2) A probability measure µ on R is freely infinitely divisible if and only if

−ϕµ analytically extends to a Pick function, i.e. an analytic function which maps
C+ into C+ ∪ R.

In terms of analytic properties of F−1µ , a useful subclass of freely infinitely
divisible distributions is introduced.

DEFINITION 2.1. A probability measure µ is said to be in the class UI if
F−1µ defined in a domain of the form Γβ,L analytically extends to a univalent map
in C+. Equivalently, µ ∈ UI if and only if there exists a simply connected open
set C+ ⊂ Ω ⊂ C such that

(i) Fµ analytically extends to a univalent map in Ω,
(ii) Fµ(Ω) ⊃ C+.

This equivalence is proved just by applying the Riemann mapping theorem.

REMARK 2.1. In [4] we required Fµ to be univalent in C+ in the definition
of µ ∈ UI, but this automatically follows. If F−1µ is analytic in C+, then we have
F−1µ ◦Fµ(z)=z for z∈C+ by the Identity Theorem, so that Fµ is univalent in C+.

LEMMA 2.1 (Arizmendi and Hasebe [4]). (1) If µ ∈ UI, then µ is freely in-
finitely divisible.

(2) The class UI is closed with respect to the weak convergence.
(3) The class UI is not closed under free convolution, i.e. µ, ν ∈ UI does not

imply µ� ν ∈ UI.

This class was essentially introduced in [7] to show that the normal law is
freely infinitely divisible, and this class has been successfully applied to several
probability measures (see [2]–[5] and [10]). Examples are presented below, mostly
taken from the aforementioned references.
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EXAMPLE 2.1. The following probability measures belong to UI.
(1) Wigner’s semicircle law

w(dx) =
1

2π

√
4− x2 1[−2,2](x) dx, F−1w (z) = z +

1

z
.

(2) The free Poisson law (or Marchenko–Pastur law)

m(dx) =
1

2π

√
4− x
x

1(0,4](x) dx, F−1m (z) = z +
z

z − 1
.

(3) The Cauchy distribution

c(dx) =
1

π(1 + x2)
1R(x) dx, F−1c (z) = z − i.

(4) The beta distribution (Arizmendi and Hasebe [4])

βa(dx) =
sin(πa)

πa

(
1− x
x

)a

1(0,1)(x) dx, F−1βa
(z) =

1

1− (1− a/z)1/a

for 1
2 ¬ |a| < 1. β1/2 is equal to m up to scaling.
(5) The Gaussian distribution (Belinschi et al. [7])

g(dx) =
1√
2π
e−x

2/21R(x) dx.

(6) The q-Gaussian distribution (Anshelevich et al. [2])

gq(dx) =

√
1− q
π

sin θ(x)
∞∏
n=1

(1− qn)|1− qne2iθ(x)|2 1[−2/√1−q,2/√1−q](x) dx

for q ∈ [0, 1), where θ(x) is the solution of

x =
2√
1− q

cos θ, θ ∈ [0, π].

When q → 1, gq converges weakly to g, and g0 coincides with w. For q ∈ (0, 1),
the density function of gq can be written as (see [12])

1

2π
q−1/8(1− q)1/2Θ1

(
θ(x)

π
,

1

2πi
log q

)
,

where Θ1(z, τ) := 2
∑∞

n=0(−1)
n(eiπτ )(n+1/2)2 sin(2n + 1)πz is a Jacobi theta

function.
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(7) The ultraspherical distribution (Arizmendi and Belinschi [3])

un(dx) =
1

16nB
(
n+ 1

2 , n+ 1
2

)(4−x2)n−1/21[−2,2](x) dx, n = 1, 2, 3, 4, . . . ,

whereB(p, q) is the beta function. The semicircle law w appears in the case n = 1
and the normal law g in the limit n→∞ if un are suitably scaled.

(8) The Student distribution (Hasebe [10])

tn(dx) =
1

B
(
1
2 , n−

1
2

) 1

(1 + x2)n
1R(x) dx, n = 1, 2, 3, . . .

t1 coincides with c, and if suitably scaled, tn weakly converge to g as n→∞.
(9) The Boolean stable law (Arizmendi and Hasebe [5])

dbρ
α

dx
=


sin(πρα)

π

xα−1

x2α + 2xα cos(πρα) + 1
, x > 0,

sin
(
π(1− ρ)α

)
π

|x|α−1

|x|2α + 2|x|α cos
(
π(1− ρ)α

)
+ 1

, x < 0,

for 0 < α ¬ 1
2 , ρ ∈ [0, 1].

If 1
2 ¬ α ¬

2
3 and 2 − 1

α ¬ ρ ¬
1
α − 1, the Boolean stable law bρ

α (defined
as above too) is still freely infinitely divisible, but not in the class UI (see [5]).
However, most of the known freely infinitely divisible distributions belong to UI
as presented above.

In order to prove µ ∈ UI, the following sufficient condition is useful.

PROPOSITION 2.1. A probability measure µ on R is in UI if there exists a
simple, continuous curve γ =

(
γ(t)

)
t∈R ⊂ C− with the following properties:

(A) limt→∞ |γ(t)| = limt→−∞ |γ(t)| =∞;

(B) Fµ(γ) ⊂ C−;
(C) Fµ extends to an analytic function in D(γ) and to a continuous function

on D(γ), where D(γ) denotes the simply connected open set containing C+ with
boundary γ;

(D) Fµ(z) = z + o(z) uniformly as z →∞, z ∈ D(γ).

P r o o f. For R > |γ(0)|, let t1 := sup{t < 0 : |γ(t)|  R} ∈ (−∞, 0) and
t2 := inf{t > 0 : |γ(t)|  R} ∈ (0,∞). The circle {z ∈ C : |z| = R} is divided
into two arcs by γ(t1), γ(t2) (see Figure 1), and let A be the arc which contains
{z ∈ C+ : |z| = R}. Consider a simple closed curve γR consisting of the arcs(
γ(t)

)
t∈[t1,t2] and A. By (D), we can take R > 0 large enough so that |Fµ(z)− z|

¬ 1
2 |z| for z ∈ D(γ), |z| > R. By the assumption (B), Fµ maps the simple closed
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curve γR to a curve surrounding each point of
{
z ∈ C+ : |z| < 1

2R
}

exactly once,
and so the univalent map F−1µ can be defined in

{
z ∈ C+ : |z| < 1

2R
}

as the left
inverse map of Fµ|D(γR) which maps numbers with large positive imaginary parts
to numbers with large positive imaginary parts. Here D(γR) is the bounded Jordan
domain surrounded by γR. Letting R→∞, we conclude by analytic continuation
that F−1µ exists in C+ as a univalent map. �

Figure 1

REMARK 2.2. Note that the map Fµ|D(γR) may not be univalent in the whole
of D(γR). The fact that each point of {z ∈ C+ : |z| < 1

2R} has rotation number 1
implies that there exists a subset SR (which is in fact open and simply connected) of
D(γR) such that Fµ is univalent in SR and that Fµ(SR) =

{
z ∈ C+ : |z| < 1

2R
}

.

3. PROOF FOR MEIXNER DISTRIBUTIONS

We present some properties of Meixner distributions.
(1) ρt is a probability measure for t > 0 because∫
R
|Γ(t+ ix)|2 dx =

∫
R

∣∣∞∫
0

st+ix−1e−s ds
∣∣2 dx =

∫
R

∣∣ ∫
R
etu−e

u
eixu du

∣∣2 dx
= 2π

∫
R
e2tu−2e

u
du = 2π

∞∫
0

(
s

2

)2t

e−s
ds

s
=

2πΓ(2t)

4t
,

where Plancherel’s theorem was used in the third equality.
(2) ρ1/2 coincides with µ1 thanks to the formula Γ(1− z)Γ(z) = π/sin(πz).

(3) By the residue theorem, Gt := Gρt has the series expansion

Gt(z) =
4t

Γ(2t)

∞∑
n=0

(−1)nΓ(n+ 2t)

n!
· 1

z + i(t+ n)
,

which is convergent for 0 < t ¬ 1/2.
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(4) For any compact set I ⊂ R, there is M > 0 such that

|Γ(t+ zi)Γ(t− zi)| ¬Me−π|x||x|2t−1, z = x+ yi, |x|  1, t, y ∈ I.
This estimate follows from Stirling’s formula.

(5) The density function of ρt is symmetric, and moreover strictly decreasing
on [0,∞) as the following calculation shows. We have

d

dx
|Γ(t+ xi)|2 = −2|Γ(t+ xi)|2 Imψ(t+ xi)

by using the digamma function ψ(z) = (d/dz) log Γ(z). It is known that ψ(z) =
−γ −

∑∞
n=0

(
1/(z + n)− 1/(n+ 1)

)
, where γ is Euler’s constant, and so

Imψ(t+ xi) =
∞∑
n=0

x

(t+ n)2 + x2
> 0 for x > 0.

We do not use the series expansion of Gt(z); instead the following recursive rela-
tion is useful.

PROPOSITION 3.1. It follows that

(3.1) Gt (z − ti) =
1

z
+
it

z
Gt+1/2

(
z +

(
1

2
− t

)
i

)
, Im z > t, t > 0.

The iterative use of this relation extends Gt to a meromorphic function in C with
poles at −(t+ n)i, n = 0, 1, 2, . . .

P r o o f. Assume t > 1
2 . Because Γ(t + iz)Γ(t − iz) does not have a pole

in
{
z ∈ C : −1

2 ¬ Im z ¬ 0
}

and vanishes rapidly as Re z → ∞ (see the above
property (4)), we get

Gt

(
z − i

2

)
=

4t

2πΓ(2t)

∫
R

1

z −
(
x+ i

2

)Γ(t+ ix)Γ(t− ix) dx

=
4t

2πΓ(2t)

∫
R

1

z − x
Γ

(
t+

1

2
+ ix

)
Γ

(
t− 1

2
− ix

)
dx, Im z>

1

2
.

Using the basic relation zΓ(z) = Γ(z + 1), we obtain

Gt

(
z − i

2

)
=

4t

2πΓ(2t)

∫
R

Γ
(
t+ 1

2 + ix
)
Γ
(
t+ 1

2 − ix
)

(z − x)
(
t− 1

2 − ix
) dx

=
4t

2πΓ(2t)

∫
R

1

z +
(
t− 1

2

)
i

(
1

t− 1
2 − ix

− 1

iz − ix

) ∣∣∣∣Γ(
t+

1

2
+ ix

)∣∣∣∣2 dx
=

ti

z +
(
t− 1

2

)
i
· 4t+1/2

2πΓ(2t+ 1)

∫
R

1

z − x

∣∣∣∣Γ(
t+

1

2
+ ix

)∣∣∣∣2 dx
+

1

z +
(
t− 1

2

)
i
· 4t

2πΓ(2t)

∫
R

∣∣Γ(t+ 1
2 + ix

)∣∣2
t− 1

2 − ix
dx.
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In the last integral, we can again apply the formula zΓ(z) = Γ(z + 1), and more-
over we deform the contour R to R+ i

2 :

4t

2πΓ(2t)

∫
R

∣∣Γ(t+ 1
2 + ix

)∣∣2
t− 1

2 − ix
dx

=
4t

2πΓ(2t)

∫
R
Γ

(
t+

1

2
+ ix

)
Γ

(
t− 1

2
− ix

)
dx

=
4t

2πΓ(2t)

∫
R
Γ (t+ ix) Γ (t− ix) dx = 1.

The above calculations amount to

Gt

(
z − i

2

)
=

1

z +
(
t− 1

2

)
i
+

it

z +
(
t− 1

2

)
i
Gt+1/2(z),

which holds for any t > 0 since Gt(z) depends on t > 0 real analytically. The
desired relation (3.1) follows from the simple replacement of z by z +

(
1
2 − t

)
i.

The right-hand side of (3.1) is meromorphic in
{
z ∈ C : Im z > t− 1

2

}
with pole

at zero, so that Gt extends to a meromorphic function in
{
z ∈ C : Im z > t− 1

2

}
.

Next we can write Gt+1/2 in terms of Gt+1, and so iteratively Gt can be written
in terms of Gt+n/2 for any n ∈ N. This procedure extends Gt to a meromorphic
function in C with poles at −(t+ n)i, n = 0, 1, 2, . . . �

LEMMA 3.1. If a probability measure µ has a density p(x) such that p(x) =
p(−x), p′(x) ¬ 0 for a.e. x > 0 and limx→∞ p(x) log x = 0, then it follows that
ReGµ(x+ yi) > 0 for x, y > 0.

P r o o f. The claim follows from the computation

ReGµ(x+ yi) =
∫
R

x− u
(x− u)2 + y2

p(u) du

= −1
2

∫
R

(
∂

∂u
log

(
(x− u)2 + y2

))
p(u) du

=
1

2

∫
R
log

(
(x− u)2 + y2

)
p′(u) du

=
1

2

∞∫
0

log

(
(x+ u)2 + y2

(x− u)2 + y2

)(
− p′(u)

)
du > 0, x, y > 0.

The property p′(−u) = −p′(u) was used at the final equality. �
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THEOREM 3.1. The Meixner distribution ρt is in UI for 0 < t ¬ 1
2 .

P r o o f. We may assume that 0 < t < 1
2 since the set UI is closed with

respect to the weak convergence. We will check conditions (A)–(D) of Proposi-
tion 2.1 for Ft(z) := 1/Gt(z) and γt := {x− ti : x ∈ R}. Condition (A) is trivial.
To prove (B), we use Proposition 3.1:

ImGt (x− ti) =
t

x
ReGt+1/2

(
x+

(
1

2
− t

)
i

)
.

Since (d/dx)
∣∣Γ(t + 1

2 + xi
)∣∣2 < 0 for x > 0, we can apply Lemma 3.1 to the

measure ρt+1/2, to assert that ReGt+1/2

(
x+

(
1
2 − t

)
i
)
> 0 for x > 0. Hence

ImGt (x− ti) > 0 for x > 0 and also for x < 0 by symmetry. Hence condition
(B) holds since −ti is a pole of Gt.

By Proposition 3.1, Gt is a meromorphic function, and so is Ft. If Gt had a
zero inD(γt), there would be a point z0 ∈ C+ ∪R \ {0} such thatGt(z0− ti) = 0.
This implies that 1+tiGt+1/2

(
z0 +

(
1
2 − t

)
i
)
=0, and so Gt+1/2

(
z0 +

(
1
2 − t

)
i
)

= i
t ∈ C+. This is a contradiction because Gt+1/2 maps C+ into C−. Thus condi-

tion (C) is proved.
Condition (D) can be checked as follows. Let pt(x) be the density function of

ρt. In the integral
∫
R(z − x)

−1 ρt(dx), one is allowed to replace the contour R by
Ct :=

{
x− 3t

2 i : −∞ < x < −3t
2

}
∪
{
− 3t

2 i+
3t
2 e

iθ : 0 ¬ θ ¬ π
}
∪
{
x− 3t

2 i :
3t
2 < x <∞

}
. Thus we obtain∫

R

1

z − x
ρt(dx) =

∫
Ct

1

z − w
pt(w) dw.

Clearly, 1 =
∫
R pt(x) dx =

∫
Ct
pt(w) dw, so we have

1− zGt(z) =
∫
Ct

1

w − z
wpt(w) dw.

If z tends to infinity satisfying z ∈ D(γt), then 1 − zGt(z) tends to zero by the
Lebesgue convergence theorem. This implies∣∣∣∣Ft(z)− z

z

∣∣∣∣→ 0,

the conclusion. �

REMARK 3.1. The proof uses the inequality ReGt+1/2(x+ yi)>0 for x, y>0.
If this inequality holds even for negative y, then we can prove the free infinite
divisibility of ρt for t > 1

2 too.
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REMARK 3.2. The free cumulant sequence
(
rn(µ)

)∞
n=1

of a probability mea-
sure µ with finite moments of all orders can be defined as the coefficients of series
expansion of F−1µ (z)− z:

F−1µ (z)− z =
∞∑
n=1

rn(µ)

zn−1

(see [14], Remark 16.18). The free infinite divisibility of ρt (0 < t ¬ 1
2) implies that

the corresponding free cumulant sequence is conditionally nonnegative definite,
i.e. the N × N matrix

(
rm+n(ρt)

)N
m,n=1

is nonnegative definite for any N  1

(see Theorem 13.16 of [14]).2 If t = 1
2 , the free cumulants up to the 10th order are

given by(
r2(µ2), r4(µ1), r6(µ1), . . .

)
=(1, 3, 38, 947, 37394, . . .), r2n+1(µ1)=0, n0.

This sequence can be found in [15].

4. PROOF FOR THE LOGISTIC DISTRIBUTION

The free infinite divisibility of the logistic distribution µ2 is proved with direct
computation of the Cauchy transform. From the residue theorem it turns out that

Gµ2(z) =
∞∑
n=1

i(
z +

(
n− 1

2

)
i
)2(4.1)

=
∞∑
n=1

2x
(
y + n− 1

2

)[
x2 +

(
y + n− 1

2

)2]2 + i
∞∑
n=1

x2 −
(
y + n− 1

2

)2[
x2 +

(
y + n− 1

2

)2]2 ,
z = x+ yi ∈ C+.

Now we take γ1/2 := {x − i/2 : x ∈ R}. The imaginary part of Gµ2 on γ1/2 can
be written as

g(x) := ImGµ2

(
x− i

2

)
=
∞∑
n=0

x2 − n2

(x2 + n2)2
.

Fortunately, g can be written by elementary functions.

LEMMA 4.1. The function g is given by

g(x) =
1

2

(
1

x2
+

(
π

sinh(πx)

)2)
.

2If a measure µ has a compact support, the free infinite divisibility is equivalent to the con-
ditional nonnegative definiteness of free cumulants. This equivalence can be extended to a measure
with finite moments of all orders when the moment problem is determinate.
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P r o o f. It is known that
1

sinh(πx)
=

1

πx
− π

6
x+O(x3) as x→ 0,

and so (
π

sinh(πx)

)2

=
1

x2
+O(1) as x→ 0.

The poles of
(
π/sinh(πx)

)2 are at x = ni (n ∈ Z), and the function(
π

sinh(πx)

)2

−
∞∑

n=−∞

1

(x− ni)2

does not have a singular point. This function is bounded by a constant on C, and
so equal to a constant, which is actually zero as is known from the limit x→∞.
Hence(

π

sinh(πx)

)2

=
∞∑

n=−∞

1

(x− ni)2
=

1

x2
+
∞∑
n=1

(
1

(x− ni)2
+

1

(x+ ni)2

)
=

1

x2
+ 2

∞∑
n=1

x2 − n2

(x2 + n2)2
,

leading to the conclusion. �

We easily find that g(x) > 0 for x ̸= 0 thanks to Lemma 4.1, and the function
Fµ2 vanishes at −i/2 since it is a pole of Gµ2 . Hence condition (B) is satisfied.

The following properties can be proved from (4.1):
(i) ReGµ2(x+ yi) > 0 for x > 0 and y  −1

2 ;
(ii) ImGµ2(yi) < 0 for y > −1

2 .
ThusGµ2 does not have a zero inD(γ1/2), and soFµ2 is analytic inD(γ1/2), contin-
uous on D(γ1/2). Consequently, γ1/2={x − i/2 : x ∈ R} satisfies condition (C).

Condition (D) is proved similarly to the case of ρt.

OPEN PROBLEMS. The authors have not been able to solve the following ques-
tions.

(a) Free infinite divisibility for Meixner distributions ρt in the case t > 1
2 and

for non-symmetric Meixner distributions.
(b) Free infinite divisibility for the measure with density

2π

2rB
(
r
2 ,

r
2

)( 1

cosh(πx)

)r

for r > 0, r ̸= 1, 2.

(c) Characterization of the class UI in terms of free Lévy measures.
(d) Combinatorial meaning of the free cumulant sequence of ρt, in particular

of ρ1/2.
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