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ON THE CONVERGENCE OF WEIGHTED AVERAGES OF
RANDOM VARIABLES ARISING
FROM A FINITE MARKOV CHAIN

BY
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Abstract. Jamison et al. [6] discussed the convergence of
weighted sums of independent random variables to a degenerate
random variable. In this note one of their results is extended (with
the same condition on the weights) to the sequence of holding times
of a Markov Renewal process. A similar growth condition on the
weights ensures the convergence of these weighted sums (suitably
normalized) to the Normal law.

1. Introduction. Let {(J,, X,),n=1,2,...] be a two—dimensional Mar-
kov process defined as follows:

(11) Xy=0 as.

(12) {J,)2, forms an m-state (m < c0) ergodic Markov chain with initial
distribution vector, «, say.

(13) P(-X X, J —JIXOs ‘,0,---, XH_I,J"_1)=P(X"<)C, Jn =j|Jn—1)
| =P, H;( as,

where P; =P(J, =j|J,-=1i) and H;() is a proper distribution function.

Such a process, called a J-X process, has been extensively studied in the
context of Markov renewal processes and semi-Markov processes. The book
[2]. for instance, contains most of the basic properties of these processes.

The random variables {X,! are conditionally independent when m > 1,

and independent when m =1. It is shown in this note that the obvious

modifications of the sufficient conditions for the convergence of weighted
sums of independent random variables yield convergence in this more
. general setup. Jamison et al. [6] dlSCUSS the situation where X,’s are
. independent. :
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2. A sufficient condition for convergence in probability.

TueoreM 2.1. Let {(J,, X,), n=0,1, ...} be an m-state (m < o) ei'godic'
J-X process. Let \aq)Z, be a sequence of positive weights such that

max a,/A4, =0 as n >0, where A = Z a. If
1<k<n k=1

lim TPLX, > T|J,_y =i1=0

T—w

im | xdP(X;<x|J;oy=0)=p <o

T—w|x'<T

(2.1)

for each i, then
\ ] m
A7t Y @ X W
k=1 i=1
Here P,(*) denotes' the conditional probability on the J-X process with a
= 1. ’ .
Before proceeding directly with the proof we shall need two results.
First, we assume that the initial distribution of the underlying Markov chain

~is m. With this assumption it is easily seen (see e.g. [1]) that the sequence

1 X, is stationary.
" Next we provide the following lemma, which is a simple extensxon of a
similar result established by O’Brien [1].

LemMma 2.1. Let « and B be two- initial distributions for the underlying

Markov chain J,}. Let max a,/A, >0 as n~o0 and suppose that
1<k<n

P,[A;'a; X+ ... +a, X,,)+B < x] converges weakly to a proper distribution
F(x). Then P, [A ay X1+ ... +a,X,)+B, < x] also converges weakly to .
F(x). .

Proof. Let SY =ay,; Xy+1+ ... +a,X, and S, =S3. Let N be suffi-
ciently large that ||BPY—aP"|| <e. Let 4 be any event which depends- on
ans1 Xn+1s One2 XN+2s-oe _Thel'l

|Py(A)— P, (A) < Z P(A|Jy =)|Ps(Iy =)~ P,(y =)
< Zl(lfP" (P = IBP* — aPY| <.

Let x be any contmulty pomt of F. Let 5>0 be sufficiently small so
that F(x+d)—F(x—20)<e. Let n>N be sufficiently large that
P, (IA T8 >8) <¢ and Pg(A; Sy >8) <e. This is -possible since 4,
— 00. One then proceeds step by step, in exactly the same way as O’Brien to
conclude the result. 7

Proof of Theorem 2.1. We shall establish the result with a=7 and '
then use Lemma 2.1 to complete the proof for general a o
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Let
X, = X, I |X,| < Aa,
e 0 otherwise.

Let S, = Y a, X, and S,, = ¥ a X, Then, for all n sufficiently large,
=1 k=1
since max /A, —0, we have, for any ¢ > 0,

1sksn

n l n A"‘
P(Snn#sn)s ZP(Xnk#Xk)= ZP“IXII>W
k=1

k=1 n_,

P(J0~l)<6
k=1k=1

-3 ¥ Pl{_lxll

using assumption (2.1).

Hence, since the two sequences of random variables are equivalent, we
consider §,, instead of S,.

Now,

m n
'EA,'Sw=4,'Y) Y aq | xdP(X, xIJO—z)P(JO—t)
i=1k=1 |x|<Ayfay
. =Y m;as n o0,
i=1
by using the second hypothesis of assumption (2.1).
The proof will be complete by showing that, for n sufficiently large,
Var(S,,/A4,) <e. First, we have

22 T™' | x*dP(X;<%)
|x] <T
=T U {-T>P(X,|>T)+2 | xdP(X,>x}—>0 as T—o.
0€x<T
Now,

Var(S,./A4,) = A ? Z ¢Var (X, )+ 4,2 Y a;a,Cov(X,j, X,).

k#j

Call the first term on the right L, and the second term M,. Then

L,<A;2Y a2 | x2dP(X,<x)

k=1 [x]<d,ja

=A,; ZakA [ xdP(X;<x)<e

n x| <dp/a

- for n large enough, using (2.2).
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On the other hand,
IM,| = IA»._; Z a; a [E(an Xnk)“E(an)E(Xnk)]l

k#j

='|Ar'|-2 Z a;ay Z E(Xpj XulJj-y =r, Jue1 =) Py =1, Jy_y =5)—

k#j rs=1

—E(XylJj-1 =nNEX | Ty =S)P(Jj—1 =1)P(Jy-, =S)|

S Z An_z Z IE(XnJXnli]—I =r, Jk—l ='S”P(Jj_1 =r, Jk—l =S)
rs=1 k#j
. —P({J;-4 =")P(_Jk—1 =s)la;a
<2 Z An_z Z IE(anXnlij—l =7, Jy_y = 5| |P(J-4 =S|Jj—1 =7)

rs=1 k<j .
—P(Jkﬁl = S)l a;ay.

Consider, first
A7 Y G EXy Xyl Jjmy =1, 0y =) [Py = 8)—m =0,

j<k

since P(J,_, =5) = =,.
All that remains

=A,? Z aja [E(X ;1 J;-1 =nEXulJi-1 =9 IP(J-, =5|J;-y =1)—mny

Jj<k

=A,? Z ajakIE(anle—l =nNEXy|Jk-1 = S)IIP(Jk—j =s|Jo=r—mnj
Jj<k

n n~k

= An_z Z [P(J, =sl|Jo =1 —mn] 2 a4k [E(X| Ji— g = NEX yai | J1sr-1
k=1 =1 :
_ =]

n

SA;?max a {max | | xdP(X;<x|Ji_y=n|2Y [PU,=5|Jo=1r)

1<iSn 1<ISn |x|<4,q k=1

- sI Z al=UnV;|w/;n
=1

where U, = A, ! max a; —» 0 by hypothesis, as n —» o0,

1<i<n

V,=!max| [ xdP(X;<x|J-;=r}

n Ll
1SISn x| S A /q

has a finite limit as » — oo, using condition (2.1) and

W= Y IPUL =slJo =N

k=1
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has a finite limit as n — oo because of the exponential rate of convergence of

the distribution of J, to the stationary distribution =, (see e.g. [4]).
Hence, since Var(S,,/4,) =0 as n — o0, a simple Chebyshev’s inequality

allows us to conclude that : ~

|An_1 Snn'_ Z ; ”’ll < 1411_1 Snn_E(A;lsnn)I_’_'An—lSnn_ni ﬂl'
i=1
converges to 0 in probability as n = co. The proof is completed by using
Lemma 2.1 te allow us to proceed to an arbitrary initial distribution. We
have immediately
Cororrary. Let {(J,, X,),n=0,1,...} be an m-state (m < ) ergodic
J-X process. Let {a,}2, be a sequence of positive weights such that

max a/A, >0 as n —>co, where A, = ) a,.
1<k<n k=1

if
(23) [xdP (X; < x|J;-y =i)=p; <o  for each i,

then

n m
At Z &, Xy LZ o i -
k=1

i=1

Proof. (2.3) implies condition (2.1)

3. Convergence of weighted sums to the Normal law. In this section we
provide a sufficient condition on the weights {a,,}, for the convergence of
the suitably normalized sums of the holding times of a J-X process, to the
Normal law. This condition is similar to that placed on the weights in
Theorem 2.1. Again, the result is the obvious generalization of the result for
mdependent random variables.

THEOREM 3.1. Let X, X,, ... be the holding times of an m-state homoge-

neous J-X process as deﬁned in Section 1. Suppose that E(X;) =0 and that

_[ x2dG;(x) = 6% <, where G;(x) = P(X X|Jpoq =1).

“w
Consider the double array
' a;; X,
a1 Xy 43X,
a3 X1 832X, a33 X,

M X1 @G2Xy; GaXs ... G X,

6 — Probability ...
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f

Then, provided the sequence of weights {ay,} satisfies the condition

max (aZ/ Y ai, )—0 as n—oo,
1€k<n k=1

P\:akl Xita, X+ ... +a, X,

Sp

< x] 2’(p(x) as m —> o,

where, in the notation of Gyires [4],

n m
s2=Y Y Dyo?al/(D,+D,+...+D,).
k=1i=1
Proof. The random variables, X, = a,, X, for n=1,2,... and k
=1,2,...,n, form the holding times of an n-step J-X process [3] with

(3.1 P(X € x|pdi-1 = i) = Gi(x/ay).

The notation on the left-hand side of (3.1) has the obvious meaning of
referring to the n-th n-step Markov chain. Also, we have

Var (X lpJx-1 =1i) = ayznka'iz-

It now follows [5] that it is sufficient to show that the Lindeberg
condition

1 . |
32 K,= x2dG; —>0asn—>ooforeachl—1 2,...,m,
2 e

n k=1 |x|>zs,,

is satisfied for the sequence of non—homogeneous n-step processes. By
making the transformation y = x/a,, in expression (3.2), we may write

1z
K =;5 Z f al%nyszi(y)a

nk=1Cy

where
Cu = {y vl >e | Y ak ) D o?/(Dy + ... ~+Dm)/akn}'
k= i=1
Hence
1 n 5 1 )
Kn<———,, X i [y dGi() = 33 [y dG: (),
Bz a k=1 A A
Z, %

where

B*= Y D;6}(Di+...+D,), A=/{y:lyl >sB[Z az,]'?*/ max a,}.
i=1

1<k<n

Finally, because a? < oo for each i, K, —»0 as n = oo and the proof of
Theorem 3.1 is complete.
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