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RANDOM OPERATORS IN BANACH SPACES*
BY
DANG HUNG THANG (Hanor)

Abstract. The aim of this paper is to examine the notion of
random operators from a Fréchet space into a Banach one. Charac-
teristic function, convergence and decomposability of random opera-
tors are studied. ‘

0. INTRODUCTION

Suppose, in decribing an experiment, that X, A and Y stand for the set
of inputs, the set of actions to be performed and the set of possible outcomes,
respectively. Ax denotes the outcome corresponding to the input x and the
action A. There are many situations, however, in which even the exact
knowledge of inputs and actions does not allow to predict the outcome
exactly. Under such circumstances, instead of considering Ax as an element
in Y, we shall consider Ax as a Y-valued random variable.

A correspondence that associates to each element x in X a Y-valued
random variable Ax is called the random mapping from X into Y.

The aim of this paper is to examine the notion of random operators
from a Fréchet space into a Banach space. Section 1 contains the definition,
examples and some general theorems on random operators. Section 2 is
devoted to the notion of the characteristic function of random operators.
Theorem 2.3 gives a necessary and sufficient condition for a function to be
the characteristic function of some random operator. In Section 3 we define
four modes of convergence of random operators and study their relation-
ships. '

Up to now, the important problem of extendibility to Radon measures of
cylindrical measures has been studied by several authors (cf. [4], [5], [6],
[13] and references therein). This problem can be stated in terms of the
decomposability of certain random linear functionals. In Section 4 the notion
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of decomposability is extended to random operators. Theorem 4.5 shows that
there is the difference between the case of random linear functionals and that
of random operators taking the values in an infinite-dimensional Banach
space.

The author expresses his gratitude to Professor Kazimierz Urbanik for
his kind invitation to the Institute of Mathematics of the Wroclaw University
and for his attention to this work. The author is also grateful to Professor
Aleksander Weron for valuable remarks concerning the manuscript.

1. DEFINITION, EXAMPLES AND SOME GENERAL THEOREMS

Throughout this paper Y denotes a Banach space with the dual Y'.

Let (2, &, P) be a probability space. A Y-valued random variable is a
measurable mapping from Q into Y. L, (Q, Y) denotes the set of all Y-valued
r.v.’s. Ly(Q, Y) is a Fréchet space with the F-norm |||, = E ljo|l/(1+|l¢l).

The convergence in Ly(€2, Y) is equivalent to the convergence in proba-
bility. By % (¢) we denote the distribution of the Y-valued r.v. ¢ and by
& (¢y,..., @,) — the distribution of the Y*-valued r.v. {(9,, ..., ¢,). The cha-
racteristic function of a Y-valued r.v. ¢ is defined by

() =Eexp{i{p, yd}, yeY.

1.1. Definition. Let X be a Fréchet space. A linear mapping A4 from X
into Ly(2, Y) is called a random linear mapping from X into Y. A linear
continuous mapping from X into L, (2, Y) is called a random operator from
X into Y. ‘

A random operator from X into the real line R is called a random linear
functional on X,

1.2. Examples. (a) If the Y-valued r.v. Ax is concentrated at a point for
all x, then the random operator A is the non-random ordinary linear
operator. :

(b) Let L(X, Y) be the space of linear continuous operators from X into
Y. Then with every L(X, Y)-valued r.v. B we may correspond a random
operator A from X into Y be setting

(1.1) Ax(w) = B{w)x.

We say that the random operator A in (1.1) is generated by an L(X, Y)- _
valued t.v. B or A is decomposable.

There exist random operators which are not decomposable. The prob-
lem of decomposability of random operators will be discussed in Section 4.

(c) Especially interesting examples of random operators are given by
random integrals of Banach-valued functions. Let us recall the definition of
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random integral (see [9]). Let (T, Z, ) be a finite measurable space. A
random mapping M: Z — R is called the random measure on (T, X, p) if for

every sequence A, A,,... of disjoint sets from X the random variables
M(A,), M(A,), ... are independent and
 M(U 4)= Y M(4,) Pas.
n=1 n=1

Let f: T— Y be a simple function, ie. f= ) xl,, where 4;eX are
i=1

pairwise disjoint and x;eY. For every BeX we set

[fiM = ¥ x; M (4; " B).

, B i=1

A function f: T— Y is said to be integrable with respect to M (shortly:

Me-integrable) if there exists a sequence {f,} of simple functions such that

Ju— fin p-measure and for each Be X the sequence of Y-valued r.v.’s {{f,dM}
B

converges in probability. Then we put
{fdM = P-lim {f,dM.
B B

The set of all Y-valued M-integrable functions is denoted by _?Y(M).
Set |lIflllo = fllo+1If fdMllo, where [|{lo denotes the F-norms in
T

Lo(T, Y) and Lo (R, Y), respectively. By the definition, (& y (M), [|l{llo) forms
a Fréchet space.
Define a random mapping A from £ (M) into Y by means of Af

= [fdM. It is easy to see that 4 is a random operator from % y(M) into Y.
T .

1.3. Some general theorems. By definition, a random operator from
X into Yis a linear continuous operator from X into L,(Q, Y). Because X
and Ly(Q, Y) are Fréchet spaces, the theory of linear continuous operators
in Fréchet spaces becomes available for the study of random operators. The
following theorems are consequences of the corresponding theorems in the
theory of linear continuous operators in Fréchet spaces (cf. e.g. [8]).

1.3a. TueOREM. Let A be a random linear mapping from X into Y. Then A
is a random operator if and only if

limsup P {||Ax|| >} =0.

t—oolfxl] €1

1.3b. TueoremM (Closed graph theorem for random operators). Let A be a
random linear mapping from X into Y. Then A is a random operator if and only
if, for every sequence (x,) = X such that x,—x in X and Ax,— ¢ in
probability, we have Ax = ¢ P-as.
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1.3c. THeEOREM (Principle of uniform boundedness for random operators).
Let (A;);q be a family of random operators from X into Y such that, for each
xe X,
lim sup P {||4; x]| > ¢} = 0.

t—o iel
Then we have

lim sup supP {||4;x|| >t} =0.
tow x| S1 iel
1.3d. Tueorem (Theorem of Banach-Steinhaus for random operators).
Let (A,) be random operators from X into Y such that, for each xe X, A,x
converges in probability. Then the random mapping A from X into Y, given by
Ax = P-lim A, x, is a random operator.

2. CHARACTERISTIC FUNCTION OF RANDOM OPERATORS

Let us recall the concept of the tensor product of vector spaces E and F
(see [7]).

Given two vector spaces E and F let E[]F be a vector space whose
elements are finite formal linear combinations Z a, (x;, y;), x;€E and y,eF.
Let N denote the subspace of E[]F spanned on all vectors of the form

(x, y1+y2)—(x, y1)—(x, y2), (X, ty)—t(x, y),
(xl +x2’ 'y)”(xla y)—(x2a )’), (txa y)"t(xa y)

The tensor product EQ®F is defined as the quotient space E®F
=E[1F/N. , :

Let 4) be the restriction of the canonical map y:E [ F — EQF to the
space E x F. Then ¢(x, y) will be denoted by (x®y). The role of the tensor
product is emphasized by the fact that it enables us to replace a bilinear b: E
x F — W from the Cartesian product E x F into a linear space Wby a linear
map I: EQF — W such that b(x, y) = I(x®)).

Now suppose that 4 is a random operator from X into Y. Define the
map b, from X x Y’ into Ly(Q, R) by b,(x, y) = (Ax, y). It is evident that b,
is bilinear. Hence, by the property of the tensor product, b, determines a
unique linear map I,;: X®Y'— Ly(2, R) such that I,(x®y) =b,(x, )
= (Ax, y).

2.1. Definition. Let 4 be a random operator from X into Y. Then the
characteristic function (ch. f) of A is a function with the domain X®Y’ and
range C. It is defined by

Ah =E exp {ilA(h)}, he X®Y'.
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Two random operators A and B are said to be equivalent (denoted by
A~B) if, for every finite sequence (x;) in X, % (4x,, Ax,, ..., Ax,)
= ¥ (Bx,, Bx,, ..., Bx,).

The following proposition explains why the function A is called charac-
teristic. :

2.2. PROPOSITION. Let A and B be two random operators from X into Y.
Then A and B are equivalent if and only if they have the same characteristic
function.

Proof. By definition, A~B if and only if

Eexp {l Z tk (Axlu yk)} = Eexp {lz tk(Bxks yk)}
k=1 k=1

for all 11, t,, ..., t,e R and (%1, y1), ..., (X4 y)E X x Y'. Since every element

he X®Y' has the form h= ) t(x®y,) and
k=1

Ah = Eexp {i Y t(Ax, y,‘)} ifh= ) t(x®n,
k=1 k=1

it follows that A~B if and only if Ah = Bh for all he X®Y'.

The following theorem gives the criterion for a function from Y®Y’ into
C to be the characteristic function of a random operator.

2.3. TueoreM. For a function f: X®Y'— C to be the characteristic

function of a random operator it is necessary and sufficient that it satisfies the
Jollowing - conditions:

O f(0)=1;

(ii) f is positive definite;

(iii) the function B(x, y) =f(x®y) is continuous on X xY’;

(iv) for each xe X the function H.: Y’ — C, given by H (y) = f(x®y), is
the ch. f. of some probability measure on Y.

Proof. Suppose that 4 is a random operator from X into Y. For
€1,Czy ..., caeC and hy, hy, ..., h,e X®Y' we have

Yagd(h—h) =Y c:gEexp {ily(l—hy)}
= Y18 B exp {iL, ()} exp {ila(hy)} = E| Y, ciexp {ily (m)}? > 0,
ij i=1

hence A is positive definite.
Since lim(4x,, y,) = (4x, y) in probability as (x,, y,) — (x, ), it follows
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that
lim A (x,®y,) = lim E exp {i (4x,, ¥} = Eexp {i(4x, y)} = A(x®y)

as (x,, o) — (x, y). Hence H(x, y) = A(x®y) is continuous. The function
H,(y) = A(x®y) = Eexp {i(4x, y)} is the ch. f. of & (4x).

Conversely, suppose that f: X®Y' — C is a function satisfying conditions
(i)iv). For each finite set I = {(x, y1), ..., (X, o)} We define a function
F(ty, ts, ..., t,) on R" by '

(2.1) F(ty, t3, ..., t) =f[k2 1 (a0 ®yi)].
, =1

In view of (i) —(iii), F is positive definite and continuous with
F(0,0, ..., 0) = 1. By the Bochner theorem, a measure y; on R" with ch. f.
(2.1) is defined. The family {u,} is consistent and by the Kolmogorov
theorem there exists a random function B(x, y) on X xY’ such that

JLY, 6@ = Bexp i 3 B, 30}
k=1 =

B(x, y) is bilinear. Indeed, for example we have
Eexp {itB(x, + X3, y)— B(x;, y)— B(x2, y)}
=fLt(x1+x)®y—1t(x; ®y)~t(x,®))] =f[0] =1 for all teR.

This shows that B{x; +x,, y) = B(x;, y)+B(x;, ) P-as.

B is continuous by (iii). By (iv), for each xe X, the random linear
function y — B(x, y) is decomposed by a Y-valued random variable denoted
by Ax, ie., for all yeY’, B(x, y) = (A4x, y) P-as.

The decomposition of r.v. Ax is uniquely determined. So the random
mapping x — Ax is well-defined. To complete the proof it only remains to
show that A is linear and continuous.

A is linear. Let x,, x,€ X. We have B(x;+x,, ¥} = B(x;, y)+B(x3, y)
= (Ax,, ) +(A4x,, y) = (Ax, + Ax,, y) P-as. for all yeY’. This shows that
A(x;+x,) = Ax, +Ax, P-as.

A is continuous. Suppose that x,— x in X and Ax,— ¢ in probability.
Then B(x, y) = P-lim B(x,, y) = P-lim(4x,, y) =(¢p, y) for all yeY’, which
shows that ¢ = Ax (P-as.). By Theorem 1.3b we conclude that A is conti-
nuous.

3. CONVERGENCE OF RANDOM OPERATORS

Let :{A,“},,BO be random operators from X into Y. We define four modes
of convergence of the sequence {4,} as follows:
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3.1. Definition. (1) We say that A, converges to A, if, for each
xe X, A,x — Ay x in probability.

(2) We say that A, .converge weakly to A, if, for each pair (x y) in
XxY', (A,x, y)— (4o X, y) in. probability.

(3) We say that A, converges to A, in dzstrlbunon if, for each ke N and
Xq, X3, ..., X in X, we have

g(Anxl, Aan, reag A,,xk)=>$(A0x1, Aon_, vy onk)'

(4) We say that A, converges weakly to Ay in distribution if, for each ke N
and (xla yl), (x2a yz), st (xk: yk) in X x YI:

g[(A'nxh }’1), LR ] (Anxka yk)] = g[(onln yl)’ seey (AO Xg» yk)]
The following implications are obvious:

convergence = weak convergence
{ §

convergence  weak convergence convergence
. . - . : . . - . : -
in distribution in distribution of their ch. f’s

The convergence in distribution implies the convergence in the following
sense:

3.2. THEOREM. Let {A,},>0 be random operators from a separable Fréchet
space X into Y and suppose A, converge to A, in distribution. Then there exist
random operators B,, n = 0, such that A,~ B, for each n = 0 and B, converge
to B,. ,
Proof. Let Z =(x;) be the countable set dense in X. Consider_ the
Y*®-valued 1.v’s: X, =[4,x]2.,,n=0,1, 2,.

Because operators A4, converge to A, in dlstrlbutlon it follows that
££(X,,)=>Z(X0) By Skorokhod theorem [11] there exist Y *-valued r.v.’s

=[X9]2,,n=0,1,2,..., such that #(X,) = #(X,) for each n>0 and
X converge to X, in probablhty This 1mphes that

(i) for each i = 1,2, ..., X® converge to X in probability;

(i) LXW, ..., J?s,*)) = ,fz(A,,xl, v, Ayx) for each n>0 and each
k>1.

For each n > 0 we define a random mapping B, from Z into Y by means
of B, =X® k=1,2,...

B, can be extended over the entire space X. Indeed, let xe X and (x )7
be a sequence in Z such that x,— x. Since A4,x, converge to A4,x in
Lo (2, Y) as k — oo by (ii), (B, x,) is a Cauchy sequence in L, (Q Y). Hence
lim B, x, exists in Ly(Q, Y).

ko

It is not difficult to show that A,~B,. This fact implies that B, is a
random operator. It remains to prove that B, converge to B,. As £ (B,x)

11 — Prob. Math. Statist. §




162 D. H. Thang

converges weakly for each x, by Prokhorov theorem we have

lim sup P {IB, x|} >t} =0.
t—o n=

By Theorem 1.3c it follows that
im sup sulgP{HB x| >t} =

t—oo || x|l €1
Given xe X, we choose a sequence (x,) in Z converging to x. For each
0 >0 we have

P {||B,x—Bo x| > ]

< P{”an_ank“ > §}+P{!|Bo Xe—Bo x|l > §}+P{||ank“30xkl| > g}

d 0
<2 sup, EEEP{“B" x| > gl!x—xkll}+P{I|ank*—Bo Xl > 5}-

x|l =
Let n— oo, Then k— o0 and we get

lim P {||B,x—Box|| > 6} =0,

which proves the Theorem.

 33. Turorem. Let {A,},» o be random operators from a separable Fréchet
space X into a Banach space with the separable dual Y'. Suppose that A,
converge weakly to A, in distribution. Then there exist random operators
B,, n >0, such that A,~B, and B, converge weakly to B,. ‘

Proof. Let Z = {(x;, y;)}i2; be the countable set dense in X xY"'.
Because A, converge weakly to A, in distribution, by using Skorokhod
theorem -and the same arguments as in the proof of the preceding theorem,
we find random functions U,(x, y), n >0, on X xY' such that

(i) for each n =0 the ‘random function Ua(x, ) is equivalent to the
random function (4, x, y);

(ii) for each n > 0 and for each (x, y)eZ, U (x ) — Up(x, y) in proba-
bility.

By (i) and arguments similar to those in the proof of Theorem 2.1 we
find that there exist random operators B,, n =0, 1, 2, ..., such that, for each
n=0, U,x, y) =(B,x, y) P-as. for all (x, y)e X xY".

" Clearly, 4,~B,. Now we show that B, converge weakly to B,. Because
(B X, ) converges weakly for each (x, y)e X xY’, we have '

hm su]gP{l(B x, y)| > r} =

Fix yeY’. Using the principle of the uniform boundedness for random
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linear functionals (B, x, y), we get

lim sup sugP {I(B,, x, Y| >t} =0

t—ow |[x|| €1 nz

Again, using the principle of the uniform boundedness for the family
{(B,x, »), n=0, x|l <1} of random functionals, we get

sup  sup supP {{(B,x, y)l > 1} = 0.

t-*oo Iyl <1 flxli €1 82

Given {x, y)e X x Y', we choose a sequence {(xk, y,,)} cZ convefging to
(x, y). Then, for each é >0, we have

P {(B, x, ¥)— (B, Xc, ¥ > 6}

S B
21— xl| 1yl

i)
SR, S uyn<1n>13P{KB = 3y yn}

< sup sup supP{l(B,.x, >

fi=lf <t liyli <t n20

So
P {(B,x, »)—(Box, y)| > &}

<2 sup sup supP{l(B,, x, Y >

lIxll <1 flyll <1220

o
e+
6”3%_3‘“”)’&”}

8 }+
611x]| [lyx — ¥l

o
+P {'(Bn Xs Vi) —(Bo X, Yl > 5}

+2 sup sup supP{l(B,, x, V) >

Ixll <1yl <1r=0

Let n— oo. Then k— oo and we get lim P{I(B,,x, y)—(Box, ¥)| > 6}

n—rao
=0, as desired.
4. DECOMPOSABILITY OF RANDOM OPERATORS

4.1. Definition. Let X be a Banach space. A random operator A from
X into Yis said to be decomposable if there exists an L(X, Y)-valued random
variable B such that, for all xe X, P {w: Ax(w) = B(w) x}=1.
' This definition is a natural extension of the notion of decomposability of
random linear functionals to random operators. The decomposability of
random linear functionals has been studied in many contexts (cf. for
example [4] and [12]).

In this section we always assume that X and Y are separable.
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4.2. ProPoSITION. For each decomposable random operator A the decom-
position of the random variable B is uniquely determined.

Proof. Suppose that B; and B, are L(X, Y)-valued r.v.’s such that, for
each xe X, Ax(w) = B, (w)x and Ax(w) = B,(w)x P-as.

If Z is the countable linear subspace dense in X, then there exists a
measurable set D, with P(D) = 1, such that B, (w)x = B,(w)x for all weD
and for all xe Z. Whence it follows that B, (®)x = B,(w)x for all we D and
for all xeX, ie. B; =B, P-as.

Now we are going to find criteria which determine the decomposability
of a random operator.

4.3. THEOREM. A random operator A from X into Y' is decomposable

if and only if, for every bounded sequence {x,} in X, we have sup||Ax,|| < oo
nz1

P-as.

Proof. Necessity. Suppose that 4 is decomposable. Then there exists
an L(X, Y)-valued r.v. B such that, for all xe X, Ax(w) = B(w)x P-as.

Let {x,} be a sequence in X such that Il < 1. Then there exists a
measurable set D with P({D) = 1 such that Ax,(w) = B(w)x, for all x, and all
weD. Therefore, for each weD, supl||Ax,(w)|] = sup||B(w)x,l| < ||B(®)|
< 00, ie. sup|lAx,|| < o P-as. '

Sufficiency. Suppose that Q is a countable set, dense in X, and Z is a
linear space spanned over the field of rational numbers of Q. Z is also
countable.

Put S, ={zeZ:|z]| <1}, N(w) = supHAz(a))Il

From the assumption it follows that there exists a measurable set D of
probability 1 such that, for each we D, we have N(w) < o0, A(r; x+r, y)(w)
=r, Ax(w)+r; Ay(w) for all x, y in Z and r,, r, — rational numbers.

For each weD define a mapping B(w): Z — Y by B(w)z = Az(w).

The mapping B(w) is linear and uniformly continuous on Z. Indeed, the
linearity of B(w) is obvious. Let now x, yeZ and r, be a sequence of
rational numbers such that r,||lx—y|l. Then [|B(w)x—B(w)yl = |lAx(w)
— Ay (@) = 4 (x— ) (@) = Ira A (x—/r) (@) < r, N(@). Let n— 0. We get
[|B{w)x— B(w)y|] < N(w)||x—1y||, showing the uniform continuity of B(w).
Hence B(w) can be extended to a linear continuous operator B(w) on X.

To complete the proof of the Theorem, it remains to prove that, for
each x, Ax(w) = B(w)x P-as. Indeed, let {x, } be a sequence in Z converging
to x. Then Ax,(w) = B(w)x, for all x, and for all weD. Since B(w)x,
— B(w) x for each we D, it follows that Ax,(w) — B(w)x P-a.s. On the other
hand, Ax,— Ax in probability. Consequently, B(w)x = Ax(w) P-as., as
desired.

4.4, ProrosiTioN. Let X be a Banach space with the Schauder basis (e,)




Random operators in Banach spaces 165

and A: X — Y be a random operator. Then A is decomposable if and only if
there exists a measurable set D of probability 1 such that, for all we D and for

ac

xe X, the series Z (x, e, Ae,(w) converges in Y.

n=1

Proof. If A is decomposable by an L(X, Y)-valued r.v. B, then there
exists a measurable set D of probability 1 such that Ae,(w) = B(w)e, for all
e, and weD. Then, for each xeX and weD, we have Z(x, e,) Ae,(w)
=Y (x, ¢) B(@)e, = B@)Y(x, ¢)e, = B(®)x.

Conversely, for each we D we define 2 mapping B(w): X — Y by B(w)x
=Y (x, e,) Ae,(w). By the Banach-Steinhaus theorem, B(w)e L(X, Y). Since
x =) (x, e)e, we have Ax = Y (x, e,) Ae,(w) in probability. Hence Ax(w)
= B(w)x P-as.

4.5. THEOREM. Let X = [, (1 < p < o0) with the standard Schauder basis
(e and A: 1, — Y be a random operator. Then the convergence a.s. of the series
Y llAel|*(1/p+1/q = 1) is a sufficient condition for A to be decomposable. This -
condition is necessary if and only if Y is finite-dimensional.

Proof. Suppose that ) ||Ae,|? < oo P-as. Put
D = {: Y ||de,(@)|* < oo}

Then, for each weD and xel,, Y ||(x, e,) Ae,(w)|| < co, which implies
the convergence of the series Z(x, e) Ae,(w). By Proposition 44, A is
decomposable.

Now suppose that 4 is decomposable. Consider first the case Y= R.
There exists an [ -valued r.v. ¢ such that, for all xel,, Ax(w) = {p(w), x) P-
a.s. Hence there exists a set D of probability 1 such that Ae,(w) = {p(w), €,>
for all e, and weD. Consequently, Y |lAe, ()l =Y [{p(w), e,|® < w0 for
weD, ie. Y [|de,||? <o P-as.

Now let Y= R* and f,, f5, ..., f, be the standard basis in R*. Then, for
each j=1, 2, ..., k, the random linear functional (4x, f}) is decomposable.
Hence

o

Z I(Aem f;)iq < o0 P-as.

n=1

So

o] @ k l k ©
; et~ Y Y (Aen, HIF= 3 3 lAew, fIF < 0 P-as.

n=1j=1 j=1n=1

To complete the proof of the Theorem, we give an example showing
that in the case Y is infinite-dimensional the convergence as. of the series
Y ll4e,|? is not necessary for A to. be decomposable.

Let &4, &,, ... be independent Gaussian real-valued r.v.’s with mean 0
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and Var{ =s? such that sups? <oo. We define a random operator
A: l, — 1, by means of

Ax = Z (X, en) €, Cp.
It is not difficult to check that A is well-defined and that it is a random
operator. We shall show that 4 is decomposable if and only if

4.1 P {sup|é| < o0} =1.
Indeed, if 4 is decomposable, then, by Theorem 4.3,
P {sup||de,| < oo} = P {sup|¢,| < oo} =1.

Conversely, if P {sup|,| < oo} =1, then put N(w) = supl|,(w).

Since the series Y (x, e,) Ae,(w) = (x, e,) e, &, converges in I, for all x
in I, and weD = {w: N(w) < w}, A is, by Proposition 4.4, decomposable.

By Vakhania’s theorem [16], condition (4.1) is equivalent to

o0

Y exp{—t/s;} <o for some t>0.

n=1

On the other hand, the series ) ||de,l|> =) |&,/* converges as. if
and only if Y s2 <oo. So, if {sz} is a sequence such that } s? = co, but
Y exp{—1t/s2} < oo for some ¢t >0, then A4 is decomposable but ) ||de,||* =
oo P-as.

REFERENCES

[1] J. Bretagnoll, D. Dacunha-Castelle et J. L. Krivine, Lois stable et espaces L,, Ann.
Inst. Poincaré B.2 (1966), p. 231-259.

[2] 8. A. Chobanjan and V. I. Tarieladze, Gaussian characterization of certain Banach
spaces, J. Multivariate Anal. 7.1 (1977), p. 183-203.

(31 E. Gino and M. B. Marcus, Some results on the domain of attraction of stable measure on
C(K), Prob. and Math. Stat. 2 (1982), p. 125-147.

[4] S. Kwapien, On a theorem of L Schwartz and its applications to absolutely summing
operator, Studia Math. 88 (1970), p. 193-201.

[5] W. Linde, Infinitely divisible and stable measures on Banach spaces, Teubner, Texte zur
Mathematik 58, Leipzig 1983.

[6] W. Linde, V. Mandrekar and A. Weron, p-stable measure and p-absolutely summing
operators, Springer Verlag, Lecture Notes in Math. 828 (1980), p. 167-178.

[7] K. Maurin, Methods in Hilbert space, PWN, Warszawa 1972.

[8] S. Rolewicz, Metric linear spaces, PWN, Warszawa 1984.

[91 J. Rosinski, Random integrals of Banach space valued functions, Studia Math. 83 (1984), p.
15-83.

[10] L. Schwartz, Geometry and probability in Banach spaces, Springer Verlag, Lecture Notes
in Math. 852 (1981).

[11] A. V. Skorokhod, Limit theorems for stochastic processes, Theor. Probab. Appl. 1 (1956)
p- 261-290.



Random operators in Banach spaces 167

[12] Z. Suchanecki and A. Weron, Decomposability of cylindrical martingales and absolutely
summing operators, Math. Z. 185 (1984), p. 271-280.

[13] D. H. Thang, Spaces of S-cotype p (0 < p < 2) and p-stable measures, Prob. and Math.
Stat. 5.2 (1985), p. 265-273.

[14] D. H. Thang and N. Z. Tien, Mapping of stable cylindrical measures in Banach space,
Theor. Probab. Appl. 27.3 (1982), p. 492-501.

[15] XK. Urbanik and W. A, Woyczynski, Random integrals and Orlicz spaces, Bull. Acad.
Polon. Sci. 15 (1967), p. 161-169.

[16] N. Vakhania, Probability distribution in linear spaces, Tbilisi 1971 (English translation:
North Holland, 1981).

Department of Mathematics
Hanoi University
Vietnam

Received on 22. 1. 1986







