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Abstract. Consider a nonhomogeneous Poisson process with
unknown intensity function A(s), s>0. The work answers the
question: what are efficient sequential plans for this process? The
efficiency is understanding in the sense of Cramer-Rao-Wolfowitz
inequality.

Results obtained in this paper generalize theorems proved by
Trybuta [7] for Poisson process with constant intensity.

1. CRAMER-RAO-WOLFOWITZ INEQUALITY AND WALD’S IDENTITIES
FOR NONHOMOGENEOUS POISSON PROCESS

Let X,,s> .0, be nonhomogeneous Poisson process with 1nten81ty
function A: [0, o0) - [0, ), [2]. By & we denote the space of functions
x: [0, 00) = A"; & — the set of nonnegative, integer numbers; constant in
intervals and for which x(0) =0, x(s) = x(s—)+0 v 1.

# is the smallest o-algebra of subsets of %, containing the sets
{xeZ: x(s) =k,s>0, ket}, B, — the smallest o-algebra containing the
sets : : ’ .

{xeﬁl‘ x(s) = t‘keg/V}'

Process X, generates a measure p, in the space (&4, 93) [3]. An
unknown intensity function A belongs to some function space A.

A Markov stopping time is a.random variable 7: % — [0, co] which
satisfies the following conditions:

{xeZ: 1(x)<t}eB, Vt=0;
pi({xe 2 1(x) < 0}) =1,VAieA.

A Markov stopping time generates a o-algebra #,.

By 4 we denote the measure p, restricted to the o-algebra ﬂ

‘We can formulate the following proposmon which is a consequence of
theorem 197 [4].
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PROPOSITIOIN 1. We assume that
| 4
fl(s)ds < oo, Vt = 0.

Let p, denote a measure generated by Poisson process with intensity equal
to 1. If a Markov stopping time t satisfies the condition

(x)
j (1-=+/A() )2 ds < o0 ul-almost surely,

- then the measure p is absolutely continuous w:th respect to the measure Ui
and '

7(x) T(x)

§)) = exp( j lnzl(v)dx(v)+ _f 1—=A(v)]dv)
Nt(x)
I A(t)exp('c—jl(v)dv) if N, >0,
=4 =1 '
exp(r—jl(v)dv) if N,=0.

N.(x) denotes a number of jumps of a realization x in the interval [0, 1],
Pys by oy By, — the times-of jumps of a ré_alizazion X in observed interval
[0, t].

Proof. For any stopping time t let us introduce stopped Poisson
process X, = X, .. This process generates a measure Ji; in the space (Z, &),
where # is the. c-algebra, generated by the sets

{xeﬁl" x(sAt)=k,s=0,keA}.

By theorem 6 [6] we have & = &, and W = [i;. The compensator A4, of
the process X, has the form S

}A(s)ds.

So, from lemma 18.9 [4] we infer that the compensator A, of the process
X, has the form 4, = 4, ..

Theorem 19.7 [4] allows us to conclude that uf = fi; < fi; = uj and
taking ¢t = co we obtain formula (1).

Definition 1. A sequential plan is a pair (t,f(z, ty, ts, ..., ty, N))
where 7 is a Markov stopping time and f(z,ty,t;, ..., ty, N;) 1s an
- estimator of the parameter h(4)h: A— R.

In the sequel, by V,g(4) we denote a directional derlvatlve at the point
A in the direction A of the mapping g.
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Now we can formulate the theorem about inequality of Cramer-Rao-
Wolfowitz type.

TueoreM 1. Let (t,f(T, ty, t3, ..., ty,s N,) be a sequential plan for
nonhomogeneous Poisson process with unknown intensity function, where
f@, ty, tay ooy ty, No) is unbiased estimator for the functional h(A), that means

Eulf(ra_tI:‘ t23 “ren tNt’ Nr) = h(A')
and :

Var,, f(z, ty, 12, ..., ty, N;) < 0.

We also assume that the function du5/dy satisfies some regularity
- conditions, which guarante the following equations:

@ | sva B (e, ) dpy (3) =

d T
(3) V). _:!ﬂf('r! t19_t2: rery tN ’ 1:) (xs l)dl»h( )

d T
= j‘f(Ta tl: tZa LERE ] tNt’ N,)V;-di:(X, ll)dﬂl (JC)

Then .
. ' 2

@4  Var, f(r, 1,0, .., by, N) 2 Zﬁh(m .
[Valngs dpay (¥)
.4

where '

¢ Vi “‘ N.()— [A()dv.
: 0.

The equality in (4) holds at some A if and only if

(6) f(Ta tla t29 "'s. tN.,) Nt)

T fapaper
0

N = [A() V] dpy ()
E3 0

ul-almost surel y.

The proof of this theorem is analogous to that in [1] and [4]

Definition 2. A sequential plan (t, f(z, 2y, t2, ... tx, N,))is called an
efficient plan if in formula (4) the equality holds for each ieA.

" Let ¢(r, ty, ty, ..., ty, N;, 4) be a function yj-integrable. Moreover we
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'suppose that
dp;

(7) Vﬁ. j. (p(T, tl’ 'tz, ey “tN‘t" N.” l)““i‘“?dﬂi
T _ H1

, ' dut
= IV1{¢(T,.t1, t29 rres tNt: Nta A’)d_”:]d#‘i
z 13
So we can write:

(8) Eul [Nt—j‘}.(V)dV](p(T, tl! t2: RS ] tN.,_.s N‘:s A’) -
V]

= V;Eutp(_‘c, tl! tz, cary tNt’ N', A)_EuAVA¢(15 tl’ tz, ceny tNt’ N,_., J.)

If we put o(t, ty, t3, ..., tn,» Ne, A) =1 in formula (8), we obtain the
first Wald identity: .

9) E,, N.=E, [A(¥)dv.
- 37
If we put

l (P(T, t15 t25 R E] tNta N':s 2’) = Nt_j‘l(v)dva
V]

then from (8) we obtain the second Wald identity:

- (10) ‘ - E, [Nt—;[}.(v)dv]2 = E“(])'/l(v)dv.
Putiing (T, t1, by ooy ty, Niy 4) = N, we obtaiﬁ:\
(1) E,, [N,—:j)l(v)dv] N, =V, E“:!A(&)dv.
Now let o A

(T, by, by sty Ny ) = ii(v)dv.
Then we have
12 - Eul[N,——:j;}.(v)dv]EA(v)dv=V,1E“Nr—E“:£)L(v)dv. |
We can wriie | | ' |

(13)  Var,, N, = Var,, [[A()dv]+2V; E,, [A()dv—E,; [A()dv.
N 0 ‘ 0 0
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.

2. EFFICIENCY OF A FIXED-TIME PLAN.

‘Definition 3. A sequental plan (7, f), where 7 is equal, with probablhty 1
to a constant ¢t > 0, is called a fixed-time plan.

THEOREM 2. If some regularity conditions, which guarantee equallttes (2,
(3), and (7), are satisfied, then a fixed-time plan is efficient.

Proof. Let
f(‘l’, ty, ta, , tN,_.:v-N_t) = f(ts Nt) = (th+b,‘

E, f(t, N)=h(l) =a tj,l(v)dv+b,
0

Var,, f(t, N,) = a? tj,l(v) dv.

The lower bound in the Cramer Rao-Wolfowitz inequality takes the
following form:

- (20T
- [Vih()P __a [‘.! O] = g? }A(v)dv.

dﬂt 2 — t .
E,, [Vi. du; :l (j)l'l(v) dv ° .

So, a fixed-time plan is efficient sequential plan and

: h(,l)=at§l(v)dv+b
0 .

is efficiently estimable functional of 4 for this plan. :
The estimator f(t, N, = aN +b is efﬁment estimator for a fixed-time

plan.
Remark. If intensity function /leC[O t], then, from theorem XII 20
[5], equalities (2), (3), (8)-(13) hold for a fixed-time plan.

3. EFFICIENCY OF AN OBLIQUE PLAN

Definition 4. A sequential plan (z,, f), where
. 1 |
T, = 1nf{t: N, = -(t—s)}, r>0,5>0,
with probability ‘1, is s called an oblique plan. .

In the sequel we assume that A is continuous, periodic fl.lIlCthl‘l w1th the
period equal to r.
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3.1. Existing and finiteness of the first two moments of an obligue plan.
Let. p;(s) denote a probability of the first attaining of the line k = (¢t —s)/r at
the point i, by the process N,.

We can write the following equality:

s+ ds

pe+ag-pe T L0
A4s o As P
s+ 4s s+ 4s .
( | Amdv)-exp(— | A(v)dv)
+ 5 s X
A4s
.!+As+r
x{p,-_l(s)exp( | AWav)+p;_ z(s)x
s+A4As+r s+ ds+r s+ As+r
[( f A(v)dv)exp(— [ Amdv)exp(— [ A()dv)+
s+As s+ 4s s+ 4s
1 s+ 4s s+ As+ 2r . .
+=( [ AW dv)exp(— | l(v)dv):,+'
_2 s s+ 4s .
s+As+r st+dAs+r s+ As+r
+pi_3(s)[( § A(adv)’exp(-3 | l(v)dv)+;( { l(v)dv)
S+ As s+ ds st+das
s+As+r s+as+2r 1 s+ 45
xexp(— | . A()dv)exp(— | A(v)dv)+5g( | A@)dv)x
s+4s s+ As & 5
s+4as+2r s+ 45+ 2r ' s+ As+r
x( j A(v)dv)exp(— j' AWdv)exp(— [ AW dv)+
s+ s+ s+ 4s
s+ As s+ As+3r :
+3'( j AW)dv)rexp(— | ,l(v)dv):, .+p0(s)L},
where _
s+ ds s+ ds
L( A(v)_dv)exp(-—/j A(v)dv)

denotes the prdbability of the first attaining of the line (t—(s+4s))/r at the
point i after first attaining of the line (t s)/r at the point 0. If 45— 0 we:
obtain: .

(14) | Bi(s) = —AE) P () + A P (5 +7),
. Po(s) = —A(s) po(s),
po(0)=1, p(0)=0 fori#0.
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We have
Po(s) = exp(— (J)'i(v) dv).

We seek solution of the form
l s+ir

pi(s, A) = gi(s, Dexp(— [ A()dv).

Then we obtain the following system of equalities:
(13 gi(s, A) = A() @i~ 1 (s +7),
0O =1, ¢O=0 fori#0.

This system of equations has the following solution:

}A(v)dv s ,
gi(s) =2 5 (fAMdv+ifA(mdvf~?,
'R 0
do(s) = 1.

So the solution of (14) has the form

(9 po, = ([ HO)D) AN+ {A0) b}~
* . [}]

_ ;<exp[_(},l(v)dwi}l(v)dv)],

L

Po(s, A) = exp(—[A(v)dv).

‘THEOREM 3.If fA()dv < 1, then Zp,-(S, A =1
0 i ,
Proof. We have . ’
- ' t 1 t .
B =< (lx,— JA()dY > ~(t—9)— Mv)dv)
0 ! 0

}l(v) dv
0

[%(t—s)— }l(v) dv:r

| for sufficiently large ¢ under the assumption that

<

[Amdv<1. .
0
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But
t .
[Aav
lim 0 - = = (),

e [1(t—s)—j,1(v)dv]2
r 0

#i (1, = ) < lim gy (7, > £) = 0,

t—w

S0, ) = mlr, <o) = 1.

THEROREM 4. If the intensity function A is a continuous periodic function
with the period equal to r and

[Amadv <1,
0
then

_sf}.(v)dv
(17) E, N, = M(s) = :
‘ 1-fA()dy

0

Proof. We have Zp,(s A)=1.

Theorem XII 20 [5] allows us to go w1th dxrectlonal denvatlvc with
respect to /, under the sum sign. We obtain

2.ipi(s) —(j Av)dv) Z p:(s) —(f A()dv)Y ipi(s) = 0,
i 0 i 0 i
M(s)— (A dv—([ A(v)dv) M (s) =
0 0 :
So we obtain formula (17).
THEOREM 5. If the intensity funct:on A is a continuous periodic function
with the period r and
[A@)dv <1,
0 A

then

(} A(v)dv)? — (} p (v)dv)? (} A(v)ydv)+ .s[‘/l (v) dv
0 0 0 0

(18) E, N%L =K()=

2

(= [AG) P
o
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jfl(v) dv

(19) Var, N, = ——.

(1-{Am)dv)
0

Proof. Let us consider préviously proved equality:
Yipi(s)—[A(v)dv— (jl(v) dv)z ip; (s) =
i 1]

Under the assumptions about the intensity function 4, we can use
theorem XII 20’ [5] and go with the directional derivative, with respect to 4,
under the sum sign. We obtain: '

K(s)(l;}A(v)dv)z—(}A(v)dv)M(s)—
—-(jl(v)dv) (s)+([l(v)dv)(jl(v)dv)M(s) jﬂ(v)dv—-

Using formula (17) for M(s) we can obtain formulas (18) and (19).

3.2. Efficiency of an obligue plan.

THEOREM 6. If the intensity functzon A is a continuous periodic function
with the period r and

}A(v)dv; 1,

then the oblique plan is an efficient sequential plan.

Proof. By theorem XII 20’ [5] we infer that for an obhque plan the
regularity conditions, guaranteeing equalities (2), (3) 9)-(13), hold For an
oblique plan we can write

1
=—(t,—5).
r
Let
f(tl, t27 srey tNtu’ Nrui Tu)_=raru+bs

r}l(v)dv—sil(v)dv+s
h(d) =a 0 0

+b,

r

1—{A(v)dv
0
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- rzsfl(v)dv
Var,, f = a? ? ,
(1= A dv)
. 25
(Vi h () _ a# r gﬁ.(v)dv

Ell}. [Nfu—.‘-j'(v)dv]z (l—j'ﬂ.(v)dv):*‘
0 | . [/
So an oblique plan is efficient plan.

4. EFFICIENCY OF AN INVERSE PLAN

Definition 5. A sequential plan (to, f), where
1o(x) =inf {t: N,(x) = lp}

with probability 1, is called an inverse plan.

We can write the following formula for the density functlon o (t) of the
stopping time 7,: :

Ar).
-1

Let us consider the estimator

gto(t) = o (j/l( )dv)’o‘l‘exp(—(j;);'(v)dv).

f(To, tl! tz, wees INV , N ) = a'r0+b.

.The lower bound in the Cramer- Rao-Wolfow1tz inequality takes the
. following form: :

2 o

% l .’o. _t ' 2
'lo[(lo;l)!]z[g(gi(v)di) éxP( (j;l(V)dv)dt]‘.l

Taking I =1 we can check that an inverse plan is not efficient. one.

We can conclude that an inverse plan is not efficient one for each I, and
possibly wide class of intensity functions containing constant functions. But,
as is proved in [7], an inverse plan is a complete plan.
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