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Abstract. In the present paper we define «-times ¢-de-
composable (0 <¢ <1, 2> () probability measures on a Banach
space X in such a way that they form a continuous subclassification
of infinitely divisible measures into decreasing classes L, (X) each of
which is closed under convolution, shifts, changes of scales and
passages to weak limits, Moreover, every L. ,(X) admits a universal
element (in a peneralized Doeblin’s sense).

1. Introduction and notation. Throughout the paper we shall denote by
X a real separable Banach space with the norm || || We shall consider only
Borel ¢ -additive measures on X. Given a bounded linear operator 4 and a
measure y on X let Au denote the image of u under A. In particular, if Ax
= ax for some ae R" and for all xe X, then Au will be denoted by the usual
symbol T, u. Let 8, denote the unit mass at x {(xe X). For > 0 let B, denote
the ball [xe X: |Ix|l < r], and B] its complement.

The concept of ¢-decomposable probability measures (p.m.'s) was first
introduced by Loéve ([6], Exercise 16, page 334) and studied further by
Miszejkis [8], Rajba [10], Urbanik [18], Zakusilo [20], among others. A
generalization of such a concept to the multiple case is given in [12], [13].
Namely, for a given sequence ¢,, ..., ¢, of numbers from the interval (0,1)
and a pm. g on X we say that u is {cy, ..., ¢;)>-decomposable if there
exist p.m.’s g, ..., gy on the space such that

(L) p=T prpn =T, oy gy = T pa s g,

where the asterisk + denotes the convolution of measures. In particular, for
Cp = .. =€ =0 (Cq, ..., ¢;»~decomposable p.m.’s will be called d-times ¢-
decomposable.
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By (1.1) it follows that u is d-times ¢ -decomposable (d =1, 2, ...} if and
only if there exists a pm. ¥V on X such that

(1.2) p= % T, V™,
k; 3

0
where the power is taken in the convolution sense and r,, is the number of
solutions of the equation x, + ... +x, = k in nonnegative integers. It is easy
to check that

(1.3) rk_dz(d_j_;: 1)md[d+l)...(‘d+k—1),fk!:
. Furthermore, in (1.2) and in the sequel the convergence of p.m.’s will be
understood in the weak sense.
The formulas (1.2) and (1.3) suggest us to generalize the concept of d-
times c¢-decomposable p.m’s to the non-integer case. Namely, for every
a >0 we put

. o _ i,L, k ::0?
(14) (k) - 7&(:2—-1} e le—k+ DKL, k=1,2, ...,
and ’ '
(1.5) oz = {a—l—?—ﬁ) = I'(a+k)/I(@) I (k+1).

Let Ly(X) denote the class of all infinitely divisible (i.d.) p.m.’s on X. A
~ pm. pon X is said to be « -times c-decomposable (0 < ¢ < 1, & > 0} if there
exists a pm. Vin Ly(X) such that

16 , i= % T,V
(1.6) H o o

Let L,,(X) denote the subclass of Lo(X) consisting of p.m.s u such that
the equation (1.6) holds for some Ve Ly(X).

In the sequel we shall fix numbers 0 < ¢ < 1 and a > 0. Further, we shall
identify a p.m. g in L,(X) with the triple [x,, R, M] in the Tortrat-Levy-
Chinczyn representation of p, where x, is a vector in X, R a covariance
operator corresponding to the Gaussian component of u and M a Levy’s
measure i.e. a generalized Poisson exponent (cf. [197). In particular, we shall
write [0, 0, M] simply by [M].

The paper is organized as follows. In Section 1 we introduce a new
concept of a-times ¢-decomposable pm.’s. In Section 2 we give a gen-
eralized logarithmic criterion which guarantees the existence of multiply c-
decomposable p.m.’s on X. In Section 3 an equivalent definition of «-times
¢ -decomposable p.m.'s is given. Moreover, we show that the classes L, ,(X)
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constitute a continuous monotone system of subsemigroups of Lg(X).
Further, in §4 we prove that for every symmetric pm. p in L, (X) its
support denoted by §, is a closed subspace of X. Finally, in § 5 we give a
further example of 4 - umversal p.m.’s for a subclass K of Ly(X), namely for
K = L,,(X). This stands for an analogue of our results in [16].
Remark. It is the same as in [12] and [17] pm’s in L,(X):

= [\ L.,(X) are called «-times selfdecomposable. The study on such
esf0,1)
measures will be communicated elsewhere.

2. A generalized logarithmic criterion. In [20] Zakusilo proved that for d
=1 and X = R! the infinite convolution (1.2) is convergent if and only if

(2.1 Jlog(1+]Ixl)) ¥V (dx) < o0.
7 .

Such a result was generalized to the multiple case in [13]. Namely, we
proved that (1.2) is convergent if and only if

(22) Jlog? (1+(Ixl}) V' (dx) < .
X

The same is true for every d > 0. Namely, we get the following
2.1. TueoREM. Let V =[xy, R, M] be an i.d.p.m. on X. Then the following
conditions are equivalent:
(i) the infinite convolution (1.6) is convergent,
(1) the following infinite convolution is convergent:
(2.1) x TV
k=0

(iii) V has a finite log”-moment, i.e.
(2.2) {log= (1 +[Ixil) ¥ (dx) < 0.
X

We precede the proof of the Theorem by proving the following

2.2. LEmMMa. For every a > 0 there exist positive constants, say A (@) and
A, (o), such that for n=1, 2, ...

(3 4O S Y R < A
Proof. Recall [4] that for 0<a<1, x2y>1and k=1,2,...,the
following inequalities hold:
(2.4) K Dk+1)/Tk+o) < (k+ 1)1
and
(2.5) x* Tl er S T(x)T(y) < x= 12 e y?~ M2 e™,

&
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On the other hand, for every a > 0 there exist positive constants, say
B, (2) and B,(x), such that for n=1, 2, ...

i

(2.6) B < Y K1 < By(a)n®
k=1

which together with (1.5) and (2.4) implies (2.3) for the case 0 <« < 1.
Next suppose that o > 1. Putting x = k+o and y = k+1 in (2.5) we infer
that

2.7) Cia)k* ' < Tk+a)/T(k+1) < Cy(m)k* !
for some positive constants C,(x) and C,(a). Finally, combining (2.6) and
(2.7) we get (23) for « > 1 which completes the proof of the Lemma.

Proof of Theorem 2.1. Recall ([17], Lemma 2.5) that for every i.d.p.m.
V=1[x,, R, M] the condition (2.2) is equivalent to the following:

(2.8) | log® [lx| M (dx) < oo.
_ B
Hence to prove the Theorem it suffices to show that (i) and (ii) are

equivalent to (2.8), respectively.
Suppose first that (1.6) is convergent. Then

E T j;k M
k=90
is a Levy’s measure. Therefore,
w  llogli x| fioge ™ 1]
(29) Y Tra T M(BY) = | )3 I M (dx),
k=0 B k=0

where [a] denotes the integer part of a, which by Lemma 2.2 implies that
(2.9) holds if and only if the condition (2.8) is satisfied.

Conversely, suppose that the condition (2.8) is satisfied. Define V)
= [%o, R, Mlp,] and V; = [M]p,], where M|; is the restriction of M to a
subset E of X. By Lemma 2.2 it follows that the measure

Y Tia ?;k M[B,
k=0
is finite and, consequently, the following infinite convolution is convergent:
@ .
; , -
(2.10) # Ty Ve,
k=0
Furthermore, since the Levy’s measure corresponding to ¥, is concentra-

ted on B,, it follows by [5] that all positive moments of ¥, exist. Let z, z,,
zy,... be a sequence of independent X -valued random variables with
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distributions V,, V,%*, ¥, %, ..., respectively. Then it is easy to check that,
for every k=0,1, 2, ...,

(2.11) Ellzl < ([reoJ+ DE|lzl| € (r o+ DE]Z]
which, together with the fact that

w
(2.12) Y, (ra+1)c* < oo,
k=0
implies
=}
(2.13) Y. FE|lz ] < o0.
k=0

Consequently, the power random series
<4}
Y ctz,
k=0
is convergent in L, -norm and hence the convolution
® Pl
# T, ¥h"
o
k=0

is convergent. Finally, since V=V, »¥,, we conclude that the convolution
(1.6) is convergent. Thus the equivalence (i)«>(2.8) is proved. The proof of
(i) «+(2.8) is similar and will be omitted. The Theorem is thus fully proved.

3. An equivalent definition of multiply c-decomposable p.m.’s on X, Let
G;(X) (o > 0) denote the subclass of Ly(X) consisting of all pm.s V for
which the condition (2.2) is satisfied. By virtue of Theorem 2.1, one can
define an operator I, from G,(X) onto L ,(X) as follows:

3.1) L.V= % T,V™ (VeG,(X).

k=1
Further, for every 0 < a < 1 we define an operator T,, on the whole of
Lo(X) by

(3.2 Tap= * Tyl (neLox).

k=1

where i:] = 5(2)! (k=0,1,2,..). It should be noted that

5 £

k=1
and hence the infinite convolution (3.2) is convergent for every pe Ly(X). The
operator T, can be regarded as an analogue of T, in the study of multiply c¢-
decomposable p.m.'s. Namely, we get the following




256 Nguyen Van Thu

3.1, TuEOREM. A pm. p on X is o ~times ¢ - decomposable, where 0 < o < 1,
if and only if there exists an idpm. V on X such that
(33) p=TouxV.

Proof. Suppose first that ue L, ,(X) ie. p =1, Vior some Ve G,(X). By
{3.2) and by the fact that

G4 y [z,;rm_k_, =t (m=1,2,..),
k=1

we get the equation

T, V'

i
1 <

(3.3) Lon=

n

[

which, by (3.1), implies (3.3).
Converselly, suppose that (3.3) holds with u = [x;, R, M] and

(3.6) V=[(1—cf)xo, (1—c*)R, ki(— 1) (:) T, M].
Further, since
3.7) T raxt=(1—x)"% (0<x<l),
k=0
and
6y T {m[’fﬂ} e
it follows, by (3.6), that
(39) 4= [xo, R, M1 = IV,

which shows that ue L ,(X). Thus the Theorem is fully proved.

From the above Theorem we get the following Corollaries:

3.2. CoroLiary. The operator I, is one-to-one. Moreover, for any o,
a; >0 and VeG,, 44,(X)

: (3.10) Inarncz V= Ic.,ml Ic.:xz V.

Proof. Let u =1, V. By Theorem 3.1 the p.m. V is uniquely determined
by p, which shows that I, is one-to-one. Further, the equation (3.10)
follows immediately from the definition of I ,. The Corollary is thus proved.
3.3. CoroLLARY. Suppose that o, 05, ... is a sequence of numbers from the
interval (0, 1) such that o =Y , < oo. Then, pe L ,(X) if and only if there
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exists a sequence iy, Uy, ... of pm’s in Lg(X) such that

(3.11) p=Ta pepy, py=T, pxps, ...

Proof. Suppose first that pue L., (X), where a = Yo, and ,e(0, 1] (k
=1,2,..). Then p=1.,V for some pm. VeG,(X). Putting

u
S" = Z R My = Ic.al v, Hy = !c.u:pﬂ~l ("2 =2,3,..)
k=1

and taking into account (3.10) and Theorem 3.1, we get a sequence y,, fs, ...
of p.m’s satisfying (3.11).

To prove the “if " part of the Corollary one may assume, without loss of
generality, that 0 < « < 1. Then, it is easy to check that if u;, p,, ... satisfy
(3.11), then for every n=1, 2, ...

(3.12) =T, 1.

Letting n — oo we infer, by the above equation, that u, converges to some
peq and T s p converges to T, p. Thus pe L., (X), which completes the proof
of the Corollary.

" The following theorem is concerned with the continuity and the monoto-
nicity of the classes L, (X).
34. Tueorem. If 0 < o < i, then

(3.13) L. (X) = L, (X).

Moreover, we get the formulas

(3.14) Ley(X) = Cg L ,(X)

and

{3.15) L. (X) =closure( " L, z(X)),
. fia

where the closure is taken in the weak topology.

Proof. The formulas (3.13) and (3.14) can be easily deduced from
Corollary 3.3. We shall prove (3.15).

Accordingly, let p be a p.m. from L . (X) and |§,) a sequence of numbers
such that f, |« Our aim is to show that there exists a sequence |u,) of
p.m’s such that el ,; (X) (n=1,2,..) and g, converges to .

We first consider the case o > 0. Let V be a pm. in G,(X) such that u
=1, V. Without loss of generality one may assume that

(3.16) Xl Vdx) < .
X
Hence V belongs to Gy (X) (n=1,2,..).

6 — Prob. Math. Statist. 5 ()
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Putting p, =I5 V(n=1,2,..) and taking into account the fact that
Fipy > Tipy > -+ for every k=1, 2, ..., we get the decomposition

(3.17) My = My %k 7;[;* V(rk”ﬂﬁ “fy)
k=0

which implies, by Theorem 2.2 [9], that the sequence pu,, is convergent.
Moreover, since f, | «, it follows that u, converges to u. Thus the case « > 0
is proved.

Next we consider the case o = 0, Let u be a pm. in Ly(X). Without loss
of generality one may assume that the first moment of u exists. Thus one
may define p, =1, p (n=1,2,..). By a similar argument as above, we
infer that p,eL,z (X) and p, converges to p, which proves the case a =0
and completes the proof of the Theorem.

4. The support of measures in L, ,(X). In [14] we proved that the support
of a symmetric ¢ -decomposable i.d.p.m. on a Hausdorff LCTVS is a closed
subspace. In particular, it follows that the support of symmetric stable and
semistable p.m.s on X are closed subspace of X (cf. [7] [11]). The same is
true for symmetric p.m.’s in L. ,(X). Namely, we get the following

4.1. Tusorem. For every symmetric pam. p in L., (X) its support S, is a
closed subspace of X.

Proof. By Theorem 3.4 it suffices to prove the Theorem for 0 < x < 1.
Let u be a symmetric measure in L,,(X). Then, by Theorem 3.1 it follows
that there exists a symmetric p.m. Vin Ly(X) such that the equation (3.3)
holds. Hence we get the equation

(4.1) S, = closure(S, o +8y).
Since, by [11], Sy is a group, we get the inclusion

ek
and consequently, by definition of T,,, we have
43) S, o *S, > nc*S,

for any n, k =1, 2, ..., which implies that for every a =0
@.4) §, > aS,.

Hence and by the fact that §, is a group, we conclude that §, is a
subspace of X, which completes the proof of the Theorem.

5. Generalized Doeblin’s universal p.m.’s for L,,(X). Let 4 be a bounded
linear operator on X, and K a subclass of Ly(X). Recall [16] that a p.m. P
on X is A-universal for K if PeK and for every ueK there exist sequences
{ny} and {m,] of natural numbers such that the sequence {A™ P™} is shift -
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convergent to u. In other words, every element of K is a shift - cluster point
of the double sequence {A" P™}. It should be noted that such a concept is a
generalization of the concept of universal p.m.’s for i.d.p.m.’s introduced by
Doeblin [1]. The existence of A-universal p.m.'s for Ly(X) and
L(X):= ( L,(X)
es(0,1)

was discussed in [15] and [16], respectively. Our present aim is to give a
further example of A -universal p.m’s, namely for K = L_,(X). The general
problem what subclass K of L,(X) admits an A -universal element remains
to be unsolved. We start the study with the following lemmas:

5.1. LEmmA. Suppose that X is finite - dimensional and P is A-universal for
Lo (X). Then P is a full measure on X, A is invertible and

(5.1) 1A% — 0.

Proof. It is evident that A4 is invertible because in the opposite case all
cluster points of the sequence {A" P"}, where P denotes the symmetrization
of P, should be concentrated on the proper hyperplane A(X) in X. Further,
if P is not full, then so are P and all cluster points of {A4"P™! which is
impossible since P is A -universal for symmetric p.m.'s in L,,(X) and among
them there are full ones. Thus P must be full.

On the other hand, since 8, is a cluster point of {4" P"} it follows that
the sequence {A4"} is bounded. Let B be a cluster point of {4™), where
A™ P™ converges to &, for an appropriate sequence {m,}. Then we get the
equation BP = §, which, by the fact that P is full, implies that B = 0. Thus 0
is a cluster point of {A"! which is equivalent to (5.1). The Lemma is thus
proved.

5.2. LemMa. For every m =0, 1, 2, ... we have the inequality

=]
(5-2) N - (R | VNP | B b Al
k=m+1

Proof. Let us denote the left-hand side of (5.2) by R,,{c) and note that
it is the m-rest in the Maclaurin expansion of the function f(¢):=(1~¢)™%
By the well-known integral formula

1€ «

(53) Rm(c) P :lf{ﬂl"'l)(“{c__ﬂmdt
m!

it follows that

(5.4) R,(c) = a(x+1) ... (2 +m)fm! |(1 —f)"Em N ey s
]

Hence, and by the fact that (c—0)/{1—1<c with 01 <e <1, we get
the inequality (5.2), which completes the proof of the Lemma.
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5.3. LEmMA. Suppose that N and H are measures on X such that
oo
(5.5) H=Y re, T N.
k=0
Then there exists a positive constant A(c, %) depending only upon c and o

such that
(5.6) | il H (dx) < Alc, 0){N(X)+ | log*|ix]] N (dx);.

By By

Proof. From the eguation (5.5) it follows that

6 Ik HE) = [ 1, () T rea TN (@)
X k=

By

[ Y = Y, ria €Ty ()} N (@)
X k=0 ¥=0

= [ lIxll(1=c) " N(dx)+ | R (c)llxl| N(dx),
Hy By

where m = [log,l|x||], d =¢™!, and R,(c) is the same as in the proof of
Lemma 5.2. Further, by Lemma 5.2 we get

(58) Ru(©) S M+ D1y g (1) Hixl| 71
Hence and by (2.7) it follows that
(5.9 R, (¢) < K(c, a)(m+ 1Pl ™ < 2 K(c, x)(m*+ 1) ||x]|~*

< 27K (e, a)(logj{lxlf+ )il 7,

where K(c,«) is a positive constant depending upon ¢ and « only.
Finally, combining (5.7) and (5.9) we get the inequality (5.6) with A(c, 2)
= max((1—¢)™% 2*K(c, @)). Thus the Lemma is fully proved.

The following theorems stand for a discrete analogue of Theorem 3.3 and
3.4 in [16]. ‘

5.4. THEOREM. Suppose that X is finite-dimensional and A is a linear
operator on it. Then there exists an A-universal pm. for L, .(X) if and only if
A is invertible and the condition (5.1) is satisfied.

Proof. The necessity follows from Lemma 5.1; the sufficiency follows
from Theorem 5.5 below.

5.5. TueoreM. Let A be an invertible bounded linear operator on an
arbitrary separable Banach space X such that the condition (5.1) is satisfied.
Then for any 0 < ¢ < 1 and o > O there exists an A -universal p.m. for L, ,(X).

Proof It is easy to check that condition (5.1) is equivalent to the
existence of constants b > 0 and @ > 1 such that, for every k=1, 2, ...,

(5.10) |44l < ba™*
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Let {P,} be a countable dense subset of L, ,(X) with the property that P,
= [xk!‘ O! Mk]: ‘

{5.11) Mﬁ - Z fﬂ,,ﬁ ?;“ Gk,
n={
where G, is a finite measure concentrated on B;, G, (|0}) =0 and G, (X) < k
(k=1,2,..).
Put
(5.12) G=[a"’1"147%G,,

where a is the same as in (5.10). Then G is a finite measure on X vanishing
at 0. Moreover, since for k=1, 2, ...,

(5.13) | log?|lxl| A% G, (dx) < 22 k3 log* 8,
By

where f = max (,et,y A~ YD, it follows that

(5.14) j log®|Ixl| G(dx} < o0,

which, together with Theorem 2.1, implies that the measure M, defined by
the formula

(5.15) M=Y r,.T,G,
n={
is a Levy's measure. Put P = [M]. We shall prove that P is 4 -universal for
Lea(X).
Accordingly, it is clear that P belongs to L ,(X). Let g be an arbitrary
element of L,,(X) and {n,] be a sequence of natural numbers such that the

2
sequence {P, ] converges to g. Further, we put ¢, = [a"%] and

(5.16) v = A" p w8, (k=1,2,.).

Our further aim is to prove that |V, converges to g which should finish
the proof of the Theorem.
For every k=1, 2, ..., we put

; O B
(5.17) Ni= Y t[a*]+4%" G,
i'l:’—‘i.ak
: W33
(5.18) N =Y t[a*171 4% "G,
néﬂk
and

(5.19) H=3Y rn. TN, (i=1,2).
m=0




262 Nguyen Van Thu

(For a similar setting of Ni (i = 1, 2) see formulas (3.6) and (3.7) in [16]).
It is evident that N} and Hj (i =1, 2) are Levy's measures and

(5.20) Vo= P, «[H«[HE] (k=1,2,..).

It is the same as in the proof of Theorem 3.4 [16] the following facts
hold:

(5.21) lim N} (X)=0
koron
and
(5.22) lim | ||| N2 (dx) = 0.
k- X

Moreover, for each 5 > 0 we have

(5.23) lim | logllx Ni@x)=0 (i=1,2).

kom0t B
Further, by (5.14) and Lemma 2.2 it follows that

fiog fj x|} floge ™ 1]

(5.24) HBY=(( X Po) Nk (d%)
. By k=0
Ax() . _
ST = ;m;z | log® || x|| Nj.(dx),
log’c™" 5,

where the constant A,(x) is the same as in Lemma 2.2, which by virtue of
(5.18) implies that

(5.25) im Hi(B) =0 (i=1,2).

koo
By the same manner we get the equation
(5.26) lim HL(B) =0 (i=1,2)
F el /]

for every r >0,
Proceeding successively by (5.19), Lemma 5.3, (5.21), (5.22) and (5.23) it
follows that

(5.27) lim {||x]| Hi@x) =0 (i=1,2).

ko0 By
Similarly, we get the equation

(5.28) lim X Hid0) =0 (=12

ks By

for each r > 0.
Since every Banach space X is Rademacher type 1, the equations
(5.26) and (5.28) together imply, by Corollary 1.8 [2], that [H;] converges to
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dg (i =1, 2). Hence and by (5.20) it follows that ¥, converges to g. The
Theorem is thus fully proved.
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