LIMITING PROPERTIES OF DIFFERENCE BETWEEN THE SUCCESSIVE k-TH RECORD VALUES

RV

LESŁAW GAJEK (ŁÓDŻ)

Abstract. Let $\{Y_n^{(k)}\}$ denote the sequence of the k-th record statistics corresponding to the sequence $\{X_i\}$ of i.i.d. random variables. In this paper it is shown that $k(Y_{n+1}^{(k)} - Y_n^{(k)})$ tends weakly (for $k \to \infty$) to the exponentially distributed random variable for a wide class of absolutely continuous random variables X_i .

1. Introduction. Suppose that $\{X_n\}$, $n=1,2,\ldots$, is a sequence of independent random variables with common distribution function (d.f.). Let $X_1^{(n)} \leq \ldots \leq X_n^{(n)}$ denote order statistic in the sequence X_1, X_2, \ldots, X_n . By

$$Y_n^{(k)} = X_{L_k(n)}^{(L_k(n)+k-1)}, \quad n = 0, 1, 2, ..., k \ge 1,$$

where

$$L_k(0) = 1,$$

 $L_k(n+1) = \min\{j: X_{L_k(n)}^{(L_k(n)+k-1)} < X_j^{(j+k-1)}\}, \quad n = 0, 1, 2, ...,$

we define a sequence of the k-th record statistics.

Properties of the k-th record statistics were discussed extensively in a lot of papers. Limiting distributions of the k-th record values for $n \to \infty$ were obtained by Resnick [5], and Dziubdziela and Kopociński [1]. Some characterizations of the geometric and exponential distributions by k-th record values one can find in papers due to Srivastava [6], [7], Grudzień [2], Grudzień and Szynal [3], and Nagaraja [4].

Write $Z_n^{(k)} = Y_{n+1}^{(k)} - Y_n^{(k)}$. Grudzień [2] discussed extensively the characterization of the exponential and geometric distribution by random variables $Z_n^{(k)}$.

In this paper limiting distribution of random variables

(1)
$$U_n^{(k)} = kZ_n^{(k)}, \quad n = 1, 2, ...,$$

is obtained for $k \to \infty$.

2. Limiting distributions of random variables $U_n^{(k)}$. Grudzień [2] showed that if random variable X has the exponential distribution with probability density function (p.d.f), with respect to the Lebesgue measure, of the form

(2)
$$f(x; \lambda, \mu) = \begin{cases} \lambda^{-1} & \exp[-(x-\mu)\lambda^{-1}] & \text{if } x > \mu, \\ 0 & \text{if } x \leq \mu, \end{cases}$$

then $Z_n^{(k)}$ has $(\text{p.d.f.}) f(z; \lambda/k, 0)$. Thus, from definition (1), it follows that $U_n^{(k)}$ has p.d.f. $f(u; \lambda, 0)$. In this section we prove that, for a wide class of absolutely continuous random variables X, there exists a $\lambda > 0$ such that $U_n^{(k)} \stackrel{\text{w}}{\to} U_n$, where U_n has p.d.f. $f(u; \lambda, 0)$.

The following convention is used: a.e. means almost everywhere with respect to the Lebesgue measure.

Firstly we prove the following

THEOREM 2.1 Suppose that F(x) is a df. with p.df. f(x) and the interval S as the support.

If a sequence $\{F_k\}_{k=1,2,\ldots}$ of df. is of the form

(3)
$$F_k(u) = \begin{cases} 1 - \int\limits_{S} \left[\frac{1 - F(x + u/k)}{1 - F(x)} \right]^k dG_k(x) & \text{for } u \ge 0, \\ 0 & \text{for } u < 0, \end{cases}$$

where $\{G_k\}_{k=1,2,...}$ is a sequence of df., and

(i) f(x)/[1-F(x)] is a differentiable function with the first derivative bounded a.e. on S,

(ii) $G_k \xrightarrow{w} G$, where G(x) is 0 for $x \le x_0$ and 1 otherwise, with $x_0 \in \partial S$,

then $F_k \to F_{\lambda}^*$ such that $F_{\lambda}^*(u) = 1 - \exp(-u/\lambda)$ and $\lambda^{-1} = f(x_0)/[1 - F(x_0)]$, where $f(x_0)/[1 - F(x_0)]$ means respectively the right or the left limit in the case $x_0 \in \partial S(F_0^*, F_0^*)$ mean distributions concentrated at infinity and 0).

Proof. Let us notice that from assumption (i) it follows that, for arbitrary fixed u > 0,

$$\log \left[(1 - F(x + u/k))/(1 - F(x)) \right] = -r(x)u/k - r'(x + \theta u/k)u^2/k^2,$$

where $0 < \theta < 1$ and $r(x) = f(x)/[1 - F(x)] \ge 0$. Thus

(4)
$$1 - F_k(u) = \int_S \exp\left[-r'(x + \theta u/k)u^2/k\right] \exp\left[-r(x)u\right] dG_k(x).$$

Let's define the new function $H_k(u)$ as follows:

(5)
$$H_k(u) = \int_{S} \exp\left[-r(x)u\right] dG_k(x).$$

From assumption (i) it follows that there exists a number $0 < M < \infty$ such that $|r'(x)| \le M$ a.e. on S. Hence it follows by (4) that

(6)
$$H_k(u) \exp[-Mu^2/k] \le 1 - F_k(u) \le H_k(u) \exp[Mu^2/k].$$

From (5) and assumption (ii) it follows that

(7)
$$H_k(u) \to \exp\left[-r(x_0)u\right].$$

Applying (6) and (7) we can obtain that $F_k(u) \to 1 - \exp(-u/\lambda)$, where $\lambda^{-1} = r(x_0)$. From (3) it follows that $F_k(u) \to 0$ for $u \le 0$ and this completes the proof.

COROLLARY 2.1. Since $\exp(-u/\lambda)$ is a continuous function,

$$F_{\nu}(u) \Rightarrow 1 - \exp(-u/\lambda).$$

The next theorem concerns the limiting distribution of $U_n^{(k)}$.

THEOREM 2.2. Suppose that X has df. F(x), p.df. f(x), the interval S as the support and f(x)/(1-F(x)) is a differentiable function with the first derivative bounded a.e. on S.

Then random variables $U_n^{(k)} \xrightarrow{w} U_n$, where U_n has df. $F_{\lambda}^*(u) = 1 - \exp(-u/\lambda)$ with $\lambda^{-1} = f(x_0)$, where $x_0 = \inf\{x \in S\}$.

Proof. The distribution function of $Z_n^{(k)}$ is (see Grudzień [2])

$$F_n^k(z) = \begin{cases} \frac{1}{(n-1)!} \int_{S} [-k \log(1 - F(x))]^{n-1} \frac{kf(x)}{1 - F(x)} \times \\ \times [1 - F(x)]^k \left\{ 1 - \left[\frac{1 - F(x+z)}{1 - F(x)} \right]^k \right\} dx & \text{for } x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Let's notice that the function $G_k(x)$ defined as

$$G_k(x) = \int_{-\infty}^{x} \frac{1}{(n-1)!} \left[-k \log (1 - F(y)) \right]^{n-1} \left[1 - F(y) \right]^k \frac{kf(y)}{1 - F(y)} dy$$

is a distribution function. Thus the random variable $U_n^{(k)} = kZ_n^{(k)}$ has the following d.f.:

$$F_{U_n^{(k)}}(u) = 1 - \int_{S} \left[\frac{1 - F(x + u/k)}{1 - F(x)} \right]^k dG_k(x).$$

Since

$$G_k(x) = \frac{1}{(n-1)!} \int_{0}^{-k \log(1-F(x))} u^{n-1} e^{-u} du,$$

it is easy to see that $G_k(x) \to G(x)$, where G(x) is 0 for $x \le x_0$ and 1 otherwise. Thus assumptions of Theorem 2.1 are fulfilled and this completes the proof.

Remark. Let's notice that if $f(x_0) = 0$ then, for arbitrary $0 < u < \infty$, $P\{k(Y_{n+1}^{(k)} - Y_n^{(k)}) < u\} \to 0, k \to \infty$. It seems to be reasonable that there exists a sequence $\{a_k\}$ such that $a_k/k \to 0$ and

$$P\left\{a_k(Y_{n+1}^{(k)} - Y_n^{(k)}) < u\right\} \underset{k \to \infty}{\longrightarrow} F^*(u) > 0$$

for arbitrary $0 < u < \infty$.

Acknowledgment. The author wishes to thank the referee for making various detailed comments which have considerably improved this paper.

REFERENCES

- W. Dziubdziela and B. Kopociński, Limiting properties of the k-th record value, Appl. Math. 15 (1976), p. 187-190.
- [2] Z. Grudzień, Charakteryzacja rozkładów w terminach statystyk rekordowych oraz rozkłady i momenty statystyk porządkowych i rekordowych z prób o losowej liczebności, praca doktorska (1982), UMCS Lublin.
- [3] and D. Szynal, On the expected values of k-th record values and associated characterizations of distributions, to be published.
- [4] M. N. Nagaraja, On characterizations based on record values, Austral. J. Statist. 19 (1977), p. 70-73.
- [5] S. I. Resnick, Limits laws for record values, J. Stoch. Proc. Appl. 1 (1973), p. 67-82.
- [6] R. C. Srivastava, Some characterizations of the exponential distribution based on record values, Abstract, Bull. Inst. Math. Stat. 7 (1978), p. 283.
- [7] Two characterizations of the geometric distribution by record values, Sankhya 40, Series B (1979), p. 276-278.

Institute of Mathematics Technical University of Łódź Al. Politechniki 11 90-924 Łódź, Poland

> Received on 10. 2. 1983; revised version on 2. 12. 1983