
HOW TO SOLVE T m  INEQUAUTBr' 

U, rn ,< wt FOR EVEBY t (0 < t < I)? 

Ahstmct. Let {U , :  0 < t < 1) be a semi-group of measurable 
transformations on a measurable space ( X ,  ,Q. In this paper we 
characterize a rr-finite measures m on . R  satisfying the inequality 
U, m d rn for every 1 (0 < t < 1). Some applications are given lor 
operator-selfdecomposable, V-decornposable, s-selfdecbmposable, and 
multiply s-selfdecampsable measures. 

I. Intrdmtion. In the theory of'limit distributions, for partial sums of 
sequences of X-valued independent random elements, we often meet the 
problem of finding a general form of measures m satisfying the inequality 

U, m ,< m for every t (0 c t < 1). 

More precisely, we ask about a structure of measures m, on a measurable 
space (X, A!'), such that for arbitrary A E A and arbitrary t (0 < t < I) 

where [U,: 0 < t < 1) is a semi-group of measurable transformations on X. 
In the case where X can be considered as a compact topological space, the 
U,'s preserve the weak convergence of measures, and the m's are Bore1 
probability measures on X, i.e. na E 9 (X), K. Urbanik noticed that it is more 
convenient to investigate the algebraic structure of the set 

C:= { w I E ~ ( X ) :  U, m < m for O < t < I) ,  

which is convex and compact. Namely, we look for extreme points of C (they 
are usually concentrated on the orbits [U,x: O < t c GO), XEX), and then 
using Choquet's theorem we represent each element of C as a barycenter of 
the extreme points. This Urbanik's approach was applied by himself in [IS] - 
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C2.41) by Jajte in c2], Jurek in C3], [S], Kucbmczak in [9J, Kurnar and 
% c h 6 k r  in [l0]-[12], and by Nguyen Van Thu in [131, [14]. The aim bf 
this paper is to solve the inequality in question in a more general situation 
and in a more direct way. Our considerations are analogous to those in [6] 
where m has k e n  a generaked Poisson expnenl and {U,: 0 < t < a] a 
one-pmnmeter strongly .yontinuous group of bounded linear operators on a 
Bana~Bm space (cf. also E171). In Section 3 some applications are givesl for the 
classes of opatolr-~el2kEecompsabIie, Y-rEecamposabPe, s-selfdecomposzabPe, 
ind multiply sg-decomposable probability measures. By our results we are 
able to obrtin n new form of the known descriptions of these classes in terms 
d the ccharaterisltic functionals. But the contents of subsection (e), concern- 
ing the multiply s-seEdecomposabifity, is fairly new. 
I 
2. Rkim rmnLs. k t  (X, A@ and ( I :  ,/if) be measurable spaces. If m is a 

mesasure on A and J is a measurable function from X into then by fm we 
denote a measure on Jlr defined by the formula 

In the sequel we assume that U: = (U,: t ER')  is a sed-group of measur- 
able transformar-til~ns on X, f.e. U, :  X -+ X is an &-measurable mapping and 
U ,  (i@T, x) = U, x Bb;r each s, t E Rf and x~ X. BP" denotes the set of strictly 
gosihve real numbers. Further, assume that a measure m on dk' satisfies the 
foUowling conditions: 

a ( I )  There exist X ,  E A and a meastarable function fi X, -+ R+ such that 

m(X\Xd = O and O < 1 fdm < a. 
xo 

(11) For every 1 (0 < E < 1) and every A E A, : = .R n X,, 

(111) Xo dm' t s  pear coordinates with respecr to &! i.e. there exist a 
m m r a b b  space ( Z ,  9"') and a mapping $: X, -+Z x W' such that 

(i) $ is an isomorphisq i.e. $ is 1-1, onto, and $, $ - I  are measurable; 
(ii) U,($-"z, s)) = $-' (z, ts) for every Z E Z  and s, t&+. 
(IV) There exists a ring d of subsets of Z generating E such that for 

every A E ~  and ~ E R +  

The above conditions, especially (111) and (Ill), have a rather technical 
character. We shall see t h t  in many cases investigated earlier they were 
fulfiEld in a quite natural way. For instance, if X is a red separable Banach 
space and m is a Levy mmsure, then as a function f we can take a so-calIed 
big& function (cf. Section 3). 
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ho~osn~row 1. If a 0-fin it^ memwe rn on (X, 4 sat is fie^ ~~JiKHitiom 
(11)4IV), the@ there3 exist a probability masure y on (Z, 9) a d  a func~on 
k :  Z x R' -P R+ such that k ( . ,  r )  is measurable, k ( x ; )  is m~-i ixredr i iq  and 
lefi-continerous, lim k (x, t )  = 4 and such that f i r  A E do 

t-m 

ConuerseFy, ~ a c h  measure of the above-mentionedform satisfies the r'laeqadafity iin 

(I1). 
Proof, From (0 and (111) we infer that the n-reasure 

is a probability measure on ( Z ,  %") whenever 

e =  J,fanz. 
x Q 

Further, by ( I )  and (IV), the measures v,(*):= ($mi)(. x(d, a)) are cr-finite 
and absolutely continuous with respect to yo ( r  E R). Therefore, by the Radon- 
Nikodym theorem, thme are non-negative measurabIe fi~nctions h $. , r) such 
that 
(2) ~ ~ ~ ( A ) = j h ( x , r ) y ~ ( d x )  forall A € % .  

A 

Moreover, if r ,  < r,, then 

(3) h(x, r,) 2 h(x, r2) for yo-almost every x. 

By (11) and (III), for arbitrary r, d r, and h > 0 we obtain 

v , , ( A ) - v , , ( ~ )  r ~ ~ ( { x E x , :  ( i e _ , ~ ~ + - l ( ~ x ( e r 1 ,  er2]))) 

= rn({$-'(2, s): $U,jh$-"(z ss)EA x(dl, 12])) 

i.e. for every A E 3' the function r -+ v,(A) is convex, right-continuous, and 
non-increasing on W. Consequently, by (21, for r , ,  r , e R  and O 4 a < 1, we 
get 
(4) 

h ( ~ ~ a r , - t ( l - ~ ) r ~ ) < a k ( x , r ~ ) + ( 1 - ~ ) h ( x , r ~ )  for yo-ahosteveryx~Z. 

Therefore, there exists A, E 3' such that yOI(A1) = 1 and inequality (4) is 
fulfilled for all rationals r , ,  r,, a (r,, Y Z E R ,  O <a'< 1) and for all XEA, .  
Now, for X E  Al and t E$ we put 

h"(x, t) : = sup h (x, r), 
r 2 t  



where the supremum is taken over all rationals r.  It is easy to see that .& is 
non-increasing and convex as a function of t, measurable with respect of 
x, and FormuEa (2) holds also B;or fi. Further, 

lim &(x, t )  = 0 for yo-almost every x. 
t + x  

The structural characterization of the convex functions implies that these is a 
function IIC"(x, t )  (non-increasing and left-continuous with respect of r and 
measurable with respect of x) such that 

m 

kjx , t )=  j E ( x , s ) d s  fur yo-almostevery x. 
I 

Consequently, by (21, wc get 

Putting k (x, t ) :  = k"(x, In t )  for x E A1,  r E R+, and defining k outside Al as an 
arbitrary function satisfying the required conditions and y(A):= y,(A n Al)  
for A E ~ ,  we obtain the formula in Proposition 1. Thus the necessity is 
proved. 

Since U is a semi-group and k ( x ; )  is a non-increasing function, 
for O < s < 1 we get 

k (x, r/s) 
( U S M A , = [  1 ~ A ( $ - ' [ X J ) )  dry (dx) < m (A),  

Z R+ 

i.e. the measure nz satisfies the inequality in (II), which proves the sufficiency. 
Note that if a measure rn satisfies condition (11), then m,: = rn- Us m for 

0 < s < 1 are also positive measures. This simple remark suggests the fol- 
lowing sequence of conditions defined inductively. 

Namely, let condition (11) be denoted by ( E I , ) ,  i.e. 
(11,) for every t (0 ..r t < I )  and A E A7,-,, (Uf m)(A) d rn(d). 
Next, for positive integers j 3 1, 
( I I j )  the measures tn and m,: = rn- Us m (0 < s < 1 )  satisfy conditions (11,) 

and (HIj- ,), respectively. 
Finally, we introduce the condition 

@Im) the measure m satisfies (I l lo)  and the measures m, (0 < s < 1) satisfy 
(IHj) for j = 0, I ,  2,  ... 

Z$Tow we are, going to describe the measures rn satisfying ( T I j ) ,  so satisfying 
(II,), in terms of the function k and the probability measure y occurring in 
Browsition 1. To this end we need the notion of monotonicity of order j 
( j  = 0, I ,  2, ..., m). We say that a function f is monotone of order zero if it 



is non-increasing, non-negative, and left-continuous. For $ 2 1, a function f 
is moplatom of order j if it is j- 3 times differentiable, ( -  d)kf:f'k) 2 0 for 
& = 0, 1,  2, . . . , j - 1, and f U -  has a left-hand derivative D- f "j- ' ' such 
that ( - l ) jD-fo ' - ' I  is monotone of order zero. Of course, functions 
monotone of order oo are completeIy monotone ones which are characterized 
by the Bernstein theorem, 

P~omsr~ro~ 2. Assume that a 0--rzite memure rn on ( X ,  A) satisfies ( I ) ,  
(III), and (IV). Then rn satisfies ((IIj), j = 0, 1 ,  2,. . ., m, if and oraly if rn 
satisfies (11,) and the .fu~zctiun g ( x ,  t):  = k (x, d)  (x E Z, t E R) is monotone of 
order j for 17-almost every x, where k arid y me purameters occurring iin 
Proposition 1. 

Proof.  Proposition 1 gives the validity of this statement for j .= 0. 
Assume that. it is true for j -1. If na satisfies (%Ij) ,  then for m and 
nz,: = m- U ,  m, 0 < s < 1, condition (IIj- ,! holds true. Hence g(x, -) and 
g(x, t )  - g  (x, t - logs) are monotone functions of order j -  1 for y-almost 
every x. Hence the function ( - l)i- :g(j- ''[x, $1 - & j -  ''[x, t - log 8) :  is non- 
increasing for y-almost every x, and so (- l)J-"ti-l)(x, -) is convex. 
Therefore, [ - 1)' D- ( x ,  ,) exists and is non-increasing left-continuous, 
and non-negative, which proves that g(x;) is monotone of order j for y- 
almost every x. 

The sufficiency for j = 0 is trivial. Suppose that the statement is proved 
for j- 1. If g is a y-almost everywhere monotone function of order j, then for 
O < s < 1 the function hs (x ,  t): = g (x, t )  - g  ( x ,  t - log s) is monotone of order 
j- l for y-almost every x. Indeed, the functions ( -  l ) ' ~ ( ~ ( x ,  t) are non- 
increasing for 1 = 0, 1 2,. . . j- I. Thus - lPh$')(x, .) 2 O for 1 
= 0, 1, 2,. . ., m- 2 and (-I?-' D -  ~I!-~)(X, 4 )  is monotone of order zero. 
Hence, by induction, m, satisfies (I$- ,) for 0 < s <. 1, i.e. na satisfies [HIj), 
which completes the proof of the sufficiency. 

As a consequence of the definition of monotonicity of order m and 
condition (11,) we obtain Proposition 2 for j = ao as well. 

Applying an integral representation of the monotone function of order j 
(cf. [I61 or C63) we get the following eharacterizatiom of measures satisfying 
condition (HIj) for j = 0, 1 ,  2,. . ., c~ (cf. 163, Theorems 7.1 and 7.2). 

C~RQLLARY I. Let a a-;finite masure m on [X, satisfy conditions ( I ) ,  
(III), and (IV). Then 

(a)  na satisfies (HIj), j = 0, 1, 2,. . ., $and only i f  there exist BoreE measures 
4! 

F, on Ri, ,finite on compact subsets, 1 (log vyl; ,  (dv) < m, the mapping z + F, 
e 

( z  EZ) is measurable, and there exists a probability measure y on Z such that 



(b) m satisfies (11,) if and only if there exist Borel measures E;, on W+ 
(zEZ) and a probability measure y on .Y such that the iinappipay z 4 F,  is 
measurable and 

Re mark 1. ]If for the product space Z x R' the Existence Theorem of 
Regular Conditional Distributions can be applied, then there are probability 
measures y, on Z ( s E R ' )  and a Borel measure F on W' such that the 
mapping s -+ y, is measurable and the first two integrals in the above- 
mentioned formulas can be replaced (cf. [6], Section 7). For i ~ t a n c e ,  this is 
true if Z is a Borei subset of some complete separable metric space (cf. &15], 
Chapter V, Theorem 8.1). 

Considering classes of limit distributions analogous to the stable ones we 
obtain an equation instead of the inequality in (11). Therefore, we introduce 
the following condition: 

(11') There exists a Boral measurable fimtion g : R' -S R f  such t h t ,  for 
every t ER' aid every A E ~ ~ : =  .,din X O ,  

Hn particular cases one can find a general form of m satisfying (HI') 
following Urbanik's approach, i.e. via the Choquet theorern (cf. [31 and [9]). 
On the other hand, the equation in (11') can be solved directly as is shown in 
the following proposition: 

PROPOSITION 3. I f a  measure rn on ( X ,  IY) satisfies conditions ( I ) ,  (117, (HI), 
and (IV), then g( t )  = tp, p is a positiue constant, and t h r e  exists a masure y 
on (2, 9) such that, for A E AO, 

Couioersely, each measure of the aboue j ~ r m  satisJies (11'). 
Proof.  Since U is a semi-group, by (111) we get 

s(ts)pn($-"A x o )  = ~ , ( ( ~ , m ) ( l k " ( ~  X I ) ) )  = g( t )g ( s )m($-" (~  xJ)) 

for arbitrary t ,  s E R", A E d, and a Borel subset I of B Z + .  Hence, if rn is a 
non-zero measure, we obtain g (ts) = g ( t )g  (s), t ,  s E R+ . Thus, by (11') and 
(Iff), g (t)  = P for some p > Q Further, putting f ( ~ ) :  = {$m) ( A  x ( r ,  a)), r ER' 
(A ~.d is fixed), we infer from (11') that 

Moreover, putting y (A):  = p(rl/m) ( A  x ( I  GO)) for A E d, we get f (r)  ' 



= p-' r - P y ( A )  and, therefore9 for an arbitrary interval I in R* we obtain 

This formulie has an extension for wbab 0-algebra do, w&rmicBa completes the 
proof of the necessity of Ropsition 3. One can easily c b k  that the above 
converse part holds true with g [t)  = P. 

COROLLARY 2. A LaIJmCIStlrre Bn On (X, ..&) sati#~iw ~~vkdibi~m (I), (I1'), (114 
and (TV) fuifiIIs aiso {PIj) jur j,= 0, I , .  . ., a. 

3. Appficagr~ws. %n this swtion we show some appEcations of tbe results 
given in Section 2. We find characterbations for some suklmses d the class 
ID(E) d all Infinitely divisible probabgty measures on a real scpwabb 
Banach space E. For the necessary inrformation we refer to El]. In ptliculan; 
each p G lD (Q has a unique repressexatation [x,, R, MI, where xo E E ,  Pi i s  a 
covariance operator of a Gaussian measure, and M is a Lhy  meamre of j.t (it 
is sometimes called a generalbed Poisson e x p m n t ) .  Moreover, Lk3y 
measures vailish at zero, are cr-finite, finite outside every neighbourhood sf 
zero, and there is a so-called weight fuva~tion @ (cf. [22], p. 29% such that 

(5) 1 @ ( x )  M(dx)  < LO for every Levy meaasure Ad. 
E\iW 

If E is a Hilbert space, as a function @ we can take 

and an arbitrary Bord measme M on E satisfying (5) is a Levy aneasure of 
some ,uEID(E). For t E R+ and pl = [ x ,  R,  AQ, we denote by p8" the 
,measure [ t x ,  t R ,  t M ] .  

(a) The classes E(U)  and S ( Q .  k t  U br: a strongly conti~muous one- 
parameter group of bounded linear operators on E satisfying the condtion 

l imU,x=O for X E E .  
I 

t-'O 

The classes L(U) and S(U) were introduced in [6] as limit measures of 
sequences Utn(pl* .. . *pZ)*dxi with the infinitesima~ty assumption. More- 
over, we know that 

[ X , , O , W E L ( B I )  i f f M 3  U,M forevery t ( O < t < l ) ,  
[ x , , O , ~ E S ( Q  J)fiffU,=tt"Mforevery t > 0 .  

I 

By Proposition 2 1  in [63 we see that ( I ) Q I ~  are fulfilled where X, and Z 
are some Bore1 subsets of E \ (0) a d  $- (a, t): = US Z. Further, as the 
function f we take 9, and as the family d in (1-V) we can take all Borel 
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subsets of Z separated from zero, i,e. A E .d if inf {llali: a E A )  > 0 and A is a 
Borel subset of Z. 

Therefore, according to Remark 1, Corollary 1 contains Theorems 7.1 
and 7.2 from [67. 

(b) Operator-seIfdeccumposabIe a d  operator-stabk measures. In a parti- 
cular case where ki is a uniform canfinuous group of bounded linear 
operators, i.c. U = ItQ: C E  R")  for some bounded Q and 

tlze classes E(&3 and S ( Q  represent so-called o~herator-seIfd~zcomposub1e and 
operator-stable measures, respectively. It is worth noting that these measures 
are limit distributions of partial sums of sequences of indepndent vectors 
normed by some &fine t~amformations (cf. [223 and 683). Moreover, E \ (0) 
is Borel isomorphic to SQ x R', where 

(cf. [7], Proposition 2). Of course, (I'lr) is fulfilled for an arbitrary Borel 
subset A of SQ.  Finally, by Theorem 5.1 in [22] and Corollary 1 we obtain a 
new characterization of the characteristic functionals of operator- 
selfdecomp~sable measures (cf. C223, Theorem 5.31, For operator-stable 
measures the measure y in Proposition 3 is concentrated on the set SQ (d. 
[4] and CS]). Taking the identity operator as Q, by Corollary 1 we obtain the 
description of n-times and completely-selfdscomposable measures (cf. 1131). 

(c) Vdecomposable land V-stable measures. Let N be a real separable 
Nilbert space aiid let T/: = { K: t E R"] denote a strongly continuous, unitary 
representation of the multiplicative group R+ in H. For the one-parameter 
group U: = { U,: t E PP" }, where U t :  = t q, we define ST-decomposability and V- 
stability as follows. We say that p is I/-decomposable if for every t (0 < t < 1 )  
there exists a probability measure CI, such that p = kJ,p*b, and p is V-stable 
if far every a, b E IS" there exist c E R+ and x E N  such that U, p*U, p 
= U ,  pdX. Consequently, Levy measures M of Vdecomposable ones satisfy 
condition (11) and Vstable ones satisfy the equation in (11') (cf. C2-J). Putting 

and taking as the family d in (IV) all Borel subsets of 2, we see that 
Proposition 1, Corollary I, and Proposition 3 give characterizations of V- 
decomposable measures and its subclasses. In particular, we obtain 

CORQLURY 3. M is a Lhy measure o j  a Vdeconnpsable one if and only if 
there exist a probability masure y on Z = (x: ((x(( = l f and a function 



k: Z x I' -+ R+, measurable in x, nafz-increasing and left-continuous in r, slceh 
that 

does not depend on x.  
COROLLARY 4. M i s  a L k y  measwe of a KstabIe one if and oniy there 

exisr a constant p (0 < p < 2) and a ,finite Borel memtrre y on the.unit sphere Z 
such that 

(d) Selfdecomposabk measures in generalized convolution algebras. The 
theory of generalized convolutio~~s was introduced by Urbanik [25] to study 
binary operations. o (on measures on the non-negative half-~ne) having 
appropriate analogues of the most important properties of the ordinary 
convolution +. By (P, o) we denote the convolution algebra, where 9 is the 
class of all probability measures on 10, CQ). Let U :  = [U,: a 3 Q ]  be a semi- 
group of mappings on [O, @) defined by the formula U ,  x: = ax. We say that 
p E .P is selfdee~rnpo~able in (9, o )  if for every t (0 < t < 1) there exists E 8 
such that 

The class of selfdecomposable measures is contained in the class of all 
infinitely divisible measures ( p  is infinitely divisible if p = pi" for every 
positive integer n and pn E 9). Moreover, p is infinitely divisible if and only if 
its characteristic functional rP, is of the form 

where c is a non-negative constant, x is the characteristic exponent of the 
algebra (8, 01, m is a a-finite measure on [O,  a), finite outside every 
neighbourhood of zero, m ({Oj) = 0, and 

1 

(8) j w ( x ) m ( d $  < a. 
0 

Since the representation (7) is unique (cf. 1251 and [23j), we write p = [c,  m] 



if the characteristic function @& is of the form (7). Finally, recall that the 
kernel 5;? is associated with a homomorpksm of (9, o) into the real line, 

and x, is a positive real number such that G(x) < 1 whenever 0 < x d x, (cf. 
1251). From (G) we infer that '[c, rpl] is seEdecomposable in (9, o )  if and only 
if m 2 U ,  m for every x (0 < t. 4 I). Further, we say that p is n times 
sefdecompsuble In = 1, 2,. . .) if iu, is selfdecomposable and is n - f times 
seKdecomposable, where 0 times sebfdecomposability means selfdecomposabi- 
lity (cf. [I43 and 1231). Since, by (81, conditions (1)-(IV) and (Mi), j = I ,  2,. . . , 
are fulfilled, Corollary 2 gives the following characterizations: 

COROLLARY 5. (i) The class af the characteristic functions o j  n t i m s  
seEfdacomposaBle measures in I.9, 01, n = 0, 2 ,  2,. . . , coincides with the class of 
all functions of the firm 

where c is a non-negative constant, x is the charlacteristic exponent, and I: is a 
Borel measure on R' such rhat 

a, m(x) 
5 (log x)" F (dx) < a a d  j ----log dxF [ds) co . 
e 0 0  X 

(ii) The class of the characteristic functions of completely selfdecomposabIe 
measures in (9, o )  coincides with t k  class of all functions o j  the form 

where c is a non-negative constant, x is the characteristic exponent of the 
algebra (P,  o),  rand F is a BoreI measure on the interval (0, x) such that 

(e) S-seljidecomposable probability measures. A11 the transformations kr, 
considered in subsections (a)-(d) have been linear on the underlying space X. 
PITow we shall quote a semi-group of non-linear mappings on a real separable 
Banach space E. Namely, for t E R+ we def M a shrinking operation (for 
short: s-operation) jI;: E 4 E as follows: 

It is easy to check that the set {Z: t ~ R ' 4  is an additive semi-group with 
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composition of non-linear transformations. Further, putting U,:= T-,,,,, 
0 < t < 1, we get a multiplicative semi-group. We say that 
,u = [x,, R, M ]  6 ID ( E )  is s-se~decomposablr if for every 1 (0 < t < 1) 

19) M 3 Ut  M on Bore1 subsets of E \ 10) 

or, equivalently, M 2 '7;M for every ~ E W + .  Tt is worth noting that in a 
Hilbert space the class d all s-seEdecomposabb measures coincides with the 
class of limits of the sequences 

Kn IU1*Urll F12* . - 7  ' u p , ,  l ~ n ' : a x , y  

where the triangular array LT,, pj FLj = I, 2,. . . , n) is infinitesimal (cf. 151). 
Further, we say that p = [xO, R,  MI is n rimes s-se~dec~mgosabk (n 2 1) 
if p is s-selfdecomposable and [ x , , R ,  M - U I M ]  is n-1  tirnes 
s-selfdecompsable for every t (0 < r < I). Finally, if p is n times 
s-selfdecomposable for n = 0, 1, 2, .  . . , then it is called a completely 
s-saifdeconaposabk messatre. (By 0 times s-seIf'deoamposabili~ we mean 
s-selfdccomposability). Following the results of [ 5 ]  we say that p is an 
s-stable measure if either p is Gaussian or p = [x,, 0, MJ and there is 
a constant p (8 < p < w) such that for every s (0 < s < 1) 

(10) U, M = sP M on Bore1 subsets of E \ [O j 

From (10) we infer that the measure M is finite on E\ [O] because the LCvy 
measures are always finite on subsets separated from zero. In order to solve 
inequality (8) or equation (10) we can follow the arguments of the proof of 
Reposition 1. Namely, taking X, = E\ tOj ,  f = @ .(cP is the weight function 
on E )  and t,b (x): = (x/l/xll, Ilxll) we infer that conditions (I), (II), (111) (i), and 
(IV) are fulfilled with the unit sphere Z and the family of all Borel subsets of 
Z as d. Moreover, assuming that, for every ZEZ,  (z ,  0) represents a zero 
vector in E, instead of (111) (ii) we have the condition 

U, ( + - I  (2, s) )  = (z, max (0, log res)) 

since ?;($- l.(z, 3)) = (z, max(0, s - t)) for t,  s E R+ and z EZ. Hence 
the function r -+ v,(A): = ($M)I(A x (r, co)) is convex on dP+ and we can 
repeat arguments from the proof of Proposition I. Therefore, we obtain the 
following 

PROPOSITION 4. A measwe p = [xo, R ,  ICgl on a Banach space E is 
s-seEfdecomposable g a d  only 5f there exist a Borel probability measure y on 
the unit sphere Z in E and a function k: Z x R '  +iR+ such that k(., t) is 
measurable, k k(x, . ) is non-increasing and left-contipzu~us, lim k jx, t) = 0, an8 
such that j ~ r  a Bore1 subset A of E \ (0) t - =  
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In view of Corollary 1 and Remark 1 in Section 1 we get 
~ O P O S I T I O M  5. (a) A measure p = [x0, R ,  M ]  on a Banach space E is n 

times s-sefilecompusable (n  =- 0, 1 ,  2 , .  . .) and only if there exist probdility 
Borel measures y, on the unit sphere Z in E and Sore1 measure P on RC such 
rhut the mapping s -+ y, is masurable and far a Bore/ subset A of E\{O). 

(b) A measure p = [x,, R, on a Banach space E is completely 
s-sel$deconaposabb if and only if there exisr Bopel probability rneusures y, on Z 
and a Bored measure F on R' such that rhe m a p p i ~ g  s -+ y,, S E R + ,  is  
measurable und for u Bore1 subset A of E \(D) 

M ( A )  = f j f B,(tz)e-"'Gly,(d~Ez)Fjds). 
R +  Z R* 

Using the characterization of the infinitely divisible probability measures 
on a Banach space in terms of the characteristic funetionals (cf. [I]), we can 
get analogous characterizations of multiply s-selfdecomposable measures 
from Proposition 5. 
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