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HOW TO SOLVE THE INEQUALITY
Um<m FOR EVERY ¢t (0 <t <1)?

BY

ZBIGNIEW J. JUREK (Wrociaw)

Abstract. Let {U;: 0 <t <1} be a semi-group of measurable
transformations on a measurable space (X, .#). In this paper we
characterize a o-finite measures m on .# satisfying the inequality
Um<m for every t (0 <t <1). Some applications are given for
operator-selfdecomposable, ¥-decomposable, s-selfdecomposable and
multiply s-selfdecomposable measures.

1. Introduction. In the theory of limit distributions, for partial sums of
sequences of X-valued independent random elements, we often meet the
problem of finding a general form of measures m satisfying the inequality

Um<m for every t (0 <1< 1)

More precisely, we ask about a structure of measures m, on a measurable
space (X, .#), such that for arbitrary A€ .# and arbitrary t (0 <t <1)

m({xeX: U,xeA}) < m(A),

where {U,: 0 <t <1} is a semi-group of measurable transformations on X.
In the case where X can be considered as a compact.topological space, the
U/’s preserve the weak convergence of measures, and the m’s are Borel
probability measures on X, i.e. me 2 (X), K. Urbanik noticed that it is more
convenient to investigate the algebraic structure of the set

C:={me?(X): Um<mfor 0 <t <1},

which is convex and compact. Namely, we look for extreme points of C (they
are usually ‘concentrated on the orbits {U,x: 0 <t < o}, xeX), and then
using Choquet’s theorem we represent each element of C as a barycenter of
the extreme points. This Urbanik’s approach was applied by himself in [18]-
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- [241, by Jajte in [2], Jurek in [3], [5], Kucharczak in [9], Kumar and
Schreiber in [107-[12], and by Nguyen Van Thu in [13], [14]. The aim of
‘this paper is to solve the inequality in question in a more general situation
and in a more direct way. Qur considerations are analogous to those in [6]
where m has been a generalized Poisson exponent and {U;: 0 <t <} a
one-parameter strongly continuous group of bounded linear operators on a
Banach space (cf. also [17]). In Section 3 some applications are given for the
classes of operator-selfdecomposable, V-decomposable, s-selfdecomposable,
and multiply s-decomposable probability measures. By our results we are
able to obtain a new form of the known descriptions of these classes in terms
of the characteristic functionals. But the contents of subsection (€), concern-
ing the multiply s-selidecomposability, is fairly new.

2. Main resnits. Let (X, .#) and (Y, 4") be measurable spaces. If m is a
measure on .4 and fis a measurable function from X into Y, then by fm we
denote a measure on 4 defined by the formula

(fm)(A):=m(f ~1(4)) = m({xeX: f(x)eA}).

In the sequel we assume that U:= {U,: teR*} is a semi-group of measur-
able transformations on X, ie. U,: X - X is an .#-measurable mapping and

U,(U;x) = U, x for each s, tER+ and xe X. R* denotes the set of strictly
positive real numbers. Further, assume that a measure m on .# satisfies the
following conditions:

" (I) There exist Xy€ M and a measurable function 2 Xo — R* such that
m(X\X,)=0 and 0< | fdm < .
Xo

{am For every t 0<t<1) and every Aeﬂo = .#n Xy,
(U, m)(4) < m(A).

(III) X, admits polar coordinates with respect to U, ie. there exist a
measurable space (Z, %) and a mapping Y. Xo — Z xR* such that

(i) ¥ is an isomorphism, i.e.  is 1-1, onto, and W, Y~ are measurable;

@) U,y '(z,8) =y (z, ts) for every zeZ and s, teR".

(IV) There exists a ring o of subsets of Z generating & such that for
every Aeof and teR”

(ym) (A x(t, o)) <

‘The above conditions, especially (III) and (IV), have a rather technical
character. We shall see that in many cases investigated earlier they were
fulfilled in a quite natural way. For instance, if X is a real separable Banach
space and m is a Lévy measure, then as a function /' we can take a so-called
weight function (cf. Section 3).
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ProrosiTion 1. If a o-finite measure m on (X, #) satisfies conditions
(D)(IV), then there exist a probability measure y on (Z, %) and a function
k: ZxR* — R* such that k(-, t) is measurable, k(x,-) is non-increasing and
left-continuous, lim k(x, 1) =0, and such that for Ae M,

1~ w

ma)=] | L5 0)

k (J;’ f) dty(cfx).

Conversely, each measure of the above-mentioned form satisfies the inequality in
(I1). ’
Proof. From (I) and (III) we infer that the measure
(1) Yo(d)i=c™" § f(x)mdx), AeZ,
xp(z)ed x ®Y)

is a probability measure on (Z, &) whenever
c= { fdm.
X0

Further, by (I} and (IV), the measures v,(-):= (ym)(- x(¢, oo))‘ are o-finite
and absolutely continuous with respect to y, (v € R). Therefore, by the Radon-
Nikodym theorem, there are non-negative measurable functions A(-, r) such
that -

2 v,(A) = j h(x, P)yo(dx) for all AeZ.

Moreover, if ry <r,, then
3) h(x,r)) = h(x,r;) for yy-almost every x.
- By (II) and (IIl), for arbitrary r; <r, and & > Q0 we obtain
(A=, > m({xe Xy U _yxey (A x(, €7)))
= m{T G ) YU Ded x(€, €21))
= Vr1+h(A)—Vr2+h(A)
ie. for every AeZ the function r —v,(4) is convex, right-continuous, and

- non-increasing on R. Consequently, by (2), for r,r,eR and 0 <a < 1, we
get

) _
h(x, ory +(1—a)r,) < ah(x, r)+(1—a)h(x, r;) for yo-almost every xeZ.
Therefore, there exists 4,€Z such that y,(4,) =1 and inequality (4) is

fulfilled for all rationals ry, r,, « (r;, 7,€R, 0 <a' < 1) and for all xeA1
Now for xeA; and teR, we put

h(x, t):= sup h(x, 1),

rzt
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where the supremum is taken over all rationals r. It is easy to see that his
non-increasing and convex as a function of ¢, measurable with respect of
x, and formula (2) holds also for h. Further,

limi(x, ) =0 for y,-almost every x.

t—=+x
The structural characterization of the convex functions implies that there is a
function k(x, t) (non-increasing and left-continuous with respect of ¢ and
measurable with respect of x) such that

h(x,t)= [ k(x,s)ds for y,-almost every x.
Consequently, by (2), we get
k(x,
W 1) = [ 222 dsgo(d).

Putting k(x, t):= k(x, Int) for xe4,, teR““, and defining k outside 4, as an
arbitrary function satisfying the required conditions and y(A4):= yo(4 N 4,)
for Ae%, we obtain the formula in Proposition 1. Thus the necessity is
proved. ‘

Since U is a semi-group and k(x,') is a non-increasing function,
for 0 <s <1 we get

k
U,m)(A) = | &7
V4

J, Laly ™" (e )= dry(dx) < m(4),

R
i.e. the measure m satisfies the inequality in (II), which proves the sufficiency.

Note that if a measure m satisfies condition (II), then m::=m—Ugm for
0 <s <1 are also positive measures. This simple remark suggests the fol-
lowing sequence of conditions defined inductively. '

Namely, let condition (II) be denoted by (lly), ie.

(ILy) for every t (0 <t < 1) and Ae Hy, (U my(A) < m(4).

Next, for positive integers j = 1,
 (II)) the measures m and mg:=m—Ugm (0 <s < 1) satisfy conditions (Il,)
and (II;_,), respectively.

Finally, we introduce the condition

(1) the measure m satisﬁes (Ily) and the measures m; (0 < s < 1) satisfy
() for j=0,1,2,.

Now we are going to describe the measures m satisfying (IIJ) so satisfying
(ILy), in terms of the function k and the probability measure y occurring in
Proposition 1. To this end we need the notion of monotonicity of order j
(j=0,1,2,...,0). We say that a function f is monotone of order zero if it
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is non-increasing, non-negative, and left-continuous. For j > 1, a function f
is monotone of order j if it is j—1 times differentiable, (—1)*/® > 0 for
k=0,1,2,...,j—1, and fY~? has a left-hand derivative D™ fY~Y such
that (—1YD~fU~1Y is monotone of order zero. Of course, functions
monotone of order oo are completely monotone ones which are characterized
by the Bernstein theorem.

PROPOSITION 2. Assume that a o-finite measure m on (X, #) satisfies (1),
(IT), and (IV). Then m satisfies (I1}), j=0,1,2,..., o0, if and only if m
satisfies (Ily) and the function g(x, t):=k(x, €') (xeZ, teR) is monotone of
order j for y-almost every x, where k and y are parameters occurring in
Proposition 1. B

Proof. Proposition 1 gives the validity of this statement for j=0.
Assume that it is true for j-—1. If m satisfies (II}), then for m and
mg=m—Ugm, 0 <s <1, condition (II;_,) holds true. Hence g(x,') and
g(x, )—g(x, t—logs) are monotone functions of order j—1 for y-almost
every x. Hence the function (— 1Y~ gV~ Y(x, )—g¥ P (x, t—logs)} is non-
increasing for y-almost every x, and so (—1)"1gV Y(x,) is convex.
Therefore, (—1Y D™ gV~ V(x,-) exists and is non-increasing, left-continuous,
and non-negative, which proves that g(x,-) is monotone of order j for y-
almost every x.

The sufficiency for j = 0 is trivial. Suppose that the statement is proved
. for j—1.If g is a y-almost everywhere monotone function of order j, then for
0 < s < 1 the function hy(x, t):=g(x, t)—g(x, t—logs) is monotone of order
j—1 for y-almost every x. Indeed, the functions (—1)'g"”(x, t) are non-
increasing’ for 1=0,1,2,...,j—1. Thus (—1)'A®(x,-)=0 for |
=0,1,2,...,m—2 and (—1Y 1D~ hY~?(x,-) is monotone of order zero.
Hence, by induction, m, satisfies (I,_,) for 0 <5 <1, ie. m satisfies (II)),
which completes the proof of the sufficiency. ;

As a consequence of the definition of monotonicity of order co and
condition (II) we obtain Proposition 2 for j = oo as well.

Applying an integral representation of the monotone function of order j
(cf. [16] or [6]) we get the following characterization of measures satisfying
condition (II)) for j=0,1, 2,..., 0 (cf. [6], Theorems 7.1 and 7.2).

CoroLLARY 1. Let a o-finite measure m on (X, .#) satisfy conditions (1),
(If1), and (IV). Then

(@) m satisfies (II}), j = 0, 1, 2,..., if and only if there exist Borel measures

a0
F, on R™, finite on compact subsets, {(logvy F,(dv) < co, the mapping z - F,

(4
(zeZ) is measurable, and there exists a probability measure y on Z such that

mA)={ | [L0760); (log %)jthz (dv) (dz);
Z Rt O
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(b) m satisfies (I1,)) if and only if there exist Borel measures F, on R*
(zeZ) and a probability measure y on & such that the mappmg z—F,
measurable and

m(Ad) = | j j 1, (0~ (z, )t~V dtF, (ds) y(dz).
zZ Rt RT

Remark 1. If for the product space Z x R* the Existence Theorem of
Regular Conditional Distributions can be applied, then there are probability
measures 7, on Z (seR*) and a Bore! measure F on R* such that the
‘mapping s —y, is measurable and the first two integrals in the above-
mentioned formulas can be replaced (cf. [6], Section 7). For instance, this is
true if Z is a Borel subset of some complete separable metric space (cf. [15],
Chapter V, Theorem 8.1).

Considering classes of limit distributions analogous to the stable ones we
obtain an equation instead of the inequality in (II). Therefore, we introduce
the following condition:

(iI") There exists a Borel measurable funcnon g: Rt = R* such that, for
every teR* and every Ae .My = M 0 Xo,

(U, m)(4) = g(1)- m(A).

In particular cases one can find a general form of m satisfying (II"
following Urbanik’s approach, i.e. via the Choquet theorem (cf. [3] and [9]).
On the other hand, the equation in (II') can be solved directly as is shown in
the following proposition:

ProrositioN 3. If a measure m on (X, M) satisfies conditions (I), (II'), (III),
and (1V), then g(t) = t*, p is a positive constant, and there exists a measure y
on (Z, &) such that, Jor Ae M,

m(A j f 1a( 'z, t))tpﬂy(dz)

.L

Conversely, each measure of the above form satisfies (IT').
Proof. Since U is a semi-group, by (III) we get

g(tsym(y (4 x D) = U (U,m)(~ (4 xD) = g)g () m(w ™" (A x )

for arbitrary ¢, se R*, Ae</, and a Borel subset I of R”. Hence, if m is a
non-zero measure, we obtain g(ts) = g(H)g(s), ¢, se R*. Thus, by (II') and
(IV), g(t) = t* for some p > 0. Further, putting f (r) = (Yym)(A x(r, 0)), reR*
(Aef is fixed), we infer from (II') that

/) =f(r) forall ¢, reR".

Moreover, 'pu’tting y(A):=pym)(Ax(1, 0)) for Aest, we get f(r)
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=p 'r ?y(4) and, therefore, for an arbitrary interval I in R* we obtain
| _ dr
(Wm)(A xT) = ;E ft;—ly(dx)-

This formula has an extension for whole g-algebra .#,, which completes the
proof of the necessity of Proposition 3. One can easily check that the above
converse part holds true with g(t) = ¢

CoroLLARY 2. A measure m on (X, .#) satisfying conditions (1), (I'), (III),
and (V) fulfills also (IL) for j=0,1,..., 00

3. Applications. In this section we show some applications of the results
given in Section 2. We find characterizations for some subclasses of the class
ID(E) of all infinitely divisible probability measures on a real separable
Banach space E. For the necessary information we refer to [1]. In particular,
each pelD(E) has a unique representation [xy, R, M), where x4cE, R is a
covariance operator of a Gaussian measure, and M is a Lévy measure of p (it
is sometimes called a generalized Poisson exponent). Moreover, Lévy
measures vanish at zero, are o-finite, finite outside every neighbourhood of
zero, and there is a so-called weight function ® (cf. [22], p. 299) such that

&) | #(x)M@dx) <o for every Lévy measure M.
E\{0}

If E is a Hilbert space, as a function & we can take
Il
L+ (1)
and an arbitrary Borel measure M on E satisfying (5) is a Lévy measure of

some pueclD(E). For teR* and u=[x, R, M], we denote by u** the
.measure [tx, tR, tM].

(@) The classes L(U) and S(U). Let U be a strongly continuous one-
parameter group of bounded linear operators on E satisfying the condition

P(x) =

ImU,x=0 for xeE.
t—0

‘The classes L(U) and S(U) were introduced in [6] as limit measures of
sequences U, (uy* ... xuy)*d, with the infinitesimality assumption. More-
over, we know that

[xo, 0, MeL(U) iff M > U,M for every t (0 <t < 1),
[%o, 0, M]ES(U) iff UM =1*M for every t > 0.
' By Proposition 21 in [6] we see that (I)—(III) are fulfilled where X, and Z

are some Borel subsets of E\{0} and y!(z, ):= U,z. Further, as the
function f we take @, and as the family < in (IV) We can take all Borel

|
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subsets of Z separated from zero, i.e. Ae.o/ if inf {[|la]|: acA} >0and A is a
Bore! subset of Z.

Therefore, according to Remark 1, Corollary 1 contains Theorems 7.1
and 7.2 from [6].

(b) Operator-selfdecomposable and operator-stable measures. In a parti-
cular case where U is a uniform continuous group of bounded linear
operators, i.e. U= {t2: reR"} for some bounded Q and

lim2 =0,

t—0
the classes L(U)} and §(U) represent so-called operator-selfdecomposable and
operator-stable measures, respectively. It is worth noting that these measures
are limit distributions of partial sums of sequences of independent vectors
normed by some affine transformations (cf. [22] and [8]). Moreover, E\ {0}
is Borel isomorphic to Sy x R*, where

Sgi={x: Xl =1AV (¢>1) ||i®x]| >1} and ¢ '(z, 1):=1%z

(cf. [7], Proposition 2). Of course, (IV) is fulfilled for an arbitrary Borel
subset A of SQ'. Finally, by Theorem 5.1 in [22] and Corollary 1 we obtain a
new characterization of the characteristic functionals of operator-
selfdecomposable measures (cf. [22], Theorem 5.3). For operator-stable
measures the measure y in Proposition 3 is concentrated on the set Sy (cf.
[4] and [8]). Taking the identity operator as @, by Corollary 1 we obtain the
“description of n-times and completely-selfdecomposable measures (cf. [13]).

(c) V-decomposable and V-stable measures. Let H be a real separable
Hilbert space and let V:= {V;: teR*} denote a strongly continuous, unitary
representation of the multiplicative group R™ in H. For the one-parameter
group U:= {U,: teR"}, where U,:= 1V}, we define V-decomposability and V-
stability as follows. We say that p is V~-decomposable if for every t (0 <t < 1)
there exists a probability measure y, such that u = U, u+y,, and u is V-stable
if for every a, beR* there exist ceR* and xeH such that U,usxU,u
= U, uxd,. Consequently, Lévy measures M of V-decomposable ones satisfy
condition (II) and V-stable ones satisfy the equation in (II') (cf. [2]). Putting

. ) 2

Z=I{xeH: ||dl=1}, ¥ '@ t):=U,z,

and taking as the family </ in (IV) all Borel subseis of Z, we see that
Proposition 1, Corollary 1, and Proposition 3 give characterizations of V-
decomposable measures and its subclasses. In particular, we obtain
CoroLLARY 3. M is a Lévy measure of a V-decomposable one if and only if
there exist a probability measure y on Z = {x: ||x|| =1} and a function
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k: ZxR* — R*, measurable in x, non-increasing .and left-continuous in t, such
that

k(x t)
M) =[ | 14(Ux)—=diy(dx).
Z R*
Moreover, the constant
t-k(x, 1)
= ——d
Rj-'l' 1 + tz !

does not depend on x.

CoroLLARY 4. M is a Lévy measure of a V-stable one if and only if there
exist a constant p (0 < p < 2) and a finite Borel measure y on the unit sphere Z
such that

M(A) ={ _f+ 1,(U,x) pﬂy(dx).

R

(d) Selfdecomposable measures in generalized convolution algebras. The
theory of generalized convolutions was introduced by Urbanik [25] to study
binary operations. o (on measures on the non-negative half-line) having
appropriate analogues of the most important properties of the ordinary
convolution * By (2, o) we denote the convolution algebra, where £ is the
class of all probability measures on [0, o). Let U:= {U,: a > 0} be a semi-
group of mappings on [0, o) defined by the formula U, x: = ax. We say that
ue? is selfdecomposable in (2,0) if for every ¢ (0 <t < 1) there exists p, 2
such that

(6) p=Upop.

The class of selfdecomposable measures is contained in the class of all
infinitely divisible measures (u is infinitely divisible if u= u)" for every
positive integer n and p, € #). Moreover, u is infinitely divisible if and only if
its characteristic functional @, is of the form '

(N PD,(t) = exp{—-ct"—i—? (2(tx)—1)m(dx)},
, J |

where ¢ is a non-negative constant, » is the characteristic exponent of the
algebra (£, 0), m is a o-finite measure on [0, o), ﬁmte outside every
neighbourhood of zero, m({0}) = 0, and

@® ; } w(x)m(dx) < co.
: _ )

Since the representation (7) is unique (cf. [257] and [23]), we write p = [c, m]



180 Z. J. Jurek

if the characteristic function @, is of the form (7). Finally, recall that the
kernel Q is associated with a homomorphism of (£, o) into the real line,

1—w(x) if 0<x< X,
1—w(xg) if x> xo,

w(x):=%

and X, is a positive real number such that Q(x) < 1 whenever 0 < x < x, (cf.
[25]). From (6) we infer that [c m] is selfdecomposable in (£, o) if and only
if m=U,m for every t (0 <t <1). Further, we say that u is n times
selfdecomposable (n =1, 2,..) if p is selfdecomposable and y, is n—1 times
selfidecomposable, where 0 times selfdecomposability means selfdecomposabi-
lity (cf. [14] and [23]). Since, by (8), conditions (I){IV) and (II}), j =1, 2,...,
are fulfilled, Corollary 2 gives the following characterizations:

CoroLLARY 5. (i) The class of the characteristic functzons of n times
selfdecomposable measures in (?, 0), n =0, 1, 2, ..., coincides with the class of
all functions of the form

@, (1) =exp% et § f -Sz—gt—?—i(logi)ndxlf(ds)},

where ¢ is a non-negative constant, x is the characteristic exponent, and F is a
Borel measure on R* such that

[ (ogxPFdx) <o and }}—ﬂi@log(i)ndxlv“{ds)<oo.
e oo X x

(ii) The class of the characteristic functions of completely selfdecomposable
measures in (2, o) coincides with the class of all functions of the form

@ (t)—exp{—ct“+f jﬂtif%&—l—d F(ds)},

where ¢ is a non-negative constant, » is the characteristic exponent of the
algebra (2, o), and F is a Borel measure on the interval (0, %) such that

j j“’ff!d F(ds) < .

(e) S-selfdecomposable probabzltty measures. All the transformations U,
considered in subsections (a){d) have been linear on the underlying space X.
Now we shall quote a semi-group of non-linear mappings on a real separable
Banach space E. Namely, for te R* we define a shrinking operation (for
short: s-operation) 1,: E — E as follows:

Tx__{o if ||x)| < t
" (1~I/IIXH)J¢ if ||| > ¢.

It is easy to check that the set {7;: teR"} is an additive semi-group with
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composition of non-linear transformations. Further, putting U,:= T_,,,
O<t<l1, we get a multiplicative semi-group. We say that
U =[x, R, M]eID(E) is s-selfdecomposable if for every t (0 <t < 1)

) M > UM on Borel subsets of E\ {0}

or, equivalently, M > T, M for every teR™. It is worth noting that in a
Hilbert space the class of all s-selfdecomposable measures coincides with the
class of limits of the sequences

Ur" Hi *Ur" Mo ... *Urn :un*éxua

where the triangular array U, p; (=1, 2,...,n) is infinitesimal (cf. [5]).
Further, we say that u =[xy, R, M] is n times s-selfdecomposable (n > 1)
if p is s-selfdecomposable and [x,, R, M—U,M] is n—1 times
s-seifdecomposable for every t (0<rtr<1). Finally, if g is n times
s-selfdecomposable for n=0,1, 2,..., then it is called a completely
s-selfdecomposable measure. (By 0 times s-selfdecomposability we mean
s-selfdecomposability). Following the results of [5] we say that u is an
s-stable measure if either pu is Gaussian or u=[xq, 0, M] and there is
a constant p (0 < p < o0) such that for every s (0 <s < 1)

(10) UM =s"M on Borel subsets of E\{0}.

From (10) we infer that the measure M is finite on E\ {0} because the Lévy
measures are always finite on subsets separated from zero. In order to solve
inequality (8) or equation (10) we can follow the arguments of the proof of
Proposition 1. Namely, taking X, = E\ {0}, f= & (@ is the weight function
on E) and ¥ (x):= (x/||x]|, ||x]]) we infer that conditions (I), (II), (ITI) (i), and
(IV) are fulfilled with the unit sphere Z and the family of all Borel subsets of
Z as /. Moreover, assuming that, for every zeZ, (z, 0) represents a zero
vector in E, instead of (III) (ii) we have the condition

U, (¢ 1z, 5)) =y~ !(z, max (0, logte))

since T(y~'(z, 8)) =y~ (z, max(0, s—1)) for t,seR* and zeZ. Hence
the function r—v,(4):=(WM)(4x(r, c0)) is convex on R* and we can
repeat arguments from the proof of Proposition 1. Therefore, we obtain the
following '

PropPOSITION 4. A measure p =[xy, R, M] on a Banach space E is
s-selfdecomposable if and only if there exist a Borel probability measure y on
the unit sphere Z in E and a function k: ZxR* — R* such that k(-, 1) is
measurable, k(x,-) is non-increasing and left-continuous, imk(x, t) =0, and
such that for a Borel subset A of E\{0} 1o

M) =] [ Lk dey(da).

z Rt
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In view of Corollary 1 and Remark 1 in Section 1 we get

ProposiTiON 5. (a) A measure u =[x, R, M] on a Banach space E is n
times s-selfdecomposable (n =0, 1, 2,...) if and only if there exist probability
Borel measures y, on the unit sphere Z in E and Borel measure F on R* such
that the mapping s — vy, is measurable and for a Borel subset A of E\{0}

v

M(A j; [ 14(2) (v-t dty, (dv) F(ds).

Z 0

(b) A measure p =[xy, R, M] on a Banach space E is completely
s-selfdecomposable if and only if there exist Borel probability measures y, on Z
and a Borel measure F on R such that the mapping s—vy,, seR*, is
measurable and for a Borel subset A of E\{0}

M(4) = f 1,4(tz) e™* dryy(dz) F (ds).

R?R

Using the characterization of the infinitely divisible probability measures
on a Banach space in terms of the characteristic functionals (cf. [17]), we can
get analogous characterizations of multiply s-selfdecomposable measures
from Proposition 3.
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