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Abstract. Given some regularity conditions on the distribution
function F of a raqdom sample X,, X,,..., X,, the sequence of
quantile processes (n*2f(Q(y){(Q.(»})—Q(»); 0 <y <1} behaves
like a sequence of Brownian bridges {B,(y); 0 <y < 1}, where Q(y)
:=F ~'(y), the inverse of F (), and Q,(y) = X, f (k—~1)n <y < k/n

“(k=1,2,..,n with the order statistics X,,<X,,<...<X,, of
the above sample. First, a sequence of consistent direct estimators is
proposed for the quantile-density function @'(y) = 1/f(Q(»)). The
latter then also enables us to construct simultaneous confidence
bounds for an unknown quantile function Q(y). The second appro-
ach makes frequently misused heuristic steps like

l—a=P{F(x)—n"Y2c(0) < F,(x) S F(x)+n Y2c(a);
—00 <X <o}
=P{y—n""2c@ < F(F ()< y+n" 2 cw);
F YOy <F '(<F Q)
=P{F; (y—n" @) < F )< Fo (y+n7 P e(@);
0<y<1}
precise for large n, where F, is the empirical distribution function of
the above random sample, and for ae(0, 1), c(a) is defined by
P{ sup [B(y) <cl@)}=1~a
o<y<1 |

for a Brownian bridge B(-).

1. Imtroduction. Let X,, X,,... be a sequence of iid. r.v. with an abso-
lutely continuous distribution function F(*) and let X;,< X,,<...< X,
denote the order statistics of the random sample X, X,,..., X,. Define the
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and by a Natural Sciences and Engineering Research Council Canada Grant, both held at
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empirical distribution function F,(x) and the empirical quantile function
0.(y) as follows:

0 if X,.,>x,
FH(X)Z%IC/H ika:"<x<Xk+1m,k=1, 2,...,7’!—1,
1 if X,,<x,
0.0=X,, If *k-D/n<y<k/n k=1,2,...,n
Tt is a natural idea to use the empirical quantile functions as an estimator
of the quantile function
0():=F '(y), where F l(y)=inf{x: F(x) =y} (0<y<1).

Properties of the empirical quantile function Q,(y) were studied in a number
of papers. Here we refer only to our earlier papers and references therein (see
[3] and [4]) where we proved the following

TueoreM A. Let X, X,,... be iid. ro. with™ a continuous distribution
function F. Assume that the following conditions hold:

(1) F(x) is twice differentiable on (a, b), where
—wm <a=sup{x: F(x) =0}, o02=b=inf{x: F(x)=1};
() F =f>0 on (a,b); '

(i) for some y >0 we have

L ()
sup FI(1-F () 750 <
(iv) A=limf(x) <o, B=lmf(x)<oo;
xla xth

(v) one of the following conditions holds:

(v) min(4, B)>0,

(vp) if A=0(B=0), then f is nondecreasing (nonincreasing) on an interval
' to the right of a (to the left of b).

One can then define a Brownian bridge {B,(y); 0 < y < 1} for each n such
that

sup |f(Q()n*(2.(00—-Q ) -B.0)

o<y<l1

us. | O(n™ V2 logn) fr<2,
~ | O(n Y2(loglogn) (logn)* T~ ) if 9> 2,

where y is as in (iii) and & > 0 is arbitrary.
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Theorem A is an analogue of Kolmogorov’s classical theorem on the
empirical distribution function, which gives a confidence bound for the
distribution function F. However, Theorem A does not give an immediate
confidence bound for the quantile function Q (y). In fact, a direct application
of Theorem A produces only the “confidence bound”

0u9) =12 < Q) < Q)+
few) - few)
(where the constant ¢ depends on the significance level), which depends on
the unknown function 1/f(Q(y)). In our book (cf. [5], Theorem 5.5.2) we
proposed to estimate the function 1/f(Q(y)) from the sample X,, X,,..., X,
by 1/£,(Q.(y)), where f, is any appropriate estimator of f and Q, is the
empirical quantile function. This idea can certainly produce a confidence
bound, but the use of two estimators (that of f and that of Q) seems to be a
somewhat artificial solution of the problem at hand. One of the aims of the
present paper is to give a direct estimator of 1/f(Q(y)), and we first prove

THeOREM 1. Let Xy, X,,... be iid. rwv. with a continuous distribution

function F(-) satisfying the conditions of Theorem A. Assume also that the
condition

O<y<1

i up [F(x)(1—F (x))]? <c

a<x<bp - f(x)
holds with some C > 0. Then

. Qn(y+an)_Qn(y_an) 1 a.
lim w(n su —
n—ow ( ) e,,Sy!EIl)—sn zan f(Q(y))
where a,=n""% ¢, =n""% wm) =r’, and 3f+6 <a <3, 26+4p+a < 1.

The estimator (2a,)™*(Q,(y+a,) —Q.(y—ay,)) proposed here for 1/1(Q ()
is the natural analogue of the estimator

fn* =(2a,,)‘1(F,,[x+a,,‘)—-F,,(x~«a,,)),

-

0,

which is frequently used to estimate a density function £ However, when
studying the problem of density estimation in general, one quickly learns that
instead of the estimator f* the more sophisticated estimator

o0

S =a;" | iay ' (x—u)dF,(w)

- ®x

should be used, where A(-) is an arbitrary density function. Given this
experience, we also propose the more general estimator

Ly 0u0) = a1 | A(y u)dQ,.(u)
0

an
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for the function 1/f(Q (»)- As to the properties of ¢,(y) we prove our main
result on quantile-density estimation here, namely

THeoREM 2. Let X, X,,... be iid. ro. with a continuous distribution
function F(-) satisfying the conditions of Theorem 1. Assume also that the
condition
(vii) sup [f"()<C

a<x<b

holds with some C > 0. Let A(-) be a density function which is absolutely
continuous on (— o, o), vanishing outside of the interval (=%, §), and such

that

13'2 xA(x)dx = 0, T x2A(x)dx < 00, sup|d(x)| < co.
-1/2 ~1/2 x
Then .
mo)  sup  |pa)— | 20,
n— o e, SyS1l—g, f(Q(y))

where @,(y) is defined as in (1.1), a,=n""% g =n"% w@m=r’, and
S+108 <20, a+28+6 < 4.

An indirect application of Theorem A provides us an alternative, direct
route to constructing simultaneous confidence bounds for quantiles. Namely,
the following heuristic steps can be made precise. Let c,(a) be defined by

1z P{sup B(y) <ci (@)} =1-a,

0<y<1

where {B(y); 0 <y <1} is a Brownian bridge and a<(0, 1) is fixed. Then,
given a random sample of size n on a continuous distribution function F(-),
in terms of the empirical distribution function F,(*) of our random sample
on F(:) we have - '

(1.3) P{F,(x) < F(x)+n"Y2¢c (a); —-oé <x<ow}=1—a asn—oo,
and letting y = F(x), we get
(14) P{F,(F')<y+n i@ FFHO<F ') <F Y1}
=P{F Y')W<F ' (y+n "e;(@);0<y<l}=1—-a asn— oo,
i, in terms of our notation Q(y):=F~'(y) and Q,(y):=F, (y), for large n
we have
(1.5) PO <Q.(y+n e (@);0<y<1}=1-a.
On similar heuristic grounds we have

(1.6) PO, (y—n"c;@)<Q();0<y<l}=1-a asn- oo,
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and if c(x) is defined by (cf. (1.2)
(L.7) P{ sup IBU’)| Sc()) =1-a,

LEYEY]

then for large n we have

(18) P{Qu(y—n""2c@) < Q0) < Quly+n" Y2 c@); 0 <y < 1} = 1—a.

It is clear from Theorem A that further conditions on F (other than its
continuity) will have to be assumed for the validity of statements like (1.5),
(1.6) and (1.8), although (1.3) and similar statements for the empirical
distribution function, which lead us to considering (1.5), (1.6) and (1.8), are of
course true with the stipulated numbers ¢, (x) and c¢(a) provided only that F
is assumed to be continuous. Thus the statements (1.5), (1.6), and (1.8) with
¢y (@) and c(a) as above are candidates for being simultaneous 1 —a confid-
ence bounds for Q(y). The question is the following: under what further
conditions on F will they hold true as n — oo and for which quantiles then?
The answers to this question are given in Section 5 under the conditions of
Theorem B (cf. Section 5).

2. Proof of Theorem 1. The proof of Theorem 1 is based on two lemmas
(cf. Lemmas 1 and 2 below). For the proof of Lemma 2 we need also

LemMa A (Csorgd and Révész [3], Theorem 6, and [5], Theorem 1.15.2).
Let ( o :
() =n'2fQUN2.(W-20) ©O<y<1).
Then
lim sup (dayloga, )™ g, (y+a)—en(y—a) =1
n2w lm<y—@,<yta,<1-1/n
provided that a,=n"% 0<a < 1/2.
LemMmA 1. Assume the conditions of Theorem 1 are satisfied. Then

Qy+a)—Q(y—a) 1

Imot), 2. %, 7ieon =
Proof. By the mean value theorem We obtain
F'y+a)-F '(y-a) 1 oy SE )
2a, FET)” T AFE @Y
where y—a, < n < y+a, By conditions (iii) and (vi), we have
i) SF iﬁ”;)' < O(t)ay (a0

This implies our statement if we recall that Q(y):= F~ ' (y).
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Lemwma 2. Assume the conditions of Theorem 1 are satisfied. Then

Iim a)(n) sup Qn(y+an)_Qn(y_ari)_Q(y+an)_Q(y_an) azso

n= oo g, Sysl—gy 2an 2(1,,

Proof. By the mean value theorem, we have

0wy +a)—0aly—a) F'(y+a)—F '(y—a,)

2a, 2a,
— Qn(ytan)_gn(y""an) —_ Qn(y—l'_an) f(F*1(y+an))—f(FWI(y_an))
2a,/nf (F - (y=a)) /nf*(F~*(r+ap) 2,
aUta)—ab-a)  ob+a)  [(FT'()

2, Unf(F  y—a)) JnfAF ' (y+ay) S(FTI0)

where y—a, < n < y+a,. Applying again conditions (iii) and (vi), by Lemma
A we obtain our statement.

Clearly, Lemmas 1 and 2 imply Theorem 1.

3. Proof of Theorem 2. The proof of Theorem 2 is based on two lemmas
(cf. Lemmas 3 and 4 below). For the proof of Lemma 4 we need also

LemMA B (Csorgs and Révész [3], [4]). Let X, X,,... be iid. rv. with a

continuous distribution function F(-) satisfying the conditions of Theorem A.
Then

: lenOW) as. -
i __=n7 =) 1/2
l::S:Jp os<l}l.r<)1 (log log n)'/?

Lemma 3. Under the conditions of T heorem 2 we have

1L (y—u 1
2" aowy———— | =
a.,a[}( ‘. ) Q) f(Q(y))t

Proof. For n large enough we have’

1‘ i )dQ“”a‘E ( .,)f(F‘ll(u))du

lim w(n) sup

n— epSysl—gy,

yiay 1/2

1 1
= M) ————— — _dv = M) —o—— d
13’—‘!)10,, (v)f(F‘l(y—a.,v)) a —'f/z (U)f( F~Y(y—a,v)) v
_ v e fFT ) S () =3 (f (P L))’ i
FFT0) -1 2 FAFE ) v

and our statement follows.
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LemMA 4. Under the conditions of Theorem 2 we have

lim w(n) sup

n—o EpSysl-—g,

=0.

1L (y—
—] A(ya u)d(Q..(u)—Q(u))
n 0

n

Proof. Integrating by parts we obtain

1 -
Iaig &(y ; “)d(Q,.(u)~Q(u))

n

: 1 1 . —
2] (@-gw)ar (X;;’f)

N (7)) y—u
X d
af-\/ﬁgf(F_l(u)) ( ay ) u' :
I N () (yuu)
= pE d
a;?‘\/; y~£2/2 f(Fil(u)) a, “
<20 y”f"”[[ 0n (1)
(F~ " (w)

od) sup lg,(u)  sup !
an\ no<u<i " /2 <u<l—gy/2 ,f(Fnl(u)),,

du

'
a, \/n yayl2

<

which, by Lemma B, proves our statement.
Clearly, Lemmas 3 and 4 imply Theorem 2.

4. Simultaneous confidence bounds for the quantile function via quantile-
density estimation. Theorems 1 and A together imply

ConseQUENCE 1. Let X,, X,,... be'iid. rv. with a continuous distribution
Sunction F(-) satisfying the conditions of Theorem 1. Then one can define a
Brownian bridge {B,(y); 0 <y <1} for each n such that

a.s. 1

1
(4.1) sup ©3) n'’2(Q, -2 (¥))— B, ()

ey SysSl-—gy, P,

and

(42 P{Q,0—-n""eP(c<Oy)
SQM+n 2P (y)es e, <y <l—s,) >K() as n— oo,

where

e (y) =

Qn (y -+ an) - Qn (y B an)
2a, ’
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m(n) — na, an‘= nfa’ &, =‘A7‘1*ﬂ, 3B+5 <o < 1/2, 2(5+4ﬂ+0€ <1, and
K@) =1-F (—1)*'exp(—2k%c?), c30,

k#+0
is the distribution function of sup |B(y).
0sys1

CONSEQUENCE 2. If the coniiitions of Theorem 2 are satisfied, then
Consequence 1 will be true with the corresponding w(n) of Theorem 2 when we
replace @2 (y) by @,(y) defined in (1.1). o

Proof. Theorems 1 and A combined give (4.1), which implies (4.2) if we
observe also that sup |B(y) and sup |B(y)| tend to zero almost surely

0<y<e, 1-8,<y<1 ‘ ~
as n—co by the P. Lévy modulus of continuity for a Brownian bridge.
Similarly, Theorems 2 and A imply Consequence 2.

The two-sided simultaneous confidence interval for Q(y) is of course not
the only consequence of (4.1) with ¢!? (resp. with ¢,). Other statements of
interest, such as various one-sided intervals, can be also based on it. For
example, with ¢{” as in (4.2) we have

43)  lim P{Q,()—-n" P eP(1)c < QO) &y <y <1-&,)

= lim P{Q()) < Q. +n" 2P () cs e, <y <1-g,)

=P{ sup B()) <c}=1-exp(—2?), c¢>0,
0osy<1
and similar statements hold with ¢, of (1.1) replacing ¢{”. Some further one-
and two-sided confidence intervals for Q are discussed in a somewhat
different approach of the next section. ‘

While it is true that in this paper we estimated 1/f(Q(y)) mainly for the
sake of gaining confidence intervals like (4.2) and (4.3), it may also appear
that the using of dQ,(u) in (1.1) in order to get a one-step estimator for dQ(y)
is more important than the gained confidence intervals themselves, for
estimating dQ, the so-called quantile-density function, is of independent inter-
est in statistics. Thus it appears that estimators like ¢, of (1.1) should be
further studied. Also, the idea of using dQ,(y) in (1.1) suggests that the
estimator of type ¢,(y) can, in turn, be similarly used to get an estimate for
J(») = —d(f(Q(»))), the so-called score function of the density f. Namely, for
d(f(Q(»)) one may wish to consider an estimate in terms of d(1/¢,(y)) with
@,(y) as in (1.1), i.e, an estimator like, say,

‘_11 y_.u“ 1
P

for J(y). For further references and considerations of the quantile-density
function and the score function of a density function and their estimation we
refer to [6]. :
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5. Direct simultaneous confidence bounds for the quantile function. First we
recall the following version of Theorem A (cf. (5.1) of Theorem 6 in [3]):

TueoreMm B. Let X, X,,... be iid. rv. with a continuous distribution
function F and assume that F satisfies conditions (i), (ii), and (iii) of Theorem A.
Let 6,:=25n"'loglogn. Then with the sequence of Brownian bridges
{B,(»); 0< y <1} of Theorem A we have also

sup [f (@)1 (Q, () —Q () — B,(»)| = 0 (n~ 2 logn).

SpSy<1-d,

Next we prove two corollaries to Theorem B.

CoroLrrary 1. Let X, X,,... be iid. rv. with a continuous distribution
function F, which is assumed to satisfy all the conditions of Theorem B. Let
{B(y); 0< y < 1}.'be a Brownian bridge. Then
(5.1) lmP{QO)<Cuy+n 20 e, <y<l—g,)

n-tx

= lim P{Q,(y—n""20) <Q(); 6, <y < 1—35,)

n—>o

=P{ sup B(y)<c)=1—exp(—2c?, ¢>0,

osyst
where ¢,:=n"Y2*? with any 5¢(0, 1/2).

Proof. When calculating below, we use the more suggestive notation
F~! (resp. F; *) for Q (resp. Q,). For n =1, 2,... we consider the sequence of
events
(52) {Fi'(y+n""20—F ' (5)> 056, <y < l—s,)

= U {Foly+n"120—F 1)) 2 0; (k—1)/n <y < k/n}.

ne,+1<Sk<Sn(l-gp)

Next, for each ke[ne,+1, n(1—¢,)] and n, we consider

' k—1 k
(5.3) {F;l(y+n_”zc)——F‘1(y) = 0; — <y <;}

= {F;‘(y+n‘”2c)—F-1(y+n"”2c)+F-‘(y+n“1/2c)—F-1(y) >0;

»

.n n
={f(F'1 (%+n““2c))(F;1(y+ n~12¢)—F1 (y+n;1/2c))+

FEYfn+nY2g)
FEE) S0

+n"Y2¢




230 M. Cs&6rg8 and P. Révész

~ f(F Y kfn+n"12c))
= 1/2
{Qn(y'i"n C)+( f(F'l(y+n_1/zc))

_ f(F“l(k/n+n'“2¢))—) .
“'( TR Y A

—l)en(y+n*”2¢:)-— '

1 k
—— <y -, y<é, <y+n"”2c%
n n

‘ k—1 k
. -1/2 hiv
{ ( ’ 5 6"’ ) C! y < é" < y+n (’3 n n}!
where

e (y+n 2y =n'2f(F- Y (y+n~ 2 ) (F, ' (y+n~Y2c)—F Y (y+n~12¢)).
Putting (5.2) and (5.3) together, we get
(54) [F, 1(J/"f"'”l”/?'c) F'() 20,8, <y<l—g,
= U {Gay, kn, &) S 3y < & <y+n~ e,
neyt+1<k<n(l—eg,)
(k—1)/n < y < k/n}
={G,(y, k/n, &,, )< c;y <& <y+n e, (k—1)n <y <k/n,
e, +1/n<kn<l—e,}.

Hence the problem of verifying the first limit statement of (5.1) is equivalent
to showing that

(55) lim P{Gn(ya k/na éna C) <c

y<&<y+n e, (k=/n<y<kin e, +1n<kn<1—e,)
= P{ sup B(y) ¢}, ¢>0.
osy<1

Let now {B,(y); 0<y< 1} be that sequence of Brownian bridges for
which Theorem B holds true. We are going to show now that

(5.6) sup |Gy (y, k/n, &uy )= B,V = 0p(1)  as n— oo,

{Epyskin}
where
{gna y’ k/n}
={y<é<y+n Mic (k—N)n<y<k/n e, +1/n<kin<1l—g,).
First, by Theorem B we have

(5.7) sup g (y+n""?)~B,(y+n" 20 ’=0(1) as n—co.

epSysSl—g,
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Also, by the P. Lévy modulus of continuity for a Brownian bridge
{B(y); 0 < y < 1}, we have

(5.8) Oéy:ilip"_ ;zc’B(W'"—l/zc)_B(V)' =0(n""?logn),
and since

59  (B.:0<y<1}Z{B();0<y<1} forn=1,2,...,
by (5.8) we also obtain |

(5.10) sup 2 IB,(y+n Y?c)~B,(3)| =0p(1) as n— 0.

o<yst—n"
Combining now (5.7) and (5.10), we get
(5.11) sup e (y+n" "2 )~ B, (y) = 0p(1).

a"\y\l Ep

Next, we show that

(5.12) |
fE ntn=120) ) gl a5 no
;:E} (f(F—l(y+n—112 ) 1)o,(y+n " 2c) =0p(1) as n— oo,

where {y, kfn}:={(k—1)/n <y <k/m, g, +1/n<k/n<1-g,}. By (59) and
(5.11) we obtain :
(513) » sup  |o,(y+n Y2¢) San rv. as n— oo.

epSyS1—g,

(In fact, the latter r.v. is sup [B(y)l, but now this is of no interest to us).
o<ys<1

Consequently, in order to verify (5.12), it suffices to show that

| (F~* (kjn+n 12 0)
AT R TIRr)

—ll =0(l) asn-ow.

Now, by Lemma 1 in [3], for every pair y, y,€(0, 1) and y as in (iii) of
Theorem A we have

f(F—l(J’i)) {.Vi vy, I=(y; A Y:z)}y .
5.15 < ~ o
( ) f(F—I(}’z)) < Vi Aya 1=(y1 v y3)
Hence
SF (kfn+n"120) }
519 | ryen )

f( 1(k/n+n 1’243) fF Y y+nY2¢)
<§,‘:}3}{(f( “T(y+n 2g) ) (f F~L(k/n+n T2)) 1)}
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kin+n Y2¢ 1—y—n~"Y2c Y\
< 2 sup / —1/2 Y -1/2 —1
wigm L\ y+n~Y2¢ 1—k/n—n"1?c

y+1l/n+n~12c 1—y Y
<2 sup {( [T —1

e Sy€l—g, y y

< 2{[(1+ Vns,+ 12 cfe)(L—n" V2 c/e) 1T —

= 2{[(1+ a2 g /) (1—c/w?) T =1} >0 as n— oo,
Hence, combining (5.16) and (5.13), we get (5.12). '

Along the lines of (5.16) one can also show that

If (F~ ' (k/n+n""?¢))
G17) {éilyl.gn; F(F1(E)

and (5.12), (5.13), (5.17) together imply (5.6). Now (5.5) follows immediately

from the latter after using (5.9) and observing also that sup |B(y) and
) O<y<e
sup |B(y) tend to zero almost surely as n — oo by the P. Lé{'/y modulus
1~ rn\yél
of continuity for a Brownian bridge. This also completes the proof of the first
limit statement of (5.1).
Mutatis mutandis, the above proof also gives the second limit statement of

(5.1) and Corollary 1 is proved.
A combination of lines like those of the proof of Corollary 1 yields

CoroLLARY 2. Let X, X,,... be iid. rv. with a continuous distribution
function F, which is assumed to satisfy all the conditions of Theorem B. Then

(5.18)  lim P{Q,(y—n""2) < Q) < Qu(y+n""?0);e, <y <1-¢,}

nr o

—1l=o0(l) as n— 0,

=P{ sup |[B(y)|<c}=K(), ¢>0,
0€y<1 i
where €,:=n" 12" with any 6€(0, 1/2) and K(-) is the distribution function
as given in (4.2).

Given Corollaries 1 and 2, we can now get correct versions of state-
ments like (1.5), (1.6), and (1.8) under the conditions of Theorem B. For
example, with ¢ = ¢, (&) as in (1.2) it follows from Corollary 1 that for large n
a correct version of (1.5) is

(519)  P{QOI<Qu(v+n e @)e <y <l-g)=1-a,

i.e,, under the conditions of Theorem B, when estimating the y-th quantile of
F by the (y+n~'2¢; (®))-th quantile of F,, the probability that no true
quantile of F (for quantiles above n~/2*% and below 1—n"Y2*% with any
0e(0, 1/2)} exceeds the estimated quantile is 1—a.
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A similar correct version and interpretation of (1.6) follows again from
Corollary 1, and that of (1.8) from Corollary 2. The statement of (5.19) also
corrects (2) of Alexander [1].

The next three corollaries to Theorem B give some further useful simulta-
neous confidence bounds for theoretical quantiles.

CoroLLARY 3. Let X, X,,... be iid. rv. with a continuous distribution

Junction F, which is assumed to satzsfy all the condmons of Theorem B. Let a,
and a, (0 < a; <a, <1) be fixed. Then

(520) lim P{Q,(y—n""?) < Q(); a; <y < a3)

n—+cc

=1lmP{Q()) <Q,(y+n "?c);1~a, <y<1—ay}

=P{ sup B())<c}, ¢>0,
ay Sy<ajy
where
(5.21)
P{ sup B(y)<c}=(2m) 1 ] exp(—x%/2) H(x; ay, a,, c)dx
ey <y<aj —clay(1~ay)~1/2
with

H(x; ay, a3, ©)

¢ 1/2 ' 1/2
az—al C 1""“2
=@| |l ———2 12 —
[C((1+a1)(1—az)) +("”1 Ty (az—al) J
a,—a,

1/2
—exp[ —2c(xa;*+c(1—a;) Y3 (1—a,)” ”z]di[ (———2—«_—-—_) -
c

(1—ay)(1—ay)

1—a, \M?
~(wab ) (22
(1 a;) a;—a,

Here, and also in the sequel, &(-) is the unit normal distribution
function. The proof of (5.20) goes along the lines of the proof of Corollary 1.
Formula (5.21) is taken from [2], where further references are also given.

Since

sup B(y) < sup B(y)

ay $y<ajy 0syst1

for any fixed a, and a, (0<a, <a, <1), given 1—a, c(x) of (5.20) is
smaller than that of (5.1). Consequently, if we are interested in constructing
lower or upper simultaneous confidence intervals for quantiles in the “mid-
dle” only, then (5.20) gives a more economical handle than (5.1}. If @, =&,
and a, =1—g¢, with ¢, as in Corollary 1, then Corollary 3 gives back the
former.
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If instead of shorter intervals in the “middle” only, we were interested in
constructing shorter lower or upper bounds for quantiles on the tails only,
then combining Corollaries 3 and 1 we get (with ¢, as in Corollary 1)

CoRrOLLARY 4, With a, =g, and a, fixed as before, under the condltaons of
Theorem B we have

(5220 lim P{Q,(y—n""2) Q(); & <y < a3}

= lim P{Q()) < Qu(y+n"Y20); (1—a, <y < 1—s,)

B oG

=P{ sup B(y)<c}, ¢>0,

OSySaz

and if a, =1—¢, and a, is fixed .as before, then

(523)  Lim P{Q,(y—n""2c)<Q(); a1 Sy<l-g)}

= lim P{Q(») < Q,(y+n"Y%¢); e, <y < 1—ay)
=P{ sup B(y)<c}, c¢>0,
aISySI
where
(5.24) P{ sup B(y)<c}
O0sy=<ay
- (2a;,—1)c
=¢[C(az(1_a2)) 1/2]—-exp(——2c2)¢|:m 5 C>0,.
and
(525 P{ sup B(y)<c}
¢l1-~.y$1
(1—2ay)c -
~¢[c(a1 l—al)) 1;2] exp(— kl)@[(a—l——alﬁm , ¢>0.

Here (5.24) results from (5.21) after putting a, = 0, and (5.25) is (5.21) w1th
a, = 1. The second line of (5.22) with ¢ = c(«) deﬁncd by

P{ sup B(p))<c(@)}=1—ua

0<y<aj

also corrects (4) of [1], while (5.24) is a correct version of (7) in [1].

In case we were interested in shorter simultaneous upper or lower
confidence bounds for quantiles on the lower and upper tails at the same
time, the next Corollary to Theorem B is useful

CoRroLLARY 5. Let a; and a, (0 < a; €a, <1) be fixed. Then under the
conditions of Theorem B and with ¢, as in Corollary 1 we have
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(526) lmPiQ,(y—n""?)<Q0); e <y<ay,a,<y<l—g,

=1lim P{Q(y) <Q,(y+n""2c);e, <y <l—ay, 1—a; <y<l—g,)

n—,wx

=P/ sup B(y)<c}, ¢>0,

OSJ'$ul,a2<1'-§. 1

where
527y P{ sup B(y) <c} =(2m)~ 12 | exp(—x%/2) x
0<y<aj,ap;<y<1 —elag(1—ay)li2
x {1—exp[ —2c(x(a,(1—ay))"?+c)(1—ay)” " H(x; a4, a,, ¢)dx
with

1—a, )12
H(x;ay, a;,¢)= (p(xal( ds) +caz>__

(al az(a;— ‘11))1/2

—exp[ —2c(x(az (1 —ay))V? +c)az 1o (xal (1—ay)'? +¢(2a; - az))

(a1 a(a,— al))l/z

The proof of (5.26) of Corollary 5 is like that of Corollary 1 combined
with that of Corollary 4. Formula (5.27) is taken from [2].

Our reason for reproducing formulae (5.21), (5.24), (5.25), and (5.27) here
is due to inaccessibility of Csiki’s Hungarian paper [2] to many readers and
to the fact that on occasions one sees new attempts to rederive them. Csaki’s
quoted paper contains an aboundance of further useful formulae. As to the
ones quoted here, (5.24) and (5.25) are immediately calculable. It would be of
some interest to tabulate also (5.21) and (5.27). For example, a statistical
interpretation of (5.26) with ¢ = c(a) defined by

P{ sup B(y)<c(@) =1-«

0<y<ay,ap;$y<1
in (5.27) results in
(528) P{Q,(y—n"'Pc@)<Q(); e, <y<a,a; <y<l-—g,)
=P0<Q+n @) e, <y<l—ay, l—a, <y<l-g,)
=1—a for large n,

i.e, the first line of (5.28) states that, given the conditions of Theorem B and
when estimating the y-th quantile of F by the (y—n~ "2 c(a))-th quantile of
F,, the probability that no true y-th quantile of F descends the estimated
quantile for ye[¢,, a;] and for ye[a,, 1—¢,] is 1—a, while the second line
of (5.28) states that when estimating the y-th quantile of F by the (v
+n~ 12 ¢(a))-th quantile of F,, the probability that no true y-th quantile of F
exceeds the estimated quantile for ye[e,, 1—a,] and for ye[l—a, 1—¢,] is
also 1—a.

8 — Prob. Math. Statist. 4 (2)
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On purely mathematical grounds the confidence intervals of this section,
which hold under the conditions of Theorem B, are preferable to those of
Section 4, due to the fact that for the validity of Theorems 1 and 2 we had
to assume further conditions in addition to those of Theorem B. On the
other hand, as already mentioned before, Theorems 1 and 2 are hoped to be
of independent interest. '
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