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TWO APPRgalACmS TO CONSTRUCTING SINLTANE&IIUS 
COWIIDENa FOR QUAWILES 

Absbnct. Given some regularity conditions on  the distribution 
function F of a ra?dom sample XI ,  XZ,. .. , X,, the sequence of 
swantile processes : di2  f (Q (J)) (Q,, (47) - Q 0')); 0 < y < I )  behaves 
like a sequence of Brownian bridges (B,(y); 0 < y < I), where QCy) 
: = F - (y), the inverse of F ( . A  and Q,(y). = X,, if ( k -  l ] / ~  ./n y g k/n 
( k  = 1, 2 ,..,HI] with the order statistics XI:, ,< X,:, 6 ... 6 X,:, af 
the above sample. First, a sequence of consistent direct estimators is 
proposed for the cluantile-density function Q 1 ( y )  = l/f'(Q[y)) The 
Iattcr then also enables us to construct simultaneous confidence 
bounds for an unknown quantile function Q(y) .  The second appm- 
ach makes frequently misused heuristic steps like 

l - u  = P{F(~)-n-'~~c(a) < F,(x)  < ~~x)+n-'~~ce(cr); 

precise for large n, where F,  is the empirical distribution function of 
the above random sample, and for as(@, I), e(u)  is defined by 

P i  sup (B(y)J <e.(z)) = l - a  
O d y S l  

for a Brownian bridge B [ . ) .  

1. JWrdwtio~r. k t  X,,  X,, . . . be a sequence of i.i.d. r.v. with an abso- 
lutely continuous distribution function F (  * )  and let XI:, < X,:, < . . . < X,:, 
denote the order statistics of the random sample XI, X,, . . . , X,. Define the 

* This research was supported by a Canada Council Kiflam Senior Research Fellowship 
and by a Natural Sciences and Engineering Research Council Canada Grant, both held at 
Carleton University. 
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empirical distribution function P',(x) and the empirical guantile function 
Q , ( y )  as fo"o20ws: 

It is a natural idea to use the empirical quanrile functions as an estimator 
of the quantile function 

Q ly): = F "y),  where F - l  ( y )  = illf{x: F(x)  2 y) (0 c y < 1). 

Properties of the empirical quantile function Q,(y) were studied in a number 
of papers. Here we refer only to our earlier papers and references therein (see 
C34 and [4]) where we proved 'the following 

THEOREM A. k t  XI, X,, .. . be i.i.d. r.v. with* a contimous distribution 
function F .  Assume thnr the foliowing conditiuns hold: 

(i) F ( x )  is twice dgerentiable on (a,  b), where 

-m <a=sup(x :  F [ x ) = O ) ,  m > b = i n f { x :  F(x)= l ) ;  

(ii) F ' = f > O  on ( a , $ ) ;  

(iii) for some y > O we have 

(iv) A = lim f {x) < so, B = lim f (x) < co; 
x l o  x 7% 

(v) otze of the following conditions Gaoids: 

(vpl $ A  = O ( B  = 01, then f is mndeereasiq Inonincreasing) on an interval 
to the right o j  a ( to  the lefl of b). 

One can then define a Brownian bridge {B,(y); O ,< y G 1) for each n such 
that 

..,. - O (n-  ' I 2  log a) i f ~ < 2 ,  
- ( o (.-"'(log lag @'(log .yl +'"' ) ify32, 

where y is as in (iii) and E > Q is arbitrary. 
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Theorem A is an analogue of Kolmogarav's classical ttseorern on the 
empirical distribution function, which gives a confidence bound for the 
distributioil function F.  However, Theorem A does not give an immediate 
confidence bound for the quantile function Q(y). In fact, a direct application 
of Theorem A produces only the ""confidence bound" 

(where the constant c depends on the significance level), which depends on 
the unknown function l / f  (Q(y ) ) .  In our book (cf. 151, Theorem 5.5.2) we 
proposed to estimate the function l / f ( Q  (y))  from the sample XI,  XZ, . . . , X, 
by l/f,(~,[y)), where fn is any appropriate estimator of f and Q, is the 
empirf~al quantile function. 'This idea can certainly produce a confidence 
bound, but the use of two estimators (that off and that of Q )  seems to be a 
somewhat artificial solution of the problem at hand. One of the aims of the 
present papcr is to give a direct estimator of l/f (Q (y)L and we first prove 

THEOREM 1, Let XI, X2,.  . . be i.i.d. r.1). with EF continuous distribution 
function E ( . )  satisfEling the conditions of Theorem A. Assume abo thar the 
condition 

holds with some C > 0. Then 

Ifm o ( n )  sup Q , ( Y + Q ~ ) - Q , ( Y  -a,) 
n+ m c,dy<l-a,  

where a, = nVa,  E, = nWB, u ( n )  =nd, and 383.5 < a  <+, 2S+4p+r: < 1. 
The estimator ( 2 4 -  (Q, ( y  + a3 - Q, ( y  - a,)) proposed here for l / f  (Q (y ) )  

is the natural analogue of the estimator 

which is frequently used to estimate a density function f. However, when 
studying the problem of density estimation in general, one quickly learns that 
instead of the estimator f,* the more sophisticated estimator 

m 

f, (x) = a, ' J' 3. (a, (x - u)) d ~ ,  (ta) 
- r, 

should be used, where A(.) is an arbitrary density function. Given this 
experience, we also propose the more general estimator 



224 M. CsGrg6 and P. R i v d s z  

for the function I / f ( Q ( y ) ) .  AS to the pmoperties of (p,(y) we prove our main 
resuit on quantile-density estimation here, namely 

THEOREM 2. Let X,, X,, . . . be i.i.d. r.u. with a csntintrous distribution 
.function F ( - )  satisfviny. the conditioras of Theorem 1. Assume also that the 
condition 

holds with some C > 0. kt A(-) be a density jknction which is dsolutely  
continuuus on ( -  m, LO), vai~ishing outside of the interunl (-$, i), a d  such 
tlzat 

Then 

lim w (n) sup 
n - ' ~  ~ , 6 y S l - e ,  

whera ip,(y) is dejfined as in (1.11, a, = n-", E" = n-@, w(n) = na, and 
6+10p < a, a-k28+6 <+. 

An indirect application: of Theorem A provides us an alternative, direct 
route to constructing simultaneous confidence bounds for quantiles. Namely, 
the following heuristic steps can be made precise. Let c,(a) be defined by 

P f sup B(y) < c ,  (u)) = 1-a, 
O $ g S l  

where (B(y); 0  < 4) < 1). is a Brownian bridge and or e(0, 1) is fixed. Then, 
given a random sample of size n on a continuous distribution function E(.X 
in terms of the empirical distribution function P , ( . )  of our random sample 
on F (  .) we have 

and letting y  = F(x), we get 

(1.4) P ( F , , ( F - ' ( y ) )  < y+n-112c l (or ) ;  F-'(0) < F - ' ( J )  < F - v l ) )  

= P ~ F - ' ( y ) < ~ ~ ~ ( y + n - ~ / ~ ~ ~ ( u ) ) ; O < y < 1 ~ = 1 - 0 ~  a s n - t c o ,  

i.e., in terms of our notation Q{y ) :=  F -  (y) and Qn(y) :  = F ,  ' (y),  for large n 
we have 

(1.51 B(Q(y) < Q,(y+n-1J2~1(a)); 0 < y  < 11 = 1-a!. 

On similar heuristic grounds we have 

(1.6) P [ Q n ( y - n - 1 ~ 2 c I ( u ) ) < Q ( y ) ; Q < y < 1 ) = 1 - ~  a s n - + m ,  



and if c (a )  is defined by (cf. (1.2)) 

P ( sup IB[y)l < c(a)) = 1 -a ,  
66pG1 

then for large n we have 

It is clear from Theorem A that fur tkr  conditions on I; (other than its 
continuity) will have to be assumed for the validity of statements like (IS), 
(1.6) and (1.81, although (1.3) and similar statements for the empirical 
distribution function, which lead us to consideiring (1.5), (1.6) and (1.81, are of 
course true with the stipulated numbers c ,  ((M) and c(ee) provided only that F 
is assumed to be continuous, Thus the statements (1.51, (1.61, and (1.8) with 
e ,  (ct) and c(a) as above are candidates far being simultaneous l -a confid- 
ence bounds for Q(y). The question is the following: under what fustl~er 
conditions on F will they hold true as n -+ cc and for which quanliles then? 
The answers to this question are given in Section 5 under the conditions of 
Theorem B (cf. Seetion 5). 

2. Roof af Thesrrem 1, The proof of Theorem P is based on two lemmas 
(cf. Lemmas 1 and 2 beXow). For the proof of Lemma 2 we need also 

LEMMA A (Csiirgti and RCvQz [3], Theorem 6, and [53, Theorem 1.15.2). 
&t 

e 

Then 

provided that an = nPa, 0 < ct < 1/2. 
LEMMA 1 .  Assum t ? ~  conditions o j  Theorem 1 are satisfied. Then 

lirn wtn) sup Q ( U + ~ J - Q C Y - - ~ , J  ---I 1 = 0. 
n-+ a E,<Y<~-R, f (Q Cv>) 

Proof.  By the mean value theorem we obtain 

where y- a, < q < y + a,. By conditions (iii) and [vi), we have 

This implies our statement if we recall, that Q(yji:= E-l(y). 
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LEMMA 2. As~itnae the concliticrns oj' TEworem I are satisfied. Then 

Proof, By the mean value theorem, we have 

- ~n (Y + an) - ~n I J  -8,) - -- - a,, (Y + a,) f' ( F -  I ( v ) )  
2 a n l ' ~ f ( ~ p ' ( y - a , l ) )  , / ~ f 2 ( ~ p ' ( y + a n ) ] . f ( ~ - ' ~ ~ ) ~ '  

where y - a, < q < y -t- a,. Applying again conditions (iii) and (vi), by Lemma 
A we obtain our statement. 

Clearly. Lemmas 1 and 2 imply Theorem 1 .  

3. R o d  of Theorem 2. The proof of Theorem 2 is based on two lemmas 
(cf. Lemmas 3 and 4 below). For the proof of Lemma 4 we need also 

LEMMA B (Csiirg6 and WCvbz [3], [43). Ler X I ,  X ,  ,... be i.i.d. r.v. with a 
continuous distribution function F ( - )  satisfying the conditions of Theorenz A. 
Then 

le.(~)l 2- limsup sup - 
, , O c g  < 1 (log log n)'i2 

LEMMA 3. Under the conditions qf Theorem 2 we have 

Proof. For n large enough we have 

1 ' y - u  1 ' y - u  1 
- ( " - ) d ~ ( u )  = I  l ( T ) t . ( F - l ( U U d ~  
an b an 4 1  0 

- - 1 Ii2 a:v2 f'I(F-1(~)f(F-1(v)))_3(f'(~-1(VI)))2dv, 
I ,  

fEF-l(y) l  - I , z  f "(F- (VIP) 
and our statement follows. 
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LEMMA 4. Under tke conditions cif Theorem 2 we have 

1 

limo(n) sup / I I i ~ ~ j d ( p . ( u J - P ( ~ ) ) / ~ O a  
R- l r  EB,QYG i - ~ ~ ~  ,a, c) an 

Proof. Integrating by parts we obtain 

which, by Lemma B, proves our statement. 
Clearly, Lemmas 3 and 4 imply Theorem 2. 

4. Simeltanceous cormfideme bunds for the qoantile turntiion via quaantib 
demsigr m~snatiosl Theorems 1 and A together imply 

CONSEQUENCE 1 .  Let XI,  X2,. . . be i.i.d. r.v. with a continuous distribution 
function F (  .) satisfying the conditions of Theorem 1 .  Then one can define a 
Brownian bridge [B,,(y); 0 < y Q 11 for each n such thar 

and 

(4.2) P(Q,(~)-n-"~rp?)(y)cGQ(y)  

i Q,(y)+n-'/%i0'(y)c; E,, < y < I-&,) - + K ( c )  as n-. a, 
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6 o ( n )  = n ,  a, = n p a ,  E, = n-89 3@+6 <rr.< 1/2, 25+4fi+a? < I ,  and 

is the distribution function of sup IB(y)l. 
OGyGl 

CONSEQUENCE 2, Pf the corditiom of Theorern 2 are satisjs4 then 
Consequence 1 will be true with the correspondiw ryl (n) oJ Theorem 2 when we 
replace rpfPb(y) by yhCy) dcfifirzed in (1.1). 

Proof.  Theorems 1 and A combined give (4.11, which implies (4.2) if we 
observe also that sup lB(y)l and sup IB(y)l tend to zero almost surely 

OGyQt., I-t,GyGl 

as n + m by the P. Levy modulus of continuity for a Brownian bridge. 
Similarly, Theorem 2 and A imply Consequence 2. 

The two-sided simultaneous confidence interval for Qcy] is of course not 
the only consequence of (4.1) with cpr' (rap. with y13. Other statements of 
interest, such as various one-sided intervals, can be also based on it. For 
example, with as in (4.2) we have 

= P {  sup B(y )  < c )  = 1-exp(-2cZ), c >0, 
O<yGl 

and similar statements hold with cp, of (1.1) replacing y1jp). Some further one- 
and two-sided confidence intervals for Q are discussed in a somewhat 
diflerent approach of the next section. 

While it is true that in this paper we estimated l / f  (Q (y)) mainly for the 
sake of gaining confidence intervals like (4.2) and (4.31, it may also appear 
that the using of dQ, (u) in ( 1  .I) in order to get a one-step estimator for dQ ( y )  
is more important than the gained confidence intervals themselves, for 
estimating dQ, the so-called quantile-density function, is of independent inter- 
est in statistics. Thus it appears that estimators like qn of (1.1) should be 
further studied. Also, the idea of using dQ,(y) in (1.1) suggests that the 
estimator of type qo,(y) can, in turn, be similarly used to get an estimate for 
J (y) = - d ( f  (Q c ~ ) ) ) ,  the so-called seore ftsnction of the density f. Namely, for 
d (f (Q (y ) ) )  one may wish to consider an estimate in terms of d(l/cp,Q)) with 
cp,(y) as in (1.11, i.e., an estimator like, say, 

for J(y) .  For further references and considerations of the quantile-density 
function and the score function of a density function and their estimation we 
refer to [ 6 ] .  



5. Dirreea simeltamsm ssnMeme h a a d s  for lih quamnntile f~mtio~a. First we 
recall the following version of Theorem A Id (5.1) of Theorem 6 iri [33): 

THEOREM B. k t  XI,  Xl, . . . be i.i.d, r.u. with a continuous disaibution 
function F ~lnd assume that F satisfies conditions (i), (ii), a d  {iii) of T h o r e m  A. 
Let 6,: = 2%- "log log n. Then with rh, segtrence of Brownian bridges 
{B,{y); O < y < 1 )  of Theorem A we have also 

SUP V ce (YI) nilZ (Q.(YI - e (YI )  - B, (~11 az o (a- li2 n ~ .  
B , , b y Q l - 8 ,  

Nex,t we prove two corollaries to Theorem HE. 
'C~RQLEARY 1. Let XI, X2, ... be i.i.d. r.0. with a continuous distribution 

,functbn F,  which is ~ssurned ta  satisfy all the codi t ions of Theorem B. Let 
[B(y )  ; 0 ZS y < 1 } ' be a Brownian bridge. Then 

(5.1) lim f' {Q  ( y )  < Q,, ( y  + n- ' I 2  c ) ;  E, < y g 1 -a,) 
n - * r  

= P (  sup B(y)  < c) = 1-expf-2c2), c > 0, 
0 6 y < I  

where c,:= n-l t2+'  with any d ~ ( 0 ,  1/21, 
Proof. When calculating below, we use the more suggestive notation 

F -  ' (resp. F; I) for Q (resg. Q,J. For n = I ,  2 , .  . . we consider the sequence of 
events 

Next, for each k E [nc, + 1 ,  n(1- 631 and PZ, we consider 



230 M. Cstrrgo" and P. REvisz 

I k n+n-- '12 
= { e m ~ y + n ~ ~ 2 ~ l + ( f ' F L  ' ' 4) ~ . ( y + n ~ / ~ c ) -  

f(F-" ( y f  n-'I2c)) 

ntn-'I2&)) 

f (F" ' (53) 
k - 1  k 
----- < y ~ - - ,  ~ < < , < ~ + n - ' / ~ c  

JZ n 

k - 1  
6 c; y c cn < y+n-fJ2c ,  - 

n n 

where 

Putting (5.2) and (5.3) together? we get 

Hence the problem of verifying the first limit statement of (5.1) is equivalent 
to showing that 

= P i  sup B(y )dc ) ,  c > 0 .  
069<1 

Let now (Bn(y); 0 < y Q 1) be that sequence of Brownian bridges for 
which Theorem B holds true. We are going to show now that 

where 

It.., Y, kin) 
:= {y < tn < Y + n - 1 / 2 ~ , ( k - l ) / n  < y < k/n, ~ , + l / n d  k/n< I-€,). 

First, by Theorem B we have 

(5.7) sup l e n ( y + n - 1 ~ 2 ~ ~ - ~ n ( Y + n - 1 1 2 c ) ~ " ~ o ( l )  as n + cro. 
E ~ G Y S I - E ,  



Also, by the P. Levy modulus of continuity for a Brownian bridge 
[B(y ) ;  O < y % I),  we have 

(5.8) sup I B ( ~ J - ~ - ~ ~ ~ ) - B ~ ) ( ~ ~ O ( ~ - ~ ~ ~ ~ O ~ ~ ) ,  
OGyGI -,3-1/2c 

and since 

by (5.8) we also obtain 

(5.10) sup CBnIy$lafi2c)-B,(y)(=o,(lj a s n - . ~ .  
o < y < l - n - 1 / 2 c  

Combining now (5.7) and (5.10), we get 

(5.11) sup l ~ , ( y + n - ~ ~ ~ c ) - ~ , ( y ) / = 0 ~ ( 1 ) .  
e ,<yb  1 -E, 

Next, we show that 

(5.12) 

where jy, k/n) : = ( ( k  - l)/n < y $ k/n,  E, +- 1/n G k/n < 1 --E,) . By (5.9) and 
(5.1 1) we obtain 

sup le,(y+ n- ' I 2  c)I 5 an r.v. as n -+ ao. 
& " < y $ l  - E m  

(In fact, the latter r.v. is sup JB(y)J, but now this is of no interest to us). 
OSydl 

Consequently, in order to verify (5.121, it suffices to show that 

Now, by Lemma 1 in [3], for every pair y , ,  yz ~ ( 0 ,  1) and y as in (iii) of 
Theorem A we have 

Hence 
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6 2 ([(I + l/m,+ n u2 c/E,)(~. - - M -  1 J 2 ~ / ~ , J - 1 J r  - I )  

= 2 +1/n1'2+d+~/n')( l  -e/nB)-l]y- I)  -+O as rz -+ oo. 

Hence, combining (5.16) and f5.13), we gel (5.1 2). 

Along the lines of (5.16) one can also show that 

and (5.121, (5.131, (5.17) together imply (5.6). Now (5.5) follows immediately 
from the latter after using (5.9) and observing also that sup IB(y)l and 

O S ~ S E ~  

sup ]B(y)j tend to zero almost surely as n + a by the P. LCvy maduIus 
1 - e , < y G l  

of coratinuity for a Brownian! bridge. This also completes the proof of the first 
limit statement of (5.1). 

Mutatis mutavulis, the above proof also gives the second limit statement of 
(5.11) and Corollary 1 is proved. 

A combination of lines like those of the proof of Corollary 1 yields 
COROLLARY 2. Let X , ,  X 2 ,  .. . be i.i.d. r.u. with a continuous distribution 

,firaction F,  which is assumed to satisfy ail the conditions of Theorern B. Then 

$(I;-' ( k / n + n  ' I 2  c)) 
(5.17) - I  

(5.18) lim P { Q , ( y - n - u 2 ~ )  G ,<(y) < Qn(y+n- l J2c ) ;  E,  < y < 1 -&,I 
n-"m 

= P { sup lB(y)l d c )  = K (c),  c > 0, 
O < y <  1 

= o ( l )  a n + @ ,  

where E , :  = n-1/2'8 with any 1/2) and M(-) is the distribution function 
as given in (4.2). 

Given Corollaries 1 and 2, we can now get c 0 r rec t  versions of state- 
ments like ( I S ) ,  (1.61, and (1.8) under the conditions of Theorem B. For 
example, with c = c ,  (a) as in (1.2) it FoIlows from Corollary I that for large n 
a correct version of (1.5) is 

i.e, under the conditions of Theorem B, when estimating the y-th quantile of 
F by the (y+ n-112c,  (a))-th quantile of F,,  the probability that no true 
quantile of E (for quantiles above n- ' lZ f  and below 1 - n- 1/2+* with any 
6 ~ ( 0 ,  11/2)) exceeds the estimated quantile is 1 -a. 



A similar correct version and intmpretatisn of (1.6) follows again from 
Corollary 1, and that of (1.8) from Corollary 2. The statelllent of (5.19) also 
corrects (2) of Alexander [I]. 

The next three corollaries to Theorem B give some further useful simulta- 
neous confidence bounds for theoretical quantiles. 

COROLLARY 3. k t  XI, X2,. . . he i.i.d. 1.0. with a confiner~w distribution 
fbnction F, which is assumed to satisfy ell the conditions of Thorem B. Let a, 
and a, (0 < a ,  < a2 < 1)  be ,fixed. Then 

where 

with 

J f ( x ;  a , ,  a,, cp 

Here, and also in the sequel, @ ( a )  is the unit normal distribution 
function. The proof of (5.20) goes along the lines of the proof of CorolIary 1. 
Formula (5.21) is taken from [2], where further references are also given. 

Since 

For any fixed a, and a, (0 < a, < a, < I), given 1 -a, c(u) of (5.20) is 
smaller than that of (5.1). Consequently, if we are interested in constructing 
lower or upper simultaneous confidence intervals far quaaariles lin d;hc "mid- 
dle" only, then (5.20) gives a more econornicaal handle than (5.15, If ul = E ,  

and n, = 1 - E ,  with E,  as in Corollary I, then Corollary 3 gives back the 
former. 
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If instead of shorter intervals in the "middle" only, we were interested in 
constructing shorter lower or upper bounds fox quantiles on the tails only, 
then combining Corollaries 3 and 1 we get (with E, as in Corollary 1) 

COROLLARY 4. Mth a ,  = E, and a2 ,fixed ~ l s  before, u n d a  the co~ditions of 
Theorem B we have 

and (f a, = 1 - E ,  and a, is .fixed as bcifore, then 

where 

(5.24) P ( sup BCy) G c )  
OC y<nZ 

Here (5.24) results from (5.21) after putting a,  = 0, and (5.25) is (5.21) with 
a, = 1. The second Pine of (5.22) with c = cka) defined by 

PC sup B(y)<c(u)) = I-a  
o < 9 s a 2  

also corrects (4) of [I], while (5.24) is a correct version of (7) in [I]. 
In case we were interested in shorter simultaneous upper or lower 

confidence bounds for quantiles on the lower and upper tails at the same 
time, the next Corollary to Theorem B is useful. 

COROLLARY 5. Let a,  and a2 (0 < a, < a, < I) be .fixed. Then under the 
conditions of Theorem B and with en as in Corollary I we have 
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1 (5.26) lim 19 (Q,(y - r z r " % c )  G Q(y); E,, Q y < n,, a, < y < i - E , ,  
n -  K 

= P :  sup B ( y ) c o ' ) ,  c > 0 ,  
O S y S a l , n Z d y 6 1  

where 

15.27) P [ sup B(y)  < c )  = (2~)- 'I" I' exp ( - x2/2) x 
0 ~ y < s r ~ , a 2 < y <  1 - ~ ( o ~ ( l ' - a ~ ) ) l ~ ~  

x [1-exp[-2c(x(n2(1-u2))112+c$(l -n, ) - ' ]>~(~I  a , ,  a,, c)dx 

The proof of (5.26) of Corollary 5 is like that of Corollary 1 combined 
with that of Corollary 4. Forrnula (5.27) is taken from [2]. 

Our reason fur reproducing formulae (5.211, (5.241, (5.251, and (5,271 here 
is due to inaccessibility of Csaki's Hungarian paper [2] to many readers and 
to the fact that on occasions one sees new attempts to rederive them. Csiiki's 
quoted paper contains an aboundance of further useful formulae. As to the 
ones quoted here, (5.24) and (5.25) are immediately ca1culable. It would be of 
some interest to tabulate also (5.21) and (5.27). For example, a statistical 
interpretation of (5.26) with c = c(a) defined by 

P [  sup B ( y ) < c ( a ) ) = l - x  
O Q y Q a 1 , a 2 C y <  1 

in (5.27) results in 

i.e., the first line of (5.28) states that, given the conditions of Theorem B and 
when estimating the y-th quantile of F by the (y-n-1/2c(a))-th quantiIe of 
F,, the probability that no true y-th quantile of F descends the estimated 
quantile for y E [ E , , ,  a,] and for y E [a,, 1 - en] is l -a, while the second line 
of (5.28) states that when estimating the JJ-th quantile of F by the (y 
+ n -  l i 2  c(m))-th quantiIe of F,, the probability that no true y-th quailtile of F 
exceeds the estimated quantile for y 1-a2] and for y ~ [ l  -a, 1 -E,J is 
also 1 - x. 

8 - Prob. Math Statist. 4 (2) 
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On purely mathematical grounds the confidence intervals of this section, 
which hold under thc conditions of Theorem B, are preferable to those of 
Section 4, due to the fact that for the validity of Theorems 1 and 2 we had 
to assume further conditions in addition to those of Theorcm B. On the 
other hand, as already n~entioncd before, Theorems L and 2 are hoped to bc 
of independent interest. 
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