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Abstract. In this paper a numerical scheme approximating the solution
to a stochastic differential equation is presented. On bounded subsets of
time, this scheme has a finite state space, which allows us to decrease the
round-off error when the algorithm is implemented. At the same time, the
scheme introduced turns out locally consistent for any step size of time.
Weak convergence of the scheme to the solution of the stochastic differential
equation is shown.
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1. INTRODUCTION

This paper deals with numerical schemes for stochastic differential equations.
A number of numerical methods for approximating solutions of such equations
have been developed and, probably, the most important reference to this subject
is the book by Kloeden and Platen [14]. However, authors such as Debrabant and
Rössler [4], [5], Fard [7], Fleury [9], and Janković and Ilić [13], among others,
have done important contributions in this address. The purpose of this paper is
to present a new scheme of approximation, which is an extension of a scheme of
approximation by Fierro and Torres [8] for ordinary differential equations. For a
given stochastic differential equation (SDE), we propose a method consisting in
approximating its solution by means of a sequence of Markov chains, where each
of them, starting at a suitable initial condition and on any bounded time inter-
val, could take values in a finite state space of rational numbers previously defined.
One of the advantages of relaxing the requirement of strong convergence is that the
Wiener process (WP) in the SDE could be approximated by random variables not
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defined in terms of the paths of this WP. The scheme we are introducing is a mod-
ification of the so-called Euler–Maruyama (EM) approximation method, however
some important considerations have to be done when comparing our method with
the EM scheme. In the latter, the Wiener process in the SDE is approximated by
random variables depending on the same Wiener process, which produces the state
space of the scheme is uncountable. This fact could be a serious problem because
the digital computers are restricted to rational numbers when doing their calcula-
tions. Furthermore, digital computers are restricted to the use of a finite number of
decimal places. Severe round-off errors could be presented whenever this consid-
eration is not taken into account. Indeed, when approximation schemes are to be
applied, their inherent round-off errors are an important subject which must be con-
sidered. Usually, while finer the discretization method, greater will be the rounding
error. Some authors interested in decreasing the round-off error have contributed
in this direction. For instance, this circumstance was considered by Bykov in [2]
for systems of linear ordinary differential equations, by Srinivasu and Venkatesulu
in [21] for nonstandard initial value problems, and by Wollman in [22] for the one-
dimensional Vlasov–Poisson system, among others. We refer to Henrici in [10] for
a complete discussion on methods for solving ordinary differential equation prob-
lems, error propagation and rate of convergence. Round-off errors for stochastic
systems have been discussed, for instance, by Delanttre and Jacod [6], Rosenbaum
[19] and Daumas et al. [3]. The scheme of approximation which is introduced in
this paper aims to reduce the round-off error when numerical methods are used
for approximating the unique solution of a stochastic differential equation. For this
purpose, we introduce a method of approximation which considers in a number of
cases, on bounded time intervals, a finite state space with states having few digits.
However, to obtain this simplification we need to augment the randomness on the
drift coefficient, which means that the states of the scheme are, in part, chosen
according to a conditional probability depending on its drift coefficient.

The proposed scheme gives quite freedom to approximating the WP in the
SDE, and moreover, it allows us to choose suitable state spaces for the scheme.
However, since the convergence is weak, it is not possible in general to guarantee
a good convergence rate, at least when the state space of the scheme is finite on
bounded time intervals. For this reason, in Remark 3.1, we present an alternative
scheme which converges strongly, with a convergence order equalling the standard
EM scheme, although in this case, the state space is denumerable and stops to be
finite on bounded time intervals.

Convergence in distribution of stochastic integrals is necessary to prove our
main result. Hence, our methodology technically differs from that used for proving
strong convergence of schemes towards the solution of an SDE. In this work, the
condition (UT) (uniform tightness) for the convergence in distribution of stochastic
integrals is used. This condition was introduced by Jakubowski et al. in [12] and by
Słomiński in [20]. Theorems for proving convergence in distribution of stochastic
integrals are found in [12], [15], [17], [20], among other references.



Weak convergence of a numerical scheme for SDEs 203

Other approximation schemes having a denumerable state space can be found
in the books by Kloeden and Platen, Section 6.2 in [14], and by Kushner and
Dupuis, Section 4.1 in [16]. These schemes are asymptotically locally consistent,
which means the consistency has a place for small step sizes. As seen below, the
scheme of approximation, we are introducing here, is unbiased and locally consis-
tent for any step size and, at the same time, it has a finite state space on bounded
subsets of time.

The plan of this paper is as follows. In Section 2, we define the approximation
scheme, the main result is stated in Section 3, and its proof is deferred to Section 4.

2. THE APPROXIMATION SCHEME

In what follows, (Ω,F ,P,F) stands for a stochastic basis satisfying the usual
Dellacherie conditions, let W = (W1, . . . ,Wr)

⊤ be an r-dimensional Brownian
motion defined on this stochastic basis, where A⊤ denotes the transpose of a matrix
A, and consider the stochastic differential equation

(2.1) dX(t) = a
(
t,X(t)

)
dt+ b

(
t,X(t)

)
dW (t), X(0) = x0,

where x0 ∈ Rd, a : R+ × Rd → Rd and b : R+ × Rd → Rd×r satisfy sufficient
conditions of regularity which ensure existence and uniqueness of the solution
to (2.1). Here, Rd×r stands for the space of all real d × r-matrices. In the se-
quel, we denote by ∥x∥ the Euclidean norm of a vector x ∈ Rd and by |||A||| the
Frobenius (or trace) norm of a matrix A ∈ Rd×r.

A Markov chain approximating the unique solution to (2.1) is defined by
means of their probability transitions.

Let N ∈ N \ {0}, and HN : Rd×r → Rd×r be defined as

HN (b) =

 [Nb11]/N · · · [Nb1r]/N
...

. . .
...

[Nbd1]/N · · · [Nbdr]/N

,

where [x] stands for the integer part of x ∈ R. By identifying Rd with Rd×1,
HN is applied to any a ∈ Rd. For each n ∈ N \ {0}, let 0 = tn0 < . . . < tnk < . . .
be the partition of R+ defined recursively as tnk = tnk−1 +∆tnk , where ∆tnk = 1/n,
k ∈ N. In the sequel, for each t ­ 0, we define cn(t) = Hn(t), so that cn(t) = tnk
if tnk ¬ t < tnk+1.

On the space (Ω,F ,P) and for each n∈N \ {0}, let {ζnk }k∈N be a sequence of
independent random vectors such that for each k ­ 0, ζnk =

(
ζnk (1), . . . , ζ

n
k (r)

)⊤
with ζnk (1), . . . , ζ

n
k (r) being independent random variables with mean zero and

taking values in the set 1
mnqS =

{
x

mnq : x ∈ S
}

, where S ⊂ Z, m ∈ N \ {0} and
q ∈ N. Additionally, we assume

(2.2) sup
n∈N\{0}

1

n

n∑
k=0

E(∥ζnk ∥2) <∞,
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and {Wn}n∈N\{0} converges in distribution to W , where Wn(t) = 1√
n

∑[nt]
k=0 ζ

n
k .

For example, by the Donsker theorem, these conditions are fulfilled whenever
ζnk = ζk =

(
ζk(1), . . . , ζk(r)

)⊤ and {ζk}k∈N is a sequence of independent and
identically distributed random vectors such that E

(
ζk(j)

2
)
= 1 for all k ∈ N and

j = 1, . . . , r.
Next, we define the sequence of random vectors {ξnk }k∈N and the Markov

chain Xn = {Xn
k }k∈N, starting at Xn

0 = x0, recursively as follows. Let ξn0 = 0 ∈
Rd and suppose, for k ­ 1, Xn

k−1 has been defined. Choose a random vector ξnk
such that

(2.3) P(ξnk = e| Xn
k−1)(ω) = µ1

k−1({e1}, ω) . . . µd
k−1({ed}, ω),

where e = (e1, . . . , ed)
⊤ ∈ {0, 1}d, ω ∈ Ω, and µi

k−1(·, ω), i = 1, . . . , d, is the
Bernoulli law with parameter

pni (t
n
k−1)(ω) = ai

(
tnk−1, X

n
k−1(ω)

)
−

[
Nai

(
tnk−1, X

n
k−1(ω)

)]
/N.

Next we define
(2.4)

Xn
k = Xn

k−1 +
1

n

{
HN

(
a(tnk−1, X

n
k−1)

)
+ ξnk +HN

(√
nb(tnk−1, X

n
k−1)

)
ζnk

}
.

The main aim of this paper is to approximate the solution to (2.1) by means of
Xn = {Xn(t)}t­0, where

Xn(t) =
∞∑
k=1

Xn
k−1I[tnk−1,t

n
k )
(t),

and IA stands for the indicator function of a set A. It is clear that Xn is an Fn-
adapted process.

Note that, for each n ∈ N and any T > 0, the Markov chain Xn, on [0, T ], has
its states in the denumerable set ET =

{
x0 +

z
mNnq+1 : z ∈ Sr

}
. We are particu-

larly interested in the case when S is finite because so is ET . For example, this is
obtained, with m = 1 and q = 0, if P

(
ζnk (i) = 1

)
= P

(
ζnk (i) = −1

)
= 1/2 for all

i = 1, . . . , r and n ∈ N \ {0}.
Due to the fact that HN converges to the identity function as N goes to infinity,

it is worth noticing that the approximation scheme we are proposing is similar to
the Euler scheme for large N , since in this case, pni (t

n
k−1), i = 1, . . . , d, take small

values, and hence, the random vectors ξnk have their distributions close to δ0, the
Dirac measure at zero. On the other hand, by taking smaller values of N , the size
of the state space decreases, however, in order to obtain convergence of Xn, the
presence of the random vectors ξnk turns out relevant. Hence, the smaller state space
that we choose, the bigger relevancy of the random vectors ξnk becomes.

In the sequel, given a local square integrable martingale Z (with respect to
a given stochastic basis), we denote by ⟨Z⟩ the predictable increasing process of
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Z, i.e. ⟨Z⟩ is the unique predictable increasing process having the property that
Z2 − ⟨Z⟩ is a martingale.

LEMMA 2.1. Let F = {Fk}k∈N be a filtration on (Ω,F ,P), {ηk}k∈N be a se-
quence of d-dimensional (F,P)-martingale differences such that E(∥ηk∥2) <∞,

n ∈ N, and Zn = {Zn(t)}t­0 be the process defined as Zn(t) =
∑[nt]

k=0 ηk. Then,
Zn is a d-dimensional (Fn,P)-martingale, where Fn = {F[nt]}t­0. Moreover, if
d = 1, the predictable increasing process of Zn is given by

⟨Zn⟩(t) =
[nt]∑
k=1

E(η2k|Fk−1).

P r o o f. Clearly, Zn is Fn-adapted, and for each t ­ 0, E
(
∥Zn(t)∥2

)
<∞.

Let s, t ∈ R+ and s < t. Hence

E(ηk|Fn
s ) =

{
ηk if k ¬ [ns],

0 if k > [ns],

and, consequently,

E
(
Zn(t)|Fn

s

)
=

[ns]∑
k=1

ηk = Zn(s),

which proves that Zn is a d-dimensional (Fn,P)-martingale.
Next, assume d = 1 and let Y = {Y (t)}t­0 with Y (t) =

∑[nt]
k=1 E(η

2
k|Fk−1).

Clearly, for t > 0, Y is Ft−-measurable, increasing, and since the jumps of Y are
deterministic, Y is predictable. Let

Qn(t) = (Zn)(t)2 −
[nt]∑
k=1

E(η2k|Fk−1).

We need to prove that E
(
Q(t)|Fn

t

)
= Q(s). We have

E
(
Qn(t)−Qn(s)|Fn

s

)
= E

(
Zn(t)2 − Zn(s)2|Fn

s

)
−

[nt]∑
k=[ns]+1

E
(
E(η2k|Fk−1)|Fn

s

)
= E

((
Zn(t)− Zn(s)

)2|Fn
s

)
−

[nt]∑
k=[ns]+1

E(η2k|Fn
s )

= E
(( [nt]∑

k=[ns]+1

ηk
)2|Fn

s

)
−

[nt]∑
k=[ns]+1

E(η2k|Fn
s ) = 0.
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The last equality is a consequence of the fact that, for [ns] < i < j, E(ηj |Fi) = 0,
and

E(ηiηj |Fn
s ) = E

(
ηiE(ηj |Fi)|Fn

s

)
= 0.

Therefore, E
(
Qn(t)|Fn

s

)
= Qn(s), and the proof is complete. �

In the sequel, for each n ∈ N, Fn = {Fn
t ; t ­ 0}, where for each t ­ 0, Fn

t =
F[nt] and Fk is the completion of σ(ξn0 , . . . , ξ

n
k , ζ

n
0 , . . . , ζ

n
k ), the σ-field generated

by ξn0 , . . . , ξ
n
k , ζ

n
0 , . . . , ζ

n
k , by aggregation of sets from F having P-measure zero.

For each t ­ 0 and n ­ 1, we define

Ln
i (t) =

1

n

[nt]∑
k=1

{ξnk (i)− pni (t
n
k−1)}, i = 1, . . . , d,

where ξnk =
(
ξnk (1), . . . , ξ

n
k (d)

)⊤. Let Ln(t) =
(
Ln
1 (t), . . . , L

n
d (t)

)⊤. Lemma 2.1
implies that Ln = {Ln(t)}t­0 is a d-dimensional (Fn,P)-martingale and Wn =
{Wn(t)}t­0 is an r-dimensional (Fn,P)-martingale. Moreover,

E
(
{ξnk (i)− pni (t

n
k−1)}2|Fk−1

)
= pni (t

n
k−1)

(
1− pni (t

n
k−1)

)
and from Lemma 2.1 we obtain

(2.5) ⟨Ln
i ⟩(t) =

1

n2

[nt]∑
k=1

pni (t
n
k−1)

(
1− pni (t

n
k−1)

)
.

Also, by Lemma 2.1,

(2.6) ⟨Wn
j ⟩(t) =

1

n

[nt]∑
k=1

E
(
ζnk (j)

2
)
,

where Wn = (Wn
1 , . . . ,W

n
r )
⊤.

Let

Mn(t) =
t∫
0

{
HN

(√
nb

(
u−, Xn(u−)

))
√
n

− b
(
u−, Xn(u−)

)}
dWn(u).

By putting Mn = (Mn
1 , . . . ,M

n
d )
⊤ and

b =

 b11 · · · b1r
...

. . .
...

bd1 · · · bdr

,

we observe that, for each i = 1, . . . , d,
(2.7)

Mn
i (t) =

1√
n

[nt]∑
k=1

r∑
j=1

{
HN

(√
nbij(t

n
k−1, X

n
k−1)

)
√
n

− bij(t
n
k−1, X

n
k−1)

}
ζnk (j).
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Since Mn(t) is a stochastic integral of an Fn-predictable process with re-
spect to an (Fn,P)-martingale, Mn = {Mn(t)}t­0 is a d-dimensional (Fn,P)-
martingale. Moreover, by (2.7) and Lemma 2.1, we have
(2.8)

⟨Mn
i ⟩(t)=

1

n

[nt]∑
k=1

r∑
j=1

{
HN

(√
nbij(t

n
k−1, X

n
k−1)

)
√
n

−bij(tnk−1, Xn
k−1)

}2

E
(
ζnk (j)

2
)
.

Note that, for each t ­ 0,

Xn(t) = x0 +
t∫
0

a
(
u−, Xn(u−)

)
dcn(u)(2.9)

+
t∫
0

b
(
u−, Xn(u−)

)
dWn(u) +Rn(t),

where Rn(t) = Ln(t) +Mn(t).
On the other hand,

E(Xn
k −Xn

k−1|Fn
k−1) = a(tnk−1, X

n
k−1)∆tnk , k ∈ N \ {0}.

Since the above equality holds for all n ∈ N, and consequently for any step size, we
say that the scheme of approximation, Xn = {Xn(t)}t­0, is unbiased and locally
consistent.

3. MAIN RESULT

In this section we state the main results, and their proofs are deferred to the
next section. We assume the vectorial function a = (a1, . . . , ad)

⊤ and the matricial
function b = (bij ; 1 ¬ i ¬ d, 1 ¬ j ¬ r) are continuous and there exists a constant
C > 0 such that the following two conditions hold for all x, y ∈ Rd and s, t ∈ R+:

(A1) ∥a(t, x)− a(t, y)∥2 + |||b(t, x)− b(t, y)|||2 ¬ C∥x− y∥2.

(A2) ∥a(t, x)∥2 + |||b(t, x)|||2 ¬ C(1 + ∥x∥2).

It is well known that under conditions (A1) and (A2), equation (2.1) has a
unique solution, which we assume, along with the Wiener process W , to be defined
on the probability space (Ω,F ,P). Moreover, these conditions enable us to prove
that, as in the classical Euler–Maruyama scheme for SDEs (see Theorem 10.2.2 in
[14]), we can choose a good sequence {ζnk }n∈N\{0} such that the order of strong
convergence of {Xn}n∈N\{0} equals 1/2 (see Remark 3.1 below). This fact means
that, for each T > 0, there exists a constant c(T ) > 0 such that

E
(
∥Xn(T )−X(T )∥

)
¬ c(T )/n1/2,

where X is the unique solution to (2.1).
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The main result is the following:

THEOREM 3.1. Let X be the unique solution to (2.1). Then, {Xn}n∈N\{0}
converges in distribution to X .

REMARK 3.1. By choosing a suitable sequence {ζnk }n∈N\{0} in the scheme,
it is seen that each Xn has a finite number of states on a bounded interval [0, T ].
But, because the convergence of the scheme is weak, it is not possible to guarantee
a good order of convergence. However, by defining

ζnk (j) =
1

n

(
1

2
+ [nηnk (j)]

)
,

where ηnk (j) =
√
n
(
Wj(t

n
k) −Wj(t

n
k−1)

)
, j = 1, . . . , r, {ζnk }n∈N takes values in

1
n

(
1
2 + Zr

)
, clearly satisfies the assumptions, and the scheme {Xn}n∈N\{0} con-

verges strongly with order of convergence 1/2, which equals the order of strong
convergence of the standard Euler–Maruyama scheme (see Theorem 10.2.2 in
[14]). Although, in this case, Xn does not have a finite number of states on [0, T ],
its state space is contained in a discrete subset of Q on [0,∞).

The proof of what is mentioned in this remark is similar to the classical one of
the Euler–Maruyama scheme and is given in the Appendix.

4. PROOF OF THE MAIN RESULT

Some notation are used in what follows. As usual, D(R+,Rd) denotes the
space of all functions x : R+ → Rd, which are right-continuous and have left-hand
limits. In the sequel, we consider this space provided with the usual metrizable
Skorokhod topology. Given a subset E of R+, the space of continuous functions
from E to Rd is denoted by C(E,Rd) and is considered endowed with the uniform
topology.

A sequence {Zn}n∈N\{0} with trajectories in D(R+,Rd) is said to be C-tight
if it is tight and any subsequence {Znk}k∈N of {Zn}n∈N\{0}, converging in distri-
bution to Z, satisfies P

(
Z ∈ C(R+,Rd)

)
= 1.

In order to prove C-tightness of certain processes, we define, for any fix T >0,
ωT : D(R+,Rd)×]0,∞[→ R as

ωT (x, δ) = sup
s,t∈[0,T ],|s−t|<δ

∥x(s)− x(t)∥.

Given a process Y = {Y (t)}t­0 with trajectories in D(R+,Rd), we write
∆Y (t) = Y (t)− Y (t−).

In order to prove the main result stated in Section 3, we need the following
lemmas.
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LEMMA 4.1. For each T > 0 and N ∈ N \ {0}, there exists a positive con-
stant C(T,N) such that

E
(

sup
0¬t¬T

∥Ln(t)∥2
)
¬ C(T,N)

n
and E

(
sup

0¬t¬T
∥Mn(t)∥2

)
¬ C(T,N)

n
.

P r o o f. Fix T > 0. From (2.5), for each i = 1, . . . , d, and j = 1, . . . , r, we
obtain

⟨Ln
i ⟩(t) =

1

n

t∫
0

pni
(
cn(u)

)(
1− pni

(
cn(u)

))
dcn(u)

and, by Doob’s inequality,

E
(

sup
0¬s¬T

∥Ln(s)∥2
)
¬ 4

n

d∑
i=1

T∫
0

E
(
pni

(
cn(u)

)(
1− pni

(
cn(u)

)))
dcn(u)

¬ cn(T )d

n
¬ Td

n
.

On the other hand, from (2.8) we have

⟨Mn
i ⟩(t)

=
1

n

[nt]∑
k=1

r∑
j=1

([
N
√
nbij

(
u−, Xn(u−)

)]
N
√
n

− bij
(
u−, Xn(u−)

))2

E
(
ζnk (j)

2
)

¬ 1

nN2

(
1

n

[nt]∑
k=1

E(∥ζnk ∥2)
)
.

Thus,
∑d

i=1⟨M
n
i ⟩(t) ¬ d

nN2

(
1
n

∑[nt]
k=1 E(∥ζ

n
k ∥2)

)
and, by Doob’s inequality,

E
(

sup
0¬s¬T

∥Mn(s)∥2
)
¬ 4

d∑
i=1

E
(
⟨Mn

i ⟩(T )
)
¬ 4dT

nN2

(
1

[nT ]

[nT ]∑
k=1

E(∥ξnk ∥2)
)
.

Hence, condition (2.2) implies that there exists C(T,N) > 0 such that

E
(

sup
0¬t¬T

∥Ln(t)∥2
)
¬ C(T,N)

n
and E

(
sup

0¬t¬T
∥Mn(t)∥2

)
¬ C(T,N)

n
,

which completes the proof. �

LEMMA 4.2. For each T > 0, we have

sup
n∈N\{0}

E
(

sup
0¬t¬T

∥Xn(t)∥2
)
<∞.
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P r o o f. By (2.9) and Jensen’s inequality, we have

sup
0¬s¬t

∥Xn(s)∥2 ¬ 4
(
∥x0∥2 + cn(t)

t∫
0

sup
0¬u¬s

∥∥a(u,Xn(u)
)∥∥2 dcn(s)

+ sup
0¬s¬t

∥∥ s∫
0

b
(
u,Xn(u)

)
dWn(u)

∥∥2 + sup
0¬s¬t

∥Rn(s)∥2
)
.

By taking expectation and applying Doob’s inequality and Fubini’s theorem, we
obtain

E
(
sup
0¬s¬t

∥Xn(s)∥2
)
¬4

[
∥x0∥2+cn(t)

t∫
0

E
(

sup
0¬u¬s

∥∥a(u,Xn(u)
)∥∥2)dcn(s)

+ 4
t∫
0

E
(∣∣∣∣∣∣b(u,Xn(u)

)∣∣∣∣∣∣2) dcn(u) + E
(
sup
0¬s¬t

∥Rn(s)∥2
)]
.

By (A2), there exist two positive constants, CT and DT , such that

(4.1) E
(
sup
0¬s¬t

∥Xn(s)∥2
)
¬ rnT + CT +DT

t∫
0

E
(

sup
0¬s¬u

∥Xn(u)∥2
)
dcn(u),

where rnT = 4E
(
sup0¬s¬T ∥Rn(s)∥2

)
.

Let φn(t) = E
(
sup0¬s¬t ∥Xn(s)∥2

)
. By (4.1) and a slight modification of

Gronwall’s inequality, we have

φn(t) ¬ (rnT + CT ) exp
(
DT cn(t)

)
.

From Lemma 4.1 we infer that {rnT }n∈N\{0} converges to zero, and therefore

sup
n∈N\{0}

φn(T ) <∞,

which concludes the proof of the lemma. �

LEMMA 4.3. The sequence {Xn}n∈N\{0} is C-tight.

P r o o f. Fix T > 0 and notice that Xn = x0 + An + Bn + Rn, where, for
each t ∈ [0, T ],

An(t) =
t∫
0

a
(
u−, Xn(u−)

)
dcn(u) and Bn(t) =

t∫
0

b
(
u,Xn(u−)

)
dWn(u).

By Lemmas 4.1 and 4.2, and Proposition 3.26 in [11], it suffices to prove that

for all T > 0 and ϵ > 0, there exist n0 ∈ N and δ > 0 such that(4.2)

E
(
ωT (A

n +Bn, δ)
)
< ϵ for all n ­ n0.
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Condition (A2) implies that

sup
0¬t¬T

∥∆An(t)∥ ¬ C1/2T

n
max

0¬k¬[nT ]
(1 + ∥Xn

k−1∥2)1/2

and

(4.3) ωT (A
n, δ) ¬ δC1/2T

n
max

0¬k¬[nT ]
(1 + ∥Xn

k−1∥2)1/2.

Notice that Bn(t) =
√
n
∫ t

0
b(tn[nu]−1, X

n
[nu]−1)ζ

n
[nu] dc

n(u) and from (A2),
for any s, t ∈ [0, T ] such that 0 ¬ t− s < δ, we obtain

∥Bn(t)−Bn(s)∥ ¬ C1/2T√
n

max
0¬k¬[nT ]

(1 + ∥Xn
k−1∥2)1/2 max

0¬k¬[nT ]
∥ζnk ∥(δ + 1/n)

and

(4.4) ωT (B
n, δ) ¬ (δ + 1/n)C1/2T max

0¬k¬[nT ]
(1 + ∥Xn

k−1∥2)1/2 max
0¬k¬[nT ]

∥ζnk ∥√
n

.

Hence conditions (4.3) and (4.4) imply that

E
(
ωT (A

n +Bn, δ)
)
¬ E

(
ωT (A

n, δ)
)
+ E

(
ωT (B

n, δ)
)

¬ (δ + 1/n)C1/2Tα(n)β(n),

where
α(n) =

[
1 + E

(
sup

0¬t¬T
∥Xn(t)∥2

)]1/2
and

β(n) = 1 +

[
T

[nT ]

[nT ]∑
k=0

E(∥ζnk ∥2)
]1/2

.

Consequently, (4.2) is obtained from Lemma 4.2 and condition (2.2), which com-
pletes the proof. �

For each n ∈ N, let Λn : D(R+,Rd)×D(R+,Rd)→ D(R+,Rd) be the func-
tion defined as

Λn(x, y)(t) = x(t)− x(0)−
t∫
0

a
(
u−, x(u−)

)
dcn(u)− y(t).

Also, we define Λ : D(R+,Rd)×D(R+,Rd)→ D(R+,Rd) as

Λ(x, y)(t) = x(t)− x(0)−
t∫
0

a
(
u, x(u)

)
du− y(t).
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LEMMA 4.4. Let {Zn}n∈N be a sequence of processes having their paths in
D(R+,Rd)×D(R+,Rd), and suppose this sequence converges in distribution to a
process Z satisfying P

(
Z ∈ C(R+,Rd)× C(R+,Rd)

)
= 1. Then, {Λn(Z

n)}n∈N
converges in distribution to Λ(Z).

P r o o f. Let E be the set of all (x, y) ∈ C(R+,Rd) × C(R+,Rd) such that
{Λ(xn, yn)}n∈N does not converge to Λ(x, y) for some sequence {(xn, yn)}n∈N
in D(R+,Rd)×D(R+,Rd) converging to (x, y). Since

P
(
Z ∈ C(R+,Rd)× C(R+,Rd)

)
= 1,

in order to prove that P(Z ∈ E) = 0, it suffices to verify that

E ∩ [C(R+,Rd)× C(R+,Rd)] = ∅.

Take (x, y) ∈ C(R+,Rd) × C(R+,Rd), and let {(xn, yn)}n∈N be any sequence
in D(R+,Rd) × D(R+,Rd) converging to (x, y). Since (x, y) is continuous, this
sequence converges to (x, y) uniformly on compact subsets of R+.

From (A1), for each T > 0, we get

sup
0¬t¬T

∥Λn(xn, yn)(t)− Λ(x, y)(t)∥

¬ 2 sup
0¬t¬T

∥xn(t)− x(t)∥+ 2 sup
0¬t¬T

∥yn(t)− y(t)∥

+ sup
0¬t¬T

∥∥a(t, xn(t))∥∥ T∫
0

d
(
u− cn(u)

)
+ C1/2

T∫
0

∥xn(u)− x(u)∥ du,

and since, by (A2),

sup
0¬t¬T

∥∥a(t, xn(t))∥∥ T∫
0

d
(
u− cn(u)

)
¬ C1/2

n

(
1 + sup

0¬t¬T
∥xn(t)∥2

)1/2
,

we obtain
lim
n→∞

sup
0¬t¬T

∥Λn(xn)(t)− Λ(x)(t)∥ = 0.

Consequently, (x, y) /∈ E and P(Z ∈ E) = 0. Theorem 5.5 in [1] implies that
{Λn(Z

n)}n∈N converges in distribution to Λ(Z), which completes the proof. �

P r o o f o f T h e o r e m 3.1. Let {nm}m∈N be any increasing sequence of
positive integers. The Donsker theorem implies that {Wnm}m∈N is C-tight, and,
by Lemma 4.3, so is {Xnm}m∈N. Thus, there exists a subsequence {nmk

}k∈N
of {nm}m∈N such that {(Xnmk ,Wnmk )}k∈N converges in distribution to a pair
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of processes (X,W ). Let Y n = {Y n(t)}t­0 be the process defined as Y n(t) =∫ t

0
b
(
u,Xn(u)

)
dWn(u). From (2.9), for each k ∈ N, we obtain

(4.5) Λnmk
(Xnmk , Y nmk ) = Rnmk .

Since E
(
supt­0 |∆Wnmk (t)|

)
¬ 1/
√
nmk

, Theorem 2.6 and Proposition 3.2 in
[12] (see also Theorem 1-8 in [17] and Theorem 1 in [20]) imply that the sequence
{(Xnmk , Y nmk )}k∈N converges in distribution to (X,Y ), where Y = {Y (t)}t­0
is defined as Y (t) =

∫ t

0
b
(
u,X(u)

)
dW (u). Hence, (4.5) and Lemmas 4.1 and 4.4

imply that Λ(X,Y ) = 0, which proves that {Xn}n∈N converges in distribution to
the unique solution X to (2.1). Therefore, the proof is complete. �

5. APPENDIX

P r o o f o f R e m a r k 3.1. For t ∈ [0, T ], we set

Zn(t) = E
(

sup
0¬u¬t

∥Xn(u)−X(u)∥2
)
.

Theorem 3.1 implies C1 := supn∈N\{0} E
(
sup0¬t¬T

∥∥a(t,Xn(t)
)∥∥2) < ∞ and

C2 := supn∈N\{0} E
(
sup0¬t¬T

∣∣∣∣∣∣b(t,Xn(t)
)∣∣∣∣∣∣2) <∞. Hence,

E
(∣∣∣∣∣∣ t∫

0

b
(
u−, Xn(u−)

)
d
(
Wn(u)−W (u)

)∣∣∣∣∣∣) ¬ C
1/2
2√
n

[nt]∑
k=1

E(∥ζnk − ηnk∥2)1/2

¬
√
C2r[nt]

2n3/2
,

and condition (2.9) implies that

Xn(t)−X(t) =
t∫
0

(
a
(
u−, Xn(u−)

)
− a

(
u−, X(u−)

))
du

+
t∫
0

(
b
(
u−, Xn(u−)

)
− b

(
u−, X(u−)

))
dW (u) +Rn(t)

+
t∫
0

a
(
u−, Xn(u−)

)
d
(
cn(u)− u

)
+

t∫
0

b
(
u−, Xn(u−)

)
d
(
Wn(u)−W (u)

)
.

Consequently, by conditions (A1) and (A2), the Doob inequality, Lemma 4.1 and
a standard deduction, there exists a constant cT > 0 such that

Zn(t) ¬ cT

( t∫
0

Zn(u) du+
1

n

)
.
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From the Gronwall inequality we obtain Zn(T ) ¬ cT exp(cTT )/n, and since

E
(
∥Xn(T )−X(T )∥

)
¬ Zn(T )1/2,

the scheme converges strongly with order of convergence 1/2, and therefore, the
proof is complete. �
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[13] S. Jankovi ć and D. I l i ć, An analytic approximation of solutions of stochastic differential
equations, Comput. Math. Appl. 47 (2004), pp. 903–912.

[14] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,
Springer, New York 1995.

[15] T. G. Kurtz and P. Prot ter, Weak limit theorems for stochastic integrals and stochastic
differential equations, Ann. Probab. 19 (3) (1991), pp. 1035–1070.

[16] H. J . Kushner and P. G. Dupuis, Numerical Methods for Stochastic Control Problems in
Continuous Time, Springer, New York 1992.



Weak convergence of a numerical scheme for SDEs 215
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