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Abstract. We study the asymptotic behaviour of the cross-variation of
two-dimensional processes having the form of a Young integral with respect
to a fractional Brownian motion of index H > 1

2 . When H is smaller than or
equal to 3

4 , we show asymptotic mixed normality. When H is stricly greater
than 3

4 , we obtain a limit that is expressed in terms of the difference of two
independent Rosenblatt processes.
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1. INTRODUCTION

1.1. Foreword and main results. In the near past, there have been many ap-
plications of stochastic differential equations (SDE) driven by fractional Brownian
motion in different areas of mathematical modelling. To name but a few, we men-
tion the use of such equations as a model for meteorological phenomena [1], [12],
protein dynamics [7], [6], or noise in electrical networks [8].

Here, we consider more generally a two-dimensional process {Xt}t∈[0,T ] =

{(X(1)
t , X

(2)
t )}t∈[0,T ] of the form

(1.1) X
(i)
t = xi +

t∫
0

σi,1
s dB(1)

s +
t∫
0

σi,2
s dB(2)

s , t ∈ [0, T ], i = 1, 2,

where B = (B(1), B(2)) is a two-dimensional fractional Brownian motion of
Hurst index H > 1

2 defined on a complete probability space (Ω,F , P ), whereas
x = (x1, x2) ∈ R2, and σ is a 2 × 2 matrix-valued process. The case where X
solves a fractional SDE corresponds to σt = σ(Xt), with σ : R2 →M2(R) deter-
ministic. Since we are assuming that H > 1

2 , by imposing appropriate conditions
on σ (see Section 2 for details), we may and will assume throughout the paper that
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0
σi,j
s dB

(j)
s is understood in the Young [16] sense (see, again, Section 2 for the

details).
In this paper, we are concerned with the asymptotic behaviour of the cross-

variation associated with X on [0, T ], which is a sequence of stochastic processes
defined as

(1.2) Jn(t) =
⌊nt⌋∑
k=1

∆X
(1)
k/n∆X

(2)
k/n, n > 1, t ∈ [0, T ].

Here, and the same anywhere else, we use the notation ∆X
(i)
k/n to indicate the

increment X(i)
k/n − X

(i)
(k−1)/n. We shall show the following two theorems which

might be of interest for solving problems arising from statistics, e.g., the problem
of testing the hypothesis (H0): “σ1,2 = σ2,1 = 0” in (1.1).

THEOREM 1.1. For any t ∈ [0, T ],

(1.3) n2H−1Jn(t)
P→

t∫
0

(σ1,1
s σ1,2

s + σ2,1
s σ2,2

s )ds as n→∞.

THEOREM 1.2. Assume σ1,2 = σ2,1 = 0 and let

(1.4) an :=


n2H−1/2 if 1

2 < H < 3
4 ,

n/
√
log n if H = 3

4 ,

n if 3
4 < H < 1.

Then, as n→∞,

(1.5) an Jn
L→
·∫
0

σ1,1
s σ2,2

s dZs in the Skorokhod space D[0, T ].

In (1.5), the definition of Z is according to the value of H . More precisely, Z =
CH/2 ·W when H ∈

(
1
2 ,

3
4

]
, with CH given by (3.1) and (3.2) below, and W a

Brownian motion independent of F ; and Z = 1
2(R

(1) − R(2)) when H ∈
(
3
4 , 1

)
,

with R(k) the Rosenblatt process constructed from the fractional Brownian motion

β(k) =
1√
2

(
B(1) + (−1)k+1B(2)

)
, k = 1, 2

(see Definition 3.1 for details).

1.2. Link to the existing literature. Our results are close in spirit to those
contained in [4] (which has been a strong source of inspiration to us), where central
limit theorems for power variations of integral fractional processes are investigated.
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As will be seen, our analysis of Jn, that requires similar but different efforts
compared to [4] (as we are here dealing with a two-dimensional fractional Brown-
ian motion on one hand and we also consider1 the case where H > 3

4 on the other
hand), is actually greatly simplified by the use of a recent, nice result obtained in
[3] about the asymptotic behaviour of weighted random sums.

1.3. Outline of the paper. The rest of the paper is as follows. Section 2 con-
tains a thorough description of the framework in which our study takes place (in
particular, we recall the definition of the Young integral and we provide its main
properties). Section 3 gathers several preliminary results that will be essential for
proving our main results. Finally, proofs of Theorems 1.1 and 1.2 are given in
Section 4.

2. OUR FRAMEWORK

In this section, we describe the framework used throughout the paper and we
fix a parameter α ∈ (0, 1).

We let Cα denote the set of Hölder continuous functions of index α ∈ (0, 1),
that is, the set of the functions f : [0, T ]→ R satisfying

(2.1) |f |α := sup
06s<t6T

|f(t)− f(s)|
(t− s)α

<∞.

Also, we set ∥f∥α := |f |α + |f |∞, with |f |∞ = sup06t6T |f(t)|.
For a fixed f ∈ Cα, we consider the operator Tf : C1 → C1 defined as

Tf (g)(t) =
t∫
0

f(u)g′(u)du, t ∈ [0, T ].

Let γ ∈ (0, 1) be such that α + γ > 1. Then Tf extends, in a unique way, to an
operator Tf : Cγ → Cγ which further satisfies

∥Tf (g)∥γ 6 (1 + Cα,γ) (1 + T γ)∥f∥α∥g∥γ ,

with Cα,γ = 1
2

∑∞
n=1 2

−n(α+γ−1) <∞. See, e.g., [9], Theorem 3.1, for a proof.

DEFINITION 2.1. Let α, γ ∈ (0, 1) be such that α + γ > 1. Let f ∈ Cα and
g ∈ Cγ . The Young integral

∫ .

0
f(u)dg(u) is then defined as being Tf (g).

1The authors of [4] did not consider the case where H > 3
4

since, quoting them, “the problem
is more involved because non-central limit theorems are required”.
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The Young integral satisfies (see, e.g., [9], inequality (3.3)), for any a, b ∈
[0, T ] with a < b, the condition

(2.2)
∣∣ b∫
a

(
f(u)− f(a)

)
dg(u)

∣∣ 6 Cα,γ |f |α|g|γ (b− a)α+γ .

As we said in Introduction, we let B = (B(1), B(2)) be a two-dimensional
fractional Brownian motion defined on a probability space (Ω,F , P ). We assume
further that F is the σ-field generated by B. We also suppose that the Hurst pa-
rameter H of B is the same for the two components and that it is strictly greater
than 1

2 .
Let α ∈ (0, 1) and let σi,j : Ω× [0, T ]→ R, i, j = 1, 2, be four given stochas-

tic processes that are measurable with respect to F . We will assume throughout the
text that the following two additional assumptions on α and σi,j are satisfied:

(A) α ∈
(
1
4 + H

2 , H
)
.

(B) For each pair (i, j) ∈ {1, 2}2, the random variable ∥σi,j∥α has moments
of all orders.

Observe that α + H > 1 due to both (A) and H > 1
2 , so that the integrals

in (1.1) are well defined in the Young sense. Also, recall the following variant of
the Garcia–Rodemich–Rumsey lemma [5]: for any q > 1, there exists a constant
cα,q > 0 (depending only on α and q) such that

(2.3) |B(i)|qα 6 cα,q
∫∫
[0,T ]2

|B(i)
u −B

(i)
v |q

|u− v|2+qα
dudv.

Using (2.3), we infer that |B(i)|α has moments of all orders.

3. PRELIMINARIES

3.1. Breuer–Major theorem. The next statement is a direct consequence of the
celebrated Breuer–Major [2] theorem (see [9], Section 7.2, for a modern proof). We
write ‘fdd’ to indicate the convergence of all the finite-dimensional distributions.

THEOREM 3.1 (Breuer–Major [2]). Let β be a (one-dimensional) fractional
Brownian motion of index H ∈

(
0, 34

]
. Then, as n→∞ and with W a standard

Brownian motion,
(i) if H < 3

4 , then{
1√
n

⌊nt⌋∑
k=1

[(βk − βk−1)
2 − 1]

}
t∈[0,T ]

fdd−→ 1

2

∑
k∈Z

(|k + 1|2H + |k − 1|2H − 2|k|2H)2 {Wt}t∈[0,T ];
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(ii) if H = 3
4 , then{

1√
n log n

⌊nt⌋∑
k=1

[(βk − βk−1)
2 − 1]

}
t∈[0,T ]

fdd−→ 3

4
(log 2){Wt}t∈[0,T ].

By a scaling argument (to pass from k to k/n) and by using the seminal result
of Peccati and Tudor [11] (to allow an extra F ), we can immediately obtain from
Theorem 3.1 the following corollary.

COROLLARY 3.1. Let β=(β(1), β(2)) be a two-dimensional fractional Brown-
ian motion of index H ∈

(
0, 34

]
. Then, as n→∞ and with W a (one-dimensional)

standard Brownian motion independent of β, we have, for any random vector F =
(F1, . . . , Fd) measurable with respect to β,

(i) if H < 3
4 , then

{
F, n2H−1/2

⌊nt⌋∑
k=1

[(β
(1)
k/n − β

(1)
(k−1)/n)

2 − (β
(2)
k/n − β

(2)
(k−1)/n)

2]
}
t∈[0,T ]

fdd−→ {F,CH Wt}t∈[0,T ] ,

where

(3.1) CH =
1√
2

∑
k∈Z

(|k + 1|2H + |k − 1|2H − 2|k|2H)2;

(ii) if H = 3
4 , then{

F,
n√
log n

⌊nt⌋∑
k=1

[(β
(1)
k/n − β

(1)
(k−1)/n)

2 − (β
(2)
k/n − β

(2)
(k−1)/n)

2]

}
t∈[0,T ]

fdd−→
{
F,C3/4Wt

}
t∈[0,T ]

,

where

(3.2) C3/4 =
3
√
2

4
log 2.

3.2. Taqqu’s theorem and the Rosenblatt process. Taqqu’s theorem [13] de-
scribes the fluctuations of the quadratic variation of the fractional Brownian motion
when the Hurst index H is strictly greater than 3

4 , that is, for the range of values
which are not covered by the Breuer–Major Theorem 3.1. We state here a version
that fits into our framework. With respect to the original statement, it is worth not-
ing that in Theorem 3.2 (whose proof may be found in [10]) the convergence is
in L2(Ω) (and not only in law). This latter fact will reveal to be crucial in our
proof of Theorem 1.2, as it will allow us to apply the main result of [3] recalled in
Section 3.4.
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THEOREM 3.2 (Taqqu [13]). Let β be a (one-dimensional) fractional Brown-
ian motion of index H ∈

(
3
4 , 1

)
. Then, for any t ∈ [0, T ], the sequence

(3.3) n1−2H
⌊nt⌋∑
k=1

[n2H(βk/n − β(k−1)/n)
2 − 1]

converges in L2(Ω) as n→∞.

DEFINITION 3.1. Let the assumption of Theorem 3.2 be satisfied, and denote
by Rt the limit of (3.3). The process R = {Rt}t∈[0,T ] is called the Rosenblatt
process constructed from β.

For the main properties of the Rosenblatt process R, we refer the reader to
Taqqu [14] or Tudor [15]. See also [9], Section 7.3. An immediate corollary of
Theorem 3.2 is as follows.

COROLLARY 3.2. Let β=(β(1), β(2)) be a two-dimensional fractional Brown-
ian motion of index H ∈

(
3
4 , 1

)
. Then, for any t ∈ [0, T ],

n
⌊nt⌋∑
k=1

[(β
(1)
k/n − β

(1)
(k−1)/n)

2 − (β
(2)
k/n − β

(2)
(k−1)/n)

2]
L2(Ω)−→ R

(1)
t −R

(2)
t

as n → ∞, where R(i) is the Rosenblatt process constructed from the fractional
Brownian motion β(i), i = 1, 2.

3.3. Two simple auxiliary lemmas. To complete the proofs of Theorems 1.1
and 1.2 we will, among other things, need the following two simple lemmas.

LEMMA 3.1. Let B and σ be as in Section 2. Then there exists a constant
C = C(α,H, T, σ) > 0 such that, for any i, j = 1, 2, any n > 1 and any k ∈
{1, . . . , ⌊nT ⌋},

∥∥ k/n∫
(k−1)/n

(σi,j
s − σi,j

k/n)dB
j
s

∥∥
L2(Ω)

6 Cn−2α,(3.4)

∥∥ k/n∫
(k−1)/n

σi,j
s dBj

s

∥∥
L2(Ω)

6 Cn−H .(3.5)

P r o o f. Without loss of generality, we may and will assume that i = j = 1.
Using (2.2) with β = α, we have, almost surely,

∣∣ k/n∫
(k−1)/n

(σ1,1
s − σ1,1

k/n)dB
1
s

∣∣ 6 Cα,α|σ1,1|α|B1|αn−2α.
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Using the Cauchy–Schwarz inequality, we obtain

E
[( k/n∫

(k−1)/n
(σ1,1

s − σ1,1
k/n)dB

1
s

)2]
6 C2

α,α

√
E [∥σ1,1∥4α]

√
[E|B1|4α]n−4α = Cn−4α,

thus yielding (3.4). On the other hand, we have

∥∥ k/n∫
(k−1)/n

σi,j
s dBj

s

∥∥
L2(Ω)

6
∥∥ k/n∫
(k−1)/n

(σi,j
s − σi,j

k/n)dB
j
s

∥∥
L2(Ω)

+ ∥σi,j
k/n∆Bj

k/n∥L2(Ω)

6 Cn−2α + Cn−2H (by (3.4) and because of (B)),

6 Cn−H (using (A)),

which is the desired claim (3.5). �

LEMMA 3.2. Let g, h : [0, T ] → R be two continuous functions, let γ ∈ R,
and let us write ∆hk/n to denote the increment h(k/n)− h

(
(k − 1)/n

)
. If

(3.6) ∀t ∈ [0, T ] ∩Q : lim
n→∞

nγ
⌊nT ⌋∑
k=1

1[0,t](k/n)(∆hk/n)
2 = t,

then, for all t ∈ [0, T ],

lim
n→∞

nγ
⌊nT ⌋∑
k=1

g(k/n)1[0,t](k/n)(∆hk/n)
2 =

t∫
0

g(s)ds.

P r o o f. Since t 7→ nγ
∑n

k=1 1[0,t](k/n)(∆hk/n)
2 is non-decreasing, it is

straightforward to infer from (3.6) that, for all t ∈ [0, T ],

lim
n→∞

nγ
⌊nT ⌋∑
k=1

1[0,t](k/n)(∆hk/n)
2 = t.

Otherwise stated, the cumulative distribution function (cdf) of the compactly sup-
ported measure

νn(dx) = nγ
⌊nT ⌋∑
k=1

(∆hk/n)
2δk/n(dx),

where δa stands for the Dirac mass at a, converges pointwise to the cdf of the
Lebesgue measure on [0, T ]. Since g is continuous, it is then a routine exercise to
deduce that our desired claim holds true. �
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3.4. Asymptotic behaviour of weighted random sums, following Corcuera,
Nualart and Podolskij [3]. The following result is a central ingredient in the proof
of both Theorems 1.1 and 1.2.

PROPOSITION 3.1. Let u = {ut}t∈[0,T ] be a Hölder continuous process with
index α > 1

2 , set

Kn(t) =
⌊nt⌋∑
k=1

uk/n∆B
(1)
k/n∆B

(2)
k/n, t ∈ [0, T ],

and let an be given by (1.4). Then, as n→∞,

(3.7) anKn
L→

·∫
0

usdZs in the Skorokhod space D[0, T ].

Here, Z is as in the statement of Theorem 1.2.

The proof of our Proposition 3.1 heavily relies on a nice result taken from
Corcuera, Nualart and Podolskij [3]. Actually, we will need a slight extension of
the result of [3], which we state here for convenience (and also because we do not
share the same notation). The only difference between Theorem 3.3 as stated below
and its original version appearing in [3] is that Z need not be a Brownian motion.
A careful inspection of the proof given in [3] indeed reveals that the Brownian
feature of Z plays actually no role; the only property of Z which is used is that the
sum of its Hölder exponent and that of u is strictly greater than one, see (H1).

THEOREM 3.3 (Corcuera, Nualart and Podolskij [3]). The underlying proba-
bility space is (Ω,F , P ). Let u = {ut}t∈[0,T ] be a Hölder continuous process with
index α ∈ (0, 1), and let ξ = {ξk,n}n∈N, 16k6⌊nT ⌋ be a family of random variables.
Let us set

gn(t) =
⌊nt⌋∑
k=1

ξk,n, t ∈ [0, T ].

Assume the following two hypotheses on the double sequence ξ:

(H1) {gn(t)}t∈[0,T ]
fdd→ {Z(t)}t∈[0,T ] F-stably, where Z is Hölder continuous

with index β such that α+ β > 1.
(H2) There is a constant C > 0 such that, for any 1 6 i < j 6 [nT ],

E
[( j∑

k=i+1

ξk,n
)4] 6 C

(
j − i

n

)2

.

Then
⌊n·⌋∑
k=1

uk/n ξk,n
L→
·∫
0

usdZs in the Skorokhod space D[0, T ],

where
∫ ·
0
usdZs is understood as a Young integral.
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Equipped with Theorem 3.3, we are now ready to prove Proposition 3.1.

P r o o f o f P r o p o s i t i o n 3.1. Set ξk,n = an∆B
(1)
k/n∆B

(2)
k/n and gn(t) =∑⌊nt⌋

k=1 ξk,n, t ∈ [0, T ]. We shall check the two assumptions, (H1) and (H2), of
Theorem 3.3.

S t e p 1: C h e c k i n g (H1). We make use of the rotation trick. More pre-
cisely, let

β(1) =
1√
2
(B(1) +B(2)) and β(2) =

1√
2
(B(1) −B(2)),

so that
ξk,n =

an
2

(
(∆β

(1)
k/n)

2 − (∆β
(2)
k/n)

2
)
.

It is easy to check that β(1) and β(2) are two independent fractional Brownian
motions of index H . As a result, assumption (H1) is satisfied due to Corollary 3.1
(resp. Corollary 3.2) when H 6 3

4 (resp. H > 3
4 ).

S t e p 2: C h e c k i n g (H2). Since all the Lp(Ω)-norms are equivalent in-
side a given Wiener chaos (here: the second Wiener chaos), it suffices to check the
existence of a constant C > 0 such that, for any 1 6 i < j 6 [nT ],

(3.8) E
[( j∑

k=i+1

ξk,n
)2] 6 C

j − i

n
.

Using the independence of B(1) and B(2), we obtain

E
[( j∑

k=i+1

ξk,n
)2]

= a2n n
−4H

j∑
k,k′=i+1

ρ(k − k′)2,

with ρ(r) = 1
2(|r + 1|2H + |r − 1|2H − 2|r|2H). As a consequence, for any i < j

in {1, . . . , [nT ]},

E
[( j∑

k=i+1

ξk,n
)2] 6 a2n n

−4H(j − i)
[nT ]∑

r=−[nT ]

ρ(r)2.

It is straightforward to show that a2n n
1−4H ∑[nT ]

r=−[nT ] ρ(r)
2 = O(1) as n → ∞.

Thus, (3.8) is satisfied, and so is (H2).
To conclude the proof of Proposition 3.1, it remains to apply Theorem 3.3 with

ξk,n = an∆B
(1)
k/n∆B

(2)
k/n. �
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4. PROOF OF OUR MAIN RESULTS

4.1. Proof of Theorem 1.1. We divide it into several steps.
S t e p 1. Recall Jn from (1.2). One can write

Jn(t) =

=
⌊nt⌋∑
k=1

( k/n∫
(k−1)/n

σ1,1
s dB1

s+
k/n∫

(k−1)/n
σ1,2
s dB2

s

)( k/n∫
(k−1)/n

σ2,1
s dB1

s+
k/n∫

(k−1)/n
σ2,2
s dB2

s

)
=: An(t) +R1,n(t) +R2,n(t),

with

(4.1) An(t) =
⌊nt⌋∑
k=1

(σ1,1
k/n∆B1

k/n + σ1,2
k/n∆B2

k/n)(σ
2,1
k/n∆B1

k/n + σ2,2
k/n∆B2

k/n),

(4.2) R1,n(t) =
⌊nt⌋∑
k=1

( k/n∫
(k−1)/n

σ1,1
s dB1

s +
k/n∫

(k−1)/n
σ1,2
s dB2

s

)
×

( k/n∫
(k−1)/n

(σ2,1
s − σ2,1

k/n)dB
1
s +

k/n∫
(k−1)/n

(σ2,2
s − σ2,2

k/n)dB
2
s

)
,

(4.3) R2,n(t) =
⌊nt⌋∑
k=1

(σ2,1
k/n∆B1

k/n + σ2,2
k/n∆B2

k/n)

×
( k/n∫
(k−1)/n

(σ1,1
s − σ1,1

k/n)dB
1
s +

k/n∫
(k−1)/n

(σ1,2
s − σ1,2

k/n)dB
2
s

)
.

S t e p 2. Let us prove the convergence of n2H−1Ri,n(t), i = 1, 2, t ∈ [0, T ],
in L1(Ω) towards zero. By the Cauchy–Schwarz inequality and Lemma 3.1, we get

∥R1,n(t)∥L1(Ω) 6
⌊nt⌋∑
k=1

∥∥ k/n∫
(k−1)/n

σ1,1
s dB1

s +
k/n∫

(k−1)/n
σ1,2
s dB2

s

∥∥
L2(Ω)

×
∥∥ k/n∫
(k−1)/n

(σ2,1
s − σ2,1

k/n)dB
1
s +

k/n∫
(k−1)/n

(σ2,2
s − σ2,2

k/n)dB
2
s

∥∥
L2(Ω)

6 Cn−(H+2α−1).

By our assumption (A), we infer that n2H−1∥R1,n(t)∥L1(Ω) → 0 as n→∞. We
can similarly prove that n2H−1∥R2,n(t)∥L1(Ω) → 0.

S t e p 3. Let us now consider An. We have

An(t) =
⌊nt⌋∑
k=1

(σ1,1
k/n∆B1

k/n + σ1,2
k/n∆B2

k/n)(σ
2,1
k/n∆B1

k/n + σ2,2
k/n∆B2

k/n)

=: A1,n(t) +A2,n(t) + Sn(t),
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with

Ai,n(t) =
⌊nt⌋∑
k=1

σ1,i
k/nσ

2,i
k/n(∆Bi

k/n)
2, i = 1, 2,(4.4)

Sn(t) =
⌊nt⌋∑
k=1

(σ1,1
k/nσ

2,2
k/n + σ1,2

k/nσ
2,1
k/n)∆B1

k/n∆B2
k/n.(4.5)

Using Proposition 3.1 and whatever the value of H compared to 3
4 , we can imme-

diately check that n2H−1Sn(t) converges in law to zero, thus in probability. On the
other hand, fix i ∈ {1, 2} and recall the well-known fact that, for any t ∈ [0, T ],

lim
n→∞

n2H−1
⌊nT ⌋∑
k=1

1[0,t](k/n)(∆Bi
k/n)

2 = t almost surely.

We then infer that, with probability one, assumption (3.6) holds true with h = Bi

and γ = 2H − 1. Lemma 3.2 applies and yields

n2H−1Ai,n(t)→
t∫
0

σ1,i
s σ2,i

s ds almost surely.

S t e p 4. Plugging together the conclusions of Steps 1–3 completes the proof
of Theorem 1.1. �

4.2. Proof of Theorem 1.2. Recall from the previous section that Jn = A1,n +
A2,n + Sn +R1,n +R2,n, with Ai,n, Sn, R1,n and R2,n given by (4.4), (4.5), (4.2)
and (4.3) respectively. Using the estimates of Step 2 in the previous section, we
easily see that, under (A), anRi,n(t) tends to zero in L1(Ω) as n→∞, i = 1, 2,
t ∈ [0, T ]. Moreover, the quantities A1,n and A2,n given by (4.4) equal zero when
σ1,2 = σ2,1 = 0. As a result, the asymptotic behaviour of an Jn is the same as that
of an Sn, and the desired conclusion follows directly from Proposition 3.1. �
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