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MOMENTS OF POISSON STOCHASTIC INTEGRALS
WITH RANDOM INTEGRANDS*

BY
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Abstract. We show that the moment of order n of the Poisson stochas-
tic integral of a random process (uy ). x Over a metric space X is given by
the non-linear Mecke identity

E[( )f( uz(w)w(dx))n]

= 3 o f 6; (ulslfll . .u‘s}:’“‘)a(dsl) ... o(dsg)],
{P1,..., PpLYePn Xk

where the sum runs over all partitions P; U ... U Py of {1,...,n}, |P|

denotes the cardinality of P;, and 55+k is the operator that acts by addition of

points at s1, . . ., s to Poisson configurations. This formula recovers known

results in case (u(x))z ¢ x Is a deterministic function on X.
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1. INTRODUCTION

Let QX denote the configuration space on a o-compact metric space X with
Borel o-algebra B(X), i.e. QX is the space of at most countable and locally finite
subsets of X, defined as

QX = {w = {xi}i:L,_.’N C X, x; 75 T Vi 7& J, N e NU {OO}}
Each element w of Q¥ has cardinality w(X) and is identified with the Radon point
measure
w(X)

w= > €,
i=1

where ¢, denotes the Dirac measure at x € X.

* The author acknowledges support from NTU/SPMS Start-Up Grant M58110087.
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The space QX is endowed with the Poisson probability measure 7, with o-
finite diffuse intensity measure o on X such that for all compact disjoint subsets
Aq,..., Ay of X, n > 1, the mapping

W (w(Al), e ,w(An))

is a vector of independent Poisson distributed random variables on N with respec-
tive expectations o (A1), ...,0(4,), cf. e.g. § 6.1 of [11].
In [2] the moment formula

(1.1) E[(if(x)w(dfv))n]

1
=nl! —_— F(x)o(dx r'“)
T1+2T2+Z.:+nrn:n kl;Il <(k‘)rkrk' (if ( ) ( ))
T1yeeeyTn 20
has been proved for f : X — R, a deterministic sufficiently integrable function.
The proof of [2] relies on the Lévy—Khintchine representation of the Laplace trans-
form of f « u(z)w(dx), and this result can also be recovered under a different com-
binatorial 1nterpretat10n by the Faa di Bruno formula (cf. e.g. § 2.4 and (2.4.4), page
27, of [6]) from the following relation between the moments and the cumulants

/ﬁ?n—fX o(dr),n>1, offX Jw(dz):

(1.2) E[(fu(x)w(dx))n]

X

= 3 fu|P1|(:):)0(d:c)...iu'P’“‘(x)a(d:U):An(nl,...,nn),

{Plv'”ka'}e,Pn X

where the sum runs over the set P, of all partitions Py U...U Py of {1,...,n}
with cardinality | P;|, and

An(z1,... 7)) =n! v 12[ <7i,<::f>rk>

r14+2ro+...4+nrp=n k=1
1400y 20
is the Bell polynomial of degree n.

Recently, (1.1) has been applied to control the p-variation and the number of
crossings of fractional Poisson and shot noise processes with deterministic kernels,
cf. [4], and to insurance mathematics in [1].

In this paper we extend the above formula (1.1) to random integrands. Namely,
we state that given u : ¥ x X — R, a sufficiently integrable random process, we
have (cf. Proposition 3.1 below)

(1.3) E[(fuz Jw(dz))"]
= 3 E[ [ef(u |P1‘...uLf’“')a(dsl)...a(dsk)],

{Plv“'ka:}ePn Xk
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where
sk = (S1,...,5kK) EXk, k>1,

the addition operator 5;6 is defined on any random variable F' : QX — R by
55+I€F(w) =F(wU{s1,...,st}), wE€ X, s1,..., s € X,

and the sum (1.3) runs over the set P, of all (disjoint) partitions P; U ... U Py of
{1,...,n}, k=1,...,n. As expected, when (u(:z:))xeX is a deterministic func-
tion, we have

E;:’U(Si) = U(Si), I<:< ka

in which case (1.3) recovers (1.2). For n = 1, (1.3) is known as the Mecke identity,
cf. [7].

Examples. In the case of second order moments, (1.3) yields

(1.4) E[(}f(us(w)w(ds))z] = E[}f(sj|us|2a(ds)]

+ E| [ ef el (us,usy)o(ds1)o(dsz)].
X2
Concerning third order moments, (1.3) shows that

(1.5) E[(ius(w)w(dS))g]
= E[fg;rug’a(ds)]
+3E[ f 551 .‘2 ‘U51|2U82) (dsl)a(d‘S?)]

+E| f e ed ef (us usyusy)o(dsy)o(dsg)o(dss)].
XS

We proceed as follows. In Section 2 we rewrite a result of [14] into a new for-
mula for the moments of compensated Poisson—Skorohod integrals in the language
of set partitions, without involving cancellations of terms. In Section 3, by means
of the binomial inversion we deduce formulas for non-compensated integrals of
random integrands. In the case of deterministic integrands and indicator functions,
in Section 4 we recover and extend known relations between the moments of the
Poisson distribution and Stirling numbers.

The case of Wiener and It6 stochastic integrals follows another type of com-
binatorics based on pair partitions in the case of deterministic integrands, cf. [13]
for the case of random integrands.
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2. POISSON-SKOROHOD INTEGRALS

We start with a moment identity for compensated Poisson—Skorohod integrals,
obtained by rewriting Theorem 5.1 of [14] in terms of set partitions. By saying that
u: Q% x X — Rhas a compact support in X we mean that there exists a compact
subset K of X such that u,(w) = 0forallw € QX andz € X \ K.

Our proof of moment identities relies on the Poisson—Skorohod integral op-
erator & which is defined on any measurable process u : QX x X — R by the
expression

@) b)) = [ualw {#)wldr) — [up(@)olds), weQ¥,
X X

provided E| [, |u.(w)|o(dz)] < oo, cf. Corollary 1 of [9]. In (2.1), w \ {z} de-
notes the configuration w € Q¥ after removal of the point z in case = € w.

The moment identities in this paper are stated for bounded random variables F’
and processes u with compact support, however they can be extended by assuming
suitable conditions ensuring that the right-hand side of the formula is finite. In the
next proposition we let

1 n!

(2:2) Nsk - ll(ll +lg)...(l1 —l—...-l—lk) (l1 — 1)!...(lk - 1)!7

which represents the number of partitions of a set of n = [; + ... 4 [ elements
into k subsets of sizes l1,...,lx > 1, cf. e.g. Lemma 3.1 of [12] or Lemma 4.5
of [13].

PROPOSITION 2.1. Let F : QX — R be a bounded random variable and let
u: QX x X — R be a bounded process with compact support in X. For alln > 0
we have

E[6(u)" F)
_ n [T n—c N 5 N P k+c N L p hie
- Cgo(_l) €/ k=0 L+ -%:n—cgk [ka+c85k pl;[1 65k\{5p}usp o (5k+c)] )

Iyl 21
lk+l:17"'7lk+czl

where dO’b(Sb) = a(dsl) N U(dsb), £k = (ll, ey lk)

Proof. The proof of this formula relies on the identity

(2.3)
n o n b
n _ l
E[§(uw)"F]=>" Z(—l)b k > CgbbE[ ffs;:F IT 5;\{%}%’; dab(sb)]
k=0b=k li+..+lp=n—(b—k) XPb p=1
Iyl 21

lop1=1,..,lp=1
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for the moments of the compensated Poisson—Skorohod integral §(u) (cf. Theo-
rem 5.1 of [14] and Theorem 1 of [10]), where

c rqt+q—c—1 I + +l,+q-—1
2.4 C c — ] ’
24) Cey vt > I1 [l <ll+...+lp1+q)

0=rcy1<...<ro=k+c+1 ¢=0 p=rg+1+q—c+l

Next we note that C'¢, 1. defined in (2.4) represents the number of partitions of
asetof n =10y 4+ ...+ I + c elements into k subsets of lengths I,...,{; and ¢
singletons. Hence, when l1 + ... + I = n — ¢, we have

n
Cﬂk,k-l—c = (C)NEIN

since Ng, is the number of partitions of a set of [1 + ...+ [, = n — c elements
into k subsets of lengths [, ..., [;. Hence we have, by the substitution b = ¢ + k
and changing the order of summation,

E16(u)"F]
non— k+c
- Z Z )C Z CSk,kJFC [ f ESkF H E'k\{s }usp dO’ (5k+0)]
c=0 k=0 ll—‘ll-+llk:>7’{—c Xk+c
1yt =

ler1=1,. g4 =1

— i(—l)C(n> nic > Ng E [ feskF H ssk\{s }usp do*t (5k+6)],

c=0 k=0 UL1i+...+lp=n—c Xk+c p=1
I, >1
lk+1:17"'7lk+c:1

which completes the proof. =
The proof of (2.3) given in [14] relies on the duality relation
(2.5) E[(DF,u)12(x)| = E[Fé(u)]
(cf. [9] and Proposition 2.3 of [14]) between ¢ and the finite difference gradient
(2.6) D,F(w) =efF(w) — Flw), weQ¥ zeX,
for all ' and u in the respective closed L? domains
Dom (6) € L*(QX x X, 7, ®¢) and Dom (D) C L*(Q,7,)

of 4 and D, cf. also Proposition 6.4.3 of [11] and references therein.
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3. PATHWISE INTEGRALS

The next Proposition 3.1 is the main result of this paper and, unlike (2.1),
does not involve cancellations of terms. The proof of this result, which yields (1.3)
and follows directly by binomial inversion of Proposition 2.1, is stated due to the
additional presence of expectations.

PROPOSITION 3.1. Let F : QX — R be a bounded random variable and let
u: QX x X — R be a bounded random process with compact support in X. For
all n > 0 we have

(3.1 E[F()f(ux(w)w(dx))n]
= > E[[ 6$(FUL1131‘...u‘sllj”)a(dsl)...J(dsk)].

Proof. Applying Proposition 2.1 at the rank n — i to the process etu =
(61 ug)zex and the random variable F'( fX edugo(dr))’ we have, using the sub-
stitution a@ = 7 + c,

E[F( [uz(w)w(dz))"] = E[F(6(stu) + !;s;ruxa(da:))n}

|
M=

~
Il
()
~

1
M=
T

i—cC

!
n> E[F( i sjuza(dx))i (5(5+u))n_i}

S (")

iZo\t/) ;2o ¢ k=0 li+..+l=n—i—c
IS
+ o\ + + b0 g k
X E[X]c et (F(fs uzo(dz))’ (fe uzo(dz)) )p];[lesk\{sp}sspusp do (%)}
n a n (n—i n—a
=30l [ IVE D SR VP
a=01=0 k=01l1+...+lx=n—a
Il 21
k
xE[ ekF(fs uxadx) H usp )]
Xk p=1
n n n—a a 71 a
-3 () e (l)
a=0 k=0i=0
X > Nng[f <(f€u$ dx))skl_[upda }
h+..+lg=n—a Xk

Iyl 21
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which is equal to

k

(2 Y Y NeE[ [ b (F I ul)do ()]

k=01l14...+lp=n Xk p=1
Il 21

= > E[[ E;C(Fuls]fl‘...u‘sfk|)o(d51)...U(dsk)],
{P1 ..... Pk}EPn Xk

since

under the convention 0° = 1. m

Note that the structure of (3.1) does not apply to extend the cumulant formula
fin = [ + u"(x)o(dz) to the case where u becomes a random process.
When f : X — R is a deterministic function, Proposition 3.1 yields

33) E[F( [ f(x)w(dx))"]

X

= 3 f f'Pl‘(Sl)...f|Pk‘(8k)E[€;;€F]0'(d81)...U(dsk),

{P1,....,P,}€Pr Xk

which recovers (1.1) by taking F' = 1. Furthermore,

Cov(F, ()f(f($)w(d$))n>

= 3 [ Pl (sy) .. fP(sp) Elef F — Flo(dsy) . .. o(dsg).
{P1,...,P,}€Pr Xk

By (3.2), Proposition 3.1 also rewrites for compensated integrals as follows.

PROPOSITION 3.2. Let F : QX — R be a bounded random variable and let
u: QX x X — R be a bounded random process with compact support in X. For
allm > 0 we have

3.4) E[F(iugg(w)(w(daz) _ a(d:c)))n] - i(—w(”)
X ) E[ [ e (F( )f(um(w)a(dx))culslfl...usf“)daa(sa)]

{P1,....P. }EPpn_c Xa
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Proof. By (3.2) we have

E[F(}f(um(w) (w(dz) — a(dx)))n]

X X
n
=)
c=0 ¢
n—c a+c I
x S N B[ [ (FT] ) do(oure)]
a=0 ll—ﬁl-i..+lla:>7i—c Xate p=1

la+1:17~~~:la+c:1

X > E[ [ ed <F( fuz(w)a(dx))culslfl‘ . uLf”) do“(sa)},

{le"vPa}E,Pnfc Xa X
which completes the proof. m

The next proposition specializes the above result to the case of deterministic
integrands. We note that it can also be obtained independently as in (1.2) from the
relation between the moments and the cumulants

k1 =0, k= [u"(z)o(dz), n>2,
X

of fX u(z) (w(dz) — o(dz)).

PROPOSITION 3.3. Let f : X — R be a bounded deterministic function with
compact support on X. For alln > 1 we have

Bl(f @) (w(da) — o(de)))]
= Y [P [ P @) (d),

{Py,....PL}ePn X X
[P1[>2,..,| P |>2

where the sum runs over all partitions Py U ... U Py of {1,...,n} of size at least
two.
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Proof. By (3.3) with F' = 1 and using binomial inversion (see [3]) and the
definition (2.2) of g, , we have

E[( [ f(x)w(dz) — [ f(z)o(dz))"]
X X

n

= S0 (2) ([ F@atdn) B[ f ot
c=0 X X
(-1 }

(”)(iﬂx)a(dasnc S N, [T £(s,) do (sa)

¢ Lt tlg=n—c Xap=1
l1,..5la>1

-2 (2) S (")) et

c=0 €/ k=0

=2

n
c=0

a

x > Ne, [ TI £ (sp)do®(sa)

l1+...+lg=n—c—k Xap=1
llv~~~vlu>2

=S 52 (M) (32 ([ ety

C

b=0 c=0 X
X > Ne, [T f7(sp) do(sa)
li+...4+la=n—b Xap=1
U1, la>2
n b b
=3 (3) s () ([ r@at)’
b=0 c=0 X
X S Ne, [ I1 f(sp) do®(sa)
l1+...+la=n—b Xap=1
U1, la>2
= Ne, [T (sp) dot(s)
L+..+la=n Xap=1
I1,0ylq>2
= 3 [ P @)o(d)... [ fPl(2)o(dz). =
{P1,..., PprePn X X

[P1]22,....| P | >2

4. INDICATOR FUNCTIONS AND POLYNOMIALS

When u(x) = 14(z) is a deterministic indicator function of A € B(X) and
o(A) < oo, then

Z = [u(z)w(dz) = ilA(x)w(dx) =w(A)

X

is a Poisson random variable with intensity A = o(A), and Proposition 3.1 yields
the following corollary.
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COROLLARY 4.1. Let F : QX — R be a bounded random variable. We have

(4.1) E[FZ" = znj S(n,k) [ Elef Flo(ds1)...o(dsy), neN,
k=0 Ak

where S(n, k) denotes the Stirling number of the second kind, i.e. the number of
ways to partition a set of n objects into k non-empty subsets.

Proof. By (3.3) and the definition (2.2) of Ng, , we have

E[FZ"] = > E| [ el Fo(dsy)...o(dsy)]
{Pl, ,Pk}GPn Ak

SIS Nzka o(dsy) ... o(ds),

k=0 l1i+...+lx=n

1ol >1
and it remains to note that
Sk = Y Ny, 0<k<n u
l1+...+lk:n
Il 21

As a consequence of (4.1) we find

Cov(F,Z") = S(n,k) [ Elel F — Flo(ds1)...o(ds;), mne€N,
k=0 Ak

and

(4.2) E[Fet?] = Z (et —1)* f Ele] Flo(dsy)...o(dsy),

using, e.g., (3) on page 2 of [3]. Relation (4.2) also recovers the decomposition
of the Fourier transform (also called {/-transform) on the Poisson space, cf. e.g.
Proposition 3.2 of [5].

When F has the form F' = f(Z) with f : N — R, (4.1) also yields the fol-
lowing extended Chen—Stein identity:

E(Z°}(Z)] = 3 A*S(n, k)E[f(Z + k)]
k=0

(see e.g. Lemma 3.3.3 of [8]), and (4.2) yields
00 Ak

Bl = 3 5

(et = DRE[f(Z + k)]
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In particular, for F' = 1, (4.1) corresponds to the classical relation
(4.3) E[Z"] = B,(\), mneN,

between the moments of a Poisson random variable Z with intensity A > 0 and the
Bell polynomials

@4 Bn(d) =An(A,... A = > A= 3" A¥S(n,k), neN,
{P1,....,PL}EPn k=0

of order n, cf. e.g. Proposition 3.3.2 of [8] and references therein.
The comparison of (1.1) and (4.4) implies the relation

n 1
S(n, k) =nl > IT Tl
r1+2ro+...+nrp=n k=1 ( ) Tk
ri+ro+...+rp=k
T1yeeesTn =0
n 1
pu— ‘
n Z H (k')rkrk"
r1+2ra+...+(n—k+1)r,_pr1=n k=1 \""" :
ri+rot.. A, _gr1=k
T1 4oy 20

cf. e.g. Proposition 2.3.4 of [8].
Similarly, Proposition 3.3 applied to u(z) = 14(x) recovers the fact that the
centered moments of a Poisson random variable can be written as

E[(Z = \)" Z)\kSgn k), mneN,
k=0

using the two-associated Stirling numbers Sz (n, k) of the second kind, which count
the partitions of a set of size n into k£ non-singleton subsets, cf. [12] and Proposi-
tion 3.3.6 of [8].

In addition, we can check that if A := o(X) < oo, and taking us(w) = w(X),
s € X, we see that (1.4) recovers (4.3), i.e.

E[(w(X )}=E[(fus ds))’]
[is (w(X))’0 ds]+E[fs +(w(X))o(ds1)o(dss)]

[(w(X)+1)"] + NE [(w<X>+2)]
A2+ 673 + M\ = By(\).

AE
=+
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Similarly, (1.5) yields

— B[ 3{5: (w(X))’o(ds)]
+3E[ I s;s;;((W(X))QW(X))a(dsl)a(d@)}
X2
+ B[ [ efehed (w(X)) o (ds1)o(ds2)o(dss)]
X3

— AE[(w(X) +1)°] + 3N2E[(w(X) + 2)* (w(X) +2)]
+ ME[(w(X) +3)°]

= A+ 3107 +90A% + 650 + 15)° 4 \°

= Bg(N),

where Bg is the Bell polynomial of order six.

Acknowledgments. I thank an anonymous referee for many useful comments
and suggestions.
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