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Abstract. Applying the strong approximation technique we present a
unified approach to asymptotic results for multivariate linear rank statis-
tics for the two-sample problem. We reprove asymptotic normality of these
statistics under the null hypothesis and under local alternatives convergent
at a moderate rate to the null hypothesis. We also provide a moderate devi-
ation theorem for these statistics under the null hypothesis. Proofs are short
and use natural argumentation.
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1. INTRODUCTION

The asymptotic normality of linear rank statistics was studied by many au-
thors, e.g., Wald and Wolfowitz [17], Chernoff and Savage [1], Hájek [7], [8],
Govindarajulu et al. [5] and others. In their monograph, Hájek and S̆idak [9] have
presented their approach in a systematic and elegant form. The main tool they ap-
plied was the so-called method of Hájek’s projection allowing for very general
results. Pyke and Shorack [15] and Shorack and Wellner [16] generalized these
results. Govindarajulu et al. [5] proposed a parallel set of sufficient conditions
and obtained slightly stronger results. A detailed exposition of this approach can
be found in Govindarajulu [4]. On the other hand, a Cramér type large deviation
theorem for linear rank statistics was proved by Kallenberg [13]. His proof was
based on elementary, but technically involved lemma of Hušková [11]. Basing on
it, Ducharme and Ledwina [3] obtained some optimality results for data driven
tests for the two-sample problem.

In the present note we propose a unified approach to the above-mentioned
results by an application of the strong approximation technique, and the Komlós–
Major–Tusnády inequality [14], in particular. Our method allows for much shorter
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and quite natural proofs. In some cases we are able to weaken assumptions. For
example, we consider sample sizes of arbitrary orders.

Some motivation for our study was to simplify proofs of Theorems 3.1 and 3.2
in Ducharme and Ledwina [3]. Our approach was already used for the one-sample
problem to study asymptotic behaviour as well as to prove asymptotic optimality
of data driven tests for symmetry (see Inglot et al. [12]).

In Section 2 we state the problem and give some preliminary results and no-
tation. Section 3 concerns the case of the null hypothesis while Section 4 deals
with convergent alternatives. The main results are Theorems 3.3, 3.4, 3.5 and 4.3.
In Section 5 we provide a proof of Theorem 3.5 and auxiliary results. It turns out
that this proof requires a use of the independence of Brownian bridges defined in
Section 2 while in other proofs the condition is not necessary. In a short Appendix
we present, for the reader’s convenience, an exponential inequality for the modulus
of continuity of the Brownian bridge which is applied several times in this paper.

2. NOTATION AND STATING THE PROBLEM

Let m = mN , n = nN be fixed sequences of natural numbers such that N =
m+ n and let FN , GN , HN be sequences of continuous distribution functions on
the real line. LetX1, . . . , Xm be a sample from the distribution FN , and Y1, . . . , Yn
be a sample from the distribution GN , independent of X1, . . . , Xm. Denote by

Z = (Z1, . . . , ZN ) = (X1, . . . , Xm, Y1, . . . , Yn)

the pooled sample and by V = (V1, . . . , VN ) the transformed sample into the in-
terval [0, 1], i.e. Vi = HN (Zi), i = 1, . . . , N . Further, denote by HN (t) the em-
pirical distribution function of V , by Fm(t) the empirical distribution function of(
HN (X1), . . . , HN (Xm)

)
, and by εm(t) =

√
m[Fm(t)− FNH

−1
N (t)] the empir-

ical process of the first part of the transformed sample. Similarly we define Gn(t)
and ηn(t) =

√
n[Gn(t)−GNH

−1
N (t)] for the second part of the transformed sam-

ple. Then εm(t)
D
= em

(
FNH

−1
N (t)

)
, where em is the uniform empirical process,

and similarly ηn(t)
D
= en

(
GNH

−1
N (t)

)
.

Let φ1, φ2, . . . be a sequence of linearly independent absolutely continuous
functions on [0, 1] satisfying

∫ 1

0
φj(t)dt=0, j­1. Let Φ(t)=

(
φ1(t), φ2(t), . . .

)T
stand for a vector of such functions.

The aim of the present paper is to study an asymptotic behaviour of linear rank
statistics for the two-sample problem having the form

TN =

√
mn

N

( 1∫
0

Φ
(
HN (t)

)
dFm(t)−

1∫
0

Φ
(
HN (t)

)
dGn(t)

)
(2.1)

=
N∑
i=1

ciNΦ

(
Ri

N

)
,
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where ciN =
√
n/(mN) for i ¬ m and ciN = −

√
m/(nN) for i > m, while

R1, . . . , RN are ranks of the variables in the pooled sample Z. Usually, one con-
siders a smoothed version of TN of the form

(2.2) T ∗N =
N∑
i=1

ciNΦ

(
Ri − 1/2

N

)
in which a correction for continuity is inserted. It is known that if Φ is sufficiently
smooth, then T ∗N − TN is negligible both under the null hypothesis and convergent
alternatives. Therefore, we focus our considerations on TN .

Introduce two auxiliary processes

(2.3) ζN =

√
n

N
εm −

√
m

N
ηn, ξN =

√
m

N
εm +

√
n

N
ηn.

Observe that

(2.4) TN =
1∫
0

Φ
(
HN (t)

)
dζN (t) + SN ,

where

SN =

√
mn

N

1∫
0

Φ
(
HN (t)

)
d[FNH

−1
N (t)−GNH

−1
N (t)]

and

(2.5)
1√
N
ξN (t) = HN (t)− 1

N
[mFNH

−1
N (t) + nGNH

−1
N (t)].

The above suggests an introduction of an auxiliary statistic

(2.6) T 0
N =

1∫
0

Φ(t)dζN (t) = −
1∫
0

ζN (t)Φ′(t)dt,

which corresponds to the first term on the right-hand side of (2.4).
A crucial task in a study of the asymptotics for TN is to show that TN and T 0

N
are close together both for FN = GN and for convergent alternatives. To this end
the following simple lemma will be useful.

LEMMA 2.1. Under the above notation, if Φ(t) is a vector of absolutely con-
tinuous functions on [0, 1] and

∫ 1

0
Φ(t)dt = 0, then

(2.7)

∆N =
1∫
0

[
Φ
(
HN (t)

)
− Φ(t)

]
dζN (t) =

N∑
i=1

i/N∫
(i−1)/N

Φ′(u)[ζN (u)− ζN (V(i))]du,

where V(i) are order statistics of the transformed sample V .
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P r o o f. From the absolute continuity of Φ we have for every j ­ 1

∆Nj =
1∫
0

[
φj

(
HN (t)

)
− φj(t)

]
dζN (t) =

1∫
0

HN (t)∫
t

φ′j(u)dudζN (t)

=
∫ ∫

D

sgn
(
HN (t)− t

)
φ′j(u)dudζN (t)

=
N∑
i=1

∫ ∫
Di

sgn
(
HN (t)− t

)
φ′j(u)dudζN (t),

where D is the set shown on Fig. 1, and Di, i = 1, . . . , N, its corresponding parts
(cf. Fig. 1).
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i
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i−1
N
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Di

HN (t)

D

Figure 1

By the Fubini theorem we get

∆Nj =
N∑
i=1

i/N∫
(i−1)/N

φ′j(u)
u∫

V(i)

dζN (t)du =
N∑
i=1

i/N∫
(i−1)/N

φ′j(u)[ζN (u)− ζN (V(i))]du

which completes the proof. �

REMARK 2.1. The above proof shows that the statement of Lemma 2.1 re-
mains true if the process ζN in (2.7) is replaced by any deterministic (or random)
function of bounded variation.

Up to now, the distribution function HN was chosen arbitrarily. Observe that
this choice does not influence values of the statistic TN in (2.1) provided suppHN ⊃
suppFN∪ suppGN , where for a distribution function F , suppF denotes the sup-
port of the corresponding probability measure. However, the formula (2.5) suggests
to take (and we shall do it throughout the paper) HN of the form

(2.8) HN =
m

N
FN +

n

N
GN .
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Then (2.5) simplifies to

(2.9)
1√
N
ξN (t) = HN (t)− t

andFNH
−1
N andGNH

−1
N are absolutely continuous distribution functions on [0, 1].

In the next two sections we shall investigate two important cases:
(A) The null distribution case, i.e. FN = GN for every N . Then HN = FN .
(B) The alternative distribution case, i.e. FN ̸= GN . Then we can write

FNH
−1
N (t) − GNH

−1
N (t) = ρNAN (t), t ∈ [0, 1]. This and (2.8) imply that the

derivative aN (t) of AN (t) is a bounded function on [0, 1] for every N . So, we
calibrate AN by taking aN such that

(2.10)
1∫
0

a2N (t)dt = 1

for every N and fitting ρN > 0, appropriately. Moreover, we assume that ρN sat-
isfies

(2.11) ρN log2N → 0,
Nρ2N
log2N

→∞,

i.e. we consider alternatives convergent to the null hypothesis with a moderate rate.
Usually, it is assumed that sizes of both samples are proportional, i.e.

(2.12) 0 < lim inf
N

m

N
¬ lim sup

N

m

N
< 1.

However, we are going to consider a general case, i.e. arbitrary sequencesm,n ­ 1
such that m+ n = N .

The main tool in our proofs below is the method of strong approximations. So,
consider two probability spaces and two sequences of Brownian bridges B′m, B

′′
n

defined on them and two sequences of uniform empirical processes e′m, e
′′
n based

on independent uniform random samples U ′1, . . . , U
′
m and U ′′1 , . . . , U

′′
n , respec-

tively, such that the Komlós–Major–Tusnády inequality [14] (KMT inequality, for
short) applies for them. Then ε′m = e′m(FNH

−1
N ) and η′′n = e′′n(GNH

−1
N ) are ver-

sions of εm and ηn. Let (Ω,B,P) be the product of the probability spaces defined
above. Now, Z(2) =

(
F−1N (U ′1), . . . , F

−1
N (U ′m), G−1N (U ′′1 ), . . . , G

−1
N (U ′′n)

)
defined

on Ω is a version of Z, and V (2) = HN (Z(2)) a version of V . The empirical distri-
bution function of V (2) will be denoted byH(2)

N . Next, let us write

(2.13) ζ
(1)
N =

√
n

N
ε′m −

√
m

N
η′′n, ξ

(2)
N =

√
m

N
ε′m +

√
n

N
η′′n

and

(2.14) B
(1)
N =

√
n

N
B′m −

√
m

N
B′′n, B

(2)
N =

√
m

N
B′m +

√
n

N
B′′n.



98 T. Inglot

It follows that B(1)
N , B

(2)
N are independent Brownian bridges for every N , and

ζ
(1)
N , ξ

(2)
N are versions of ζN and ξN for every N . Finally, let us put

T
0(1)
N =

1∫
0

Φ(t)dζ
(1)
N (t) and T

(1)
N =

1∫
0

Φ
(
H(2)

N (t)
)
dζ

(1)
N (t) + S(2)N

for respective versions of T 0
N and TN , where in S(2)N we have insertedH(2)

N in place
ofHN .

In the sequel we shall use lettersC, c, c1, c2, etc. to denote positive constants
possibly different in each case. For sequences aN , bN of positive numbers we shall
write aN ∼ bN if cbN ¬ aN ¬ CbN for some positive constants c, C. Also, we
shall write |y|r =

√
y21 + . . .+ y2r , r ­ 1, for the r-th Euclidean norm of a vector

y = (y1, y2, . . .). We restrict our attention to a finite number d(N) of components
of TN including both d(N) ≡ d ­ 1 for all N and d(N)→∞ as N →∞.

3. THE NULL HYPOTHESIS

Throughout this section we shall consider the case (A), i.e. FN = GN . The
following lemma is an immedite consequence of the KMT inequality.

LEMMA 3.1. For any sequence xN of positive numbers such that
mnx2N/(N log2N)→∞ as N →∞, we have for sufficiently large N

(3.1) P
(
sup
t
|ζ(1)N (t)−B(1)

N (t)| ­ xN
)
¬ 2L exp

{
− lxN

√
mn

2N

}
and

(3.2) P
(
sup
t
|ξ(2)N (t)−B(2)

N (t)| ­ xN
)
¬ 2L exp

{
− lxN

√
mn

2N

}
,

where L, l are universal constants appearing in the KMT inequality.

P r o o f. Since FN = GN , we have ε′m = e′m and η′′n = e′′n. So, applying the
KMT inequality, the relation logN > logm and the assumption of the lemma we
get for sufficiently large N

P
(
sup
t
|ε′m(t)−B′m(t)| ­ xN

√
n/N

)
¬ L exp{−lxN

√
mn/2N}

and, similarly,

P
(
sup
t
|η′′n(t)−B′′n(t)| ­ xN

√
m/N

)
¬ L exp{−lxN

√
mn/2N}.

By the definition of ζ(1)N and B(1)
N and by the triangle inequality we obtain (3.1).

Using additionally the relation 2
√
mn ¬ N we get (3.2) similarly. This completes

the proof. �



Rank statistics asymptotics 99

Let B(t) be a Brownian bridge on [0, 1]. Then

(3.3) γ = −
1∫
0

B(t)Φ′(t)dt

is a Gaussian vector with mean zero and covariance matrix Γ =
∫ 1

0
Φ(t)ΦT (t)dt.

From (2.4) and Lemma 3.1 we easily get an estimation of a distance between
T
0(1)
N and γ(1)N = −

∫ 1

0
B

(1)
N (t)Φ′(t)dt.

THEOREM 3.1. For any sequence xN of positive numbers such that
mnx2N/(N log2N)→∞ as N →∞, we have for sufficiently large N

(3.4) P
(
|T 0(1)

N − γ(1)N |d(N) ­ ψ
(
d(N)

)
xN

)
¬ C exp

{
− cxN

√
mn

N

}
,

where

(3.5) ψ2(r) =
r∑

j=1

( 1∫
0

|φ′j(t)|dt
)2
, r ­ 1.

P r o o f. From (2.6), (3.1) and (3.3) it follows that

P
(
|T 0(1)

N − γ(1)N |d(N) ­ ψ
(
d(N)

)
xN

)
= P

(∣∣ 1∫
0

(
ζ
(1)
N (t)−B(1)

N (t)
)
Φ′(t)dt

∣∣
d(N)
­ ψ

(
d(N)

)
xN

)
¬ P

(
sup
t
|ζ(1)N (t)−B(1)

N (t)| ­ xN
)
¬ C exp{−cxN

√
mn/N},

which completes the proof. �

Observe that ψ(r) is finite for every r ­ 1 due to the absolute continuity of
Φ(t). In particular, for the Legendre polynomials ψ(r) ∼ r3/2 log r while for the
cosine system ψ(r) ∼ r3/2. The next theorem is crucial for the rest of this section.

THEOREM 3.2. For every sequence xN of positive numbers such that xN → 0
and

(3.6)
Nx2N
logN

→∞,
mnx3N
log2N

→∞

as N →∞, we have for sufficiently large N

(3.7) P
(
|TN − T 0

N |d(N) ­ ψ
(
d(N)

)√
Nx3N

)
¬ C exp{−cNx2N}+ C exp

{
− c

√
mnx3N

}
,

where ψ(r) is given by (3.5).
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P r o o f. Consider an event

EN = {sup
t
|ξ(2)N (t)| ­ xN

√
N}

on the space (Ω,B,P) (defined in Section 2). Then from (3.2), (3.6) and the well-
known inequality

(3.8) P
(
sup
t
|B(2)

N (t)| ­ x
)
¬ 2 exp{−2x2},

which holds true for every x > 0, we get for sufficiently large N

P(EN ) ¬ P

(
sup
t
|ξ(2)N (t)−B(2)

N (t)| ­ 1

4
xN
√
N

)
(3.9)

+P

(
sup
t
|B(2)

N (t)| ­ 3

4
xN
√
N

)
¬ 2L exp{−lxN

√
mn/32}+ C exp

{
− 9

8
Nx2N

}
.

From (2.9) it follows that for every i = 1, 2, . . . , N and u ∈ [(i − 1)/N, i/N ] on
the set Ec

N

|u− V (2)
(i) | =

∣∣∣∣ iN − V (2)
(i) + u− i

N

∣∣∣∣ ¬ 1√
N
|ξ(2)N (V

(2)
(i) )|+

1

N

¬ xN +
1

N
¬ 2xN ,

which means that on the set Ec
N we have

max
1¬i¬N

sup
u∈[(i−1)/N,i/N ]

|ζ(1)N (u)− ζ(1)N (V
(2)
(i) )|

¬ 2 sup
t
|ζ(1)N (t)−B(1)

N (t)|+ sup
0¬t¬1−2xN

sup
0¬u¬2xN

|B(1)
N (t+ u)−B(1)

N (t)|.

Hence and from (2.4), (2.5), (2.7) and (3.5) we get

(3.10) P
(
|T (1)

N − T
0(1)
N |d(N) ­ ψ

(
d(N)

)√
Nx3N

)
¬ P

(
max
1¬i¬N

sup
u∈[(i−1)/N,i/N ]

|ζ(1)N (u)− ζ(1)N (V
(2)
(i) )| ­

√
Nx3N

)
¬ P(EN ) +P

(
sup
t
|ζ(1)N (t)−B(1)

N (t)| ­
√
Nx3N/3

)
+P

(
sup

0¬t¬1−2xN

sup
0¬u¬2xN

|B(1)
N (t+ u)−B(1)

N (t)| ­
√
Nx3N/3

)
.
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Now, (3.1), (3.9) and an analogue of Lemma 1.1.1 of Csörgő and Révész [2]
for a Brownian bridge (see Lemma A in the Appendix) allow us to estimate the
right-hand side of (3.10) by

c1 exp
{
− c2

√
mnx2N

}
+ c3 exp{−c4Nx2N}

+ c5 exp
{
− c6

√
mnx3N

}
+

c7
xN

exp{−c8Nx2N}.

This, the relation 1/xN = o(
√
N) and (3.6) imply (3.7). �

From Theorems 3.1 and 3.2 we get the first of our main results.

THEOREM 3.3. If

(3.11) ν2N =
mn

Nψ2
(
d(N)

)
log2N

→∞, N

ψ4
(
d(N)

)
log3N

→∞

as N →∞, then

(3.12) |T 0(1)
N − γ(1)N |d(N)

P→ 0 and |T (1)
N − γ

(1)
N |d(N)

P→ 0.

Consequently, finite-dimensional distributions of TN and T 0
N converge weakly to

that of γ. In particular, if Φ is an orthonormal system, then |TN |2d
D→ χ2

d for each
fixed d ­ 1,where χ2

d denotes a random variable with chi-square distribution with
d degrees of freedom.

P r o o f. Let δ > 0 be arbitrary. Applying (3.4) for xN = δ/ψ
(
d(N)

)
we get

P(|T 0(1)
N − γ(1)N |d(N) ­ δ) ¬ C exp{−cδνN logN}.

Putting x3N = δ2/Nψ2
(
d(N)

)
into (3.7) we see that (3.6) is fulfilled and

P(|T (1)
N − T

0(1)
N |d(N) ­ δ) ¬ C exp{−cδΥN logN},

where Υ3
N = min

{
ν3N , δN/

(
ψ4

(
d(N)

)
log3N

)}
. Combining the above two esti-

mates gives (3.12). �

Using Theorems 3.1 and 3.2 one can also derive a moderate deviation theorem
for the statistics TN and T 0

N . First, we focus on the auxiliary statistic T 0
N .

LEMMA 3.2. For every 0 < ϑ < 1 and every sequence xN of positive num-
bers such that

Nx2N
λNd(N) logN

→∞,
Nx1−ϑN ψ

(
d(N)

)
√
mn

→ 0
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as N →∞, we have

(3.13) P (|T 0
N |2d(N) ­ Nx

2
N )

= exp

{
− 1

2λN
Nx2N +O

(
Nx2+ϑ

N

λN

)
+O

(
d(N) logNx2N

)}
,

where λN is the largest eigenvalue of the d(N)-dimensional truncation of Γ.

P r o o f. From (3.4), the triangle inequality and the expansion of the tail prob-
ability of a quadratic form of a Gaussian vector (cf., e.g., Gregory [6]) we have

P(|T 0(1)
N |2d(N) ­ Nx

2
N )

¬ P
(
|γ(1)N |d(N) ­ (1− xϑN )xN

√
N
)
+P

(
|T 0(1)

N − γ(1)N |d(N) ­ x1+ϑ
N

√
N
)

¬ exp

{
− 1

2λN
Nx2N +O

(
Nx2+ϑ

N

λN

)
+O

(
d(N) logNx2N

)}
+ C exp

{
− cx1+ϑ

N

√
mn/ψ

(
d(N)

)}
.

Similarly,

P(|T 0(1)
N |2d(N) ­ Nx

2
N )

­ exp

{
− 1

2λN
Nx2N +O

(
Nx2+ϑ

N

λN

)
+O

(
d(N) logNx2N

)}
− C exp

{
− cx1+ϑ

N

√
mn/ψ

(
d(N)

)}
.

Using now the assumption of the lemma, we get (3.13). �

Combining (3.7) and (3.13) we obtain a moderate deviation result for TN .

THEOREM 3.4. For every 0 < ϑ < 1/2 and every sequence xN of positive
numbers such that xN → 0 and

(3.14)
Nx2N

λNd(N) logN
→∞,

Nx1−ϑN ψ
(
d(N)

)
√
mn

→ 0,
ψ2

(
d(N)

)
λ
3/2
N x2ϑ−1N

→ 0

as N →∞, we have

(3.15) P (|TN |2d(N) ­ Nx
2
N )

= exp

{
− 1

2λN
Nx2N +O

(
Nx2+ϑ

N

λN

)
+O

(
d(N) logNx2N

)}
,

where λN is the largest eigenvalue of the d(N)-dimensional truncation of Γ. In
particular, when Φ is an orthonormal system, then λN = 1.
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P r o o f. By (3.14) the assumptions of Theorem 3.2 and Lemma 3.2 are satis-
fied, and from Theorem 3.2, Lemma 3.2 and the triangle inequality we get

P (|TN |2d(N) ­ Nx
2
N )

¬ P
(
|T 0

N |2d(N) ­ (1− xϑN )2Nx2N
)
+ P

(
|TN − T 0

N |d(N) ­ x1+ϑ
N

√
N
)

¬ exp

{
− 1

2λN
Nx2N (1− xϑN )2 +O

(
Nx2+ϑ

N

λN

)
+O

(
d(N) logNx2N

)}
+ C exp

{
− cNx4(1+ϑ)/3

N /ψ
4/3
1

(
d(N)

)}
¬ exp

{
− 1

2λN
Nx2N +O

(
Nx2+ϑ

N

λN

)
+O

(
d(N) logNx2N

)}
,

where the last inequality holds true due to the third condition in (3.14). Similarly,

P (|TN |2d(N) ­ Nx
2
N )

­ P
(
|T 0

N |2d(N) ­ (1 + xϑN )2Nx2N
)
− P

(
|TN − T 0

N |d(N) ­ x1+ϑ
N

√
N
)

­ exp

{
− 1

2λN
Nx2N +O

(
Nx2+ϑ

N

λN

)
+O

(
d(N) logNx2N

)}
,

which completes the proof of (3.15). �

A particular case of Theorems 3.3 and 3.4, useful for applications, is stated
below. It shows that (2.12) is not necessary for ensuring (3.12) and the expansion
(3.15) of moderate deviation probabilities, too.

COROLLARY 3.1. If Φ is an orthonormal system of absolutely continuous
functions, d(N)ψ

(
d(N)

)
= O(logβ N) as N → ∞ for some β ­ 0, and mn ∼

N1+α for some α ∈ (0, 1], then (3.12) holds.
If, in addition, mn ∼ N3/2+α for some α ∈ (0, 1/2] and xN ∼ N−τ for

τ ∈ (0, 1/2), then, given 0 < ϑ < 1/2, (3.15) holds for τ > (1− 2α)/(4− 4ϑ).
Moreover, if α ∈ [1/6, 1/2], then choosing ϑ sufficiently close to 1/2 we have

for every τ ∈ (1/3, 1/2)

(3.16) P (|TN |2d(N) ­ Nx
2
N ) = exp

{
− 1

2
Nx2N + o

(
xN
√
N
)}
.

The proof of Theorem 3.4 is carried out by an application of Theorem 3.2
and Lemma 2.1. Assuming the boundedness of Φ′ and applying the Lemma of
Kallenberg [13], Ducharme and Ledwina [3] proved, by elementary but more in-
volved calculations, a stronger result. Namely, they were able to get (3.16) for
τ ∈ (1/4, 1/2), speaking in terms of Corollary 3.1. We prove a theorem going to-
wards such a result using the independence of B(1)

N and B(2)
N (cf. (2.14)) and some

auxiliary results in place of Theorem 3.2 (see also Remark 5.1).
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THEOREM 3.5. Suppose φ′j ∈ Lp[0, 1] for j = 1, 2, . . . and some p ∈ (1,∞].
Then for every 0 < ϑ < 3/4 and every sequence xN of positive numbers such that

x
(3/4)−ϑ
N ψ

(
d(N)

)
→ 0

and

Nx2N
λNd(N) logN

→∞,
Nx1−ϑN ψ

(
d(N)

)√
logN

√
mn

→ 0,
ω2

(
d(N)

)
λNx

2ϑ−2+1/p
N

→ 0

as N → ∞, the expansion (3.15) holds, where we put 1/p = 0 if p = ∞,
λN is the largest eigenvalue of the d(N)-dimensional truncation of Γ and
ω2(r) = ψ2(r) + 51−1/pmax1¬j¬r ∥φ′j∥p

∑r
j=1 ∥φ

′
j∥1.

The proof of Theorem 3.5 is given in Section 5. In the following corollary to
Theorem 3.5 we present a counterpart of Corollary 3.1 under stronger assumptions
on Φ.

COROLLARY 3.2. If Φ is an orthonormal system of absolutely continuous
functions such that φ′j ∈ Lp[0, 1] for j = 1, 2, . . . and some p ∈ (1,∞],

d(N)ω
(
d(N)

)
= O(logβ N) as N → ∞ for some β ­ 0, mn ∼ N3/2+α for

some α ∈ (0, 1/2] and xN ∼ N−τ for some τ ∈ (0, 1/2), then, given 0 < ϑ
< min

(
3/4, 1− 1/(2p)

)
, the expansion (3.15) holds for τ > (1− 2α)/(4− 4ϑ).

Moreover, if τ0 ∈
[
max

(
2/7, p/(4p − 1)

)
, 1/3

]
is chosen arbitrarily, then

for every α ∈ [3/2− 4τ0, 1/2] and every τ ∈ (τ0, 1/2) the expansion (3.16) holds.

Observe that the second statement of Corollary 3.2 follows from the first one
by choosing ϑ sufficiently close to (1− 2τ0)/(2τ0).

4. CONVERGENT ALTERNATIVES

Throughout this section we shall study the case (B), i.e. we shall assume that
FN ̸= GN and that (2.10) and (2.11) are satisfied. Again, applying the KMT in-
equality we easily obtain the following lemma.

LEMMA 4.1. For any sequence δN of positive numbers such that δN ¬ 1 and
NρNδ

2
N/ logN →∞ we have for sufficiently large N

(4.1) P

(
sup
t
|ζ(1)N (t)−B(1)

N (t)| ­ ρNδN

√
N3

mn

)
¬ C exp{−cNρNδ2N}

and

(4.2) P

(
sup
t
|ξ(2)N (t)−B(2)

N (t)| ­ ρNδN

√
N3

mn

)
¬ C exp{−cNρNδ2N}.
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P r o o f. Since both inequalities can be proved similarly, we restrict ourselves
only to (4.1). By (2.8) and (2.10) we have

sup
t
|FNH

−1
N (t)− t| ¬ ρN sup

t

∣∣ t∫
0

aN (u)du
∣∣ ¬ ρN .

Hence, by (2.11), Lemma A of the Appendix, the KMT inequality and the relation

sup
t
|ε′m(t)−B′m(t)|

¬ sup
t
|e′m(t)−B′m(t)|+ sup

0¬t¬1−ρN
sup

0¬u¬ρN
|B′m(t+ u)−B′m(t)|,

we get for sufficiently large N

P
(
sup
t
|ε′m(t)−B′m(t)| ­ NρNδN/

√
m
)

¬ c1 exp{−c2NρNδN}+
c3
ρN

exp{−c4NρNδ2N} ¬ C exp{−cNρNδ2N}

using the assumption of the lemma and δN ¬ 1. Similarly, we obtain the estimate
for η′′n and B′′n. Combining these estimates, using (2.13), (2.14) and the relation
N/
√
mn =

√
n/m+

√
m/n we get (4.1). This completes the proof. �

THEOREM 4.1. For any ρN satisfying (2.11) and any κ ∈ (0, 1/2] we have

(4.3) P

(
|T 0(1)

N − γ(1)N |d(N) ­ ψ
(
d(N)

)
ρκN logN

√
N2

mn

)
¬ C exp{−cρ2κ−1N log2N},

where γ is a Gaussian vector defined in (3.3) and T 0
N is given by (2.6). In conse-

quence, if

(4.4) ψ
(
d(N)

)
ρκN logN

√
N2

mn
→ 0 as N →∞,

then
|T 0(1)

N − γ(1)N |d(N)
P→ 0.

P r o o f. We proceed similarly as in the proof of (3.4). To this end, we set
δN = ρκ−1N logN/

√
N in (4.1). Then (4.3) follows from (4.1). �

REMARK 4.1. Theorem 4.1 applied to κ = 1/2 and (2.11) imply that finite-
dimensional distributions of T 0

N converge weakly to the corresponding finite-dimen-
sional distributions of γ provided mn ∼ N3/2+α for some α ∈ (0, 1/2] and ρN
= o(Nα−1/2/ log2N). Observe that again (2.12) is not needed for weak conver-
gence of T 0

N .
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The next theorem is an analogue of Theorem 3.2 but stated for the case (B).

THEOREM 4.2. For any positive sequence δN → 0 such that

NρNδ
2
N

logN
→∞ and

N2ρNδ
2
N

mn
→ 0

as N →∞, we have for sufficiently large N

(4.5) P

(∣∣ 1∫
0

Φ
(
HN (t)

)
dζN (t)− T 0

N

∣∣
d(N)
­ ψ

(
d(N)

)
ρNδN/

√
N3

mn

)
¬ C exp{−cNρNδ2N}+ C exp

{
− cN2δN

√
ρ3N
mn

}
,

where ψ(r) is given by (3.5).

P r o o f. We proceed similarly as in the proof of Theorem 3.2. Consider an
event on (Ω,B,P):

(4.6) EN =
{
sup
t
|ξ(2)N (t)| ­ δN

√
N3ρN/mn

}
.

Then from (4.2), (3.8) and the condition ρN → 0 we get for sufficiently large N

P(EN ) ¬ P
(
sup
t
|ξ(2)N (t)−B(2)

N (t)| ­ ρNδN
√
N3/mn

)
+P

(
sup
t
|B(2)

N (t)| ­ (1−√ρN )δN
√
N3ρN/mn

)
¬ c1 exp{−c2NρNδ2N}+ c3 exp{−N3ρNδ

2
N/mn}

¬ C exp{−cNρNδ2N}.

(4.7)

From the equalities (2.8) and (2.9) it follows that for every i = 1, 2, . . . , N and
u ∈ [(i− 1)/N, i/N ] on the set Ec

N

(4.8) |u− V (2)
(i) | ¬ δN

√
N2ρN/mn+ 1/N = vN ,

which means that on the set Ec
N

max
1¬i¬N

sup
u∈[(i−1)/N,i/N ]

|ζ(1)N (u)− ζ(1)N (V
(2)
(i) )|

¬ 2 sup
0¬t¬1

|ζ(1)N (t)−B(1)
N (t)|+ sup

0¬t¬1−vN
sup

0¬u¬vN
|B(1)

N (t+ u)−B(1)
N (t)|.
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Hence from Lemma 2.1 we obtain

(4.9) P
(∣∣ 1∫

0

Φ
(
H(2)

N (t)
)
dζ

(1)
N (t)− T 0(1)

N

∣∣
d(N)
­ ψ

(
d(N)

)
ρNδN

√
N3/mn

)
¬ P

(
max
1¬i¬N

sup
u∈[(i−1)/N,i/N ]

|ζ(1)N (u)− ζ(1)N (V
(2)
(i) )| ­ ρNδN

√
N3/mn

)
¬ P(EN ) +P

(
sup
t
|ζ(1)N (t)−B(1)

N (t)| ­ 1

3
ρNδN

√
N3/mn

)
+P

(
sup

0¬t¬1−vN
sup

0¬u¬vN
|B(1)

N (t+ u)−B(1)
N (t)| ­ 1

3
ρNδN

√
N3/mn

)
.

From (4.1), (4.7), the relation mn/N2 ¬ 1/4 and Lemma A of the Appendix the
right-hand side of (4.9) can be estimated by

c1 exp{−c2NρNδ2N}+
c3
vN

exp
{
− c4N2δN

√
ρ3N/mn

}
which proves (4.5). �

Now, denote by

sN =

√
mn

N

( 1∫
0

Φ(t)d[FNH
−1
N (t)−GNH

−1
N (t)]

)
(4.10)

= ρN

√
mn

N

1∫
0

Φ(t)dAN (t)

an asymptotic expectation of the statistic TN corresponding to its empirical coun-
terpart

(4.11) SN = ρN

√
mn

N

( 1∫
0

Φ
(
HN (t)

)
dAN (t)

)
(cf. (2.4)). Since AN is absolutely continuous for every N , by Lemma 2.1 (cf.
Remark 2.1) we have

(4.12) SN − sN = ρN

√
mn

N

N∑
i=1

i/N∫
(i−1)/N

Φ′(u)
(
AN (u)−AN (V(i))

)
du.

Using (4.12) we can prove that SN and sN are close together. Recall that each
function aN is bounded but may change with N .

LEMMA 4.2. Suppose for some p ∈ [2,∞]

(4.13) sup
N
∥aN∥p =M <∞.
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Then for any positive sequence δN → 0 such that NρNδ2N/ logN → ∞ as
N →∞, we have for sufficiently large N

(4.14) P

(
|SN − sN |d(N) ­ 2Mψ

(
d(N)

)
ρNv

1−1/p
N

√
mn

N

)
¬ C exp{−cNρNδ2N},

where vN is given by (4.8) and for p =∞ we put 1/p = 0.

P r o o f. By the Hölder inequality we get

|AN (u)−AN (V(i))| ¬M |u− V(i)|1−1/p.

Hence and from (4.6), (4.8) and (4.12) we obtain for sufficiently large N

P
(
|SN − sN |d(N) ­ 2Mψ

(
d(N)

)
ρNv

1−1/p
N

√
mn/N

)
¬ P

(
max
1¬i¬N

sup
u∈[(i−1)/N,i/N ]

|AN (u)−AN (V(i))| ­ 2Mv
1−1/p
N

)
¬ P( max

1¬i¬N
sup

u∈[(i−1)/N,i/N ]
|u− V (2)

(i) | ­ 2p/(p−1)vN ) ¬ P(EN ),

where EN is defined in (4.6). This proves (4.14). �

Obviously, (4.13) holds trivially for p = 2 with M = 1 due to (2.10).
As TN =

∫ 1

0
Φ
(
HN (t)

)
dζN (t) + SN , combining (4.3) and (4.14) we obtain

the main result of this section.

THEOREM 4.3. If (4.13) holds for some p ∈ [2,∞], then for any ρN satisfying
(2.11) and κ ∈ (0, 1/2] such that

(4.15)
ρ1−2κN

log2N

mn

N
→∞ and

(
ρN

mn

N2

)(
ρ1−2κN

log2N

mn

N

)1/p

→ 0

as N →∞, we have

(4.16) P

(
|TN − sN − T 0

N |d(N) ­ ψ
(
d(N)

)
ρκN logN

√
N2

mn

)
¬ C exp{−cρκ−1/2N log2N}.

If, additionally, (4.4) holds, then

(4.17) |TN − sN − T 0
N |d(N)

P→ 0.
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P r o o f. Set δN = ρκ−1N logN/
√
N and

wN = 2Mρ1−κN v
1−1/p
N mn/(

√
N3 logN),

where vN is given by (4.8). Then δN → 0 and wN → 0 by (4.15), and the assump-
tions of Theorem 4.2 and Lemma 4.2 are satisfied. So, using the form of TN (cf.
(2.5)) and the triangle inequality we get

P
(
|TN − sN − T 0

N |d(N) ­ ψ
(
d(N)

)
NρκN logN/

√
mn

)
¬ P

(∣∣ 1∫
0

Φ
(
H(t)

)
dζN (t)− T 0

N

∣∣
d(N)
­ (1− wN )ψ

(
d(N)

)
NρκN logN/

√
mn

)
+ P

(
|SN − sN |d(N) ­ 2Mψ

(
d(N)

)
ρNv

1−1/p
N

√
mn/N

)
¬ c1 exp{−c2ρ2κ−1N log2N}+ c3 exp

{
− c4ρκ+1/2

N logN
√
N3/mn

}
,

which by (2.11) immediately implies (4.16). �

A straightforward application of Theorems 4.1 and 4.3 gives

(4.18) |T (1)
N − sN − γ

(1)
N |d(N)

P→ 0

provided (4.13) for some p ∈ [2,∞], (4.4) and (4.15) hold for some κ ∈ (0, 1/2].
This, in turn, implies that finite-dimensional distributions of TN − sN converge
weakly to that of γ.

Among possible applications of Theorem 4.3 and (4.18) the following two
corollaries seem to be interesting.

COROLLARY 4.1. If (4.13) holds for some p ∈ [2,∞] and mn ∼ N3/2+α for
some α ∈ (0, 1/2], then (4.18) holds provided

ψ2
(
d(N)

)
N1/2−αρN log2N → 0 and N1/pρN → 0.

In particular, for p =∞ andα = 1/2 (i.e. when (2.12) is fulfilled) and for bounded
d(N) the last condition reduces to (2.11).

In the next corollary we consider the opposite case, i.e. when (4.13) does not
hold for any p > 2.

COROLLARY 4.2. Suppose there exists 0 < δ < 1 such that Nρ3−δN → 0. If

mn ∼ N3/2+α

with

α ∈
(
3− 3δ

6− 2δ
,
1

2

]
and ψ2

(
d(N)

)
(log2N)N (3−3δ)/(6−2δ) → 0,

then (4.18) holds.
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Corollary 4.1 follows from (4.16) by taking κ = 1/2 while Corollary 4.2 by
taking κ = δ/2.

Conditions (2.10) and (2.11) typically imply |sN |d(N) →∞. For such a case
(4.16) can be formulated in a more convenient form.

COROLLARY 4.3. If (4.4) and (4.15) are satisfied, |sN |d(N) → ∞ and
(sTNΓsN )/|sN |2d(N) → σ2, σ > 0, where the product sTNΓsN is calculated for
d(N)-dimensional truncation of sN and Γ, then

|TN |2d(N) − |sN |
2
d(N)

2|sN |d(N)

D→ N(0, σ).

Note that σ = 1 if Φ is an orthonormal system.

P r o o f. We have
|TN |2d(N) − |sN |

2
d(N)

2|sN |d(N)
=
|(TN − sN ) + sN |2d(N) − |sN |

2
d(N)

2|sN |d(N)

=
|TN − sN |2d(N)

2|sN |d(N)
+

sN
|sN |d(N)

◦ (TN − sN − T 0
N )

+
sN

|sN |d(N)
◦ (T 0

N − γ) +
sN

|sN |d(N)
◦ γ,

(4.19)

where ◦ denotes the Euclidean scalar multiplication inRd(N). The first three terms
on the right-hand side of (4.19) converge in probability to zero due to (4.17) and
(4.3), the boundedness of sN/|sN |d(N) and the assumption |sN |d(N) →∞ while
the last converges to N(0, σ) by assumption. �

5. PROOF OF THEOREM 3.5

We start with some auxiliary lemmas.

LEMMA 5.1. Given N ­ 1. Let b1, . . . , bN be real numbers such that
bi + i/N ∈ [0, 1] for every i = 1, . . . , N and

(5.1) max
1¬i¬N

|bi| = b <
1

2

and let k1, . . . , kN be real numbers satisfying the condition
(5.2) max

1¬r¬N

∑
{1¬i¬N :|i−r|¬2Nb}

|ki| ¬ K0b
1/q

for some q ∈ [1,∞] and K0 > 0. Then

(5.3) E

( N∑
i=1

ki

[
B

(
i

N

)
−B

(
i

N
+ bi

)])2

¬ (K2
1 +K0K1)b

1+1/q,

where B(t), t ∈ [0, 1], is the Brownian bridge and K1 =
∑N

i=1 |ki|.



Rank statistics asymptotics 111

P r o o f. We have

E

( N∑
i=1

ki

[
B

(
i

N

)
−B

(
i

N
+ bi

)])2

¬

∣∣∣∣ N∑
r=1

∑
{i:|i−r|¬2Nb}

kikrE

[
B

(
i

N

)
−B

(
i

N
+ bi

)][
B

(
r

N

)
−B

(
r

N
+ br

)]∣∣∣∣
+

∣∣∣∣ ∑
|i−r|>2Nb

kikrE

[
B

(
i

N

)
−B

(
i

N
+ bi

)][
B

(
r

N

)
−B

(
r

N
+ br

)]∣∣∣∣.
By the Schwarz inequality, the relation E

(
B(u) − B(t)

)2 ¬ |u − t|, (5.1) and
(5.2), the first term can be estimated by

b
N∑
r=1

∑
{i:|i−r|¬2Nb}

|ki| |kr| ¬ K0K1b
1+1/q.

Since for the second sum we have |i/N − r/N | > 2b and both bi, br are bounded
by b, the corresponding intervals are disjoint and the covariance equals −bibr.
Using (5.1) we estimate the second term by b2

∑
|i−r|>2Nb |ki||kr| ¬ K

2
1b

1+1/q.
Combining both estimates we get (5.3). �

Let us write h(y) = max{min(y, 1), 0}, y ∈ R. Let B(t), B′(t) be indepen-
dent Brownian bridges andB∗N (t) =

√
N
[
t− h

(
t−N−1/2B′(t)

)]
be a truncation

of B′. Then B and B∗ are independent processes.

LEMMA 5.2. Suppose k1, . . . , kN are real numbers satisfying (5.2) for some
b ∈ [1/N, 1/2) and set Q2 = K2

1 +K0K1. Then for any x > 0

(5.4) P

(∣∣∣∣ N∑
i=1

ki

[
B

(
i

N

)
−B

(
i

N
− 1√

N
B∗N

(
i

N

))]∣∣∣∣ ­ Qx)
¬ 2 exp{−2Nb2}+ exp{−x2b−1−1/q/2}.

P r o o f. Since |B∗N (t)| ¬ |B′(t)| a.s. for every t, we have by (3.8)

P
(
sup
t
|B∗N (t)| ­ b

√
N
)
¬ 2 exp{−2Nb2}.

Put g1 =
∑N

i=1 ki
[
B(i/N) − B

(
i/N − N−1/2B∗N (i/N)

)]
and denote by µ the

distribution of the vector −N−1/2
(
B∗N (1/N), . . . , B∗N

(
(N − 1)/N

))
. Note that

the last summand of g1 is equal to zero a.s. By the independence of B and B∗N and
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the Fubini theorem we have

(5.5) P

(
|g1| ­ Qx, max

1¬i¬N

∣∣∣∣B∗N(
i

N

)∣∣∣∣ ¬ b√N)
=
∫
J

P

(∣∣∣∣N−1∑
i=1

ki

[
B

(
i

N

)
−B

(
i

N
+ bi

)]∣∣∣∣ ­ Qx)dµ(b1, . . . , bN−1),
where J = {max1¬i¬N−1 |bi| ¬ b}. By Lemma 5.1 the function under the integral
in (5.5) is, on the set J , estimated by exp{−x2b−1−1/q/2}. So, (5.4) follows from
the relation

{|g1| ­ Qx}

⊂
{
|g1| ­ Qx, max

1¬i¬N

∣∣∣∣B∗N (
i

N

)∣∣∣∣ ¬ b√N}
∪
{

max
1¬i¬N

∣∣∣∣B∗N (
i

N

)∣∣∣∣ > b
√
N

}
,

which completes the proof. �

Now, let us put kij =
∫ i/N

(i−1)/N φ′j(t)dt for i = 1, . . . , N, j = 1, 2, . . . If
φ′j ∈ Lp[0, 1] for some p ∈ (1,∞], then k1j , . . . , kNj satisfy (5.2) for any b < 1/2.
Indeed, from the Hölder inequality we get for r = 1, . . . , N

∑
{i:|i−r|¬2Nb}

|kij | ¬
(r/N+2b)∧1∫

((r−1)/N−2b)∨0
|φ′j(t)|dt ¬ ∥φ′j∥p(5b)1/q,

where q = 1/(1 − 1/p) or q = 1 if p = ∞, and it is sufficient to take K0 =
51/q∥φ′j∥p.

Next, let d(N) ­ 1 and let us put g = (g1, g2, . . .)
T with

(5.6) gj =
N∑
i=1

kij

[
B

(
i

N

)
−B

(
i

N
− 1√

N
B∗N

(
i

N

))]
.

LEMMA 5.3. Suppose φ′j ∈ Lp[0, 1] for j = 1, 2, . . . and some p ∈ (1,∞].
Then for every 0 < ϑ < 1, every δN > 0 and every sequence xN such that xN → 0
and xN ­ 1/N we have

(5.7) P
(
|g|d(N) ­ δN

√
Nx1+ϑ

N

)
¬ 2d(N) exp{−2Nx2N}+ d(N) exp

{
−
δ2NNx

2ϑ+1/p
N

2ω2
(
d(N)

) }
,

where

(5.8) ω2(r) =
r∑

j=1

∥φ′j∥21 + 51/q max
1¬i¬d(N)

∥φ′i∥p
r∑

j=1

∥φ′j∥1.
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P r o o f. Applying Lemma 5.2 with b = xN and x = δN
√
Nx1+ϑ

N /ω
(
d(N)

)
we write the left-hand side of (5.7) as

P

( d(N)∑
j=1

g2j ­
d(N)∑
j=1

δ2NNx
2+2ϑ
N

∥φ′j∥21 + 51/q∥φ′j∥p∥φ′j∥1
ω2

(
d(N)

) )

¬
d(N)∑
j=1

P

(
g2j ­ δ2NNx2+2ϑ

N

∥φ′j∥21 + 51/q∥φ′j∥p∥φ′j∥1
ω2

(
d(N)

) )

¬
d(N)∑
j=1

[
2 exp{−2Nx2N}+ exp

{
−

δ2N
2ω2

(
d(N)

)Nx1+2ϑ−1/q
N

}]
,

which proves (5.7). �

Using Lemma 5.3 we are able to prove a stronger version of Theorem 3.2
under stronger assumptions on the system Φ.

PROPOSITION 5.1. Let φ′j ∈ Lp[0, 1] for j = 1, 2, . . . and some p ∈ (1,∞].
Then for every 0 < ϑ < 3/4 and every sequence xN of positive numbers such that
xN → 0 and

(5.9)
Nx2N
logN

→∞,
Nx1−ϑN ψ

(
d(N)

)√
logN

√
mn

→ 0, x
(3/4)−ϑ
N ψ

(
d(N)

)
→ 0

as N →∞, we have for sufficiently large N

(5.10) P
(
|TN − T 0

N |d(N) ­ x1+ϑ
N

√
N
)

¬ C exp{−Nx2N}+ d(N) exp

{
− c

Nx
2ϑ+1/p
N

ω2
(
d(N)

)}.
P r o o f. Using Lemma 2.1, for the versions of ζ(1)N and ξ(2)N defined in (2.13)

and the corresponding versions T (1)
N and T 0(1)

N we can write

T
(1)
N − T

0(1)
N =

N∑
i=1

i/N∫
(i−1)/N

Φ′(u)

[
ζ
(1)
N (u)− ζ(1)N

(
i

N

)]
du

+
N∑
i=1

i/N∫
(i−1)/N

Φ′(u)du

[
ζ
(1)
N

(
i

N

)
− ζ(1)N (V

(2)
(i) )

]
,

where, by (2.9), V (2)
(i) = i/N −N−1/2ξ(2)N (V

(2)
(i) ) for i = 1, . . . , N .

Set vN = Nx2N
√
logN/

√
mn and write

EN1 = {sup
t
|ξ(2)N (t)| ­ xN

√
N}, EN2 = {sup

t
|ξ(2)N (t)−B(2)

N (t)| ­ vN
√
N}
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and

EN3 =
{

sup
1¬t¬1−xN

sup
u¬xN

|B(2)
N (t+ u)−B(2)

N (t)| ­ 2
√
Nx3N

}
.

Then from (3.9), (5.9), Lemma 3.1 or Lemma A of the Appendix it follows that
P(ENj) ¬ exp{−Nx2N} for j = 1, 2, 3. Moreover, on the set Ec

N1 ∩Ec
N2 ∩Ec

N3

we have for i = 1, . . . , N∣∣∣∣( i

N
− 1√

N
B
∗(2)
N

(
i

N

))
−

(
i

N
− 1√

N
ξ
(2)
N (V

(2)
(i) )

)∣∣∣∣ ¬ 2vN + 4x
3/2
N .

Hence for a version g(1)N of g (cf. (5.6)) we have

(5.11) P
(
|T (1)

N − T
0(1)
N |d(N) ­ x1+ϑ

N

√
N
)
¬ P(EN1) +P(EN2) +P(EN3)

+P

(
|g(1)N |d(N) ­

1

7
x1+ϑ
N

√
N

)
+P

(
sup

1¬t¬1−1/N
sup

u¬1/N
|B(1)

N (t+ u)−B(1)
N (t)| ­

x1+ϑ
N

√
N

7ψ
(
d(N)

))
+P

(
sup
t
|ζ(1)N (t)−B(1)

N (t)| ­
x1+ϑ
N

√
N

7ψ
(
d(N)

))
+P

(
sup

1¬t¬1−2vN−4x
3/2
N

sup
u¬2vN+4x

3/2
N

|B(1)
N (t+ u)−B(1)

N (t)| ­
x1+ϑ
N

√
N

7ψ
(
d(N)

)).
The fourth term on the right-hand side of (5.11) is the main term. Other terms
are remainders and using (5.9), Lemma 3.1 or Lemma A of the Appendix can be
easily estimated by exp{−Nx2N}. We estimate the main term by a straightforward
application of Lemma 5.3 with δN = 1/7 and obtain (5.10). �

Now, we are ready to complete the proof of Theorem 3.5. Since

P (|TN |2d(N) ­ Nx
2
N )

¬ P
(
|T 0

N |2d(N) ­ (1− xϑN )2Nx2N
)
+ P

(
|TN − T 0

N |d(N) ­ x1+ϑ
N

√
N
)
,

applying Lemma 3.2 and Proposition 5.1 we get

P (|TN |2d(N) ­ Nx
2
N )

¬ exp

{
− 1

2λN
Nx2N +O

(
Nx2+ϑ

N

λN

)
+O

(
d(N) logNx2N

)}
+ exp{−Nx2N}+ d(N) exp

{
− c

Nx
2ϑ+1/p
N

ω2
(
d(N)

)}.
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Similarly, we get

P (|TN |2d(N) ­ Nx
2
N )

­ exp

{
− 1

2λN
Nx2N +O

(
Nx2+ϑ

N

λN

)
+O

(
d(N) logNx2N

)}
− exp{−Nx2N} − d(N) exp

{
− c

Nx
2ϑ+1/p
N

ω2
(
d(N)

)}.
This implies (3.15) by the assumption of Theorem 3.5, and hence completes the
proof of Theorem 3.5. �

REMARK 5.1. It can be easily seen that our reasoning can be modified so that
ϑ cover the whole interval (0, 1). For example, if we define

B∗∗N (t) =
√
N

[
t− h

(
t−N−1/2B′

(
h
(
t−N−1/2B′(t)

)))]
instead of B∗N (t) (cf. Lemma 5.2 above), then we extend the range of ϑ from
(0, 3/4) to (0, 7/8). We omit details to avoid complicated notation.

APPENDIX

The following lemma extends Lemma 1.1.1 of Csörgő and Révész [2] to the
case of the Brownian bridge. We provide its proof for convenience of the reader.

LEMMA A. For any 0 < δ < 1 there exists a constant C = C(δ) such that

P
(

sup
0¬t¬1−h

sup
0¬u¬h

|B(t+ u)−B(t)| ­ y
√
h
)
¬ C

h
exp{−y2/(2 + 8δ)}

for every y > 0 and h ¬ δ2.

P r o o f. We have
sup

0¬t¬1−h
sup

0¬u¬h
|B(t+ u)−B(t)|

¬ sup
0¬t¬1−h

sup
0¬u¬h

|W (t+ u)−W (t)|+ h|W (1)|,

where W is the Wiener process. Hence and by Lemma 1.1.1 of Csörgő and Révész
[2] we get for 0 < v < 1

P
(

sup
0¬t¬1−h

sup
0¬u¬h

|B(t+ u)−B(t)| ­ y
√
h
)

¬ P
(

sup
0¬t¬1−h

sup
0¬u¬h

|W (t+ u)−W (t)| ­ (1− v)y
√
h
)
+ P

(
|W (1)| ­ vy√

h

)
¬ C

h
exp

{
− (1− v)2y2

2 + δ

}
+ exp

{
− v2y2

2h

}
.
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Taking v = 2δ/(2δ +
√
4 + 2δ) and using the assumptions of the lemma, we can

estimate the above expression by (C1/h) exp{−y2/(2 + 8δ)}, which completes
the proof. �
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