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Abstract. We review some notions of linearity of time series and show
that ARCH or stochastic volatility (SV) processes are not only non-linear:
they are not even weakly linear, i.e., they do not even have a martingale
representation. Consequently, the use of Bartlett’s formula is unwarranted
in the context of data typically modeled as ARCH or SV processes such as
financial returns. More surprisingly, we show that even the squares of an
ARCH or SV process are not weakly linear. Finally, we discuss an alterna-
tive estimator for the variance of sample autocorrelations that is applicable
(and consistent) in the context of financial returns data.
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1. INTRODUCTION

In the theory and practice of time series analysis, an often used assumption is
that a time series {Xt, t ∈ Z} of interest is linear [17], i.e., that

(1.1) Xt = a+
∞∑

i=−∞
αiξt−i, where ξt ∼ i.i.d. (0, 1),

which means the ξts are independent and identically distributed with mean zero
and variance one.1

Recall that a linear time series {Xt} is called causal if αk = 0 for k < 0, that
is, if

(1.2) Xt = a+
∞∑
i=0

αiξt−i, where ξt ∼ i.i.d. (0, 1).

∗ Partially supported by NSF grants DMS-0804165 and DMS-0931948.
∗∗ Partially supported by NSF grant DMS-0706732.

1When writing an infinite sum as in (1.1), it will be tacitly assumed throughout the paper that
the coefficients αi are (at least) square-summable, i.e., that

∑
i
α2
i <∞.
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Equation (1.2) should not be confused with the Wold decomposition that all purely
nondeterministic time series have [5]. In the Wold decomposition the ‘error’ series
{ξt} is only assumed to be a white noise, i.e., uncorrelated, and not i.i.d. A weaker
form of (1.2) amounts to relaxing the i.i.d. assumption on the errors to the assump-
tion of a martingale difference, i.e., to assume that

(1.3) Xt = a+
∞∑
i=0

αiνt−i,

where {νt} is a stationary martingale difference adapted to Ft, the σ-field gener-
ated by {Xs, s ¬ t}, i.e., that

(1.4) E[νt|Ft−1] = 0 and E[ν2t |Ft−1] = 1 for all t.

For conciseness, we propose to use the term weakly linear for a time series
{Xt, t ∈ Z} that satisfies (1.3) and (1.4).

Many asymptotic theorems in the literature have been proven under the as-
sumption of linearity or weak linearity [5]. In the last thirty years, however, there
has been a surge of research activity on nonlinear time series models. One of the
first such examples is the family of bilinear models [16], that is a subclass of the
family of ARCH/GARCH models introduced in the 1980s (see [3] and [10]) to
model financial returns. A popular alternative to ARCH/GARCH models is the
family of stochastic volatility models introduced by Taylor [24] around the same
time.

An important result shown to hold under weak linearity, [12], [17], is the cel-
ebrated Bartlett’s formula for the asymptotic variance of the sample autocorrela-
tions, which has recently been modified in [11] for processes (1.3) whose innova-
tions satisfy Eνt1νt2νt3νt4 = 0 if t1 ̸= t2, t1 ̸= t3, t1 ̸= t4. Very early on, Granger
and Andersen [16] warned against the use of Bartlett’s formula in the context of
bilinear time series; Diebold [9] repeated the same warning for ARCH data. De-
spite additional such warnings ([2], [19], [20], [22]), even to this day practitioners
often give undue credence to the Bartlett ±1.96/

√
n bands – that many software

programs automatically overlay on the correlogram – in the context of financial
returns data. A possible reason for such misuse of Bartlett’s formula is its above-
mentioned validity for weakly linear series. However, as will be apparent from the
main developments of this paper, ARCH/GARCH processes and their squares are
not only non-linear: they are not even weakly linear. The intuition that these mod-
els are somehow not linear is not new, but precise results stating assumptions under
which it holds have not been formulated. One of the goals of this note is to formu-
late such general results. It is however a fairly common intuition that the squares
of ARCH models can be treated as linear, for example, the popular ARMA repre-
sentation of the squares of GARCH processes is often taken to imply that results
proven for weakly linear time series extend to such models. We show that this is
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not the case and, in particular, that Bartlett’s cannot be used. We first illustrate these
issues with the following motivating example which is continued in Section 3.

EXAMPLE 1. Consider a simple ARCH(1) process, i.e., let

(1.5) Xt = εt

√
β0 + β1X2

t−1,

where εt ∼ i.i.d. (0, 1). If β1 < 1, then EX2
t = β0/(1 − β1). Write Yt = X2

t

and let Ft−1 be the σ-field generated by Yt−1, Yt−2, . . . Let σ2
t = β0 + β1LYt be

the volatility function, where L denotes the lag-operator, i.e., LYt = Yt−1. Since
β1LYt = σ2

t − β0, it follows that

(1− β1L)(Yt − EYt) = Yt − β1LYt − (1− β1)EYt

= σ2
t ε

2
t − (σ2

t − β0)− (1− β1)
β0

1− β1
= σ2

t ε
2
t − σ2

t .

Setting νt = σ2
t (ε

2
t − 1), by the above calculation we obtain

(1.6) (1− β1L)(Yt − EYt) = νt,

and hence

(1.7) Yt =
β0

1− β1
+
∞∑
i=0

βi
1νt−i.

In view of the fact that the innovations νt consitute a white noise [15], equa-
tion (1.6) is simply the recursive equation of an AR(1) model with nonzero mean.
In this light, equation (1.7) is the usual MA representation of an AR(1) process,
thereby giving an allusion toward linearity.

Nevertheless, this allusion is false: linearity does not hold true here, not even
in its weak form; this is a consequence of the fact that the innovations νt do not
have a constant conditional variance as required in the martingale representations
(1.3) and (1.4). To see this, just note that

E[ν2t |Ft−1] = E[σ4
t (ε

2
t − 1)2|Ft−1] = σ4

tE[(ε2t − 1)2] = σ4
tVar[ε

2
t ].

The above simple example shows that the common intuition that the squares of
an ARCH process are weakly linear is inaccurate. We will show in Section 2 that
neither the general ARCH(∞) nor stochastic volatility (SV) models are weakly
linear; more surprisingly, we show that this negative result also extends to their
squares. As a consequence, using Bartlett’s formula on a correlogram of financial
returns or their squares is unjustified, as made clear in Section 3 where an alterna-
tive estimator for the variance of sample autocorrelations for ARCH/GARCH or
SV processes is also discussed. The proposed estimator is consistent, and model-
free; as such, it may become a useful tool to practitioners working with financial
returns data.
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2. ARCH AND SV PROCESSES AND THEIR SQUARES ARE NOT WEAKLY LINEAR

Consider a time series {Xt, t ∈ Z} that obeys the often-used model:

(2.1) Xt = σtεt, where εt ∼ i.i.d. (0, 1).

Two general models of interest can be put in this type of framework:
• ARCH(∞) models where

(2.2) σ2
t = β0 +

∞∑
j=1

βjX
2
t−j ;

this class includes all ARCH(p) and (invertible) GARCH(p, q) models.
• Stochastic volatility models where Lt := log σt satisfies the independent

AR(p) equation

(2.3) Lt = ϕ0 +
p∑

j=1

ϕjLt−j + ut,

where ut ∼ i.i.d. (0, τ2) and {ut, t ∈ Z} is independent of {εt, t ∈ Z}.

We introduce the following conditions:
(ia) For each t, σt is Ft−1-measurable and square integrable.
(ib) The sequences {σt} and {εt} are independent, and σt is square integrable

for each t.
(iia) There is t for which σ2

t is not equal to a constant.
(iib) There is t for which E[σ2

t |Ft−1] is not equal to a constant.
(iii) For each t, εt is independent of Ft−1, and it is square integrable with

Eεt = 0, Eε2t > 0.

DEFINITION 2.1. We say that {Xt, t ∈ Z} is an ARCH-type process if (2.1)
holds together with conditions (ia), (iia) and (iii). Similarly, {Xt, t ∈ Z} is called
an SV-type process if (2.1) holds together with conditions (ib), (iib) and (iii).

The processes satisfying Definition 2.1 form a broader class than the usual
ARCH and SV processes. We selected only the assumptions needed to establish
the results of this paper.

PROPOSITION 2.1. If {Xt} is either an ARCH-type or an SV-type process,
then it is not weakly linear.

P r o o f. Suppose ad absurdum that {Xt} is weakly linear. Since by (2.1) we
have EXt = 0, the constant term a in (1.3) must be zero, and the representation
would have to be

(2.4) Xt =
∞∑
i=0

αiνt−i.
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The square summability of the αj implies that Xt = limm→∞
∑m

i=1 αiνt−i in L2.
Since the conditional expectation of an L2 random variable with respect to a σ-
field F coincides with the orthogonal projection on L2(F), and this projection is
a continuous operator in L2, we have E[Xt|Ft−1] =

∑∞
i=0 αiE[νt−i|Ft−1]. Since

E[νt|Ft−1] = 0, we further obtain

(2.5) E[Xt|Ft−1] =
∞∑
i=1

αiνt−i.

We will now show that for both ARCH-type and SV-type processes

(2.6) E[Xt|Ft−1] = 0.

If {Xt} is of ARCH-type, then E[Xt|Ft−1] = E[σtεt|Ft−1] = σtEεt = 0.
Similarly, if {Xt} is of SV-type, then

E[Xt|Ft−1] = E{[σtεt|σ(σt,Ft−1)]|Ft−1} = EεtE[σt|Ft−1] = 0.

By (2.4)–(2.6), Xt = α0νt; thus, by (1.4),

(2.7) E[X2
t |Ft−1] = E[α2

0ν
2
t |Ft−1] = α2

0.

For an ARCH-type process, we obtain, on the other hand,

(2.8) E[X2
t |Ft−1] = E[σ2

t ε
2
t |Ft−1] = σ2

tEε2t .

Equations (2.7) and (2.8) imply that, for each t, σ2
tEε2t = α2

0. Since Eε2t > 0, this
contradicts assumption (iia) of Definition 2.1.

Similarly, for an SV-type process, E[X2
t |Ft−1] = Eε2tE[σ2

t |Ft−1], and we
obtain a contradiction with condition (iib). �

We next turn to the squares Yt = X2
t of ARCH and SV processes. We put

FX
t−1 = σ{Xt−1, Xt−2, . . .}, FY

t−1 = σ{Yt−1, Yt−2, . . .}.

Giraitis et al. [13] showed that if (2.1) and (2.2) hold, and

(Eε40)
1/2

∞∑
j=1

βj <∞,

then the series Yt admits the representation

(2.9) Yt = a+
∞∑
i=0

αiνt−i
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in which the νt are martingale differences in the sense that E[νt|FY
t−1] = 0 and

Eν2t =: v2 is a finite constant. Nevertheless, the conditional variance

E[ν2t |FY
t−1] = σ4

tVar[ε
2
0]

is not constant. Proposition 2.2 below shows that in general the squares of ARCH
and SV processes are not weakly linear because they do not admit representa-
tion (2.9) with innovations νt having nonzero constant conditional variance. First,
consider two technical assumptions to be used in connection with a series {Xt}
obeying model (2.1), and its squares Yt = X2

t .

ASSUMPTION 2.1 (ARCH). Each σ2
t is FY

t−1-measurable, ε2t is independent
of FY

t−1, and {σ2
t } is not a.s. constant as a function of t, i.e., the event {σ2

t = σ2
k

for all t, k} has probability zero.

ASSUMPTION 2.2 (SV). The sequences {σ2
t } and {ε2t } are independent, and

the following two conditions hold:
(i) Yt is not FY

t−1-measurable.
(ii) The function of t, v2t := E[σ4

t |FY
t−1] − (E[σ2

t |FY
t−1])

2, is not equal to a
positive constant.

Conditions (i) and (ii) automatically hold for ARCH models. Indeed, if Yt
were FY

t−1-measurable, then ε2t = σ−2t Yt would be also FY
t−1-measurable, and so

E[ε2t |FY
t−1] = ε2t . Since, in the ARCH case, ε2t is independent of FY

t−1, we also
have E[ε2t |FY

t−1] = Eε2t , implying ε2t = Eε2t . Thus, unless ε2t is a.s. constant, con-
dition (i) holds in the ARCH case. Condition (ii) holds in the ARCH case because
the FY

t−1-measurability of σ2
t implies that v2t = σ4

t − σ4
t = 0.

Condition (i) practically always holds in SV models because Yt = σ2
t ε

2
t need

not be a function of σ2
t−1ε

2
t−1, σ

2
t−2ε

2
t−2, . . . Because of condition (i), v2t is in gen-

eral a random variable, not a constant, so (ii) also practically always holds in the
SV case.

PROPOSITION 2.2. Suppose Yt = X2
t , where Xt follows equation (2.1), and

either Assumption 1 or 2 is satisfied. Then Yt is not weakly linear.

P r o o f. To lighten the notation we put Ft−1 = FY
t−1 and suppose

(2.10) Yt = a+
∞∑
i=0

αiνt−i,
∞∑
i=0

α2
i <∞

and (1.4) holds. Conditioning on Ft−1, we obtain

(2.11) E[Yt|Ft−1] = a+
∞∑
i=1

αiνt−i.

Subtracting (2.11) from (2.9), we thus obtain Yt − E[Yt|Ft−1] = α0νt.
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If α0 = 0, then Yt = E[Yt|Ft−1] would be Ft−1-measurable, which would
contradict assumption (i). Thus for each t

(2.12) νt = α−10 {Yt − E[Yt|Ft−1]}.

The proof will then be complete if we show that the sequence {Yt − E[Yt|Ft−1]}
does not have a constant positive conditional variance. Let

ξt = ε2t , λ = Eξt, ρt = σ2
t .

Under Assumption 1 (ARCH case), E[Yt|Ft−1] = E[ξtρt|Ft−1] = λρt, and
so E{(Yt − E[Yt|Ft−1])2|Ft−1} = E[(ξtρt − λρt)

2|Ft−1] = ρ2tVar[ξo], which is
not a constant sequence.

Under Assumption 2 (SV case),

E[Yt|Ft−1] = E
[
ξtρt|Ft−1

]
= E

[
E[ξtρt|σ{ρt,Ft−1}]|Ft−1

]
= λE[ρt|Ft−1].

Therefore,

E{(Yt − E[Yt|Ft−1])2|Ft−1} = E{(ξtρt − λE[ρt|Ft−1])2|Ft−1}
= E{ξ2t ρ2t |Ft−1} − 2λE{ξtρtE[ρt|Ft−1]|Ft−1}+ λ2{(E[ρt|Ft−1])2|Ft−1}
= λ2E{ρ2t |Ft−1} − 2λ2(E[ρt|Ft−1])2 + λ2(E[ρt|Ft−1])2,

and so we obtain E[ν2t |Ft−1] = α−20 λ2
{
E{ρ2t |Ft−1} − (E[ρt|Ft−1])2

}
. By con-

dition (ii), the νt are not martingale differences with constant conditional variance,
and the proof is complete. �

3. BARTLETT’S FORMULA DOES NOT WORK FOR ARCH AND SV MODELS:
AN ALTERNATIVE ESTIMATOR

The results of the previous section show, in particular, that using Bartlett’s for-
mula to approximate the variance of sample autocorrelations from financial returns
modeled as ARCH/GARCH or SV processes is unjustified. More surprisingly,2 the
same is true for the squared returns since – as shown above – these too are not
weakly linear.

Therefore, the only valid use of Bartlett’s formula on a correlogram of squared
returns is under the null hypothesis of conditional homoscedasticity, i.e., for testing
the hypothesis that βj = 0 for j > 0 in the ARCH model or that ϕj = 0 for j > 0
in the SV model. However, it should be stressed that Bartlett’s formula cannot be

2For example, in the context of bilinear series, Granger and Andersen [16] recommended using
Bartlett’s formula on the correlogram of the squared data. Nevertheless, a bilinear model of order
one is a special case of an ARCH(1) model with b = 0 and βj = 0 for j > 1 in equation (2.2), and
therefore falls under the premises of Proposition 2.2.
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used to test a hypothesis other than the above, and it certainly cannot be used to
construct a confidence interval for the autocorrelation of squared returns since a
confidence interval must be valid for all possible values of the parameters (not just
under a trivial null hypothesis). We now address these issues in greater detail.

For a second order stationary sequence {Xt}, define the population and sam-
ple autocovariances at lag k by

Rk = Cov(X1, X1+k) and R̂k = n−1
n−k∑
i=1

(Xi − X̄n)(Xi+k − X̄n),

respectively, where X̄n = n−1
∑n

i=1Xi. Similarly, we define the corresponding
autocorrelations ρk =R−10 Rk and ρ̂k = R̂−10 R̂k, as well as the p-dimensional
vectors ρ = [ρ1, ρ2, . . . , ρp]

T and ρ̂ = [ρ̂1, ρ̂2, . . . , ρ̂p]
T .

If {Xt} is a linear process (1.1) with i.i.d. innovations ξt having finite fourth
moment, then [5]:

(3.1)
√
n(ρ̂− ρ)

d→ N(0,W) as n→∞.

The linearity also implies that the entries of the p × p matrix W are given by
Bartlett’s formula [1]:

wij =
∞∑

k=−∞
[ρk+iρk+j + ρk−iρk+j + 2ρiρjρ

2
k − 2ρiρkρk+j − 2ρjρkρk+i].

However, as we have seen in Section 2, the ARCH and SV processes typically
used to model financial returns are not even weakly linear, so Bartlett’s formula
cannot be expected to hold with such data. To illustrate, note that for all white noise
data, i.e., when ρk = 0 for all k ­ 1, Bartlett’s formula implies var(

√
nρ̂1)→ 1.

This convergence, however, breaks down with ARCH data despite the fact that they
are uncorrelated.

EXAMPLE 1 (CONTINUED). Suppose {Xt} is the ARCH(1) process (1.5), and
assume for simplicity that εt ∼ i.i.d. N(0, 1), and that β1 < 1/

√
3. Then, {Xt} is

a strictly stationary sequence with finite (4 + δ)th moment with

(3.2) EX2
1 =

β0
1− β1

, EX4
1 =

3β2
0(1 + β1)

(1− β1)(1− 3β2
1)
, R0 =

β0
1− β1

;

see Section 3 of [3]. By Theorem 2.1 of [22],
√
nρ̂1

d→ N(0, τ21 ), where3

(3.3) τ21 = R−20

[
Var(X1X2) + 2

∞∑
i=1

Cov(X1X2, X1+iX2+i)
]
.

3The mixing condition in Theorem 2.1 of [22] holds since ARCH(1) processes are even β-
mixing with exponential rate; see e.g. [6].
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But

Var(X1X2) = E[X2
1X

2
2 ] = E[X2

1 (β0 + β1σ
2
1ε

2
1)ε

2
2]

= E[X2
1 (β0 + β1σ

2
1ε

2
1)] = β0E[X2

1 ] + β1E[X4
1 ]

= β0
β0

1− β1
+ β1

3β2
0(1 + β1)

(1− β1)(1− 3β2
1)

=
β2
0(1 + 3β1)

(1− β1)(1− 3β2
1)
.

Since

(3.4) Cov(X1X1+k, X1+iX1+k+i) = 0 for all i ­ 1, k ̸= 0,

it follows that

(3.5) τ21 = R−20 Var(X1X2) = (1− β1)(1 + 3β1)/(1− 3β2
1).

Note that τ21 increases monotonically from 1 to∞ as β1 increases from 0 to 1/
√
3;

not surprisingly, τ21 →∞ as EX4
1 →∞.

Similarly, by Theorem 3.2 of [22], the asymptotic variance of
√
nρ̂k equals

τ2k = R−20 [ck+1,k+1 − 2ρkc1,k+1 + ρ2kc1,1],

where ci+1,j+1 =
∑∞

d=−∞Cov(X0Xi, XdXd+j). Since ρk = 0 and E[XdXd+k]
= 0, we have

τ2k = R−20 E[X2
0X

2
k ]

+R−20

∑
d­1

E[X0XkX−dX−d+k] +R−20

∑
d­1

E[X0XkXdXd+k].

In the first sum εk is independent of the other variables, and in the second sum εd+k

is independent of the other variables. Thus, the two infinite sums above vanish, and
τ2k = R−20 E[X2

0X
2
k ] as before. Now, by induction,

E[X2
0X

2
k ] = β0(1 + β1 + . . .+ βk−1

1 )EX2
0 + βk

1EX4
0

= β0
1− βk

1

1− β1
EX2

0 + βk
1EX4

0 .

Finally, using (3.2), we obtain the general expression

τ2k =

(
1− β1
β0

)2 [
β0

1− βk
1

1− β1

β0
1− β1

+ βk
1

3β2
0(1 + β1)

(1− β1)(1− 3β2
1)

]
(3.6)

= (1− β1)

[
1− βk

1

1− β1
+ βk

1

3(1 + β1)

1− 3β2
1

]
.
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The calculation of τ2k in an ARCH(1) model was previously given in Berlinet and
Francq [2] in the case k = 1. For general ARCH(∞) processes (2.2), expressing τ2k
in terms of the coefficients βj in closed form is difficult and not necessarily useful.
However, the salient properties established in the above example do carry over to
the general case, as the following proposition shows.

PROPOSITION 3.1. Suppose {Xt} is the ARCH-type process of Definition 2.1
with exponentially decaying α-mixing coefficients and finite (4 + δ)th moment.
Then convergence (3.1) holds with

(3.7) wij = δij
E[X2

1X
2
1+i]

(EX2
1 )

2
,

where δij is the Kronecker delta.
Moreover, if {Xt} admits representation (2.2), then
(a) wii ­ 1, and wii > 1 if var[ε21] > 1;

(b) if βi > 0, then wii →∞ as EX4
1 →∞.

P r o o f. Since (3.4) holds for any ARCH-type process, formula (3.7) follows
directly from Theorems 3.1 and 3.2 of [22].

We now prove the statements for the {Xt} admitting representation (2.2).
(a) Observe that E[X2

1X
2
1+i] − (EX2

1 )
2 = Cov(X2

1 , X
2
1+i). By Lemma 2.1

of [13], Cov(X2
1 , X

2
1+i) ­ 0, so wii ­ 1. By formula (2.11) of [13], wii > 1 if

var[ε21] > 1.
(b) Let λ = Eε21 and note that

E[X2
1X

2
1+i] = λE

[
X2

1

(
β0 +

∞∑
j=1

βjX
2
1+i−j

)]
= λβ0EX2

1 + λ
∞∑
j=1

βjE[X2
1X

2
1+i−j ] ­ λβiE[X4

1 ].

Thus,
wii ­ λβi

EX4
1

(EX2
1 )

2
. �

All ARCH and GARCH models used in practice have exponentially decaying
α-mixing coefficients; see Sections 3 and 4 of [6]. Convergence (3.1) for GARCH
processes with finite fourth moment also follows from Theorem 1 of [26] where
the so-called physical dependence measure decays exponentially fast; see Sec-
tion 5 of [23].

PROPOSITION 3.2. Suppose {Xt} is the SV-type process of Definition 2.1 with
exponentially decaying α-mixing coefficients and finite (4 + δ)th moment. Then
convergence (3.1) and formula (3.7) also hold.

P r o o f. This follows by direct application of Theorems 3.1 and 3.2 of [22]. �



Nonlinearity of ARCH 57

Note that if an SV process is of the form Xt = exp(Lt)εt with Lt defined
by (2.3), and the errors ut have a density, then {Lt} is α-mixing with exponential
rate; see Section 6 of [4]. Since multiplying by an i.i.d. sequence εt does not affect
mixing, {Xt} is then also α-mixing with exponential rate.

Propositions 3.1 and 3.2 suggest a simple method-of-moments (MOM) esti-
mator of the asymptotic variance of

√
nρ̂i for ARCH or SV processes, namely

1

n− i

n−i∑
d=1

X2
dX

2
d+i/

(
1

n

n∑
d=1

X2
d

)2

.

More generally, consider the estimator

(3.8) ŵii = ncin

∑n−i
d=1

X2
dX

2
d+i(∑n

d=1
X2

d

)2 ,

where cin denotes a (deterministic) correction factor that is asymptotically equal
to one. The case cin = n/(n − i) corresponds to the above-mentioned MOM es-
timator, while the case cin = 1 corresponds to an estimator proposed by Taylor
[25] using a totally different – and rather ingenious – line of arguments based on
symmetry. Estimator (3.8) is a general alternative to Bartlett’s formula in the case
of data that are either ARCH/GARCH or SV processes with mean zero and finite
fourth moments. For ease of reference, we state its consistency properties as our
final proposition.

PROPOSITION 3.3. Suppose that, for any fixed i ­ 1, cin → 1 as n→∞.
(i) If {Xt} is a strictly stationary and ergodic sequence with EX4

t < ∞,

then ŵii
a.s.−→ wii, where wii was defined in equation (3.7).

(ii) Under the conditions of Proposition 3.1 or those of Proposition 3.2, ŵii

is an a.s. consistent estimator of the variance of the limit distribution of
√
nρ̂i.

P r o o f. Part (i) follows from the ergodic theorem for stationary sequences;
see e.g. Theorem 9.6 of [18]. Ergodicity is a very weak property that is implied by
any form of mixing [4]; hence part (ii) is immediate. �

The consistency of ŵii and its general applicability to ARCH, GARCH or SV
models should make it a useful tool for practitioners working with financial returns
data. Estimator (3.8) is even easier to use than Bartlett’s formula which requires the
difficult choice of a bandwidth-type parameter (the truncation point for the sum-
mation) for practical application. Concerning the correction factor: it is apparent
that using the MOM choice cin = n/(n− i) would result in bigger variance esti-
mates, and thus to more conservative inference as compared to Taylor’s cin = 1.
Of course, if i is small compared to n, the difference between the two choices of
correction factor is negligible.
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A small simulation of the finite-sample behavior of estimator (3.8) with cin =
n/(n − i) was run based on 999 stretches of size n from an ARCH(1) model.
As Table 1 shows, with the exception of the case β1 = 0.55, ŵ11 appears to have
bias and variance that both decrease as the sample size increases as consistency
demands. Recall that when β1 → 1/

√
3 ≈ 0.577, then EX4

1 → ∞ and the as-
sumptions of Proposition 3.3 break down. Therefore, the case β1 = 0.55 is un-
derstandably problematic as it is so close to this threshold. Furthermore, the pres-
ence of a slight negative bias in ŵ11 indicates that the MOM correction factor
cin = n/(n− i) might be preferable to Taylor’s cin = 1 even for i = 1.

Table 1. Empirically found mean and standard deviation of the estimator ŵ11

for the ARCH(1) process (1.5) with β0 = 0.01 and εt ∼ i.i.d. N(0, 1)

β1 0.05 0.15 0.25 0.35 0.45 0.55
τ2
1 of equation (3.5) 1.101 1.322 1.615 2.107 3.293 12.89

[n = 500] Eŵ11 1.091 1.306 1.556 1.965 2.638 3.566
standard deviation(ŵ11) 0.110 0.187 0.319 0.787 2.311 3.277

[n = 2000] Eŵ11 1.097 1.324 1.585 2.036 2.975 4.610
standard deviation(ŵ11) 0.055 0.098 0.185 0.544 2.237 6.777

Note that if EX4
t = ∞, then it is pointless to talk about the variance of ρ̂k.

Nevertheless, as long as EX2
t < ∞, ρ̂k is still consistent, and has a distribution

typically falling in the domain of attraction of a stable law (see [7] and [8]). Sub-
sampling [21] could then be employed to estimate the quantiles of this distribu-
tion, and to construct confidence intervals and tests for ρk that are valid whether
EX4

t is finite or not.
Finally, note that the squares of ARCH and SV processes have nonvanishing

correlations at any lags, so an analog of (3.4) no longer holds. Consequently, a
simple formula such as (3.7) is unavailable, and to approximate the distribution
of ρ̂k as computed from the squared returns it is again recommended to use a
resampling and/or subsampling approach [20]–[22].
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