A CENTRAL LIMIT THEOREM FOR MULTIVARIATE STRONGLY MIXING RANDOM FIELDS

BY

CRISTINA TONE (LOUISVILLE)

Abstract. In this paper we extend a theorem of Bradley under interlaced mixing and strong mixing conditions. More precisely, we study the asymptotic normality of the normalized partial sum of an α -mixing strictly stationary random field of random vectors, in the presence of another dependence assumption.

2000 AMS Mathematics Subject Classification: Primary: 60F05; Secondary: 60G60.

Key words and phrases: Central limit theorem, α -mixing, random field of random vectors.

1. INTRODUCTION

This paper presents a central limit theorem for strictly stationary random fields of random vectors satisfying a certain strong mixing condition, in the presence of another dependence assumption involving the maximal correlation coefficient. This result is actually an extension of the central limit theorem for real-valued random fields of Corollary 29.33 from Bradley [4].

For the clarity of the main result, relevant definitions and notation will be given in the following.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. For any two σ -fields $\mathcal{A}, \mathcal{B} \subseteq \mathcal{F}$, define the strong mixing coefficient

$$\alpha(\mathcal{A}, \mathcal{B}) = \sup_{A \in \mathcal{A}, B \in \mathcal{B}} |P(A \cap B) - P(A)P(B)|,$$

and the maximal coefficient of correlation

$$\rho(\mathcal{A},\mathcal{B}) \,=\, \sup |\mathrm{Corr}(f,g)|, \quad f \in L^2_{\mathrm{real}}(\mathcal{A}), \; g \in L^2_{\mathrm{real}}(\mathcal{B}).$$

Suppose d and m are each a positive integer, and $X:=(X_{\mathbf{k}},\mathbf{k}\in\mathbb{Z}^d)$ is a strictly stationary random field with the random variables $X_{\mathbf{k}}$ being \mathbb{R}^m -valued. If all the coordinates of the m-dimensional random variable $X_{\mathbf{k}}$ have finite second moments, then the $m\times m$ covariance matrix of $X_{\mathbf{k}}$ will be denoted by $\Sigma_{X_{\mathbf{k}}}$.

Throughout this paper, for given positive integers d and m, we will use the boldface notation $\mathbf{0} := (0, 0, \dots, 0)$ to denote the origin in \mathbb{Z}^d ; 0_m to denote the origin in \mathbb{R}^m , and I_m to denote the $m \times m$ identity matrix.

In this context, for each positive integer n, define the quantities:

$$\alpha(n) := \alpha(X, n) := \sup \alpha(\sigma(X_{\mathbf{k}}, \mathbf{k} \in Q), \sigma(X_{\mathbf{k}}, \mathbf{k} \in S)),$$

where the supremum is taken over all pairs of nonempty, disjoint sets Q, $S \subset \mathbb{Z}^d$ with the following property: There exist $u \in \{1, 2, \ldots, d\}$ and $j \in \mathbb{Z}$ such that $Q \subset \{\mathbf{k} := (k_1, k_2, \ldots, k_d) \in \mathbb{Z}^d : k_u \leq j\}$ and $S \subset \{\mathbf{k} := (k_1, k_2, \ldots, k_d) \in \mathbb{Z}^d : k_u \geq j + n\}$.

The random field $X:=(X_{\mathbf{k}},\mathbf{k}\in\mathbb{Z}^d)$ is said to be *strongly mixing* (or α -mixing) if $\alpha(n)\to 0$ as $n\to\infty$.

Also, for each positive integer n define the quantity:

$$\rho'(n) := \rho'(X, n) := \sup \rho(\sigma(X_{\mathbf{k}}, \mathbf{k} \in Q), \sigma(X_{\mathbf{k}}, \mathbf{k} \in S)),$$

where the supremum is taken over all pairs of nonempty, finite disjoint sets $Q, S \subset \mathbb{Z}^d$ with the following property: There exist $u \in \{1, 2, \ldots, d\}$ and nonempty disjoint sets $A, B \subset \mathbb{Z}$ with $\operatorname{dist}(A, B) := \min_{a \in A, b \in B} |a - b| \ge n$, such that $Q \subset \{\mathbf{k} := (k_1, k_2, \ldots, k_d) \in \mathbb{Z}^d : k_u \in A\}$ and $S \subset \{\mathbf{k} := (k_1, k_2, \ldots, k_d) \in \mathbb{Z}^d : k_u \in B\}$.

The random field $X:=(X_{\mathbf{k}},\mathbf{k}\in\mathbb{Z}^d)$ is said to be ρ' -mixing if $\rho'(n)\to 0$ as $n\to\infty$

Again, suppose d and m are each a positive integer, and $X:=(X_{\mathbf{k}},\mathbf{k}\in\mathbb{Z}^d)$ is a strictly stationary random field with the random variables $X_{\mathbf{k}}$ being \mathbb{R}^m -valued. For any $\mathbf{L}:=(L_1,L_2,\ldots,L_d)\in\mathbb{N}^d$, define the "rectangular sum":

$$(1.1) S_{\mathbf{L}} = S(X, \mathbf{L}) := \sum_{\mathbf{k}} X_{\mathbf{k}},$$

where the sum is taken over all d-tuples $\mathbf{k} := (k_1, k_2, \dots, k_d) \in \mathbb{N}^d$ such that $1 \le k_u \le L_u$ for all $u \in \{1, 2, \dots, d\}$.

Also, for any given $\mathbf{L} \in \mathbb{N}^d$, let us denote the product of its components by

Therefore, by definition (1.1), $S(X, \mathbf{L})$ is the sum of $\prod(\mathbf{L})$ m-dimensional random vectors $X_{\mathbf{k}}$.

THEOREM 1.1. Suppose d and m are each a positive integer. Suppose $X := (X_{\mathbf{k}}, \mathbf{k} \in \mathbb{Z}^d)$ is a strictly stationary random field where for a given $\mathbf{k} \in \mathbb{Z}^d$, the \mathbb{R}^m -valued random variable, $X_{\mathbf{k}}$, satisfies the following properties:

$$(1.3) EX_0 = 0_m$$

and

$$(1.4) E \|X_0\|_2^2 < \infty.$$

Suppose that

(1.5)
$$\rho'(1) < 1 \quad and \quad \alpha(n) \to 0 \text{ as } n \to \infty.$$

Assume also that the covariance matrix of the \mathbb{R}^m -valued random variable X_0 is nonsingular. Then we have the following two properties:

- (I) For each $\mathbf{L} \in \mathbb{N}^d$, the covariance matrix $\Sigma_{S(X,\mathbf{L})}$ is nonsingular.
- (II) $As \|\mathbf{L}\|_2 \to \infty$,

$$\Sigma_{S(X,\mathbf{L})}^{-1/2}S(X,\mathbf{L}) \Rightarrow N(0_m,I_m).$$

Theorem 1.1 extends a result of Bradley, specified as Corollary 29.33 in [4], which deals with the special case of strictly stationary random fields of real-valued random variables.

For the special case of strictly stationary random sequences of real-valued random variables, Theorem 1.1 was already proved by Peligrad in [6]. This result was later generalized by Utev and Peligrad in [7] to a weak invariance principle for (not necessarily stationary) triangular arrays of sequences of real-valued random variables under a Lindeberg condition and analogs of the mixing assumptions in Theorem 1.1.

For strictly stationary random fields of \mathbb{R}^m -valued random variables under quite different dependence assumptions, a central limit theorem somewhat like Theorem 1.1 was proved by Bulinski and Kryzhanovskaya in [5].

2. PRELIMINARIES

In the following, we collect the background results we would need for the proof of Theorem 1.1.

First, let us mention that for $m \times 1$ vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^m$, the "dot product" notation will be used: $\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^t \mathbf{b}$.

For real numbers r_1, r_2, \ldots, r_m , let $[\operatorname{diag}(r_1, r_2, \ldots, r_m)]$ denote the $m \times m$ diagonal matrix whose diagonal entries are r_1, r_2, \ldots, r_m .

REMARK 2.1. Let $G := (g_{ij}, 1 \le i, j \le m)$ be a symmetric, nonnegative definite $m \times m$ matrix. Then:

- (I) $G = PDP^t$, where P is an orthogonal matrix, $D = [\operatorname{diag}(d_1, d_2, \dots, d_m)]$, and the eigenvalues of G are d_1, d_2, \dots, d_m with $0 \le d_1 \le d_2 \le \dots \le d_m$.
- (II) Representing the elements of \mathbb{R}^m as $m \times 1$ column vectors, we have the following properties:

(i)
$$d_1 = \inf_{\{\mathbf{a} \in \mathbb{R}^m : ||\mathbf{a}||_2 = 1\}} \mathbf{a}^t G \mathbf{a},$$

(ii)
$$d_m = \sup_{\{\mathbf{a} \in \mathbb{R}^m : \|\mathbf{a}\|_2 = 1\}} \mathbf{a}^t G \mathbf{a},$$

(iii)
$$\forall i, j \in \{1, 2, \dots, m\}, |g_{ij}| \leq d_m.$$

(III) There exists a unique symmetric, nonnegative definite $m \times m$ matrix B such that $B^2 = G$. Note that $B := G^{1/2} = PD^{1/2}P^t$, where

$$D^{1/2} := \operatorname{diag}(\sqrt{d_1}, \sqrt{d_2}, \dots, \sqrt{d_m}).$$

(IV) In addition, if G (and hence $G^{1/2}$) is nonsingular, then $(G^{1/2})^{-1}:=G^{-1/2}=PD^{-1/2}P^t$, where

$$D^{-1/2} := \operatorname{diag}(d_1^{-1/2}, d_2^{-1/2}, \dots, d_m^{-1/2}).$$

Of course, $G^{-1/2}$ is symmetric and positive definite.

REMARK 2.2. Assume that W is an $m \times 1$ random vector with $EW_i = 0$ and $EW_i^2 < \infty$ for each $i \in \{1, 2, ..., m\}$. Then we have the following properties:

- (I) The covariance matrix Σ_W is symmetric and nonnegative definite.
- (II) Letting $d_1 \leqslant d_2 \leqslant \ldots \leqslant d_m$ denote the eigenvalues of the covariance matrix Σ_W , the items (i) and (ii) of Remark 2.1 take the following form:

(i')
$$d_1 = \inf_{\{\mathbf{a} \in \mathbb{R}^m : ||\mathbf{a}||_2 = 1\}} E(\mathbf{a} \cdot W)^2$$

and

(ii')
$$d_m = \sup_{\{\mathbf{a} \in \mathbb{R}^m : ||\mathbf{a}||_2 = 1\}} E(\mathbf{a} \cdot W)^2.$$

CLAIM 2.1. Let W be the $m \times 1$ random vector defined in Remark 2.2. Let its covariance matrix Σ_W be symmetric and positive definite. Then for all $\mathbf{a} \in \mathbb{R}^m - \{0_m\}$, $\mathbf{a} \cdot W$ is a nondegenerate random variable.

REMARK 2.3. Suppose c_1 and c_2 are positive numbers; A_1, A_2, A_3, \ldots is a sequence of symmetric, positive definite $m \times m$ matrices whose eigenvalues are all bounded within the interval $[c_1, c_2]$; A is an $m \times m$ matrix; and $A_n \to A$ as $n \to \infty$. Then A is a symmetric, positive definite matrix whose eigenvalues are bounded within the interval $[c_1, c_2]$, and as $n \to \infty$ we have $A_n^r \to A^r$ for each $r \in \{1/2, -1, -1/2\}$.

3. PROOF OF THEOREM 1.1

Let Σ_{X_0} denote the $m \times m$ covariance matrix of the random vector X_0 . Let d_1, d_2, \ldots, d_m be the eigenvalues of the covariance matrix Σ_{X_0} with the property

that $d_1 \le d_2 \le \ldots \le d_m$. Σ_{X_0} is symmetric and nonnegative definite and, by hypothesis, it is also nonsingular. It follows that

$$(3.1) 0 < d_1 \leqslant d_2 \leqslant \ldots \leqslant d_m < \infty,$$

and hence Σ_{X_0} is symmetric and positive definite.

Let us now represent $\Sigma_{X_0} = PDP^t$, where P is an orthogonal matrix and $D = [\operatorname{diag}(d_1, d_2, \ldots, d_m)]$. Note that, by (1.3), (1.4), and Claim 2.1, for all $\mathbf{a} \in \mathbb{R}^m - \{0_m\}$, $\mathbf{a} \cdot X_0$ is a nondegenerate random variable.

Proof of (I). Suppose $\mathbf{L} \in \mathbb{N}^d$. Let $\Sigma_{S(X,\mathbf{L})/\sqrt{\Pi(\mathbf{L})}}$ denote the $m \times m$ covariance matrix of the \mathbb{R}^m -valued random vector $S\left(X,\mathbf{L}\right)/\sqrt{\Pi(\mathbf{L})}$. Let us notice that $\Sigma_{S(X,\mathbf{L})} = \prod(\mathbf{L})\Sigma_{S(X,\mathbf{L})/\sqrt{\Pi(\mathbf{L})}}$.

Let us now define the positive constant

(3.2)
$$C := (1 + \rho'(1))^d / (1 - \rho'(1))^d.$$

CLAIM 3.1. For each $\mathbf{L} \in \mathbb{N}^d$, the $m \times m$ covariance matrix $\Sigma_{S(X,\mathbf{L})/\sqrt{\Pi(\mathbf{L})}}$ is nonsingular and its eigenvalues are bounded below by $C^{-1}d_1 > 0$ and bounded above by $Cd_m < \infty$, where C is the positive constant defined in (3.2). In addition, every entry of the covariance matrix $\Sigma_{S(X,\mathbf{L})/\sqrt{\Pi(\mathbf{L})}}$ is bounded in absolute value by Cd_m .

Proof. Suppose $\mathbf{a} \in \mathbb{R}^m$ such that $\|\mathbf{a}\|_2 = 1$. By Remark 2.2, part (II), followed by (3.1), we obtain $0 < d_1 \le E\left(\mathbf{a} \cdot X_{\mathbf{0}}\right)^2 \le d_m < \infty$.

Referring to (1.3)–(1.5) and (3.2), by Theorem 28.9 in [4], we have the following properties:

$$(3.3) 0 < C^{-1} < C < \infty$$

and

(3.4)
$$C^{-1} \cdot E\left(\mathbf{a} \cdot X_{\mathbf{0}}\right)^{2} \leqslant E\left(\mathbf{a} \cdot \frac{S\left(X, \mathbf{L}\right)}{\sqrt{\prod(\mathbf{L})}}\right)^{2} \leqslant C \cdot E\left(\mathbf{a} \cdot X_{\mathbf{0}}\right)^{2}.$$

By (3.3), (1.4) and Claim 2.1, we obtain

$$(3.5) \quad 0 < C^{-1} \cdot E\left(\mathbf{a} \cdot X_{\mathbf{0}}\right)^{2} \leqslant E\left(\mathbf{a} \cdot \frac{S\left(X, \mathbf{L}\right)}{\sqrt{\prod(\mathbf{L})}}\right)^{2} \leqslant C \cdot E\left(\mathbf{a} \cdot X_{\mathbf{0}}\right)^{2} < \infty.$$

By Remark 2.2, part (II), the inequalities (3.5) imply

(3.6)
$$0 < C^{-1}d_1 \leqslant E\left(\mathbf{a} \cdot \frac{S(X, \mathbf{L})}{\sqrt{\prod(\mathbf{L})}}\right)^2 \leqslant Cd_m < \infty.$$

Since $\mathbf{a} \in \mathbb{R}^m$ was arbitrary such that $\|\mathbf{a}\|_2 = 1$, we infer by Remark 2.2, part (II), that the eigenvalues of the covariance matrix $\Sigma_{S(X,\mathbf{L})/\sqrt{\Pi(\mathbf{L})}}$ are bounded below by $C^{-1}d_1 > 0$ and bounded above by $Cd_m < \infty$. Therefore, $\Sigma_{S(X,\mathbf{L})/\sqrt{\Pi(\mathbf{L})}}$ is a nonsingular matrix with every entry being bounded in absolute value by Cd_m . Therefore, the proof of Claim 3.1 is complete. \blacksquare

For a given $\mathbf{L} \in \mathbb{N}^d$, since $\Sigma_{S(X,\mathbf{L})/\sqrt{\Pi(\mathbf{L})}}$ is nonsingular by Claim 3.1, $\Sigma_{S(X,\mathbf{L})}$ is also nonsingular, and hence the proof of part (I) is complete.

Proof of (II). Let us now show the following:

CLAIM 3.2. For each
$$\mathbf{L} \in \mathbb{N}^d$$
, $\Sigma_{S(X,\mathbf{L})}^{-1/2} = \left(\prod(\mathbf{L})\right)^{-1/2} \Sigma_{S(X,\mathbf{L})/\sqrt{\prod(\mathbf{L})}}^{-1/2}$. Proof. Claim 3.2 follows simply from basic linear algebra properties and

Proof. Claim 3.2 follows simply from basic linear algebra properties and the trivial fact that $\Sigma_{S(X,\mathbf{L})} = \prod(\mathbf{L})\Sigma_{S(X,\mathbf{L})/\sqrt{\prod(\mathbf{L})}}$.

By Claim 3.2, for $\mathbf{L} \in \mathbb{N}^d$ we obviously have:

(3.7)
$$\Sigma_{S(X,\mathbf{L})}^{-1/2} S(X,\mathbf{L}) = \left(\prod(\mathbf{L})\right)^{-1/2} \Sigma_{S(X,\mathbf{L})/\sqrt{\Pi(\mathbf{L})}}^{-1/2} \left(\prod(\mathbf{L})\right)^{1/2} \frac{S(X,\mathbf{L})}{\left(\prod(\mathbf{L})\right)^{1/2}}$$
$$= \Sigma_{S(X,\mathbf{L})/\sqrt{\Pi(\mathbf{L})}}^{-1/2} \frac{S(X,\mathbf{L})}{\sqrt{\Pi(\mathbf{L})}}.$$

Refer now to [4], Proposition A2906, part (III). Let $u \in \{1, 2, ..., d\}$ be arbitrary but fixed. Let $\mathbf{L}^{(1)}, \mathbf{L}^{(2)}, \mathbf{L}^{(3)}, ...$ be an arbitrary fixed sequence of elements of \mathbb{N}^d such that for each $n \ge 1$, $L_u^{(n)} = n$ and $L_v^{(n)} \ge 1$ for all $v \in \{1, 2, ..., d\} - \{u\}$. With no loss of generality, we can permute the indices in the coordinate system

With no loss of generality, we can permute the indices in the coordinate system of Z^d , in order to have u=1, and therefore $L_1^{(n)}=n$ for $n\geqslant 1$ and $L_v^{(n)}\geqslant 1$ for all $v\in\{2,\ldots,d\}$. For each $n\geqslant 1$, let us represent

(3.8)
$$\mathbf{L}^{(n)} := (n, L_2^{(n)}, L_3^{(n)}, \dots, L_d^{(n)}).$$

Obviously, $\|\mathbf{L}^{(n)}\|_2 \to \infty$ as $n \to \infty$.

To complete the proof of part (II), and hence the proof of the theorem, by (3.7), it suffices to show that

(3.9)
$$\Sigma_{S(X,\mathbf{L}^{(n)})/\sqrt{\Pi(\mathbf{L}^{(n)})}}^{-1/2} \frac{S(X,\mathbf{L}^{(n)})}{\sqrt{\Pi(\mathbf{L}^{(n)})}} \Rightarrow N(0_m,I_m) \quad \text{as } n \to \infty.$$

Refer to [2], Theorem 2.6. Let Q be an arbitrary infinite set, $Q \subseteq \mathbb{N}$. It suffices to show that there exists an infinite set $T \subseteq Q$ such that

$$(3.10) \quad \Sigma_{S(X,\mathbf{L}^{(n)})/\sqrt{\Pi(\mathbf{L}^{(n)})}}^{-1/2} \frac{S(X,\mathbf{L}^{(n)})}{\sqrt{\prod(\mathbf{L}^{(n)})}} \Rightarrow N(0_m,I_m) \quad \text{ as } n \to \infty, \ n \in T.$$

By Claim 3.1, followed by the compactness argument, for the infinite set $Q \subseteq \mathbb{N}$, there exist an infinite subset $T \subseteq Q$ and an $m \times m$ matrix Σ such that

(3.11)
$$\Sigma_{S(X,\mathbf{L}^{(\mathbf{n})})/\sqrt{\Pi(\mathbf{L}^{(\mathbf{n})})}} \to \Sigma \quad \text{as } n \to \infty, \ n \in T.$$

The $m \times m$ matrix Σ is nonsingular by Remark 2.3, and its eigenvalues are bounded below by $C^{-1}d_1 > 0$. Obviously, we obtain

(3.12)

$$\Sigma^{-1/2}\Sigma_{S(X,\mathbf{L^{(n)}})/\sqrt{\prod(\mathbf{L^{(n)}})}}\Sigma^{-1/2}\to\Sigma^{-1/2}\Sigma\Sigma^{-1/2}=I_m\quad\text{ as }n\to\infty,\ n\in T.$$

As a consequence, for every $\mathbf{a} \in \mathbb{R}^m$, $\mathbf{a} \neq 0_m$, we obtain the equivalence of the variance terms:

(3.13)
$$E\left(\mathbf{a} \cdot \Sigma^{-1/2} \frac{S(X, \mathbf{L^{(n)}})}{\sqrt{\prod(\mathbf{L^{(n)}})}}\right)^2 \to \|\mathbf{a}\|_2^2 \quad \text{as } n \to \infty, \ n \in T.$$

Now, $\mathbf{a} \cdot \Sigma^{-1/2} S(X, \mathbf{L^{(n)}}) / \sqrt{\prod(\mathbf{L^{(n)}})}$ is a real-valued random variable, and therefore, by [4], Corollary 29.33, it follows that

$$(3.14) \qquad \frac{\mathbf{a} \cdot \Sigma^{-1/2} S(X, \mathbf{L}^{(\mathbf{n})}) \left(\sqrt{\prod (\mathbf{L}^{(\mathbf{n})})}\right)^{-1}}{\left\|\mathbf{a} \cdot \Sigma^{-1/2} S(X, \mathbf{L}^{(\mathbf{n})}) \left(\sqrt{\prod (\mathbf{L}^{(\mathbf{n})})}\right)^{-1}\right\|_{2}} \Rightarrow N(0, 1) \quad \text{ as } n \to \infty.$$

By (3.13) and (3.14), followed by Slutski's theorem we obtain the following:

$$(3.15) \qquad \mathbf{a} \cdot \Sigma^{-1/2} \frac{S(X, \mathbf{L^{(n)}})}{\sqrt{\prod(\mathbf{L^{(n)}})}} \Rightarrow N(0, \|\mathbf{a}\|_2^2) \quad \text{ as } n \to \infty, \ n \in T.$$

Since $\mathbf{a} \in \mathbb{R}^m$ was arbitrary, as a consequence, (3.15) is equivalent to

(3.16)
$$\Sigma^{-1/2} \frac{S(X, \mathbf{L}^{(\mathbf{n})})}{\sqrt{\prod(\mathbf{L}^{(\mathbf{n})})}} \Rightarrow N(0_m, I_m) \quad \text{as } n \to \infty, \ n \in T.$$

By (3.11), (3.16) and the multivariate Slutski theorem, we derive that

$$\Sigma_{S(X,\mathbf{L^{(n)}})/\sqrt{\Pi(\mathbf{L^{(n)}})}}^{-1/2} \frac{S(X,\mathbf{L^{(n)}})}{\sqrt{\Pi(\mathbf{L^{(n)}})}} \Rightarrow N(0_m,I_m) \quad \text{ as } n \to \infty, \ n \in T.$$

Therefore, (3.10) holds, and as a consequence, (3.9) holds too. Hence, the proof of Theorem 1.1 is complete.

Acknowledgments. The author is very grateful to Professor Richard Bradley for his invaluable support, and to the referee for the very helpful comments significantly improving the presentation of the result.

REFERENCES

- [1] P. Billingsley, *Probability and Measure*, 3rd edition, Wiley, New York 1995.
- [2] P. Billingsley, Convergence of Probability Measures, 2nd edition, Wiley, New York 1999.
- [3] R. C. Bradley, Introduction to Strong Mixing Conditions, Vol. 1, Kendrick Press, 2007.
- [4] R. C. Bradley, Introduction to Strong Mixing Conditions, Vol. 3, Kendrick Press, 2007.
- [5] A. Bulinski and N. Kryzhanovskaya, Convergence rate in CLT for vector-valued random fields with self-normalization, Probab. Math. Statist. 26 (2006), pp. 261–281.
- [6] M. Peligrad, *On the asymptotic normality of sequences of weak dependent random variables*, J. Theoret. Probab. 9 (1996), pp. 703–715.
- [7] S. Utev and M. Peligrad, Maximal inequalities and an invariance principle for a class of weakly dependent random variables, J. Theoret. Probab. 16 (2003), pp. 101–115.

Department of Mathematics University of Louisville 328 Natural Sciences Building Louisville, KY 40292 *E-mail*: cristina.tone@louisville.edu

> Received on 22.1.2009; revised version on 2.12.2009