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Abstract. In this paper we extend a theorem of Bradley under inter-
laced mixing and strong mixing conditions. More precisely, we study the
asymptotic normality of the normalized partial sum of an α-mixing strictly
stationary random field of random vectors, in the presence of another de-
pendence assumption.
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1. INTRODUCTION

This paper presents a central limit theorem for strictly stationary random fields
of random vectors satisfying a certain strong mixing condition, in the presence
of another dependence assumption involving the maximal correlation coefficient.
This result is actually an extension of the central limit theorem for real-valued
random fields of Corollary 29.33 from Bradley [4].

For the clarity of the main result, relevant definitions and notation will be given
in the following.

Let (Ω,F ,P) be a probability space. For any two σ-fields A, B ⊆ F , define
the strong mixing coefficient

α(A,B) = sup
A∈A,B∈B

|P (A ∩B)− P (A)P (B)|,

and the maximal coefficient of correlation

ρ(A,B) = sup |Corr(f, g)|, f ∈ L2
real(A), g ∈ L2

real(B).

Suppose d and m are each a positive integer, and X := (Xk,k ∈ Zd) is a
strictly stationary random field with the random variables Xk being Rm-valued. If
all the coordinates of the m-dimensional random variable Xk have finite second
moments, then the m×m covariance matrix of Xk will be denoted by ΣXk

.
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Throughout this paper, for given positive integers d and m, we will use the
boldface notation 0 := (0, 0, . . . , 0) to denote the origin in Zd; 0m to denote the
origin in Rm, and Im to denote the m×m identity matrix.

In this context, for each positive integer n, define the quantities:

α(n) := α(X,n) := supα
(
σ(Xk,k ∈ Q), σ(Xk,k ∈ S)

)
,

where the supremum is taken over all pairs of nonempty, disjoint sets Q, S ⊂ Zd

with the following property: There exist u ∈ {1, 2, . . . , d} and j ∈ Z such that
Q ⊂ {k := (k1, k2, . . . , kd) ∈ Zd : ku ¬ j} and S ⊂ {k := (k1, k2, . . . , kd) ∈
Zd : ku ­ j + n}.

The random field X := (Xk,k ∈ Zd) is said to be strongly mixing (or α-
mixing) if α(n)→ 0 as n→∞.

Also, for each positive integer n define the quantity:

ρ′(n) := ρ′(X,n) := sup ρ
(
σ(Xk,k ∈ Q), σ(Xk,k ∈ S)

)
,

where the supremum is taken over all pairs of nonempty, finite disjoint sets
Q, S ⊂ Zd with the following property: There exist u∈{1, 2, . . . , d} and nonempty
disjoint sets A, B ⊂ Z with dist(A,B) := mina∈A,b∈B |a − b| ­ n, such that
Q ⊂ {k := (k1, k2, . . . , kd) ∈ Zd : ku ∈ A} and S ⊂ {k := (k1, k2, . . . , kd) ∈
Zd : ku ∈ B}.

The random field X := (Xk,k ∈ Zd) is said to be ρ′-mixing if ρ′(n)→ 0 as
n→∞.

Again, suppose d and m are each a positive integer, and X := (Xk,k ∈ Zd) is
a strictly stationary random field with the random variables Xk being Rm-valued.
For any L := (L1, L2, . . . , Ld) ∈ Nd, define the “rectangular sum”:

(1.1) SL = S(X,L) :=
∑
k

Xk,

where the sum is taken over all d-tuples k := (k1, k2, . . . , kd) ∈ Nd such that 1 ¬
ku ¬ Lu for all u ∈ {1, 2, . . . , d}.

Also, for any given L ∈ Nd, let us denote the product of its components by

(1.2)
∏
(L) := L1 · L2 · . . . · Ld.

Therefore, by definition (1.1), S(X,L) is the sum of
∏
(L)m-dimensional random

vectors Xk.

THEOREM 1.1. Suppose d and m are each a positive integer. Suppose X :=
(Xk,k ∈ Zd) is a strictly stationary random field where for a given k ∈ Zd, the
Rm-valued random variable, Xk, satisfies the following properties:

(1.3) EX0 = 0m
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and

(1.4) E ∥X0∥22 <∞.

Suppose that

(1.5) ρ′(1) < 1 and α(n)→ 0 as n→∞.

Assume also that the covariance matrix of the Rm-valued random variable X0 is
nonsingular. Then we have the following two properties:

(I) For each L ∈ Nd, the covariance matrix ΣS(X,L) is nonsingular.
(II) As ∥L∥2 →∞,

Σ
−1/2
S(X,L)S(X,L)⇒ N(0m, Im).

Theorem 1.1 extends a result of Bradley, specified as Corollary 29.33 in [4],
which deals with the special case of strictly stationary random fields of real-valued
random variables.

For the special case of strictly stationary random sequences of real-valued
random variables, Theorem 1.1 was already proved by Peligrad in [6]. This result
was later generalized by Utev and Peligrad in [7] to a weak invariance principle for
(not necessarily stationary) triangular arrays of sequences of real-valued random
variables under a Lindeberg condition and analogs of the mixing assumptions in
Theorem 1.1.

For strictly stationary random fields of Rm-valued random variables under
quite different dependence assumptions, a central limit theorem somewhat like
Theorem 1.1 was proved by Bulinski and Kryzhanovskaya in [5].

2. PRELIMINARIES

In the following, we collect the background results we would need for the
proof of Theorem 1.1.

First, let us mention that for m × 1 vectors a, b ∈ Rm, the “dot product”
notation will be used: a · b = atb.

For real numbers r1, r2, . . . , rm, let [diag(r1, r2, . . . , rm)] denote the m ×m
diagonal matrix whose diagonal entries are r1, r2, . . . , rm.

REMARK 2.1. Let G := (gij , 1 ¬ i, j ¬ m) be a symmetric, nonnegative
definite m×m matrix. Then:

(I) G=PDP t, where P is an orthogonal matrix, D=[diag(d1, d2, . . . , dm)],
and the eigenvalues of G are d1, d2, . . . , dm with 0 ¬ d1 ¬ d2 ¬ . . . ¬ dm.

(II) Representing the elements of Rm as m × 1 column vectors, we have the
following properties:

(i) d1 = inf
{a∈Rm:∥a∥2=1}

atGa,
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(ii) dm = sup
{a∈Rm:∥a∥2=1}

atGa,

(iii) ∀i, j ∈ {1, 2, . . . ,m}, |gij | ¬ dm.

(III) There exists a unique symmetric, nonnegative definite m×m matrix B
such that B2 = G. Note that B := G1/2 = PD1/2P t, where

D1/2 := diag(
√

d1,
√

d2, . . . ,
√

dm).

(IV) In addition, if G (and hence G1/2) is nonsingular, then (G1/2)−1 :=
G−1/2 = PD−1/2P t, where

D−1/2 := diag(d
−1/2
1 , d

−1/2
2 , . . . , d−1/2m ).

Of course, G−1/2 is symmetric and positive definite.

REMARK 2.2. Assume that W is an m× 1 random vector with EWi = 0 and
EW 2

i <∞ for each i ∈ {1, 2, . . . ,m}. Then we have the following properties:
(I) The covariance matrix ΣW is symmetric and nonnegative definite.
(II) Letting d1 ¬ d2 ¬ . . . ¬ dm denote the eigenvalues of the covariance

matrix ΣW , the items (i) and (ii) of Remark 2.1 take the following form:

(i′) d1 = inf
{a∈Rm:∥a∥2=1}

E (a ·W )2

and

(ii′) dm = sup
{a∈Rm:∥a∥2=1}

E (a ·W )2.

CLAIM 2.1. Let W be the m × 1 random vector defined in Remark 2.2. Let
its covariance matrix ΣW be symmetric and positive definite. Then for all a ∈
Rm − {0m}, a ·W is a nondegenerate random variable.

REMARK 2.3. Suppose c1 and c2 are positive numbers; A1, A2, A3, . . . is a
sequence of symmetric, positive definite m ×m matrices whose eigenvalues are
all bounded within the interval [c1, c2]; A is an m ×m matrix; and An → A as
n → ∞. Then A is a symmetric, positive definite matrix whose eigenvalues are
bounded within the interval [c1, c2], and as n → ∞ we have Ar

n → Ar for each
r ∈ {1/2,−1,−1/2}.

3. PROOF OF THEOREM 1.1

Let ΣX0 denote the m ×m covariance matrix of the random vector X0. Let
d1, d2, . . . , dm be the eigenvalues of the covariance matrix ΣX0 with the property
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that d1 ¬ d2 ¬ . . . ¬ dm. ΣX0 is symmetric and nonnegative definite and, by hy-
pothesis, it is also nonsingular. It follows that

(3.1) 0 < d1 ¬ d2 ¬ . . . ¬ dm <∞,

and hence ΣX0 is symmetric and positive definite.
Let us now represent ΣX0 = PDP t, where P is an orthogonal matrix and

D = [diag(d1, d2, . . . , dm)]. Note that, by (1.3), (1.4), and Claim 2.1, for all a ∈
Rm − {0m}, a ·X0 is a nondegenerate random variable.

P r o o f o f (I). Suppose L ∈ Nd. Let Σ
S(X,L)/

√∏
(L)

denote the m×m co-

variance matrix of the Rm-valued random vector S (X,L) /
√∏

(L). Let us notice
that ΣS(X,L) =

∏
(L)Σ

S(X,L)/
√∏

(L)
.

Let us now define the positive constant

(3.2) C :=
(
1 + ρ′(1)

)d
/
(
1− ρ′(1)

)d
.

CLAIM 3.1. For each L ∈ Nd, the m×m covariance matrix Σ
S(X,L)/

√∏
(L)

is nonsingular and its eigenvalues are bounded below by C−1d1 > 0 and bounded
above by Cdm <∞, where C is the positive constant defined in (3.2). In addition,
every entry of the covariance matrix Σ

S(X,L)/
√∏

(L)
is bounded in absolute value

by Cdm.

P r o o f. Suppose a ∈ Rm such that ∥a∥2 = 1. By Remark 2.2, part (II), fol-
lowed by (3.1), we obtain 0 < d1 ¬ E (a ·X0)

2 ¬ dm <∞.
Referring to (1.3)–(1.5) and (3.2), by Theorem 28.9 in [4], we have the fol-

lowing properties:

(3.3) 0 < C−1 < C <∞

and

(3.4) C−1 · E (a ·X0)
2 ¬ E

(
a · S (X,L)√∏

(L)

)2

¬ C · E (a ·X0)
2.

By (3.3), (1.4) and Claim 2.1, we obtain

0 < C−1 · E (a ·X0)
2 ¬ E

(
a · S (X,L)√∏

(L)

)2

¬ C · E (a ·X0)
2 <∞.(3.5)

By Remark 2.2, part (II), the inequalities (3.5) imply

(3.6) 0 < C−1d1 ¬ E

(
a · S (X,L)√∏

(L)

)2

¬ Cdm <∞.
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Since a ∈ Rm was arbitrary such that ∥a∥2 = 1, we infer by Remark 2.2, part (II),
that the eigenvalues of the covariance matrix Σ

S(X,L)/
√∏

(L)
are bounded below

by C−1d1 > 0 and bounded above by Cdm < ∞. Therefore, Σ
S(X,L)/

√∏
(L)

is
a nonsingular matrix with every entry being bounded in absolute value by Cdm.
Therefore, the proof of Claim 3.1 is complete. �

For a given L ∈ Nd, since Σ
S(X,L)/

√∏
(L)

is nonsingular by Claim 3.1, ΣS(X,L)

is also nonsingular, and hence the proof of part (I) is complete.

P r o o f o f (II). Let us now show the following:

CLAIM 3.2. For each L ∈ Nd, Σ−1/2S(X,L) =
(∏

(L)
)−1/2

Σ
−1/2
S(X,L)/

√∏
(L)

.

P r o o f. Claim 3.2 follows simply from basic linear algebra properties and
the trivial fact that ΣS(X,L) =

∏
(L)Σ

S(X,L)/
√∏

(L)
. �

By Claim 3.2, for L ∈ Nd we obviously have:

Σ
−1/2
S(X,L)S(X,L) =

(∏
(L)

)−1/2
Σ
−1/2
S(X,L)/

√∏
(L)

(∏
(L)

)1/2 S(X,L)(∏
(L)

)1/2
= Σ

−1/2
S(X,L)/

√∏
(L)

S(X,L)√∏
(L)

.

(3.7)

Refer now to [4], Proposition A2906, part (III). Let u ∈ {1, 2, . . . , d} be arbitrary
but fixed. Let L(1),L(2),L(3), . . . be an arbitrary fixed sequence of elements of Nd

such that for each n ­ 1, L(n)
u = n and L

(n)
v ­ 1 for all v ∈ {1, 2, . . . , d} − {u}.

With no loss of generality, we can permute the indices in the coordinate system
of Zd, in order to have u = 1, and therefore L

(n)
1 = n for n ­ 1 and L

(n)
v ­ 1 for

all v ∈ {2, . . . , d}. For each n ­ 1, let us represent

(3.8) L(n) := (n,L
(n)
2 , L

(n)
3 , . . . , L

(n)
d ).

Obviously, ∥L(n)∥2 →∞ as n→∞.
To complete the proof of part (II), and hence the proof of the theorem, by (3.7),

it suffices to show that

(3.9) Σ
−1/2
S(X,L(n))/

√∏
(L(n))

S(X,L(n))√∏
(L(n))

⇒ N(0m, Im) as n→∞.

Refer to [2], Theorem 2.6. Let Q be an arbitrary infinite set, Q ⊆ N. It suffices to
show that there exists an infinite set T ⊆ Q such that

(3.10) Σ
−1/2
S(X,L(n))/

√∏
(L(n))

S(X,L(n))√∏
(L(n))

⇒ N(0m, Im) as n→∞, n ∈ T.
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By Claim 3.1, followed by the compactness argument, for the infinite set Q ⊆ N,
there exist an infinite subset T ⊆ Q and an m×m matrix Σ such that

(3.11) Σ
S(X,L(n))/

√∏
(L(n))

→ Σ as n→∞, n ∈ T.

The m×m matrix Σ is nonsingular by Remark 2.3, and its eigenvalues are bounded
below by C−1d1 > 0. Obviously, we obtain
(3.12)

Σ−1/2Σ
S(X,L(n))/

√∏
(L(n))

Σ−1/2 → Σ−1/2ΣΣ−1/2 = Im as n→∞, n ∈ T.

As a consequence, for every a ∈ Rm, a ̸= 0m, we obtain the equivalence of the
variance terms:

(3.13) E

(
a · Σ−1/2S(X,L(n))√∏

(L(n))

)2

→ ∥a∥22 as n→∞, n ∈ T.

Now, a ·Σ−1/2S(X,L(n))/
√∏

(L(n)) is a real-valued random variable, and there-
fore, by [4], Corollary 29.33, it follows that

(3.14)
a · Σ−1/2S(X,L(n))

(√∏
(L(n))

)−1∥∥a · Σ−1/2S(X,L(n))
(√∏

(L(n))
)−1∥∥

2

⇒ N(0, 1) as n→∞.

By (3.13) and (3.14), followed by Slutski’s theorem we obtain the following:

(3.15) a · Σ−1/2S(X,L(n))√∏
(L(n))

⇒ N(0, ∥a∥22) as n→∞, n ∈ T.

Since a ∈ Rm was arbitrary, as a consequence, (3.15) is equivalent to

(3.16) Σ−1/2
S(X,L(n))√∏

(L(n))
⇒ N(0m, Im) as n→∞, n ∈ T.

By (3.11), (3.16) and the multivariate Slutski theorem, we derive that

Σ
−1/2
S(X,L(n))/

√∏
(L(n))

S(X,L(n))√∏
(L(n))

⇒ N(0m, Im) as n→∞, n ∈ T.

Therefore, (3.10) holds, and as a consequence, (3.9) holds too. Hence, the proof of
Theorem 1.1 is complete.
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