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Abstract. We study estimation of the Wigner time-frequency spectrum
of Gaussian stochastic processes. Assuming the covariance belongs to the
Feichtinger algebra, we construct an estimation kernel that gives a mean
square error arbitrarily close to the infimum over kernels in the Feichtinger
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1. INTRODUCTION

This paper treats time-frequency analysis of scalar-valued stochastic processes
defined on Rd. Time-frequency analysis is a relatively young field of study in the
intersection of harmonic analysis, applied mathematics and signal processing ([4],
[5], [7]), aiming at representation of mathematical objects (functions, operators,
etc.) in the time and frequency variables simultaneously. If the domain of functions
represents time, then d = 1, but d > 1 is also of interest (e.g. in image analysis). An
important tool for representation of a signal f defined on Rd in the time-frequency
domain is the Wigner (or Wigner–Ville) distribution ([4], [5], [7])

W (t, ξ) =
∫
Rd

f(t+ τ/2)f(t− τ/2)e−iτξdτ,

which can be interpreted as a distribution of the signal’s energy over the time-
frequency domain (t, ξ) ∈ R2d. However, this interpretation is bothered by the fact
that W is very seldomly non-negative everywhere, which can be seen as a conse-
quence of the uncertainty principle [7]. As a remedy one can smooth W with a
convolution kernel according to W ∗Φ, which is called a time-frequency represen-
tation in Cohen’s class determined by Φ ([4], [7]).

If we replace f by a stochastic process X , then W will be called the Wigner
process. In this case the integral above is a stochastic mean square Riemann integral
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(see [17]). The Wigner spectrum ([4], [10], [11], [15]) is defined by

WE(t, ξ) =
∫
Rd

E
(
X(t+ τ/2)X(t− τ/2)

)
e−iτξdτ,

which equals the expectation of the Wigner distribution for certain processes [11].
The Wigner spectrum is a generalization of the spectral measure of a weakly sta-
tionary process to certain nonstationary processes. It contains “musical score” in-
formation of the process [7], i.e. it describes the time-variable frequency contents
of the process.

In this paper we treat convolution kernels for estimation of the Wigner spec-
trum WE of a zero mean Gaussian stochastic process X , using the Wigner pro-
cess W . We use the following results from [17]. The Wigner process and the so-
called ambiguity process A (the Fourier transform of W ) of X are finite vari-
ance processes defined on R2d provided the covariance function r belongs to the
Feichtinger algebra S0(R2d) (see [1] and [7], Chapters 11–12). Cohen’s class, i.e.
the stochastic convolution integral W ∗ Φ, where Φ is a deterministic kernel, is a
finite variance process if Φ is continuous and bounded. Here W ∗Φ is a stochastic
mean square Riemann integral. If moreover Φ ∈ S0(R2d), then W ∗ Φ equals the
stochastic Fourier integral of the process Aϕ which is the ambiguity process mul-
tiplied by the kernel ϕ = F1F−12 Φ, where F1 and F2 denote the partial Fourier
transforms of a function defined on R2d = Rd ⊕ Rd with respect to the first and
the second Rd variable, respectively. Hence F1 is defined by

F1f(ξ, y) =
∫
Rd

f(x, y)e−ixξdx, ξ, y ∈ Rd, f ∈ L1(R2d),

and F2 is defined analogously [13]. Thus we have a case of the well-known prin-
ciple that convolution is equivalent to multiplication on the Fourier transform side.

We use W ∗ Φ as an estimator of WE . A natural criterion of performance of
the estimator is the integral of the mean square error E|W ∗ Φ(t, ξ)−WE(t, ξ)|2
over (t, ξ) ∈ R2d. It is of interest to choose a kernel Φ such that the integral is
minimized. If r ∈ S0(R2d) and Φ ∈ S0(R2d), we can use a result of Parseval type
from Wahlberg [17] saying that the integral equals the integral of the expression
E
∣∣(2π)dA(θ, τ)ϕ(θ, τ)− E(

A(θ, τ)
)∣∣2 over (θ, τ) ∈ R2d. Due to the multiplica-

tive action of the kernel in the ambiguity domain (θ, τ), it is easier to compute the
optimal kernel there. It turns out to belong to L∞(R2d).

However, there is no guarantee that the optimal kernel ϕopt in L∞(R2d) is a
member of S0(R2d). Since we need ϕ ∈ S0(R2d) to ensure that our formulas are
true, we have to make an approximation procedure. Given ϵ > 0 we show how
to construct a kernel Φ ∈ S(R2d) which gives a criterion value within ϵ from the
infimum over Φ ∈ S0(R2d). Here S(R2d) denotes the Schwartz space of smooth
functions such that a derivative of any order multiplied by any polynomial is uni-
formly bounded [13].
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Many of the invariance properties of the Feichtinger algebra S0(Rd) (see [1],
[3], [7]) will be used. The function space S0(Rd) is defined as follows. Given a
window function g ∈ S(Rd), the short-time Fourier transform of f ∈ L2(Rd) is
defined by

Vgf(t, ξ) =
∫
Rd

f(x)g(x− t)e−ixξdx.

The window function g is often chosen to have a short duration, and then Vgf
gives a localized Fourier transform, i.e. a time-frequency representation, of f . Now
S0(Rd) is defined as all tempered distributions [13] f such that∫∫

R2d

|Vgf(t, ξ)|dtdξ <∞.

The L1-norm on Vgf may be replaced by a mixed Lp,q-norm, 1 ¬ p, q ¬ ∞, that
is, by the requirement( ∫

Rd

( ∫
Rd

|Vgf(t, ξ)|pdt
)q/p

dξ
)1/q

<∞.

This is the definition of a family of spaces known as modulation spaces ([2],
[7]) of which S0(Rd) is the smallest space. The function space S0(Rd) contains
S(Rd), is contained in L1(Rd) ∩FL1(Rd), and is invariant under: (i) conjugation,
(ii) linear coordinate transformations, (iii) tensorization, (iv) restriction to sub-
groups of Rd, and (v) the (partial) Fourier transform defined by the Lebesgue in-
tegration. Here FL1(Rd) is the space of functions such that the Fourier transform
belongs to L1(Rd). The Lebesgue integral in the (partial) Fourier transform can be
replaced by a Riemann integral which is important in this paper. The space S0(Rd)
is moreover a Banach algebra, both under convolution and pointwise multipli-
cation.

In this paper, the Fourier transform is defined by

Ff(ξ) = f̂(ξ) =
∫
Rd

f(t)e−itξdt,

which means that the inverse Fourier transform is

F−1f̂(t) = (2π)−d
∫
Rd

f̂(ξ)eitξdξ.

We denote the partial Fourier transform with respect to Rd variables indexed by j, k
by Fj,kf or f̂j,k. The Lebesgue measure is denoted by µ, and L2(Ω) is the set of
finite variance R- or C-valued random variables on a probability space (Ω,B, P ).
We restrict ourselves to stochastic processesX : Rd 7→ L2(Ω) that have zero mean
and are Gaussian, i.e. {X(tj)}Nj=1 have multidimensional Gaussian probability
density for any finite set {tj}Nj=1 ⊂ Rd (see [9], [12]). The covariance function is
denoted by r(t, s) = E

(
X(t)X(s)

)
. In the case of C-valued processes we require

the following property.
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DEFINITION 1.1. A circularly symmetric process X is zero mean C-valued
and such that the processes {eiθX}θ∈[0,2π) have identical probability distributions
for all θ ∈ [0, 2π).

According to Grettenberg’s theorem (see [6] and [12]) circular symmetry is
equivalent to

(1.1) E
(
X(t)X(s)

)
= 0 for all (t, s) ∈ R2d.

The following moment function will be needed later.

DEFINITION 1.2. For t1, τ1, t2, τ2 ∈ Rd we set

c(t1, τ1, t2, τ2) = E
(
X(t1 + τ1/2)X(t1 − τ1/2)X(t2 + τ2/2)X(t2 − τ2/2)

)
.

If x1, x2, x3, x4 are zero mean R-valued or C-valued random variables, then
Isserlis’ theorem ([8], p. 244) states that
(1.2)
E(x1x2x3x4) = E(x1x2)E(x3x4) + E(x1x3)E(x2x4) + E(x1x4)E(x2x3).

For Gaussian R-valued or C-valued circularly symmetric processes it follows from
(1.1), Definition 1.2, (1.2) and the properties of S0(R2d) that

(1.3) r ∈ S0(R2d) =⇒ c ∈ S0(R4d)⇐⇒ ĉ1,3 ∈ S0(R4d).

2. THE WIGNER SPECTRUM AND THE WIGNER PROCESS

As stated in the Introduction the Wigner spectrum of a process X with covari-
ance r is defined by

WE(t, ξ) =
∫
Rd

r(t+ τ/2, t− τ/2)e−iτξdτ = F2(r ◦ κ)(t, ξ), t, ξ ∈ Rd,

where κ(t, τ) = (t + τ/2, t − τ/2) for t, τ ∈ Rd ([4], [10], [11], [15]). The ex-
pected ambiguity function of the process is defined by

(2.1) AE(θ, τ) =
∫
Rd

r(t+ τ/2, t− τ/2)e−itθdt, θ, τ ∈ Rd,

andAE = F1F−12 WE . If r ∈ S0(R2d), thenWE , AE ∈ S0(R2d) due to the invari-
ance properties of S0 (see [1]).

We shall use the following results from [10], [11], [15], [17]. Let X be a
zero mean R-valued or C-valued circularly symmetric, Gaussian process, and let
r ∈ S0(R2d). Then the following stochastic Riemann integrals [9] are well defined:

W (t, ξ)=
∫
Rd

X(t+ τ/2)X(t− τ/2)e−iτξdτ ∈L2(Ω) for all (t, ξ)∈R2d,

A(θ, τ)=
∫
Rd

X(t+ τ/2)X(t− τ/2)e−itθdt∈L2(Ω) for all (θ, τ)∈R2d.
(2.2)



Regularization of kernels for estimation of the Wigner spectrum 373

Thus W and A are second order stochastic processes on R2d. We call them the
Wigner process and the ambiguity process of X , respectively. We have

E
(
W (t, ξ)

)
=WE(t, ξ) for all (t, ξ) ∈ R2d,

E
(
A(θ, τ)

)
= AE(θ, τ) for all (θ, τ) ∈ R2d,

(2.3)

and for the covariance of A:

(2.4) E
(
A(θ1, τ1)A(θ2, τ2)

)
= ĉ1,3(θ1, τ1,−θ2, τ2) ∈ S0(R4d)

by (1.3). If Φ ∈ S0(R2d), then the convolution stochastic Riemann integral
(2.5)
W ∗ Φ(t, ξ) =

∫∫
R2d

W (t− s, ξ − η)Φ(s, η)dsdη ∈ L2(Ω) for all (t, ξ) ∈ R2d

is a second order stochastic process on R2d. The convolution W ∗ Φ is said to be-
long to Cohen’s class defined by Φ (see [4]). The processW ∗Φ can be represented
by the stochastic Riemann integral

(2.6) W ∗ Φ(t, ξ) =
∫∫
R2d

A(θ, τ)ϕ(θ, τ)ei(θt−τξ)dθdτ, t, ξ ∈ Rd,

where ϕ = F1F−12 Φ ∈ S0(R2d). Finally, we have the following result.
Suppose W1 and A1 are two second order stochastic processes on R2d related

through the Fourier stochastic Riemann integral

(2.7) W1(t, ξ) = (2π)−d
∫∫
R2d

A1(θ, τ)e
i(θt−τξ)dθdτ for all (t, ξ) ∈ R2d

and suppose that

(2.8) g(θ1, τ1, θ2, τ2) = E
(
A1(θ1, τ1)A1(θ2, τ2)

)
∈ S0(R4d).

Then we have the Riemann integral identity

(2.9)
∫∫
R2d

E|W1(t, ξ)|2dtdξ =
∫∫
R2d

E|A1(t, ξ)|2dθdτ <∞.

3. ESTIMATION OF WE FROM W USING COHEN’S CLASS

The convolution formula (2.5) can be used for estimation of WE from realiza-
tions of the process W . This is of interest in many applications since WE gives a
time-frequency picture of the process. An optimal kernel for this problem was first
determined by Sayeed and Jones [15]. The paper [17] and the present paper is an
attempt to refine their results.
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In fact, first we give sufficient conditions for the optimal ambiguity domain
kernel to exist. Moreover, since the optimal kernel in general needs not to belong
to the space S0(R2d), which justifies the transformation to the ambiguity domain,
we give a regularization scheme in order to approximate the optimal kernel with a
kernel in S0(R2d). The result is the following.

Given any ϵ > 0, we can compute a convolution kernel which gives an error
within ϵ from the infimum over kernels in S0(R2d).

Suppose Φ ∈ S0(R2d). We define the mean square error integral

J(Φ) =
∫∫
R2d

E|W ∗ Φ(t, ξ)−WE(t, ξ)|2dtdξ

to be minimized by the kernel Φ, and put

Jo = inf
Φ∈S0(R2d)

J(Φ).

In the following proposition we compute a kernel Φδn,γ ∈ S(R2d), indexed by
a natural number n and a positive real γ, such that J(Φδn,γ) is arbitrarily close
to Jo for sufficiently large n and sufficiently small γ. As preparation we choose
a standard mollifier ψ ∈ C∞c (R2d) which denotes the set of smooth functions of
compact support. Let ψ have support in the unit ball,

∫
R2d ψ(x)dx = 1 and ψ ­ 0.

We define ψγ(x) = γ−2dψ(x/γ) for γ > 0. Let B(δ−1) ⊂ R2d denote the closed
ball of radius δ−1, define (subscript r for restriction)

(3.1) cr(θ, τ) := ĉ1,3(θ, τ,−θ, τ).

Then cr ∈ S0(R2d) since S0 is invariant under restrictions to subgroups [1]. Let
(3.2)
U(δ) := {(θ, τ) ∈ R2d; cr(θ, τ) ­ δ} ⊂ {(θ, τ) ∈ R2d; cr(θ, τ) > 0} := U,

where U(δ), δ > 0, is a closed subset of the open set U since ĉ1,3 ∈ S0(R4d) ⊂
C(R4d), which means the continuous and bounded functions [1]. Let χB denote
the indicator function of the set B and define

(3.3) ϕo(θ, τ) =
|AE(θ, τ)|2

(2π)dcr(θ, τ)
χU (θ, τ).

The function ϕo restricted to U is continuous. From (2.3), (2.4), (3.1) and the
Cauchy–Schwarz inequality we have 0 ¬ ϕo(θ, τ) ¬ (2π)−d. Thus ϕo ∈ S ′(R2d),
which means the set of tempered distributions [13], and we can define

Φo := F−11 F2ϕo ∈ S
′(R2d).
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THEOREM 3.1. Suppose X is a zero mean Gaussian R-valued or C-valued
circularly symmetric process whose covariance function r ∈ S0(R2d). Let δ, γ > 0.
Define

ϕ1 = ϕ1,δ = ϕoχB(δ−1)∩U(δ),

ϕ2 = ϕ2,δ,γ = ϕ1,δ ∗ ψγ

(3.4)

and
Φδ,γ = F−11 F2ϕ2,δ,γ ,

where the notation ϕ1 = ϕ1,δ indicates that ϕ1 depends on δ, etc. Then ϕ2 ∈
C∞c (R2d), and hence Φδ,γ ∈ S(R2d). There exists a sequence {δn}∞n=1, δn ↓ 0,
with the following property:

Given any ϵ > 0, for n sufficiently large and γ sufficiently small we have

(3.5) J(Φδn,γ)− Jo < ϵ.

Furthermore, we have the limit in S ′(R2d):

(3.6) lim
n→∞, γ→0

Φδn,γ = Φo.

P r o o f. Suppose Φ ∈ S0(R2d), and so also ϕ ∈ S0(R2d). Moreover, since
we also have r ∈ S0(R2d), formula (2.6) and

(3.7) WE(t, ξ) = (2π)−d
∫∫
R2d

AE(θ, τ)e
i(θt−τξ)dθdτ

are true. As explained in [17] an ordinary Riemann integral can be considered
as a stochastic Riemann integral. Hence we can combine (2.6) and (3.7) into the
stochastic Riemann integral

W ∗ Φ(t, ξ)−WE(t, ξ)

=
1

(2π)d

∫∫
R2d

(
(2π)dA(θ, τ)ϕ(θ, τ)−AE(θ, τ)

)
ei(θt−τξ)dθdτ.

This is a representation according to (2.7). The argument showing that (2.8) holds
for A1 = (2π)dAϕ−AE is as follows. Using (2.3) and (2.4) we obtain

g(θ1, τ1, θ2, τ2) = E
(
A1(θ1, τ1)A1(θ2, τ2)

)
= (2π)2dĉ1,3(θ1, τ1,−θ2, τ2)ϕ(θ1, τ1)ϕ(θ2, τ2)
− (2π)dAE(θ1, τ1)AE(θ2, τ2)

(
ϕ(θ1, τ1) + ϕ(θ2, τ2)

)
+AE(θ1, τ1)AE(θ2, τ2).
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Now g ∈ S0(R4d) follows from the facts that ĉ1,3 ∈ S0(R4d), ϕ,AE ∈ S0(R2d),
and the invariance properties of S0. Hence (2.9) is true and we have

(3.8) J(Φ) =
∫∫
R2d

E|(2π)dA(θ, τ)ϕ(θ, τ)−AE(θ, τ)|2dθdτ.

Let us consider J(Φ) = J(F−11 F2ϕ) := G(ϕ) as a function of ϕ instead of Φ.
Moreover, let us relax the condition ϕ ∈ S0(R2d) and let ϕ be an arbitrary function
in L∞(R2d). Then it is clear that the integral (3.8) is minimized by a function
which mimimizes the integrand pointwise, i.e.

ϕopt(θ, τ) = arg min
ϕ(θ,τ)

E|(2π)dA(θ, τ)ϕ(θ, τ)−AE(θ, τ)|2.

By the principle of orthogonality in the Hilbert spaceL2(Ω) (see [13]) we conclude
that there is a unique ϕopt(θ, τ) such that

E
((

(2π)dA(θ, τ)ϕopt(θ, τ)−AE(θ, τ)
)
A(θ, τ)

)
= 0

⇐⇒ (2π)dE|A(θ, τ)|2ϕopt(θ, τ) = |AE(θ, τ)|2.

For (θ, τ) ∈ R2d such that E|A(θ, τ)|2 = 0, ϕopt(θ, τ) can be defined arbitrarily.
We set it to zero, and using (2.4), (3.1) and (3.2) we thus obtain ϕopt = ϕo defined
by (3.3). By (3.8) and S0(R2d) ⊂ L∞(R2d),

(3.9) ∞ > Jo = inf
Φ∈S0(R2d)

J(Φ) = inf
ϕ∈S0(R2d)

G(ϕ) ­ G(ϕo).

There is however no guarantee that ϕo defined by (3.3) belongs to the space S0(R2d)
as required in the derivation of (3.8). Therefore we design an approximation pro-
cedure. We have cr ∈ S0(R2d) ⊂ L1(R2d) and cr ­ 0. Let A ⊂ R. In what fol-
lows we denote the Lebesgue measure of the set {(θ, τ); cr(θ, τ) ∈ A} ⊂ R2d

by µ(cr ∈ A). We observe that the set {t > 0; µ(cr = t) > 0} is countable.
In fact, the function t 7→ µ(cr > t) defined for t > 0 is finite everywhere, non-
negative, continuous from the right and monotonically nonincreasing [14]. Thus
it has at most countably many discontinuity points tj , i.e. points tj such that 0 <
limt↑tj µ(cr > t)− µ(cr > tj) = limt↑tj µ(t < cr ¬ tj) = µ(cr = tj). Hence we
can choose a sequence {δn}∞n=1 such that δn ↓ 0 and

(3.10) µ(cr = δn) = 0 for all n ­ 1.

This property of the choice of a sequence {δn}∞n=1 will be used at the end of
the proof. We apply the elements of the sequence {δn}∞n=1 in definition (3.4),
i.e. we set

ϕ1n := ϕoχB(δ−1
n )∩U(δn)

,
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and insert ϕ1n as ϕ into (3.8), which gives the Riemann integral

G(ϕ1n)−G(ϕo) =
∫∫
U

|AE(θ, τ)|4

cr(θ, τ)
(1− χB(δ−1

n )∩U(δn)
)dθdτ

¬
∫∫
U

cr(θ, τ)(1− χB(δ−1
n )∩U(δn)

)dθdτ

by (2.3), (2.4), (3.1) and the Cauchy–Schwarz inequality. Since cr ∈ S0(R2d) ⊂
L1(R2d) ∩ C(R2d), the integral of cr is independent of whether it is defined in the
Lebesgue or Riemann sense. This is also true for the integral over the compact set
B(δ−1n ) ∩ U(δn). Since B(δ−1n ) ∩ U(δn) ↑ U as n→∞, i.e. δn ↓ 0, we have, by
continuity of the Lebesgue measure,

(3.11) lim
n→∞

G(ϕ1n)−G(ϕo) = 0.

Defining ϕ2 = ϕ1n ∗ψγ we have ϕ2 ∈ C∞c (R2d) since both ϕ1n and ψγ have com-
pact support and ψγ is smooth. Hence Φδn,γ = F−11 F2ϕ2 ∈ S(R2d) [13]. Since
S(R2d) ⊂ S0(R2d), we have J(Φδn,γ) = G(ϕ2). The bound ∥ϕ1n∥L∞ ¬ (2π)−d

implies ∥ϕ2∥L∞ ¬ (2π)−d. Using sup(cr) < ∞ and sup(AE) < ∞, from (3.8)
we obtain

G(ϕ2)−G(ϕ1n) = (2π)2d
∫∫
R2d

cr(θ, τ)
(
ϕ22(θ, τ)− ϕ21n(θ, τ)

)
dθdτ

− 2(2π)d
∫∫
R2d

|AE(θ, τ)|2
(
ϕ2(θ, τ)− ϕ1n(θ, τ)

)
dθdτ

¬ C∥ϕ2 − ϕ1n∥L1(R2d),

where C > 0. Thus, if we show

(3.12) lim
γ→0
∥ϕ2 − ϕ1n∥L1(R2d) = 0,

then, using (3.9) and (3.11), we will have, for any ϵ > 0,

J(Φδn,γ)− Jo ¬ G(ϕ2)−G(ϕ1n) +G(ϕ1n)−G(ϕo) < ϵ

for n sufficiently large and γ sufficiently small, which proves (3.5).
Now we are going to prove (3.12). We define the compact set

Kn := B(δ−1n ) ∩ U(δn) ⊂ U ⊂ R2d.

Since supp(ϕ1n) ⊂ Kn and supp(ψγ) ⊂ B(γ), we have

(3.13) ∥ϕ2 − ϕ1n∥L1(R2d) ¬
∫∫

x∈Kn+B(γ)
y∈B(γ)

|ϕ1n(x− y)− ϕ1n(x)|ψγ(y)dxdy.
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We define a subset of Kn:

Knγ := {x ∈ Kn; x+B(γ) ⊂ Kn}.

Then for n sufficiently large and γ sufficiently small Knγ is nonempty. In fact,
if N is sufficiently large, there exists x ∈ R2d such that cr(x) ­ 2δn, n ­ N .
(Here we have assumed that cr is not identically zero.) Thus x ∈ U(δn), n ­ N ,
and x ∈ B(δ−1n ), n ­ M for a certain M , i.e. x ∈ Kn, n ­ max(N,M). Since
cr is continuous, there is a ball B ∋ x such that cr(x + B) ­ δn, n ­ N . Thus
x+B ⊂ Kn for n sufficiently large.

The setKnγ is bounded. It is also closed, and hence compact, for the following
reason. Let xk ∈ Knγ be a sequence such that limk→∞ xk = x and let y ∈ B(γ).
Then xk + y ∈ Kn for all k and x+ y ∈ Kn sinceKn is closed. Since y ∈ B(γ) is
arbitrary, x ∈ Knγ . Thus Knγ is a closed set. We split the integral over x in (3.13),
and employ ∥ϕ1n∥L∞ ¬ (2π)−d, according to

(3.14) ∥ϕ2 − ϕ1n∥L1(R2d) ¬
∫∫

x∈Knγ

y∈B(γ)

|ϕ1n(x− y)− ϕ1n(x)|ψγ(y)dxdy

+
∫∫

x∈(Kn+B(γ))\Knγ

y∈B(γ)

|ϕ1n(x− y)− ϕ1n(x)|ψγ(y)dxdy

¬
∫∫

x∈Knγ

y∈B(γ)

|ϕ1n(x− y)− ϕ1n(x)|ψγ(y)dxdy + 2(2π)−dµ
((
Kn +B(γ)

)
\Knγ

)
,

where
(
Kn + B(γ)

)
\ Knγ =

(
Kn + B(γ)

)
∩ Kc

nγ and Kc
nγ denotes the com-

plement. Since Kn is compact and ϕo is continuous on Kn ⊂ U , the restric-
tion of ϕ1n = ϕo · χKn to Kn is uniformly continuous. In the integral on the
right-hand side we have both x − y ∈ Kn and x ∈ Kn. Hence, for any α > 0,
|ϕ1n(x − y) − ϕ1n(x)| ¬ α/µ(Kn) for all x ∈ Knγ and y ∈ B(γ) if γ is suffi-
ciently small, and thus the integral is less than or equal to α. Therefore, it tends to
zero as γ → 0. Thus (3.12) will be proved if we show

(3.15) lim
γ→0

µ
((
Kn +B(γ)

)
\Knγ

)
= 0.

We can write

(3.16) µ
((
Kn +B(γ)

)
\Knγ

)
= µ

((
Kn +B(γ)

)
\Kn

)
+ µ(Kn \Knγ).

As γ ↓ 0, Kn + B(γ) is shrinking towards Kn. Since the Lebesgue measure is
continuous, we have

(3.17) lim
γ↓0

µ
((
Kn +B(γ)

)
\Kn

)
= 0.
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Let us look at the second term on the right-hand side of (3.16). Knγ increases as
γ ↓ 0 towards

(3.18)
∪
γ>0

Knγ = Ko
n,

where Ko
n = Kc

n
c denotes the interior of Kn. Here Kn means closure. To prove

the ⊃ inclusion of (3.18) let x ∈ Ko
n. Since Ko

n is open, there exists a γ > 0 such
that x+ B(γ) ⊂ Ko

n ⊂ Kn, i.e. x ∈ Knγ . For the opposite inclusion, let x /∈ Ko
n

i.e. x ∈ Kc
n. Then for any γ > 0 we have x+B(γ) ∩Kc

n ̸= ∅, i.e. x /∈ Knγ . Thus
(3.18) holds. SinceKn is closed, we have a disjoint unionKn = ∂Kn ∪Ko

n, where
∂Kn = Kn ∩Kc

n denotes the boundary ([16], Chapter 2) of Kn. Now it follows
again from continuity of the Lebesgue measure that

(3.19) lim
γ↓0

µ(Kn \Knγ) = µ(∂Kn).

We shall now finally show that µ(∂Kn) = 0 for all n, which together with (3.17)
proves

lim
γ↓0

µ
((
Kn +B(γ)

)
\Knγ

)
= 0.

This proves (3.15), since
(
Kn +B(γ)

)
\Knγ decreases as γ decreases, and hence

we have shown (3.12). The claim µ(∂Kn) = 0 follows from

∂Kn = B(δ−1n ) ∩ U(δn) ∩
(
B(δ−1n )c ∪ U(δn)c

)
=

(
∂B(δ−1n ) ∩ U(δn)

)
∪
(
B(δ−1n ) ∩ U(δn) ∩ U(δn)c

)
.

In fact, since the first set is a subset of the boundary of a sphere, it has Lebesgue
measure zero. For a point x in the second set we have cr(x) ­ δn by the definition
of U(δn), and the existence of a sequence xk ∈ U(δn)

c, i.e. cr(xk) < δn, such that
limk→∞ xk = x. By continuity of cr, we have cr(x) = limk→∞ cr(xk) ¬ δn. So
cr(x) = δn, and the second set has Lebesgue measure zero due to (3.10). Hence
µ(∂Kn) = 0 for all n, which proves (3.15), and thereby also (3.12). Thus (3.5) has
been proved.

It remains to prove (3.6), which is equivalent to the limit in S ′(R2d):

(3.20) lim
n→∞
γ→0

ϕ2 = ϕo.

Choose an arbitraryφ ∈ S(R2d) and denote by (f, φ)S′,S the action of f ∈ S ′(R2d)
on φ ∈ S(R2d). Since ∥ϕo∥L∞ ¬ (2π)−d, we have

(3.21) |(ϕo − ϕ1n, φ)S′,S |
¬

∫
U\Kn

ϕo(x)|φ(x)|dx ¬ (2π)−d
∫

U\Kn

|φ(x)|dx→ 0
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as n→∞, since Kn ↑ U and φ ∈ L1(R2d). Moreover, by splitting the integral as
is done in (3.14) and by ∥ϕ1n∥L∞ ¬ (2π)−d, we obtain

|(ϕ2 − ϕ1n, φ)S′,S | ¬
∫∫

x∈Kn+B(γ)
y∈B(γ)

ψγ(y)|φ(x)||ϕ1n(x−y)− ϕ1n(x)|dxdy

¬
∫∫

x∈Knγ

y∈B(γ)

ψγ(y)|φ(x)||ϕ1n(x− y)− ϕ1n(x)|dxdy

+ 2(2π)−d∥φ∥L∞(R2d)µ
((
Kn +B(γ)

)
\Knγ

)
→ 0 as γ → 0.

(3.22)

Indeed, let α > 0; then we have for the integrand on the right-hand side of (3.22),
as in (3.14), |ϕ1n(x− y)− ϕ1n(x)| ¬ α/∥φ∥L1(R2d) when x ∈ Knγ and y ∈ B(γ)
if γ is sufficiently small. Thus the integral on the right-hand side of (3.22) is less
than or equal to α, i.e. it tends to zero as γ → 0. The second term tends to zero by
(3.15). Combination of (3.21) and (3.22) now gives

lim
n→∞
γ→0

(ϕ2 − ϕo, φ)S′,S = 0 for all φ ∈ S(R2d),

i.e. (3.20) has been proved. Hence, (3.6) is shown, and the proof of the theorem is
complete. �
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