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Abstract. In this paper we define classes I!! of certain infinitely 
divhb~e measures on the real line. We get a representation of the 
characteristic functions of distributions from certain classes l!;. The 
method of our proof, stimulated by results of Urbanik [5] consists in 
finding the extreme points of a certain convex set formed by 
Khintchine measures of distributions from I$. Once the extreme 
points are found, one can apply Choquet's thmrem on represen- 
tation of the points of a compact convex set as barycenters of the 
extreme points ([4J p. 19). From Choquet's uniqueness theorem for 
a metrizable space X we obtain the uniqueness of representation 
(C41, P. 701. 

1. It is well known that the measure P on the real line R is infinitely 
divisible if and only if its characteristic function d has the Ldvy -Khintchine 
re.presentation 

- m 

where b is a real constant, and p is a finite Borel measure on R ([2], p. 3091, 
called a KMntchine measure. 

Let p be a finite Borel measure on [- co, 003. We put P(B) = p( - B), 
where - B  = {x: - x E B ) .  We define the measure p, as follows: 
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For every c E R \ (0: we denote by T,  the mapping T, x = cx (x E 

[- x, m]). Given a Borel measure il on [-a, a], T , A  denotes the measure 
defined by Trl(B) = , l (T,-lB) for all 13orel subsets B of [- m, m]. For Borel 
measures 1 and v on [ - oo, m], A <  v if and only if L (B)  < v(B)  for all Borel 
subsets B of [ - co, a]. Further, by 6, (x E [ - a~ , a]) we denote the pro- 
bability measure concentrated at the point x. 

Let P be an infinitely divisible measure on R. The deco~posability 
semigroup D d ( P )  corresponding to P consists of a11 real numbers s for which 
there exists an infinitely divisible measure P, such that 

. -  -.- 

(t) = (st) ?s ( t )  (t E R) 

(see [3]). The semigroup operation is simply the multiplication of numbers. It 
. , is not difficult to prove that P is non-degenerate if and only if D"'(P) is 

compact (see [6]). In other words, for non -degenerate P, IYd(P) is a compact 
subsemigroup of the multiplicative semigroup [- 1, 11 containing 0 and 1 
(see [7]). In [3] we proved that for every compact semigroup S containing 0 
and 1 there exists an infinitely divisible measure P such that Did(P) = S. It is 
not difficult to prove that, for s # 0, S E D ~ ( P )  if and only if 

where p is a Khintchine measure corresponding to P (see El] and [2]). Given 
a compact semigroup S containing 0 and 1, we say that the probability 
measure P  belongs to a eIass ii if S c Did(P). 

2.. Throughout this paper, S is a compact semigroup containing 0 and 
1. Let M(S) or, shortly, M be the set of all finite Borel measures p on 
[- oo, coj for which T,p, >, p, for each SES \{O]. Let M, be the subset of M 
consisting of measures concentrated on (- oo , oo). Then, by (I), p E M,, if and 
only if @ is a Khintchine measure corresponding to a distribution from ii. 
Let K be the subset of M consisting of all probability measures and put KO 
= K n Mo. Obviously, the set K is convex. The space of all probability 
measures on [ - oo, oo J with weak convergence is a rnetrizable compact 
space. We consider the induced topology on K. It is not difficult to show 
that K is closed. Thus, K is compact. 

THEOREM 1. M is a convex cone generated by K, and K is a simplex. 
Remark. Let X be a compact convex set in a real locally convex space 

E. Without loss of generality we may assume that X is contained in a closed 
hyperplane which misses the origin. Put 

R = {ax:  or 3 0, X E X ) ;  

2 is the cone generated by X. A cone 2 induces a translation invariant 
partial ordering on E: x 3 y if and only if x- YE%. Then X is a simplex if 
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and only if X is a lattice (i.e, each pair x, y in 2 has the greatest lower 
bound, denoted by x A y, in 2 (see 141, p. 58 - 60)). 

Theorem 1 is implied by the following 
LEMMA 1 .  Let YE be the set of all a -finite non-negative measures p on 

[-ao, m] such t h t  T,p 2 p for each SES \{(I). Then is a lattice in its own 
ordering ; fir p,, p2 E 5 we have 

where .? = dpl/d.(pl -t pz), g = dp,/d(p, f p2), and S A B = minCf, Q). 
Progf. Let ply ~ ~ € 5  and p = pl+p, .  Then both pl and p2 are ab- 

solutely continuous with respect to p, hence have Radon -Nikodym derivat- 
ives f and g, respectively. Let h = f A g (this is defined p-a.e.) and let 
PI A P2 = hp. 

Put C = fx: f (x) < g(x)) and D = (x: f (x) 2 ~ ( x ) ) .  
Let s ES \{0} and let B be a Bore1 subset of [- a, oo 1. Then 

+ S(pl~p,)!B)= J M P =  j MP+ I M P =  , j fdp+ 
T,- 'B T~- ' ( B ~ c )  T ;  ' ( B ~ D )  T , ~ B ~ T , -  I C ~ C  

- - j fdp+ gdp= J hdp+ S MP = j hdp = P I  A P,(B).  
B n C  B n D  BnC B n D  B 

This shows that T, (p ,  A pl) 2 pl A pz for each s E S \,{O). It follows easily 
that p, A p2 is the greatest lower bound of p, and p2, so is a lattice. 

Proof of Theorem 1. Let p, ASK and a, #I > 0. Let p,, A p,,, be 
defined as in Lemma 1. Then, by Lemma 1, pa, A p,, is the greatest Iower 
taund of P,, and Pp,, and UP,, A P@,) 2 Pa, A Pal. Since Pap A P*, G P,,, 
there exists a finite Bore1 measure v such that p,, A p,, = p,. Then v E M and 
v is the greatest lower bound of ,orp and PA. Thus the theorem is proved. 

Clearly, the measures concentrated on the three-point set .( - oo, 0, co], 
which have equal masses at - oo and co if S n [- 1 ,  0) # 6, belong to M. 
Moreover, ji E M if and only if p E M. Finally, it is easy to see that a measure 
belongs to M if and only if its restrictions to (-m, O)u(O, m) and 
I , - x , oo ) , respectively, belong to M. if S n 1- 1, 0) = 0, then a measure 

belongs to M if and only if its restrictions to ( -  co, 0) and (0, m), respecti- 
vely, belong to M. Hence we get the following lemma: 

LEMMA 2. The extreme points of K are measures concentrated on one of the 
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following sets; (O), [ - OD, m), and ( -  a, 0) v (0, a). Moreovery if 
S n [- 1, 0) = 0, then the extreme points of K are measures concentrated 
on one of the following sets: [ O )  , [ - c~ j, 1 a j , (0, m), and - oc, 0). 

By e(K)  we denote the set of extreme points of K. 
LEMMA 3. If pee(#), then p is absolutely continuous (i.e., ubsolzstely 

continuous with respect to the Lebesgue mearmre) or singular continuous, or 
atomic. 

Proof. Let p ~ e ( K ) .  Write'p in the form 
-- 

. . ..- = alp, +012p2+@3f13, 
where al+a2+u,  = 1, ai >, 0, p, is an absolutely continuous probability 
measure, p2 is an atomic probability measure, and p3 is a singular con- 
tinuous probability measure. Let E , ,  E,,  and E ,  be sets such that pi (E,) = O 
for i # j and h ( E i )  = 1 (i, j = 1, 2,  3). If ai # 0, then &(B) = p ( B n  Ei)/a, and 

for all Borel subsets B of [-coy m], S S S  \to). Thus, if ori # 0, then f i  EK. 
Since p is an extreme point of K, at most one u,, say a,, is positive. Then p 
= pp. ,This proves the lemma. 

Let I be a non-negative Borel measure on [- m, a] and let E be a 
Borel subset of [ - oo , oo] such that A(Ef) = 0. Then I is said to be S - 
invariant on E if T,A(B) = I(B) for all Borel subsets B of E and s ES \{O). It 
is not difficult to show that if A is S-invariant on E, then T,-'E c E I-a.e. 
for each s E S \(O). 

We shall show that if p ~ e ( K ) ,  then p, is S-invariant on some Borel set 
E. First, we prove two basic lemmas on S -invariant measures. 

LEMMA 4. Let E be a Bore! subset of [ - cay oo]. Suppose that 13. a d  p are 
a-jnite measures on [-m, m], I is S-invariant on E ( l ( E f )  = O), and p is 
absolutely continuous with respect to I (with dp/ciA = f, say). Then: 

(a) if T,p 2 p for each s E S \(O), then 

(3) f OT,-' 2 f 2-a.e. for each S E S  \[O), 

(4) T,(p-p A A) 2 p - p  A A for each SES-\{O); 

.- (b) if f o T,- ' 2 f A - a.e. for each s E S \{O), then T,p  2 p for each 
S€S '10). 

Proof. (a) Let T,p 2 p for each SES \{O). Put 

A = ( x :  f (x)> f(T,-'(x)))nE for somes~S\{O) .  

Suppose that I(A) > 0. Then 

P(T,-~A) = j f d ~  < 1 SO T,M = jfi(10 ~ - l )  = j f d ~  = P(A), 
T~- 'i T; I A  A A 

which contradicts T,p 2 p. Thus f o T,-' 2f I -a.e. for each s ES  \ 10). 
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Now we prove inequality (4). Since both p and R are absolutely con- 
tinuous with respect t o  p+A, they have Radon -Nikodym derivatives P and 
G,  respectively. Then for all Borel subsets B of [-a), a] we have 

Hence F ( f ' + l )  = f A-ax.  and G(f + I ) =  1 A-a.e. Thus F = f /V+l),  
G = l/(f + I), and F A G..=_( f A l)/( f + 1) IZ - a.e. Then for all Borel subsets B 

I 
of [- m, X] we have 

p A 1(B) = S ( F  A G)d(p+R) = J ( f  A 1)dA. I _  - -  
B B 

Put C = {x: f (x) > '1). If B is a Borel subset of E and S E S  \[O), then 

= ( p - p  A A)(T,- 'B) = T,(p-p  A I ) (B) .  
I Thus inequality (4) is proved for Borel subsets B of E. If B is a Bore1 

subset of [ -co ,  co], then 

( P - P  A A)(B) = ( P - P  A I ) ( B ~ E )  G ( P - P  A I Z ) ~ ( T , - ' ( B ~ E ) )  

< ( p - p  A A)(T,-lB) = X(p-p  A A)(@. 

(b) Suppose f o T , - ' 2  f A-a.e. for each S E S ~ I O ) .  If S E S ' I O )  and 
B is a Borel subset of [ - M I ,  x], then 

Thus (b) is proved. This completes the proof. 
LEMMA 5. Let p E e ( K ) .  Suppose that A. is a a -,finite measure on [- co , co], 

El is a Borel subset o f  [- co, CQ] with ;I(E;) = 0, A is S - inuariant on E , ,  and 
p is absolutely continuous with respect to IZ. Then there exist a number a. > 0 
and a ser E of !!-measure. I such that p,, is S-invariant on E and aoll  E = pp. 

Proof. If p is concentrated on :-a, 0, a], then the assertion is 
ipmediate. In the remaining cases, by Lemma 2, p is concentrated on 

3 - Prab. Matb. Statist. 3 (2) 
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(-cc, 0) u(0, m). Thus, it suffices to prove the lemma for measures p 
concentrated on - cc , 0) u (0, a). 

Let E be a set such that A] E is absoIutely continuous with respect to p 
and RIE' is singular with respect to p. It is easy to see that A(E is S-  
invariant on E and p(E)  = 1. Clearly, all E is S-invariant on E for each 
a > 0. 

Suppose that there exists a ,  > 0 such that, for a certain Borel set 
B,, a,A(B, n E)  < p,(B,) and, for a certain Borel set B,, 
a1A(B2 n > p,(B,). Setting 

. . . 
rn . . 

c = S u2(1 +uZ)- 'd(p,  A alL), 
- m 

we obtain 0 < c < 1. Put 

p1 = c-'(1 +u2) -I  u2(p, A all)  and p2 = (1 -c)- '(p-cp1). 

From Theorem 1 it follows that p, EK. By Lemma 4 (a), (41, we have 
p, EK. It is clear that p, f: p, and p = cpl +(1 -c )  p2, which contradicts the 
assumption that j i ~ r ( K ) .  Thus, for every positive number a and for all Borel 
subsets B of E either aA (B) 2 p, (B) or alZ (B) 6 p, (B) .  Hence there exists a 
positive number a, such that a,l(B) = p,(B) for all Borel subsets 3 of E. 
Thus a,Ll E = p, and p, is S-invariant on E. This completes the proof.- 

The next two lemmas characterize the extreme points of the set K, which 
are absolutely continuous measures (i.e, absolutely continuous with respect 
to the Lebesgue measure) or atomic measures. Throughout the rest of the 
paper we denote by rn the Lebesgue measure. 

Let E be a Borel subset of ( -  oo, a) such that m(E) > 0 and T,-'E c E 
rn - a.e. for each s ES \[O]. We define the measure p, by 

for Borel subsets 3 of (-oo,  a). It is not difficult to prove that p, is S- 
invariant on E. If, moreover, E fulfills the condition 

then we define the measure mE by 

'for Borel subsets B of ( -  x ,  x), where (A,)-' = 1 /yl(l +y2)- 'dy .  It is easy 
to see that E 
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LEMMA 6. Let ~ E K  and assume that p is absolutely continuous (with 
dp/drn = f,). Let E = (x: f,(x) > 0). Then: 

(a) p, is absolutely continuous with respect to p, and p, is absoiutely 
I 

continuous with respect to p,; 
i (b) $ p ~ e ( K ) ,  then p = m,; 

(c) if p E e ( K ) ,  the11 p, is S - invariant on E .  
Proof. (a) is obvious. 
(b) Since pE is S-invariant on E and p, is absolutely continuous with 

respect to pE, there exists, by Lemma 5, a positive number a, such that p, 
= a,pE. Since p is probability, a, = A,. Clearly, a measure p determines 
uniquely a measure v such that p = p, (if such a measure v exists). Thus, by 
(7), 

(c) follows immediately from (6) and (7). This completes the proof. 
Let S satisfy the condition 

Let E c (- w,  oo) \-((I) be a non-empty countable set such that 
T,- l E  c E for each s E S \ ( O } .  We define the measure p, as 

Clearly, p, is S-invariant on E. If, moreover, 

x 
C- < 00, 
E + xZ 

then we define the measure m, as 

(9) 

where 

Then it is not difficult to prove that (7) holds. 
LEMMA 7. Let ~ E K  and assume that p  is atomic. Let E = { x :  p([x)) > 0). 

The11 conditions (a), (b), and (c) of Lemma 6 are fu&lled. 
The proof is analogous to that of Lemma 6. 
Given S, we say that S fulfills condition ( * )  if for every singular con- 

tinuous measure p from e ( K )  there exist a set E of p-measure 1 and a 
measure I such that A is S-invariant on E and p. is absolutely continuous 

I with respect to I. 
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LEMMA 8. Assume rhar S fulJills condition ( * ) and p E e(K). Then there exists 
u set E r$ p-melashe 1 such that p, is S-invarianr on E. 

Proof. If p is absolutely continuous or atomic, then the lemma follows 
from Lemmas 6 and 7, respectively. In the remaining cases, by Lemma 3, p is 
singular continuous. Since S fulfills condition ( *), an application of Lemma 5 
completes the proof. 

Given S, we say that a probability measure p on [- oo, co] belongs to the 
set 2 if there exists a set E of p - measure 1 such that 

(a) p, is S -invariant on E ; - - 
.(b) for any  sets^,, E ,  such that T,-lE1 c El p:a.e., T,-'E, c E ,  p-a.c. 

for each S E S  \(O], and El u E2 = E p-a.e., if p(E1) > 0 and p(E,) > 0, then 
P ( E ,  6-7 E2) > 0. 

NO; we shall prove that if S fulfills condition (*), then the sets e ( K )  and 
9 coincide. 

LEMMA 9. I c e ( K ) .  

Proof. Let ~ € 9  and let E be the set of p -  measure 1 which fulfills 
conditions (a) and (b) of the definition of 22. 

Suppose that there exist p, and p2 from K such that 

where ply p2 EK and 0 < a < 1. Since both p,, and p,, are absolutely con- 
tinuous with respect to p,, they have Radon - Nikodym derivatives f and g, 
respectively. Then- 

- for all Bore1 subsets B of [- oo, 031. Hence 

(10) uf +(l-a)g = 1 p-a.e. 

By Lemma 4 we have 

(11) f o T , - l > f  and goT,- '2gp-a.e.  f o r e a c h s ~ s  10). 

Setting A = (x: g(x) > 1) and C = (x:  f (x) > I ) ,  by (11) we get 
I 

(12) q - ' A c A  and T , - l C c C  ji-a.e. for each SES\[O) .  

Put D = (x: f (x) = 1). By (lo), D = (x: g(x) = 1 J . Clearly, the sets A, C, 
and D are mutually disjoint. By (ll), we have 

! i T,-'D c ( C u D ) n ( A u D )  y-a.e. for each S E S  \[O). 
I 
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Taking into account the equality (C u D) n ( A  u D) = D we obtain 

(13) . T , - ~ D C D  p-ax.  for each SES\{O). 

Since p1 and p, are probability measures, we get 

(14) p(A) > 0 if  and only if p(C) > 0. 

Setting El = E n A and E2 = E n (C u D), by (12) and (13) we have 
T-lEl c El and %-'El c Ez p-a.e. for each S E S  \(O). 

Suppose that p(A)  > 0. Then, by (14), p(C) > 0. Consequently, p(El) > 0 
and p(E,) > 0. . Since El-nE, c A n ( C u D )  and A ~ ( c ~ D )  =(&we have 
p(El n ki) = 0. This contradicts the assumption that y €2. 

Thus p(A) = 0, and taking into account (14) wz get p(C) = 0. Hence f 
= g = 1 p - a.e. Consequently, p,  = p2 = p, which completes the proof. 

LEMMA 10. Let S fulJiE1 condition ( *). Then e (K)  c 2. 
P r o  of. Let p E e ( K ) .  By Lemma 8 there exists a set E of p - measure 1 

such that p,, is S -invariant on E. Suppose that there exist two sets El and E ,  
such that T,-'E, c E ,  and x- ' E ,  c E2 p -a.e. for each S E S  \(O}, E ,  u E, 
= E p-a.e., y(E,) > 0, p(E2) > 0, and p(E1 n E l )  = 0. Then 

P =  PI +(I -alp22 
where ar = p ( E l ) ,  p l ( B ) = a - l p ( B n E , ) ,  p,(B) = ( l T a ) - l p ( B n E , ) .  Since 
ply p 2 € K ,  p, # p,, and 0 < a < 1, this contradicts the assumption that 
p ~ e ( K ) .  Thus, if p ~ e ( K ) ,  then @ ~ 2 .  This completes the proof. 
N~W, we are ready to prove the representation of the characteristic 

functions of distributions from the classes l?: for which S fulfills condition 
(*I .  
THEOREM 2. Let S fuIJill condition (*). An infinitely divisible measure P 

belongs to the class 2; if and only if its characteristic function has the 
representation 

$,-, - m  

where b is a real constant, So is the set of ail probability measures from S 
concen~ated on ( -  oo, m), a d  v is a $finite Bore! masure on 9,. Moreover, 
the function determines b and v uniquely. 

Proof. By Lemmas 9 and 10, e (K)  = 2. Now, we can apply Choquet's 
theorem on representation of the points of a compact convex set as barycen- 
ters of the extreme points (E4], p. 19). Consequently, for every measure z EK 
there exists a probability measure 1 on S such that for all continuous 
functions on [- m, a31 we have 
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Moreover, the measure z assigns zero mass to the set (- oo, m) if and 
only if I has zero mass at every p from 2 which is not concentrated on 
( - m, a). Further, formula (1 6) holds for all bounded continuous functions 
on ( - M, M) whenever r E KO. Hence we get the following statement : z E M ,  
if and only if there exists a finite Borel measure v on 2, such that 

for all continuous .- bounded - functions f on (- m, a). Setting 

into (17), we obtain the formula 

which implies representation (15). 
Since K is a simplex (see Theorem I), from Choquet's uniqueness theorem 

for a metrizable space X we infer that v is determined uniquely {[4], p. 70). 
Hence b is also determined uniquely. This completes the proof. 

3. Using Theorem 2 we give the representation of the characteristic 
functions of distributions from the classes in two cases: for m(S)  > 0 and 
in the special case of a discrete semigroup S. 

The following lemma implies that if m(S) > 0, then S fulfills condition 
(*I. 

LEMMA 11 .  Let P be an infinitely divisible measure. If the decomposability 
semigroup Od(p) has the positive Lebesgue measure, then the Khintchine 
measure corresponding to P is except on [O) absolutely continuous with respect 
to the Lebesgue measure. 

Proof.  Given a finite Borel measure 1 on R, we put 
- .  

F A  (B)  = PA   ex^ t B ) )  
for all Borel subsets B of R. Then, by (I), we have the inequality 

for all Borel subsets B of R and for each positive number s from a 
decomposability IYd(Q) of an infinitely divisible measure Q for which A is a 
Khintchine measure. 

Let p be a Khintchine measure corresponding to P. Clear.ly, it suffices to 
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prove the lemma in the case of p concentrated on (- m, 0) u (0, m). Then, 
by Theorem 1.2 in [3], p, is non-atomic. Suppose that 

where 0 < u < 1, p, is absolutely continuous, and p, is singular continuous. 
Since a < 1, there exists x, # 0 such that 

lirn sup Pv  ( ( ~ 0  r Xo + h)) 
k 

= m. 
O < h C l / "  

Without loss of generality we may assume that x, > 0. Then 

lirn sup 
h 

= 00. 
"+m O c h < l / n  

Since F, is singular continuous and finite on bounded sets, we have 

lim sup 
h 

= 0 rn-a.e. 
O < h < l / n  

If s € l Y d ( P )  n (0, I), then by (18) we obtain 

Then by (21)  and (23) we get 

lirn ' sup F" ((log x, 1% x + 4) 
h 

= 00 
"+'O O < h < l / n  

for x exo (Dd ( P )  n ( 0 ,  1 ) ) .  Since m ( x ,  (Dd (P)  n (0, 1))) > 0, equality (24) con- 
tradicts (22). Thus a = 1 .  This completes the proof. 

From Lemma 11 it follows that in the case of m(S) > 0 the set of extreme 
points of K which are singular continuous measures is empty. Thus con- 
dition ( * )  is fulfilled. In this case 9, consists of do and of all probability 
measures m, (defined by (6)), where E E X  and X is the set of all Bore1 
subsets E of (- m, oo) satisfying the following conditions: 

(25b) T,-'E c E rn - a.e. for each s ES \(O) ; 

(2%) for all sets E l ,  E ,  such that K-'El c E l ,  T,- lE2 c E ,  rn - a.e. for 
e a c h s ~ S  \{O), and El W E ,  = E m-a.e.,ifm(E1) > Oand rn(E,)> 0 ,  
then m(El  n E,) > 0. 

Since X u 10) is homeomorphic to 2, up to rn - null sets ( E  + m,, 0 + So), 
we obtain the following theorem as a corollary to Theorem 2: 
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THEOREM 3. Let m(S) > 0. An infinitely divisible musure P belongs to the 
class 2; if and only if its characteristic function P has the representation . 

where b is a real constant, G is a non - negative real constant, X consists (up to 
m- rzull sets) of all Borel subsets B of R which satisfy conditiol~s (25), and v is a 
,finite Borel measure on X .  Moreover, rhe junction F determines b, G, and 
v uniquely. - -. -- 

Setting S = [0, 11 in Theorem 3, we obtain as a corollary the Urbanik 
theorem ( [ S ] ,  p, 209). 

THEOREM 4. P is a seIf- decomposable distribution (i.e,- LO, I] c Ud (P))  ij 
and only if its ckaructe~istic function has the representation 

where b is a real constant, v is a finite Borel measure on R, and the integrand 
is defined as - i t 2  when u = 0. 

In fact, 
x = ( [ x ,  01: X E ( -  00,O)) V ([0, x ] :  XE(O, 00)) 

up to m - null sets and the mapping Ex, 01 + x ,  [0, x]  + x is a home- 
omorphism between X and (- oo, 0) u ( 0 ,  m). 

Setting S = [q, 11, where -1 < q < 0, in Theorem 3 we obtain 
COROLLARY 1. Let S = [q, 11, where - 1 d q < 0. An infinitely divisible 

measure P belongs to the class I!, if and only if its characteristic function 
has the representation 

m au u 
e''~ - 1 

p( t )  = rip { i b t t  j / (j- dy-it arctan u-it arctan v  
Ivl - -. 

X 
1 

log (1 +uZ)( l  + v2)  
v (dl49 do)}, 

where b is a real constant and v is a jnite Borel measure on the set 
( (u,  v )  : 0 < u < m, u/q < v < qu) . Moreover, the function P determines b and 
v uniquely. 

Now we give the representation of the characteristic functions of distrib- 
utions from the classes I!.  if S is a semigroup of the form 
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where O < so < 1, kj is an increasing sequence of positive integers, k, = 0, 
and nj E (1 ,  2) .  Without loss of generality we may assume that for sufficiently 
large j either k, + = kj or ki + = k, + 1 . 
THEOREM 5. Let S be a semigroup of the form (26). An iqfinitely divisible 

measure P belongs to the class l!: i f  and only i f  its characteristic function 
has the representation 

whme b is a real constant, G is a non- negative real constant, Y = (0, a )  $! 
- 1 E S  and Y = R \{O) if - 198 ,  n is an integer greater than or equal to 1 ,  v 
is n finite Bore1 measure on Y x 11, . . ., n ) ,  and the sequence (Sk)p= =, m h  that 
S c S, and T,- IS, c S, for each s E S \(O) is defined in the folbwing way: 

(i) i f  there exists a sequence of positive integers (mi) such that S 
'"j a, = isl 3 j = o  u (O) ,  then {S,),",, consists of all the sets of the forin 

{s'[]&o u (01, where sl = so or s, = -so, and ( I j ]  is a sequence of posit& 
integms ; 

(ii) in the remaining cases, (S,),"=, consists of all the sets of the form 
;( - l f ~  so,  j. ,, u [O} ,  where {$) is a sequence of positive integers. 

Moreover, the function determines b, 6, and v uniquely. 
Proof. Let p ~ e ( K ) .  If ,u is concentrated on (O), then p = 60. I f  p is 

concentrated on ( -a ,  oo) and ~n[-1,0)=&, then p = 6 - ,  or p = S , .  
If p i s  concentrated on ( - m , a )  and S n C - l , O ) # d ,  then ~ = + 6 - , +  
+*a,. In the remaining cases, by Lemma 2, p is concentrated on 
( -a ,  O ) u ( O ,  a). 

Let us consider the case S = (( - so)"j),E0 u (0). Put 

where v > 0 and U E ( V S ; ,  v). 
Suppose that there exist real numbers vo > 0 and uo E (v,si, vo) such that 

0 < p ( ~ ( v , ,  v,)) < 1 .  Put 

C=P(A(UO¶~O)) ,  P 1 = ~ - ~ ~ l A ( u o , v o ) ,  p2=(1 -c ) -1 (p -c~ l ) .  

It is clear that p1 # p2, pl, p2 E K ,  and p = cp, +(l- c) p,, which con- 
tradicts the assumption that p Ee (K). 

Hence for every positive number v and for every number u ~ ( v s i ,  v) we I 

! 



have either A (u, v) = 0 or A (u, U) = 1. Consequently, p is atomic and there 
exists a real number x # 0 such that 

Since for sufficiently large j we have kj+ = kj + 1, Lemma 7 and Lemma 
6 (b) imply that there exists an integer j1 such that 

sup (IX(-S,)~[: p ( : ~ ( - s * } ~ ~ ) > O ) = ~ x ( - ~ ~ ~ ~ ~ (  
- m < k < m  

and p = mrIsi,, where .. - wl = x(-so)", 1 s i, 6 n. 

In the case S = (s;;j]j"=, u (O}, we put 
m 

B ( u , v ) =  U ( U S ~ + ~ , U S ~ J  for ~ > O , U E ( V S ~ , V )  
k =  - m 

and 
m 

C(u,  v )  = U [US:, vsf,") for v < 0, u E ( V S ~ ,  v). 
k =  - m 

Then, either for every v > 0 and for every u E(VS~,  V )  

or for every v < 0 and for every U E ( V ,  US,,) 

(because either ((0, m)) = 1 or p ((- coy 0)) > 1). 
Hence there exists a real number y # 0 such that p((yS$j,"= - ,) = 1. By 

Lemma 7 and Lemma 6 (b) there exist w, # 0 and i ,  E (1, . . ., n) such that p 
= "fw2si,. 

Assume now that S is not of the form (i). Put 
m m  

D(u, v) = U (vsy l ,  u6-J u U [ - US:, -US$") for v > 0, u E ( v s ~ ,  v) . 
k = - m  k = - m  

Then for every v > 0 and for every u  us,, v) either D (u, v) = 0 or 
D(u,  v)  = 1. Hence there exists z # 0 such that p(+ [ z s ~ } ~ = - , )  = 1. By 
Lemma 7 and Lemma 6 (b) there exist w, # 0 and i ,  E (1, . . ., n) such that p 
= mw3si - 

~urtber, we note that i f  - I E S, then m-,, = hsi, and if - 1 #S, then 
m-,, # wsi. Thus the mapping qw,S.i) + (w,  i) is a homeomorphism bet- 
ween the extreme points of K wh~ch are measures concentrated on 
(- a, 0) u (0, oo) and Y x (1, . . ., n). Therefore, Theorem 5 foIIows from 
Theorem 3. 

Setting S = (#I,"= v (O), where 0 < Is1 < 1, in Theorem 5 we obtain 
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COROLLARY 2. Let P be an infinitely divisible measure and 0 < Is1 < I .  Then 
s E ~i~ (P) if and only if the characteristic function d of P has the representation 

(0 
Z 

- Z 

where b i s  a real constant and v is afinite Burel masure on R. Moreover, the 
function P determines b and v uniquely. 

A In Lemmas 6 and7 we considered S -invariant measures which were 
either absolutely continuous or atomic. Now we prove the lemma on S -  
invariant singular continuous measures. 

Let m(S) = 0. Given 0 < E < 1 and a Borel subset B of 6 we put 

Let E be a perfect and nowhere dense subset of R such that T,- E c E 
for each s E S \{O) and E c (-a, a) for some a > 0. Note that T,- ' E ,  c E, for 
each s E S \[O). Choose E, 1 1. Since the set of probability measures on 
[- m, m] is compact, without loss of generality we may assume that IrnEenf 

is convergent as E,T 1 (by passing to a subsequence if necessary). Let rn, be 
the limit of this sequence. 

, LEMMA 12. Ler m(S) = 0, 0 < E, < E,, < 1, and E, -+ 1. Let E be a pefect 
and nowhere dense m-null subset of R such that T,-'E c E for each SES \10) 
and E c [- 1, I]. Suppose that m, is the limit of (m, 3 as n -, m. Then 
mE (E) = 1 and p,,,, is S -invariant on E. 

Proof. Clearly, p,, is non-atomic. Let JV be the set of all Borel subsets 
of E. Put 

Then % ' c ( ~ = . N ^ .  Put En=E,,, p=pmE, and p n = p m E n .  Let 

X = (3: B c E  and 7;p(B) =p(B) for each SES \to;). 
We prove that B c X .  Choose and fix positive numbers a < b and E ~ .  

Put C = [a, b] n E and C, = C,.. Then 

lim sup pn([a,, a) ~ ( b ,  b~l;. '1 n Ek) = limsup pn([mk, a] u [b, b~l ;  '1) 
n-m n+ co 

< ~(Cmk, a1 u Cb, b ~ k l l )  = ~(Cmk, a) u(b, b ~ i ' l ) .  

Since [a,., a)u(b, b r i 1 J 1 6  as k + m  and p([mk, a)u(b, bs;l])<m 
(because of O$ [mk, b ~ l ;  I]), we have 



Hence 

T. Rajba 

07)  Iim limsup &(([as,, a) u (b ,  b ~ ; ' ] )  n E,) = 0. 
k - r n  n + r  

A similar argument shows that 

(28) lim Lim sup ~ p .  ((CUE., a) u (by  b . ~ i  '1) n E,) = 0. 
k - r m  n+41 

Taking into account (27) and (28) we obtain 
.- 

p (C) = p( n Ck) = !it p(C3 P lirn lim sup pn (Ck) = lim Ern pnj (C,) 
. k + s  k + *  n + ~  k - s  ~ j + a  

, = lirn lim pnj (Ek n [a,  b] )  
k-cm Ilj'llC .-- 

- " " .  

- lirn lirn p ,  (T-'Ek n T,-' [a, b])  
k + o :  nj-" 

- lim lirn pnj (T,- Ek n K- [a, b])  
k + x  M j + Z  

+limsup p n j ( q ' l ( ~ k n [ a e k ,  n)uE,n(b,  be;']))) 
n j -m 

. 2 Lim lirn sup pq(T.- 'Ck)  
k - 0 3  n . + m  

I 

2 lim hm inf p R j ( T -  'C& > lirn lim i d  pnj (int T- C,) 
k + m  n j+m , k + m  nj+m 

2 lirn p(int ~ , - l C , ) = p (  n int T,- 'C,)=p(T,- 'c) .  
k - . r  k +  r 

Thus g(C) 2 ~ ( T ; ' c ) .  Repeating this procedure we prove that p(T,-lC) 
2 p(C). Thus p(C) = p ( ~ , - l C )  for CEB. 

It is not difficult to verify that the class X is closed under finite disjoint 
unions, and if A,,  A,, ... E X ,  A, c A,  c ..., then U A , E X .  Clearly, the 

n 
class 9 is closed under intersections. Taking into account that, for Bore1 
subsets B of R, -- - 

it not difficult to prove that if A,, A2 E X  and A, c A,, then A, \A1 E X .  
Since B is closed under intersections, we have go(%') = X .  

For the rest of the proof we see that 
. 

(because if > E,, then m,,(E,J = I), which completes the proof. 
In 131 (Theorem 1.2) we proved that for every infinitely divisible measure 
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P there exists Q with atomic Khintchine measure for which Dd(P) = l)Ld (Q) if 
and only if 

1 s 2 < 0 0 *  

S F D ~ ~ , F I  

Further, for every infinitely divisible measure P there exists Q with ab- 
solutely continuous Khintchine measure such that D ' ~ ( P )  = Dd(Q) ([3], 
Theorem 1.3). If m(Did(P) )  > 0, then the Khintchine measure of P is except 
on [O) absolutely continuous (see Lemma 11). From the next theorem it 
follows (setting S = lYd(P)) that if m (IYd (PI) = 0, then there exists Q with i 

singular continuous Mintchine measure such that Dd(Q) 3 Dd(P). I 
i 

THEOREM 6. Let m(S)  = 0. Then there.exists un iefinitely divisible measure 
Q such that the Khintcbine measure corresponding to Q is singular continuous 
artd Dd (Q) I S .  1 

Proof.  Clearly, there exists a perfect and nowhere dense m - null set E 
such that: T-'E c E  for each SES \ [ O )  and E c [ - 1 ,  11. By Lemma 12 
there exists a probability measure mE on R such that m,(E) = 1 and pmE is 
S -invariant on E. From the proof of Lemma 12 it follows that mE is singular 
continuous. 

Let B be a Borel subset of R and s E S  \:(I]. Then 

Hence it follows that if Q is an infinitely divisible measure for which the 
corresponding Khintchine measure is equal to m,, then IYd(Q) 3 S. This 
completes the proof. 
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