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_ Abstract. In this paper we define classes I of certain infinitely
divisible measures on the real line. We get a representation of the
characteristic functions of distributions from certain classes 3. The
method of our proof, stimulated by results of Urbanik [5] consists in
finding the extreme points of a certain convex set formed by
Khintchine measures of distributions from Y. Once the extreme
points are found, one can apply Choquet’s theorem on represen-
tation of the points of a- compact convex set as barycenters of the
extreme points ([4], p. 19). From Choquet’s uniqueness theorem for
a metrizable space X we obtain the uniqueness of representanon

(41 p. 70).

i 1. It is well known that the measure P on the real line R .is infinitely
divisible if and only if its characteristic function P has the Lévy - Khintchine

representation
- . it
P(t) = exp v{ibt+ f(e""—l— lr‘ )1+" ,u(du)}

where b is a real constant and u is a finite Borel measure on R ([2], p. 309),
called a Khintchine measure.
Let u be a finite Borel measure on [—o0, c0]. We put #(B) = u(—B),
" where —B = {x: —xeB}. We define the measure p, as follows:

1+2

Pul(— 0, 0) (0, 0) = #l(—c0, 0) (0, ),

: p"'{—w’ 0, CO} =ﬂ|{—00, 0, O‘J}
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For every ceR\;0] we denote by 7, the mapping T.x =cx (xe€
[—oc, o0]). Given a Borel measure 4 on [— o0, o], T, A denotes the measure
defined by T.A(B) = A(T,”'B) for all Borel subsets B of [ — o0, a0]. For Borel
measures A and v on [— o0, o], A < v if and only if A(B) < v(B) for all Borel
subsets B of [ —o0, oo]. Further, by 6, (xe[ —o0, «0]) we denote the pro-

" bability measure concentrated at the point x.

Let P be an infinitely divisible measure on R. The decomposability
semigroup D (P) corresponding to P consists of all real numbers s for which
there -exists an mﬁmtely dmsﬂ)le measure P, such that

PO =P()P,0) (teR)

(see [3]). The semigroup operation is simply the multiplication of numbers. It

. is not difficult to prove that P is non-degenerate if and only if D'(P) is

compact (see [6]). In other words, for non -degenerate P, D (P) is a compact
subsemigroup of the multiplicative semigroup [—1, 1] containing 0 and 1
(see [7]). In [3] we proved that for every compact semigroup S containing 0
and 1 there exists an infinitely divisible measure P such that D¥(P) = S. It is
not difficult to prove that, for s #0, seD(P) if and only if

(Il) ’ . Epu > p‘l,

- -where pis a Khintchine measure corresponding to P (s§e [1] and [2]). Given

a compact semigroup S containing 0 and 1, we say that the probability
measure P belongs to a class L if S < D*(P).

.2. Throughout this paper, S is a compact semigroup containing 0 and
1. Let M(S) or, shortly, M be the set of all finite Borel measures u on
[— o0, o] for which T;p, > p, for each seS \{0}. Let M, be the subset of M
consisting of measures concentrated on (— oo, oo) Then, by (1), pe M, if and
only if u is a Khintchine measure corresponding to a distribution from Ig.
Let K be the subset of M consisting of all probability measures and put K,
= K n M,. Obviously, the set K is convex. The space of all probability
measures on [—o0, o] with weak convergence is a metrizable compact
space. We consider the induced topology on K. It is not difficult to show
that K is closed. Thus, K is compact.

© THEOREM 1. M is a convex cone generated by K, and K is a simplex.

Remark. Let X be a compact convex set in a real locally convex space
E. Without loss of generality we may assume that X is contained in a closed
hyperplane which misses the origin. Put

X={ox:a> OxeX}

X is the cone generated by X. A cone X induces a translation invariant
partial ordering on E: x>y if and only if x— yeX. Then X is a simplex if




A representation, of distributions 157

and only if X is a lattice (i.e, each pair x, y in X has the greatest lower
bound, denoted by x A y, in X (see [4], p. 58-60)).

Theorem 1 is implied by the following

LemMmA 1. Let Y; be the set of all o -finite non-negative measures p on
[— o0, 00] such that T,p > p for each seS§ \{0} Then Y; is a lattice in its own
ordering; for p,, p,€Ys we have

2 P1AD2 = f A Q(Pl +pa),

where f = dp,/d(p, +ps), g = sz/d(P1+Pz) and f A g = mm(f g)-

Proof. Let p,, poe¥y and p = p,;+p,. Then both p, and p, are ab-
solutely continuous with respect to p, hence have Radon - Nikodym derivat-
ives f and g, respectwely let h=f g (thls 1s deﬁned p- ae) and let
P1 A p2 = hp.

Put C = {x: f(x) <g(x)} and D = {x: f(x) g(x)}.

Let seS \{0} and let B be a Borel subset of [—o0, 0]. Then

T(py AP)B)= | hdp= " | hdp+  hdp= .|  fdp+
T, '8 T 18r0) 7, 'BrD) T, lan1] lcnc
o+ | gdp+ § fdp+ § gdp
1, 'BnT 1CAD 1, 18Ty DAC T, Y81 'DAD
= [ fidp+ [ gdp+ [ fidp+ |- gdp
BnCNTLC BnCnT D BnDNTC , BnDNT D -
> [ fip+ f fdp+ | gdp+ | gdp
BNCnTLC BnCnT D BnADNTC BnDNTD _
= | fip+ | gdp= | hdp+ | hdp= I hdp = p; A py(B).
BnC BnD BnC BnD

This shows that T,(p,; A p,) = p; A p; for each seS \’0}. It follows easily
that p; A p, is the greatest lower bound of p, and p,, so Y, is a lattice.

Proof of Theorem 1. Let u, AeK and a, #>0. Let p,, A p,; be
defined as in Lemma 1. Then, by Lemma 1, p,, A pg; is the greatest lower
bound of Dap and DPgas -and ’I.;(pap A pﬂﬂ.) > Pap _A Pga: Since Dap / Pga < Paps
there exists a finite Borel measure v such that p,, A pg; = p,. Then ve M and
v is the greatest lower bound of au and SA. Thus the theorem is proved.
Clearly, the measures concentrated on the three-point set {—o0, 0, o},
which have equal masses at —oo and o if SA[~1, 0) # O, belong to M.
Moreover, jie M if and only if ue M. Finally, it is easy to see that a measure
belongs to M if and only if its restrictions to (—oo, 0)u(0, cc) and
—oc, oo}, respectively, belong to M. if Sn[—1,0) =@, then a measure
belongs to M if and only if its restrictions to (— oo, 0) and (0, o), respecti-
vely, belong to M. Hence we get the following lemma:
LEMMA 2. The extreme points of K are measures concentrated on one of the
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~ following sets: {0}, {—o0, w0}, and (—o0, 0)U(0, ). Moreover, if

Sn[—1,0)=Q, then the extreme points of K are measures concentrated
on one of the following sets: |0}, {— o}, (o0}, (0, o), and (— oo, 0).

By. e(K) we denote the set of extreme points of K.

Lemma 3. If uee(K), then p is absolutely continuous (i.e., absolutely
continuous with respect to the Lebesque measure) or singular continuous, or
atomic.

Proof Let pee(K). erte u in the form

H= gy i, +asis, :
where a)+a;+a3 =1, ;>0, u, is an absolutely continuous probablhty
measure, g, is an atomic probablllty measure, and p; is a singular con-
tinuous probability measure. Let E,, E,, and E; be sets such that 4, (E) =0
fori#jand (E)=1(G,j=1, 2, 3). Ho; # 0, then y;(B) = u(B n E}))/o;; and

Tpy;(B) =a; "Tp,(BNE) > o] 'p,(BNE) = p,.(B)

for all Borel subsets B of [—o0, 0], seS \{0}. Thus, if o; # 0, then yeK.
Since u is an extreme point of K, at most one a;, say a,, is positive. Then u
= y,., This proves the lemma. ‘ _

Let A be a non-negative Borel measure on [—o0, 0] and let E be a
Borel subset of [0, oo] such that A(E)=0. Then A is said to be S-
invariant on E if T.A(B) = A(B) for all Borel subsets B of E and seS \{0}. It
is not difficult to show that if 4 i is §- invariant on E, then T, 'E < E 1-ae.
for each seS \{0}.

We shall show that if yee(K) then p, is S-invariant on some Borel set '
E. First, we prove two basic lemmas on §-invariant measures.

LEmMA 4. Let E be a Borel subset of [ — 0, o). Suppose that A and p are
o -finite measures on [ — o0, o], 4 is S-invariant on E (A(E')=0), and p is
absolutely continuous with respect to A (with dp/dA = f say) Then:
(@) if T,p= p for each seS \{0}, then
3 foT~ ;f A-ae. for each seS\|0},
(4) CT(p=p A A >p pAA.  for each seS\{0}; _
B if foT ' > [ A-ae. for each seS\{O} then Tp>p for each

Proof. (@) Let T,p > p for each seS \{0}. Put
A={x: f(x)> f(TL"'(0))}nE for some seS \{0}.

Suppose that 4(A) > 0. Then
p(T14) = j fii< | foTdi= jfd(,loT 1)—jfd/1 p(A),

rola 17t

which contradlcts T.p = p. Thus fo T,”' > f A-ae. for each seS \{0}.
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Now we prove inequality (4). Since both p and A are absolutely con-
tinuous with respect to p+ 4, they have Radon - Nikodym derivatives F and
G, respectively. Then for all Borel subsets B of [ —o0, ao] we have

[fdAi=pB)={Fd(p+4)=| F(f +1)dA,
B B B
[1di=A(B) = | Gd(p+2) = | G(f +1)dA.
B B B
- Hence F(f+1)=f A-ae. and G(f+1)=1 A-ae. Thus F = f/(f +1),

=1/(f+1),and F A G =(f A 1)/(f +1) A-a.e. Then for all Borel subsets B
of [~ 0, c0] we have

PAAB) =[(F AGd(p+A)=[(f A DdA.

Put C = {x: f(x) > 1}. If B is a Borel subset of E and seS \{0}, then
(p—p A 2)(B) = I(f“f Al)di= | (f-Ddi= | (f~1d(AoT")"

BnC BnC
= | (f—1)oTdi< | (f-1)oTdi
17 BAT] Ic T 'BnC
= | (foT=-1Ddi< | (f=0di= | (f=fA1)di
17 BAC T, 'BnC T, 18

=(p—p A )N(T;7'B) = T,(p—p A A)(B).
Thus inequality (4) is proved for Borel subsets B of E. If B is a Borel
subset of [ — o0, o0], then
(p—p A D(B)=(p—p A N)(BAE)<(p—p A )T, (BNE))
<(p—p A N(T7'B) = T,(p—p A )(B).

' (b) Suppose foT,"'> f A-ae. for each- seS\{O}. If seS'0} and
B is-a Borel subset of [ — o0, oo], then

TpB)=p(T,7'B)= [ fdiz | foTdi=[fd(AoT "

-1 -1
T, 'B Ty 'B

> [ fdGoT Y= [ fdi={fdi=p(®)

BnE BnE

/

Thus (b) is proved. This completes the proof.

. LEMMA 5. Let uce(K). Suppose that A is a o - finite measure on [ — o0, 0],
E, is a Borel subset of [ — oo, oo with A(E}) =0, A is S -invariant on E,, and
p is absolutely continuous with respect to A. Then there exist a number a, >0

and a set E of n-measure.1 such that py is S-invariant on E and agA|E = p,.

Proof. If u is concentrated on |—o0, 0, 00}, then the assertion is

immediate. In the remaining cases, by Lemma 2, pu is concentrated on

.3 — Prob. Math. Statist. 3 (2)
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(—o0, 0)u(0, c0). Thus, it suffices to prove the lemma for measures u
concentrated on (—oc, 0) (0, cc).

Let E be a set such that A| E is absolutely continuous with respect to u
and A E’ is singular with respect to u. It is easy to see that AE is S-
invariant on E and u(E) = 1. Clearly, aA|E is §-invariant on E for each
a>0.

Suppose that there exists a; > 0 such that, for a certain Borel set
B, a,A(B,nE)<p,(B,) and, for a certain Borel set B,,
a,A(B, " E) > p,(B,). Setting ' B :

c= | w*(1+u?)"1d(p, A a,d),
we obtain 0 <c < 1. Put

=T A4 PP A d)  and gy =(1—0) M (u—cpy).

From Theorem 1 it follows that u, € K. By Lemma 4 (a), (4), we have

ueK. Tt is clear that yu, # u, and u = cp, +(1 —c) u,, which contradicts the
assumption that uee(K). Thus, for every positive number a and for all Borel
subsets B of E either aA(B) > p,(B) or ai(B) < p,(B). Hence there exists a
positive number a, such that aod(B) = p,(B) for all Borel subsets B of E.
Thus agA|lE = p, and p, is §-invariant on E. This completes the proof.-

The next two lemmas characterize the extreme points of the set K, which
are absolutely continuous measures (i, absolutely continuous with respect
to the Lebesgue measure) or atomic measures. Throughout the rest of the
paper we denote by m the Lebesgue measure.

Let E be a Borel subset of (— o0, o) such that m(E) > 0 and T lEcE
m-ae. for each seS \{0}. We define the measure pe by

1
(5) pe(B) = ol dy
) BnE
for Borel subsets B of (— oo, o0). It is not difﬁcult-to prove that pg is S-
invariant on E. If, moreover, E fulfills the condition ™
fIM@a+y*)~tdy < oo,
E

then we define the measure mg by

(6) mg(B)=Ag | (1+y)~"dy

BnE

 for Borel subsets B of (—oc, o), where (AE) V= [Iyl(1+y?)~dy. It is easy
to see that E

(7) : Pmg = AgP-
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LemMA 6. Let ueK and assume that u is absolutely continuous (with
duj/dm = f,). Let E = {x: f,(x) > 0}. Then:

(@) p, is absolutely continuous with respect to pg and pg is absolutely
continuous with respect to p,;

(b) if pee(K), then p=mg;

() if uee(K), then p, is S-invariant on E.

Proof. (a) is obvious.’ ,

(b) Since pg is S-invariant on E and p, is absolutely continuous with
respect to' pg, there exists, by Lemma 35, a positive number a, such that p,
= aopg. Since p is probability, ao = A;. Clearly, a measure p determines
uniquely ‘d ‘measure v such that p = p, (if such a measure v exists). Thus, by
(7 1= mg.

(c) follows. immediately from (6) and (7). This completes the proof.

Let S satisfy the condition

Y s* < 0.
se§

Let E c(—o0, 0)\{0} be a non-empty countable set such that
T.”'E < E for each seS \{0}. We define the measure p; as

®) |  pe=1Y 8.

Clearly, pg is S-invariant on ‘E. If, moreover,

x2
L Tex? <

xeE

then we define the measure myg as

x2

+x zaxa

x2 -1
A = — .
E <£1+x2)

Then it is not difficult to prove that (7) holds.

LeEMMA 7. Let peK and assume that p is atomic. Let E = {x: u({x}) > 0}.
Then conditions (a), (b), and (c) of Lemma 6 are fulfilled.

The proof is analogous to that of Lemma 6.

Given S, we say that S fulfills condition (*) if for every singular con-
tinuous measure u from e(K) there exist a set E of u-measure 1 and a
measure 4 such that A is S-invariant on E and pu.is absolutely continuous
with respect to A. '

©® me = As ¥ 1

where
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LemMa 8. Assume that S fulfills condition (+) and pee(K). Then there exists
a set E of p-measure 1 such that p, is S-invariant on E.

Proof. If u is absolutely continuous or atomic, then the lemma follows
from Lemmas 6 and 7, respectively. In the remaining cases, by Lemma 3, p is
singular continuous. Since S fulfills condition (*), an application of Lemma 5
completes the proof.

Given S, we say that a probability measure y on [—o0, o] belongs to the
set 2 if there exists a set E of p-measure 1 such that

(a) p, is S-invariant on E; : s ‘

:(b) for any sets E,, E, such that T,"'E, c E, u-ae, T, 'E, < E, p-ae.
for each se S \{0}, and E, VE, = E p-ae, if p(E;) > 0 and pu(E;) > 0, then

wE, n Ez) > 0.

Now we shall prove that if S fulfills condltlon (*), then the sets e(K) and

2 coincide.

LeMmA 9. 2 c e(K).

Proof. Let ue2 and let E be the set of u-measure 1 which fulfills
conditions (a) and (b) of the definition of 2.
Suppose that there exist g, and u, from K such that

p=opy +(1—a)p,,

where p,, y,€K and 0 <a < 1. Since both p,, and p,, are absolutely con-
tinuous with respect to p,, they have Radon-Nikodym derivatives f/ and g,
respectively. Then

Ij" ldpu = pu(B) = (xpul (B)+(1 —d) pyz(B)

=a [ fdp,+(1—0) f gdp, = [ (of +(1—2)g)dp,
B B B )

~ for all Borel subsets B of [—o0, oo]. Hence

(10) of +(1-a)g=1 p-ae.

By Lemma 4 we have

\('11”)- foT7 '>f and goT '>yg u-a..e. for each seS ,0}.

Setting A = {x: g(x)>1} ‘and C ={x: f(x)>1}, by (11) we get
(12) T 'A< A and T, 'C<=C p-ae. for each seS \{0]
Put D = {x: f(x) = 1}. By (10), D = {x: g(x) = 1}. Clearly, the sets 4, C,

and D are mutually dls_]omt By (11), we have

T-D c(CuD)yn(AuD) p-ae. for each seS \{0}.
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Taking into account the equality (CuD)n (4w D) =D we obtain
(13) "T7'D< D p-ae. for each seS \{0}.

Since u; and u, are probability measures, we get
(14)  u(4)>0 if and only if  w(C)> 0.

Setting E, =EnA and E, =En(CuD), by (12) and (13) we have
T, 'E, cE; and T, 'E, c E, u-ae. for cach seS \{0

“Suppose that u(A4) > 0. Then, by (14), u(C) > 0. Conscquently, .U(E1) >0
and p(E;) >'0. . Since E,nE; = An(CuD)and 4 A(CuUD) = @, we have
U(E; nE;)'=0. This contradicts the assumption that pe .

Thus p(A4) =0, and taking into account (14) w2 get u(C) = 0. Hence f
=g =1 p-ae. Consequently, y; = p, = p, which completes the proof.

Lemma 10. Let S fulfill condition (*). Then e(K) < 2.

Proof. Let pce(K). By Lemma 8 there exists a set E of u-measure l
such that p, is S -invariant on E. Suppose that there exist two sets E; and E,
such that T,"'E; < E, and T,”'E, c E, p-ae. for each seS \{0}, E, UE,
=FE u-ae., u(E;)>0, u(E;) >0, and u(E; nE,;) =0. Then

p=opy+(1—o)ps,,
where o = pu(E,), py(B)=a 'u(BNE,), u;(B)=(1<a) ! u(BNE,). Since
m, p2€K, py # py, and 0 <a <1, this contradicts the assumption that
pee(K). Thus, if pee(K), then jie 2. This completes the proof.

Now, we are ready to prove the representation of the characteristic
functions of distributions from the classes LY for which § fulfills condltlon
().

THEOREM 2. Let S fulfill condition (*). An infinitely dwzszble measure P
belongs to the class IS if and only if its characteristic function P has the
representation :

- v . © i " ~ Ly
asy PQ@ =exp{lbt+f[f ( 1_1+y2) y_ (dy):,v(du)}

.@0 -
where b is a real constant, 9 is the set of all probability measures from 2

the function P determmes b and v uniquely.

Proof. By Lemmas 9 and 10, ¢(K) = 2. Now, we can apply Choquet’s
theorem on representation of the points of a compact convex set as barycen-
ters of the extreme points ([4], p. 19). Consequently, for every measure €K

“there exists a probability measure A on 2 such that for all continuous
functions on [—oo, co] we have

e . [ foc@)=§( | fO)r@y)idp.

[— o0, 0] 2 [-w,o]
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Moreover, the measure t assigns zero mass to the set {—oc, oo} if and
only if 4 has zero mass at every u from 2 which is not concentrated on
(— o0, o0). Further, formula (16) holds for all bounded continuous functions
on (— o0, c0) whenever 1€ K,. Hence we get the following statement: 1€ M,
if and only if there exists a finite Borel measure v on 2, such that

(17) [ 10y = [ (1 FOInd)van
- o -
7for all continuous bounded functions f on ( 00, ). Settlng

ity ) 1+y?

C1+y?) Y

L) = ( "

into (17), we obtain the formula

o -

« _ iy g Ity 142
Taoman= [| [ (e-1-£2, ) 1wy |vian,

29 -
which implies representation (15).
Since K is a simplex (see Theorem 1), from Choquet’s uniqueness theorem

for a metrizable space X we infer that v is determined uniquely ([4], p. 70).
Hence b is also determined uniquely. This completes the proof.

3. Using Theorem 2 we give the representation of the characteristic
functions of distributions from the classes I} in two cases: for m(S) > 0 and

. .in the special case of a discrete semigroup S.

The following lemma implies that if m(S) > 0, then § fulfills condition
(*).

LEMMA 11. Let P be an infinitely divisible measure. If the decomposability

- semigroup DY(P) has the positive Lebesgue measure, then the Khintchine

measure corresponding to P is except on {0} absolutely continuous with respect
to the Lebesgue measure. :

Proof. Given a finite Borel measure A on R, we put.
_ P+ (B) = p (exp {B}) ,
for all Borel subsets B of R. Then, by (1), we have the inequality

(18) 72 (B+log 5) > 5, (B)

for all Borel subsets B of R and for each positive number s from a
decomposability D'(Q) of an mﬁnltely divisible measure Q for which 1 is a
Khintchine measure.

Let u be a Khintchine measure correspondmg to P. Clearly, it suffices to
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prove the lemma in the case of u concentrated on (— oo, 0) U(0, o). Then,
by Theorem 1.2 in [3], p, is non-atomic. Suppose that
(19] pu = ap‘:+(1 _a) Dvs

where 0 <a < 1, p, is absolutely continuous, and p, is singular continuous.
Since a < 1, there exists x4 ¢ 0 such that

(20) lim sup Py {Xo, X0 W) (Cxo, Xo+)) =

n=0 g<p<in h

Without loss of generality we may assume that x, > 0. Then’

. (( 1 h
21 im sup P28 X0 log Xo+h) _

n® g<h<l/n h

Since p, is singular continuous and finite on bounded sets, we have

=0 m-ae.

5, ((log x, log x+1
(22) lim sup P02 log x+h)

n o g<p<tn h _
If seD*(P)~(0, 1), then by (18) we obtain
(23)  P.((log xo+log s, log xo+h+1log s)) = P, ((log xo, log xo+h)).
Then by (21) and (23) we get

1 | h
(24) lim sup p"« 0g X, ‘0 X+ ))

B0 g<h<l/n h

for xexo(D*(P) (0, 1)). Since m(xo(D*(P) (0, 1))) > 0, equality (24) con-
tradicts (22). Thus a = 1. This completes the proof.

From Lemma 11 it follows that in the case of m(S) > O the set of extreme
points of K which are singular continuous measures is empty. Thus con-
dition (*) is fulfilled. In this case 2, consists of d, and of all probability
measures my (defined by (6)), where Ec X and X is the set of all Borel
subsets E of (— o0, o0) satlsfymg the following conditions:.

(252)._ 0 < Iyl (1+y?) 'dy < o0;
E .

(25b) T, 'E < E m-ae. for each se§\{0};

(25c) for all sets E,, E, such that T, 'E, c E,, T,"'E, < E, m-ae. for
each seS \{0}, and E, VE, = E m- -ae, 1fm(E1) > 0 and m(Ez) >0,
then m(E; n E;) > 0.

Since X U {0} is homeomorphic to 2, up to m-null sets (E - mg, 0> 8,),
we obtain the following theorem as a corollary to Theorem 2: :
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THeOREM 3. Let m(S) > 0. An infinitely divisible measure P belongs to the
class LY if and only if its characteristic function P has the representation -

- Gr? A\ ' '
P(t) =exp {ib.t——;—+j(f 1 -li)[yz dy) f(e“” —1-7 f?;z dy) v(dZ)},
X z z

where b is a real constant, G is a non - negative real constant, X consists (up to
m - null sets) of all Borel subsets B of R which satisfy conditions (25), and v is a
finite Borel measure on X. Moreover, the funcnon P determmes b, G, and
v uniquely.-

Setting S . [0, 1] in Theorem 3, we obtam as a corollary the Urbanlk
theorem ([5], p. 209).

THEOREM 4. P is a self-decomposable distribution (i.e., [0, 1] = D4(P)) if
and only if its characteristic function P has the representation

tu

P() = exp{ibt+ f (f ew; Ldv—it arctan u) —_(_IL';;T) (d )}

-0 0

where b is a real constant, v is a finite Borel measure on R, and the integrand
is defined as —%t* when u=0.

In fact, ,
X ={[x, 0]: xe(—o0, 0)} U{[0, x]: xe(0, o0)}
up to m-null sets and the mapping [x, 0] —x, [0, x]—>x is a home-
omorphism between X and (— oo, 0) U(0, ).
Setting S =[g¢, 1], where —1 < ¢ <0, in Theorem 3 we obtain

CoroLLARY 1. Let S =[g, 1], where —1 < q <0. An infinitely divisible
measure P belongs to the class L if and only if its charactertstlc function P
has the representation

© qu
:ty 1
P(t) = exp {1bt+J f (.[ D] dy—zt arctan u—-zt arctan v)x
' 0 u/g v
X 1 v(du, dv)
log (1+u?)(14+v?) ’ ’

where b is a real constant and v is a finite Borel measure on the set
{(u, v): 0 < u < o0, u/q <v< qu}. Moreover, the function P determines b and
v uniquely.

Now we give the representation of the characteristic functions of distrib-
utions from the classes L§ if S is a semigroup of the form

(26) - {(—1)Ysg} 2o U {0},
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where 0 <s, <1, k; is an increasing sequence of positive integers, ko = 0,
and n;e {1, 2}. Without loss of generality we may assume that for sufficiently
large j either k;., =k; or k;,y = k;+1.

THEOREM 5. Let S be a semigroup of the form (26). An infinitely divisible
measure P belongs to the class I if and only if its characteristic function P
has the representation

2
P()=exp {ibt —GTt +

R AN o itsu \ 14522 \
* ‘[ {(sgk 1+ s2u2) sgk l:(e -1 1 +s2u?) szuz :'}V (d(u’ k))}9

Y x{1,...,n}

where b is a real constant, G is a non-negative real constant, Y = (0, o) if
—1eS and Y = R\{0} if —1¢S, n is an integer greater than or equal to 1, v
is a finite Borel measure on Y x {1, ..., n}, and the sequence {S;};>, such that
ScS§, and T[S, = S, for each seS \{0} is defined in the following way:

(@) if - there exists a sequence of positive integers {m;} such that S
= {s7/}j20 U {0}, then {S;};>, consists of all the sets of the form
{s1}720 U {0}, where s; = sy or s; = —s,, and {I;} is a sequence of positive
integers ;

(11) m the remaining cases, {8}, consists of all the sets of the form
(=1 ’sg}_;” oV {0}, where {I } is a sequence of positive integers.

Moreover, the function P determines b, G, and v uniquely.

Proof. Let uee(K). If p is concentrated on {0}, then u=4,. If u is
concentrated on {— oo, oo} and SN[—1,0)=O, then u=56__, or u=96,.
If u is concentrated on {—o0, 0} and SA[—1,0)# O, then p=46_,+
+16,. In the remaining cases, by Lemma 2, u is _concentrated on
(=00, 0)U(0, ).

Let us consider the case S = {(—so)"7}2o U {0}. Put

A(u, v) U (v(= So)z'“"2 u(— So)z"] v U [u( 507+, b(—s 0**3),
k= -w =-w
where v >0 and ue(vs3, v).-
Suppose that there exist real numbcrs vy > 0 and uoe(voso, vg) such that
0< u(A(vo, vg)) < 1. Put

= #(A(uo, Uo)), M= c 'yl Auo, vo), s = (140)_1(#“CH1)-

1t is clear that u, # u,, gy, p2€K, and u = cu, +(1—c) u,, which con-
tradicts the assumption that pee(K).
Hence for every positive number v and for every number ue(vsg, v) we
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have either A(u, v) =0 or A(u, v) = 1. Consequently, u is atomic and there
exists a real number x # 0 such that

(-lx(—so) Ik=—ao) =1.

Since for sufficiently largé j we have k;, = k;+1, Lemma 7 and Lemma
6 (b) imply that there exists an integer j; such that

sup  {Ix(=sof: u({x(—s0)*})> 0} [x(—so'"|
~w<k<wm
and p = Myys; > whﬁqriwl = x(—so) , 1 <iyp <n.

- In the case S = {sp’}jw, U {0}, we put

Bu,v)= U (vsk™!, ust] for v> 0, ue(vsy, v)

k=—-
and

Cu,v)= U [usk, vsk* )  for v < 0, ue(vs,, v).

k=-m
Then, either for every v > 0 and for every ue(vsy, v)
u(Bu,v)) =0 or p(B(u,v) =1
or for every v < 0 and for every ue(v, vsy)

u(C(u, v))=0‘ or  u(C,v)=1

(because either u((0, o)) =1 or u((— o0, 0)) > 1).

" Hence there exists a real number y # 0 such that u(lys§}i-,)=1. By
Lemma 7 and Lemma 6 (b) there exist w, # 0 and i€ {1, ..., n} such that u
=Mys,

Assume now that S is not of the form (i). Put

D(u, v) = U (st™ L usk1U U [—wust, —osk™t)  for v> 0, ue(vso, ).
k=—oo k=—w R -

Then for every v>0 and for every 'ue(ﬁsa, v) either D(u,v)=0 or
D(u,v)=1. Hence there exists z# 0 such that u(+{zs§}>_.)=1. By
Lemma 7 and Lemma 6 (b) there exist wy # 0 and iye{1, ..., n} such that u
=m

w3S;

Furtiler we note that if -—1eS then m_,s, = M,s,, and if —1¢S, then

M_ s, 7 Mys; Thus the mapping My,s5,) — (W, 1) is a homeomorphlsm bet-
ween the extreme points of K which are measures concentrated on .
(=0, 0 u(0, ) and Y x{1,..., n}. Therefore, Theorem 5 follows from
Theorem 3. '

Setting S = \s"},‘=o U {0}, where 0 <|s| <1, in Theorem 5 we obtain
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CoroLLARY 2. Let P be an infinitely divisible measure and 0 < |s| < 1. Then
se DY(P) if and only if the characteristic function P of P has the representation
P(r)

X

o N N | L itsku 145242
= ibt —_— e —1—
exp%l i j (kzo 1+5%*u 2) kgo [( 1+s%*u 2) s*u? Jv(du)}

where b is a real constant and v is a finite Borel measure on R. Moreover, the
function P determines b and v uniquely.

4. In Lemmas 6 and 7 we considered S -invariant measures which were -

~ either absolutely continuous or atomic. Now we prove the lemma on S-
invariant singular continuous measures.

Let m(S)=0. Given 0 <¢ <1 and a Borel subset B of R, we put

B,= U [ee,x"Ju U [x7!, xe].
xeBN[0, o) xeBn(— ,0) ' .

Let E be a perfect and nowhere dense subset of R such that 7 'E c E
for each s S \{0! and E = (—a, a) for some a > 0. Note that T,” 'E, c E, for
each seS\{0}. Choose ¢,11. Since the set of probability measures on
[— o0, o] is compact, without loss of generality we may assume that {m;_|

is convergent as ¢,T1 (by passing to a subsequence if necessary). Let m; be
the limit of this sequence.

Lemma 12. Let m(S) =0, 0 <5, <£,., < 1, and &, — 1. Let E be a perfect

and nowhere dense m-null subset of R such that T,”'E < E for each seS \{0}.

and E = [—1, 1]. Suppose that mg is the limit of {mg, } as n—oo. Then
mg(E)=1 and p,, is S- invariant on E.

Proof. Clearly, p,, is non-atomic. Let .4~ be the set of all Borel subsets
of E. Put

% = {[a, b]"E: a<b, 0¢[a, b]}. -~
Then ¢:(9)=A. Put E,=E,, p=ppg and p,= Prg, - Let
A ={B: Bc E and T,p(B) = p(B) for each seS \{0}}.

We prove that ¥ — #". Choose and fix positive numbers a<b and g,.
Put C =[a,b]nE and C,=C, . Then

lim sup p,([aze, ) U (b, beg 1 E) = limsup p, ([as,, a] O [b, bei )

< p([ay, a] U [b, be; ']) = p([as,, @) U (b, bey 1]).

Since [ag,, @)U (b, bak 1110 as k— oo and p([aa,‘, a)u (b, be; 1]) < o
(because of 0¢[ag,, be, ']), we have

p([ag, @) u(b, bey ') >0 as k— .




Hence

@7 lim limsup p, ([az, a) (b, be; *]) N E,) = 0.

=%

A similar argument shows that

(28) | Jim limsup T.p. (([ags, @) U (b, be; ']) N E,) = 0.

Tdkmg into account (27) and (28) we obtain
p(©)=p( () C) = Jim p(C)> Jim limsup p,(C) = lim hm Puy (G

n—ro

= lim ]xm Py (Exn[a, b))

k-0 ll . -

~ fim lim o (T 'E, N T, [a, b))

k— o nj— o

- llm hm (T lE, T [a, b])‘

k— IIJ

= lim (hm Pu; (L7 'E;n ‘l[é, b])+

k—'au npro

- +limsup p,, ( T, '(E, n[ag, @) W E, N (b, be; 1])))

nj—’oo

llm llmsup Pn; (T 1CY

hm hm inf p, (T, 1C) = llm lim inf p,, (int T, 1»C',‘)
nj~o o omow

hm p(int T."'C) =p ((’] int T. 1C) = p(T,710).

Thus_ p(C) p(T 10). Repeatmg this procedure we prove that p(T 10)
= p(C). Thus p(C) = p(T;"*C) for Ce¥%.

It is not difficult to verify that the class J is closed under finite disjoint
unions, and if A;, A,,...€e X, A, € A, ..., then U A,eA". Clearly, the

class ¢ is closed under intersections. Taking 1nto account that, for Borel
subsets B of R, T

T p(B) ( \( 8m 8,,)) and p(B \('—8,,, En)) <00,

it not difficult to prove that if A,, A, and A, c A4,, then 4, \4d,e%".
Since ¥ is closed under intersections, we have %,(%) = X"
For the rest of the proof we see that :

mg (E) = my( O E,) = lim mg(E,) > lim Jim mg, (E,) =1

(because if & > ¢,, then mg, (E,) = 1), which completes the proof.
In [3] (Theorem 1.2) we proved that for every infinitely divisible measure
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P there exists Q with atomic Khintchine measure for which D' (P) = D*(Q) if
and only if
Y s?<oo.
) sen'dm

Further, for every infinitely divisible measure P there exists Q with ab-
solutely continuous Khintchine measure such that D“(P) = D“(Q) ([3],
Theorem 1.3). If m(D*(P)) > 0, then the Khintchine measure of P is except
on {0} absolutely continuous (see Lemma 11). From the next theorem it

follows (setting S = D(P)) that if m(D*(P)) =0, then there exists Q with

singular continuous Khintchine measure such that D*(Q) > DU(P).

THEOREM 6. Let m(S) = 0. Then there exists an infinitely divisible measure
Q such that the Khintchine measure correspondmg to Q is singular continuous
and D*(Q)>S.

Proof. Clearly, there exists a perfect and nowhere dense m-null set E
such that T,"'E < E for each seS\{0} and Ec[—1,1]. By Lemma 12
there exists a probability measure mg on R such that mg(E) =1 and p,, is
S -invariant on E. From the proof of Lemma 12 it follows that mj is Slngu]dr

* continuous.

Let B be a Borel subset of R and se8§ \{0}. Then
me(‘];“lB) me( I(BHE)) me(BﬁE) = me(B)‘

Hence it follows that if Q is an infinitely divisible measure for which the
corresponding Khintchine measure is equal to mg, then DY(Q) > S. This
completes the proof.
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