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Abstract. In the paper the central limit theorem and the rates of
convergence in this theorem in Banach space ¢, are considered. Let
=D, .8, ), i=1,2,.., be iid. cy-valued random vari-
ables with E¢; = 0 and covariance matrix T. Let p be a zero-mean
Gaussian measure on ¢, with covariance matrix T,

Fo(A)=P{n~ 12 Xa: &edl
i=1

The main result of the paper can be formulated as follows: if
1€9] < M; = (In j)~"?a;, j > jo, where {a;} is an arbitrary sequence of
positive numbers tending to zero, then F, converges weakly to u.
Moreover, if instead of a; we take a slowly increasing sequence
(In, j)*/*>** where In, x =Inln,_, x and k> 2 is an arbitrary in-
teger, then it is possible to construct &, i > 1, failing the central limit
theorem. ’

If |&P < Mg, 6? =E(PP =(Inj)"**", j>»2, 6>0,and T
satisfies one additional condition, then we get the estimate

sup [F,(Ixll < A= pdixl] <nl = 0@m~"2*), &> 0.
1. Introduction. In thewpaper we consider the central limit theorem (CLT)
and the rate of convergence in this theorem in separable Banach space
Co={x=(xW,x3, ., x™ ), lim x® =0, [|x|| =sup |x™ < 0}.
Let ¢ be a random variable with values in a separable Banach space B
(B-valued r.v.), with distribution F, E¢ = 0, and covariance operator 7. Let

&, i=1,, be iid. B-valued r.v.’s with distribution F,

Fo(4) = P{n~ 172 Z Eedl.

i=1
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We say that ¢ satisfies CLT (shortly, £eCLT) if there exists a Gaussian
B-valued r.v. n with distribution x, mean zero, and covariance operator T
such that F, = u(= denotes weak convergence of probability measures). By
2 (B) we denote the class of Gaussian covariances in B, i.c., Te %#(B) if there
exists a Gaussian B-valued r.v. n with the covariance operator T.

Our choice of particular Banach space ¢, is motivated by the fact that
this space plays a rather important role in theory of probability on Banach
spaces. There are many statements (see, e.g., [13], [15], [27]) which are
proved for Banach spaces not containing subspaces isomorphic to ¢, and, as
a rule, these stateriénts are false in c,. A similar situation is for CLT in
Banach spaces. At present it is well known ([9], [5], [24]) that in Banach
spaces of type 2 (and only in such spaces) the condition

1y E|lP < 0

" implies £ CLT; in Banach spaces of cotype 2 (and only in such spaces) the
condition
(1.2 Te % (B)

implies ¢ eCLT. (For notions of spaces of some type and cotype we refer the

_reader to [5] and [9].) On the other hand, in [4] it is proved that in spaces

containing I uniformly (C(0, 1) and ¢, are examples of such spaces; C(S)
denotes the space of continuous functions on metric compact S with sup
norm) there exists a symmetric, bounded random variable satisfying (1.2) but
not satisfying CLT. The first example of such a kind was constructed in 1969
in [6], where CLT in C(S) was considered. Later there appeared more papers
concerning CLT in C(S), but as far as we know none of them was dealt with
CLT in c,.

In Section 2 we examine %(c,) and CLT in ¢,. Theorem 2.3 strengthens

~one. of the results from [26] about %(cy). Theorem 2.5 states that if
coordinates of a cy-valued r.v. & =(EW, ..., &™) satisfy the condition

(1'3) ' It(n)l < Mm h > Ry,

with M, =(In n)”'2a,, where {a,} is an arbitrary sequence of positive
numbers, tending to zero, then £ € CLT. Moreover, using the idea of example
in [4], we show that it is possible to construct a symmetric cq - valued r.v.,
satlsfymg (1.2) with B =¢, and (1.3) with

__(]n n) 1/2(1rl n)1/2+e

but not satisfying CLT. Here k > 2 is an arbitrary integer, ¢ > 0, and In; x
=InIn,_, x. Thus, only the case M, = (In n)~'/? remains open.
In Section 3, estimates of the quantity '

4y =sup Ptr/m) 3 &l <}~ Pl <n)]
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are given. Now, estimates of this quantity can be obtained in Banach spaces
with sufficiently smooth norm ([19], [20], [1]) and in spaces C(S) ([8], [21]).
In the last case the finite - dimensional approximation is used, and for the
space ¢, we apply also this approximation. (See [23] and [25] where the
finite - dimensional approximation was used in spaces I, 2 < p < o, and [,.)

It is worth while to mention papers [28] and [29] where the rates of
convergence in limit theorems are given in any Banach space and are
expressed by means of so-called ideal metrics. In these papers the estimate
of the quantity . :

sup II S () (Fuldx)—pdn)|
Je? B

is given, where 2 is some class of smooth functions on B, e.g., some times
differentiable in the sense of Fréchet functions on B. But in contrast with
finite - dimensional spaces, where the class of differentiable functions is very
large, in infinite - dimensional spaces the situation is worse, and it is known
[2] that in some Banach spaces (e.g., in C(0, 1) and /,) there exists no non-
trivial differentiable function with bounded support. Moreover, the
behaviour of differentiable functions in such spaces is rather complicated (see

[14]), thus in this case quantities of type [ f(x)(F,(dx)— u(dx)) are not very
B

useful.
Now we introduce some more notation. If xecy, then
l|xllm = sup [x?].

i>m

We put ‘ :
Bs = sup (EL™P(EI®?)™?), By =sup EIEOP.

The letter C stands for an absolute constant, and C(-) denotes a constant
depending on parameters in the parentheses, not the same in different places.
If we want the constant to be distinguished, we shall supply it w1th an index.

2. CLT and Gaussian measures in c,. For simplicity we write # = 2(c,).
The covariance operator of a ¢, -valued r.v. can be regarded as an infinite
matrix and we put T = {¢;}%5-,. It will be convenient to set 6 =1; and,
without loss of generality, in the whole paper we assume that ¢? > 67, for
all i.

Let #; stand for the class of covariance matrices T such that for every
£>0

s

2.1) o; exp{—eo; %} < 0.

i=1
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Then the result of Vakhania [26] can be formulated in the following
way: : : '

TueoreM 2.1 ([26]). Z, < R and if t;; =0, i #j, then TeR<>TeX,.

Thus diagonal Gaussian covariances (in this case, coordinates of a
Gaussian c,-valued r.v.  are independent) are completely determined by
(2.1). The inverse case, where n = (a'¥’(, ..., a™(, ..) = a{ with aec, and { a

" standard normal R, -valued r.v., shows that s2 can tend to zero arbitrarily

slowly if there is a strong dependence between coordinates of 5. In [3] the

~ following result is given:

"TueoreM 2.2. ([3]). If 6210 ({ denotes monotonic convergence),
F; = max |téi—tij' 10,
j<si

and for every ¢>0 -

22 > exp {—eri '} < oo,
i=1 -
then TeA.

It is easy to see that in the case of the diagonal matrix T condition (2.2)
coincides with (2.1) but in the case n = a{, aec,, { being a standard normal,
(2.1) as a sufficient condition is stronger.

We show that condition (2.1) is necessary and sufficient in all cases where
dependence between coordinates of #.is weak. By means of the same method
as in [26] we prove the following result: '

TueoreM 2.3 Let t;; =0 if [i—j| > m, where m is any finite number. Then
TeR<=TeR,.

Proof. Let = (#Y, ..., 1™, ...) be a Gaussian random vector with cova-
riance matrix T and let u be its distribution (considered as a distribution in

- R™). It is known [26] that u(ce) =1 is equivalent to the condition

(23) lim p(U {x: x¥ >¢})=0 for every &> 0.
Linds SN 3 .
Since #, = #, we need only to prove the necessity of condition (2.1). Let
us put - :

Ay = A (e) = { sup - I >}, Ay= U A4
. kzZn

(2k—2)ym <j<(2k— 1)m
Bk = Bk(a) = { . sup an)l > 8}9 En = U Bk'.
(2k- 1)m<j< 2km k=n

From (2.3) it follows that

im P{{ (4, UBy)} = lim P{4,UB,} =0
n—>aw k=>n . n—+aw
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and -
lim P(A,,) = hm P(B,,) =

~ Since the events A, k = 1, are mdependent using the same argument as
in the proof of Theorem 2.1 (cf [26]) we infer that the condmon lim P(4,)
= 0 implies

24 Y P(4)) < 0.
k
. Analogously, we get o
(2.5) ' Z P(B)) < ..

Now for any j ((2k— Ym<j <(2k 1) m) we have
(26) P(4y = P{In" > 8}

>2 1 ex{ 82}>1rninlajc=:x{ —‘—0'2—}
T/ m 1+ea;? P 20} /V"ZE i P 207 )

In the same way we obtain

(27 P(BY

2

g
207

J

> (2m)~ V2 min (1, ajs"l)exp{ - }, (2k— l)m <j < 2km.

Now it is sufficient to note that if a,— 0, a, > 0, then the series

;exp{ _ai,f} ..é.md zﬁ:anexi){ __‘%} -

converge or diverge simultaneously, since

g € a?
a,exp —E = exp '—a—f 1—-?lna,,

and a? lnmd,, — 0. From (2.4)-(2.7) we get (2.1). Thus the theorem is proved.
Now we turn to CLT in c,. We want to find the conditions on a ¢, -

valued r.v. £ that 1mply F,=>yu. The main tool in proving the result of this

section and the results on the rates of convergence is the inequality of large
deviations for sums of idependent bounded real r.v.’s. The idea of this in-
equality goes back to Khintchine [12] who proved the exponential inequality
for the sum of iid. Rademacher r.v.’s. Later in [7] such an inequality was

- proved for symmetric bounded r.v.’s. In [22] these results were generalized to
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the multidimensional case and, moreover, the symmetry assumption was
removed. We formulate this result:

THEOREM 2.4 ([22]) Let X;,i>1, be iid. R, -valued rv.’s, EX, =0, and
| X4l <M. Let Z,= Z X; and assume that the Jollowing condition is satisfied

i=1

for p>0:
(28) P{Z, <0 <1-p, Pl{Z,>00<1-
" Then for all t >0 |
29 Pz} >t /n} <./2¢° p~' exp{—t3(16M?) 1}

The.main result of this section is the fdllowing

- THEOREM 2.5. Let £ be a ¢y -valued r.v. with E¢ = 0, covariance operator T,
and (&9 < M; for j = mq. If for any ¢ >0

(2.10) Y exp{—eM;?} <o,

Jjzmg

" then £€CLT.

Proof We must show that F,=yu, where F, is the distribution of
n-12 Z &, & being mdependent copies of ¢. Obviously, Te®, R

because aj < M?Eif |E9) < M Since the ﬁmte dimensional distributions of

- F, converge weakly to the correspondmg finite - dimensional distributions of

#, we need only to show the tightness of the family {F,}. Using the form of
compact sets in ¢, (cf, e.g., [16] or [18]) we see that it is sufficient to show
that for any & > 0 and J > O there exist ny = no (s, 6) and ko = ko (e, 8) such
that for all n > n,

(2.11) ‘ P{|IS,lly, > 8} <e.
We first assume that a co-valued r.v. ¢ is symmetric. Since
P{IS> 8} < T P{IS9I> 3},
>k
for S(” we apply Theorem 24 with p=1/2 and we get the estimate
2.12) P{SY > 8} < Cexp{— —s*(16MP 1},

From (2.12) and (2 10) we deduce (2 11).
It remains to remove the assumption of symmetry. For thls purpose we
formulate the following result:

LEMMA 2.1. Let Z,, n>1, be a sequence of Co - valued r.v’s satisfying the
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following condition: for every ¢ >0 and & > 0 there exists ko = ko(e, 5) such
that for all n>2 1 and j >k,

(2.13) P{|Z9 > ¢} <.
Let G, and G, denote the distributions of Z, and —Z,, respectively. Then

the tightness of the sequence {G,*G,} implies the tightness of {G,}.

The proof of Lemma 2.1 goes along the lines of the proof of Lemma 2
from [11] and is omitted.
" Now, if we put & =¢&—¢, where ¢! is an independent copy of &;, then
from the first part of the proof we infer that the sequence of measures -
induced” by ‘

is tight (recall that |E| < 2M)). Further, by Chebyschev s mequallty, for any'
¢>0 and 4 >0 we have

P{ISY| > 8} < 572EISY1? = 5 'E(E{)? < 67M} <

for all j > ko = {inf m: M? < ¢&? for all n> m}. Therefore, (2.13) is satisfied
and from Lemma 2.1 we get (2.11) in a general case. Thus the theorem is
proved.

Remark. The result of Theorem 2.5 can be obtained by using operators
of type 2. (see a joint paper with A. RaCkauskas and V. Sakalauskas ¥).
Now we construct a co-valued r.v. mentioned in the Introduction.

ProposITION 2.1. There exists a symmetric c,-valued r.v. £ having indepen-
dent coordinates, covariance operator Te R, satisfying (1.3) with ‘
(2.14) : M, = (In n)~Y2(In, n)*/2*¢,
where k =2 is an arbitrary integer and & > 0, but not satisfying CLT.

Proof.'We follow the construction from [4], but our evaluation is more
. precise. Let & = (&M, ..., &™, ..) with independent coordinates £™ and let

P {é(u) = an} = P{é(n) = —an} = Dns | AP{E(") = 0} = 1‘_2_pm

where a, = (In n)"Y2(In, ., W"/2*%, p,=(nym)~, k=1 is some fixed
number, &€ > 0, and n > ny(k) in order that all expressions be correctly de-
fined. For the first coordinates ™, n < ny(k), we can take p, and a, arbit-
rary. For example, we can take a, = 1 and p, = 1/2, and this does not affect
our evaluations, since we deal with limit behaviour of sums

SP=ni2 ¥ g

i=1

. . * This paper appeared in Litovsk. Matem. Sb,, 23, 1 (1983), p. 163-174 (in Russian).
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for large values of j and n, where &; are independent copies of £. It is easy to
see that '
‘7,? = a} Py = (In j'Ing j)~ ! (Ing 44 j)l 2

which implies Te£,. Thus it remains to show that ¢ does not satisfy CLT
and for this reason we show that the sequence S, is not bounded in pro-
bability. Consider the events '

Anj = ﬂ {59) = aj} and An

i=1 : JSN,

I
-
»~

| ajnd, choose N, =exp ‘{"C-J;l-h’lk n}, C > 1. We have

P(A)=(n )" P(A)=1-P( () 4)=1~. ] (1-P(4,)).
L JSNy J<N,
Now we show that _
(2.15) P(A)—1 as n— .

For this purpose we use the estimate

(2.16) '
T (1—P(Ay) < (1—P(Aw )™ = (1~ (It (Cn In, m))” "=
F<N,
Since it is easy to verify that for every C > 1
(217 (Ing—;(Cn In, n)) "exp {Cnln, n} >0 as n— oo,

we derive (2.15) from (2.16) and (2.17).
Now let weA,. Then

n

sup [n~12 Y £ ()| = n'ay .

J€N, i=1
But we have N
(Ing (Cn In, m))/2+e
C(In, n)*?

for every &> 0. Therefore, we infer that for sufficiently large n we have
IIS.l| > b, with probability close to 1 and £ does not satisfy CLT.
Remark. It is easy to verify that in this way we can prove the propos-
ition with M, = (In n)~ %2 (d(n)) > ", where d(n) is a monotonically increasing
sequence, }1_’12) d(n) = oo, and d(n) satisfies the following condition: there

b, = n'*ay = -0 as n—w

exist C> 1 and b(n) — oo such that for all n > ng
Cd(n)—In(d(exp {Cnd(n)})) > n~'b(n).
For simplicity, in Proposition 2.1 we have taken d(n) = ln; n.
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3. The rates of convergence in CLT im cy,. To formulate the results we
need some more notation. Let € be a ¢, -valued r.v. with distribution F, E&
=0, and covariance matrix T. Let &, i > 1, be ii.d. co-valued r.v.’s with the
same distribution F. By T, , we denote a covariance matrix of the random
vector (Wa7?, ..., &™g, ") and let- A™, k=1,2,..., m, stand for the
eigenvalues of T, ,. Moreover, without loss of generality we assume that A{™
> A, for all k and m. In this section we assume that '

G1) . o= ) I §5>0,ix>2 =1

Of course, we can change the quantities 67, i < iy, and since we deal with
the estimates of the form 4, = O(f (n)), such a change affects only the const-
ants in the last relation.

We say-that ¢ satisfies condition (B, d,), where d,, |0, if

(3.2) sup P {|[Sllm > dm} <34,

and ¢ satisfies condition A(ko, no, p), where p > 0, if for all j > k, and n > n,
P{SP? <0} <1-p, P{SP?>0}<1-

The main result of this section can be formulated as follows:
THEOREM 3.1. Assume that for all j>1 and m > 1

(33) |89 < Moy,

(34) A > (nm) ®7% 5, >06.
Then for sufficiently large n

(3.9 ' 4,=0(n"12%Y),

where v > 0 and the constant in (3.5) tends to mﬁmty asv —>0
Remark If (3.3) is replaced by the condition
(3.6) |E < M(ln j) 4 *°7022 5, <5,
then estimation (3.5) remains valid, but the constant changes and tends to
infinity if 8, — 4.

THEOREM 32. If ¢ satisfies condition (B, d,) with d,=(Inm)™>0<x
< 6/2, B; or B; is finite, and

(3.7 Am > m—1/6+7,
then _
(3.8) 4,=0((n n)‘z"”l)

where y, > 0 is arbitrarily small, but the constant in (3.8) tends to infinity lf 71
- 0. .
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Before proceeding to the proofs of the theorems we formulate some
lemmas which contain the main steps of the proofs. We begin with the basic
inequality in the estimation of 4,.

LEmmA 3.1. For any m>1 and ¢ > 0 we have
(39 4, € C(Apm+P{|ISllm > &} + P linlln > e} + P {llnll <&},
where

An,m = sup An,m(x)! An,m(x) = |P {l:inax 'S(ﬁi)l < x}_P{max |'1(l)| < x}l'
x £m : ng

_P l'OOf. We havé R
(3.10) 4, <max{ sup 4,(x), sup 4,(x)}

0Sx<e x>e

< max {P{|IS,|| < &} +P{lnll <&}, sup 4,(x)}

xX>c

< max {2P {[1l] < &}+4,(e), sup 4,(x)}

x>e

< sup 4,(x)+2P {|Inl| <&},

XZe
311 4,09 = [P{IS,l < x}— P {{inll < x}|
<|PAISAl < x}—P{l}Lax 1S9 < x}|+
+|P {max |S?| < x}— P {max |4 < x}|+
jism jsm
+ [Pl <x}— P {max In® < x}].
It is easy to see that .
(3.12) P{ umax ISP) < x}=P{lIS,ll < x} < P{lISim > x}
313  P{ umnax InM < x}—P{lIgll < x} < P{linlln > x}.

Inequalities (3.10)-(3.13) yield (3.9), so the lemma is proved. - .
For the estimation of 4,, we shall use the following result from [17]:

Lemma 3.2. ([17]). Let X;, i > 1, be iid. R,-valued rv’s with EX, =0,
unit ‘covariance matrix, and

Bs= E(Z X9 <
Then .
sup |P{n"12 ¥ X,-eA}—tp(A)| < Ckfan= 12,
AR, i=1

Qhére_ MM is the class of all convex Borel sets in R, and ¢ a standard
k-dimensional normal distribution.
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By means of this lemma and the estimate
k
X2 32 k32 max E|X® 3’
E(I_;l( D < nax E|X7)

after simple ‘considerations we get the following result:
LEMMA 3.3. Let A™ >0 for all m>1. Then

(3.14) Apm < CMO2(J)=312 B p=112,

(3.15)  Aym Cm5’2(02 Am)=3/2 B_y=1/2, N
LEmMA 34. Let 7 be a Gaussian Co-valued ruv. sat:sfymg 3.1). If

(3 16) ' - g2(nmp> 2,

then ‘

r 2 \ -1
(G17) Pl > ¢} < C[(1+a(ln m)“*""z)(%(ln m)"—l)nfzﬂnm“”*] :
Proof. The proof consists of the following two elementary inequalities :

P{linlla>e} < Y P{n? > e},
J'Bnk

C N S P N I G A DY O S
n) TP 2 NS IR TR P T 2 S RSP T 2
[ 4

LEMMA 3.5. Let the eigenvalues 2™ satisfy condition (3.4). Then for any
x>0 and €€(0, g,), where

\N1/(1+d¢)

&o = &o (2, 1)—max%£ lnl 1(\/5:') 1}’
we have -
(318 P{Hnﬂ <} < Cexp {‘% i ( \/g % )}

In the case of the diagonal matrix T (the case 8, = ) instead of (3.18) we
can use the following inequality valid for all & (0 <& < 1):

2 2 l fo—2/(1+8)
(3.19) P{linil <&} < exp{ . /neexpr }e-

Proof. Let us start with the case of the diagonal matrix T. In [10] the
following estimate is given:

82
! _— R
d ”’1” < 8} eXP f n—l 0',,+E 20:}}




1 (3.20).
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Substituting to this estimate the values g, from (3.1) we get the series
S(£)=g \/% [11? exp {—§}+
+ Z (t+e(n n)‘“"’/z)_ exp {—182 (In n)“"}]
n=2
Let ny = exp {e~2**9}, Then for n< n, we have
| exp{—%sz (ln“n)l”"} = e"l/.2 and 1+é(ln n)‘l’.””’.zj <2.

Hence we obtain

2 /2
S(s)>§ ,E /** exp {g” 21 +a},

. which implies (3.19).

In the general case we use the estlmate

k
P{lInll < &} < P{sup 9| < &} < 2ef[(2n}*(det T,,)"* ] o;]""
i<k :

. j=1

1 /n k '

=exp{—kln(— \/:)— Yy ln((l}"’)”zaj)} :
eV2) = :

<Cexp{—klne \/§)+1+25‘ Y lnln]}
ji=3

Now we choose k = [¢7*]+1 and using a rather rough estimate

Z Inlnj<kllnk

j=3

after simple calculations for all ¢ (0 < & < gp) we derive (3. 18) Thus the lemma
is proved. ‘

The estimates of the term P {||S,,, > s} are given in the following two
lemmas: :

LEMMA 3.6. If condition (3.3) is sqtisﬁed and

16M2 —__(nmp>1,

‘then for n> ng
&2

16M?

G21)  P{ISNl.>e<C <

1
—1e2 ] 2
(ln m)&_ 1) [e<(Inm)°/16M 1].
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Proof. By (3.3) we can assume that ¢ satisfies condition A(1, ng, 1/4)
with sufficiently large ny. Then we can apply Theorem 2.4, and from (2.9) we
get

C © 82
f 115U < _ %
Plllsn”m > 8} < jgm P llSn | > 8} Cc j=zm CXP{ 16M20'12}
Now, 'using (3.1) we obtain (3.21).

Remark. If instead of (3 3) we have (3. 6), then in (3.20) and (3 21) we
must replace 6 by 6—éb5+ ‘

LEMMA 37. If &j satisfies condition (B, d,), then for any p (1<p<2)
we have . B ]

(629 . PlIS)l.>e <CEE

Proof. First, in the same wayba{s in the proof of Proposition 2.1 from
[24] we can show that for all u > 2d,,

(3.23) P{|iS,llm > u} < CdZu~>2

Now, for 1< p <2, from (3.23) we get

E(ISE = § &= P{|IS,|l, > u} du
. 0

2dy,

=(f+ OID-) P{|Sulm > u} du < C(p)dy,

0 24,

“which together with the inequality P {||S,|l.. > &} < & ?E||S,|[%, implies (3.22).
We can now proceed to the proofs of the theorems.

.- Proof of Theorem 3.1. We put m=[n"] in (3.9), where « is some
parameter whlch will be chosen later. Then from (3.4) and (3.14) we get

(3.29) Aum = O(n—1/2+5¢/z(ln ”)3(5.1, “67))7.
Without loss of generality we can assume that M > 1 in (3.3). Now set

_AM@y+1)
(2 In n)*?’

where y > 0. will also be chosen later. It is easy to check that conditions
(3.16) and (3.20) are satisfied. Therefore, by (3.17) and (3?.21) we have

(3.25) - P{linlln > &} < Cly, M)n™™,
(3260 P{|IS,|ln > e} < Cy~in7.
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Now we estimate the term P {||y|| <&}. Setting » =2/6 in (3.18) for
n> no, where n, depends on M, «, y,and J, we have

(3.27)
1 alnn n (xIn)”?
, 1 T_(l)”
Pilinll <&} <€ ""p{ 2 @G+ " (\[2 MG+

< exp{—‘—,lz Ci(M, 7, )In(C5(M, a, y, 6)(In n)*?)In n} < ﬂ~1/z_

Thus all terms in (3:9) are estimated. Now, let us choose a small number
v>0."Then we find 7, and a such that for n > 7,

n542(In n)>®1 "%

Then “we set y = 1/2a and from (3.24)-(3.27) we infer that (3.5) holds for
n > max(ng, fip). Thus the theorem is proved.

Proof of Theorem 3.2. We start again with (3.9) and put m = [»*],
where 0 <a < 1/5. Then from (3.14) or (3.15) it follows that 4, , tends to
zero as some negative power of n. Therefore

4, = o((In n)~ ),

Now setting ¢ = (In n) '%0 < y, < §/2, from (3.17) and (3.18) we infer
that P{||nll <&} and P {||]|,, > &} tend to zero as some negative powers of n.
Finally, for the estimate of P {||S,l, > ¢} we use lemma 3.7 with p = 2—7,.
From (3.22) we get

P{|IS,llw > &} < C(ya)(ln n)_ "7,

where C(y3) =Cy3', 71 = y3#+(2—7;3)72, and this quantity can be made
small if y; and y, are chosen to be small. Thus the proof is complete.

<n'.
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