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Abstract. Let (Fn)n­0 be a random sequence of i.i.d. global Lip-
schitz functions on a complete separable metric space (X, d) with Lipschitz
constants L1, L2, . . . For n ­ 0, denote by Mx

n = Fn ◦ . . . ◦ F1(x) and
M̂x

n = F1 ◦ . . . ◦ Fn(x) the associated sequences of forward and back-
ward iterations, respectively. If E log+ L1 < 0 (mean contraction) and
E log+ d

`
F1(x0), x0

´
is finite for some x0 ∈ X, then it is known (see [9])

that, for each x ∈ X, the Markov chain Mx
n converges weakly to its unique

stationary distribution π, while M̂x
n is a.s. convergent to a random variable

M̂∞ which does not depend on x and has distribution π. In [2], renewal
theoretic methods have been successfully employed to provide convergence
rate results for M̂x

n , which then also lead to corresponding assertions for
Mx

n via Mx
n

d
= M̂x

n for all n and x, where d
= means equality in law. Here

our purpose is to demonstrate how these methods are extended to the more
general situation where only ultimate contraction, i.e. an a.s. negative Lya-
punov exponent limn→∞ n−1 log l(Fn ◦ . . . ◦ F1) is assumed (here l(F )

denotes the Lipschitz constant of F ). This not only leads to an extension of
the results from [2] but in fact also to improvements of the obtained conver-
gence rate.
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1. INTRODUCTION

Iterations of random functions appear in a wide range of applied stochastic
models ranging from queuing theory and financial times series to perfect simu-
lation, the generation of fractal images and data compression; see Diaconis and
Freedman [8] for an excellent survey including an extensive list of relevant liter-
ature. Not surprisingly, the question of stability of such iterated function systems
(IFS) under suitable global or local contraction conditions is often of central in-
terest and has therefore been studied extensively in the literature, e.g. in [3], [5],
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[6], [8], [9], [11]–[14]. Here we will focus on a particularly nice subclass of IFS,
namely iterations of i.i.d. (global) Lipschitz maps.

A very effective method of studying the asymptotic behavior of an ultimately
contractive IFS of i.i.d. Lipschitz functions (to be defined below) is based on the
identification of a strictly contractive, and thus well-behaved subsystem along a
renewal sequence of stopping times followed by a subsequent analysis of the ex-
cursions of the system between these stopping times. The simple idea behind this
approach is called regeneration in applied probability and calls for renewal theory
as a natural ingredient. In [2] and also in [1], this idea has been successfully pur-
sued and led to results on the rate of convergence of mean contractive systems to
its stationary limit. Regeneration is also used in two related articles by Babillot et
al. [4] and Silvestrov and Stenflo [13], but in a different vein. Roughly speaking,
the purpose of the present work is to show how the regenerative arguments given
in [2] may be refined in order for getting stronger and in fact more natural versions
of the results from there.

We continue with a short review of the model assumptions and the nota-
tion from [2]. Let (X, d) be a complete separable metric space with Borel-σ-field
B(X) and (Mn)n­0 a temporally homogeneous X-valued Markov chain of the
form Mn = F (θn,Mn−1) for n ­ 1, where

(1) M0, θ1, θ2, . . . are independent random elements on a common probability
space (Ω, A,P);

(2) θ1, θ2, . . . are identically distributed with common distribution Λ and tak-
ing values in a measurable space (Θ,A);

(3) F :
(
Θ × X,A ⊗B(X)

) → (
X,B(X)

)
is jointly measurable and Lip-

schitz continuous in the second argument.
Its transition kernel P is given by P (x,B) = Λ

(
F (·, x) ∈ B

)
for x ∈ X and

B ∈ B(X), and we let Pn denote the n-step transition kernel. For x ∈ X, let Px be
the probability measure on the underlying measurable space under which M0 = x
a.s. The associated expectation is denoted by Ex, as usual. For an arbitrary distri-
bution ν on X, we put Pν(·) def=

∫
Px(·) ν(dx) with associated expectation Eν . We

use P and E for probabilities and expectations, respectively, that do not depend on
the initial distribution.

For a Lipschitz continuous mapping f : X→ X, we put

l(f) def= sup
x6=y

d
(
f(x), f(y)

)

d(x, y)

and note that
Ln

def= l
(
F (θn, ·)), n ­ 1,

forms a sequence of i.i.d. random variables. Write Fn(x) for F (θn, x) and put

Fk:n
def= Fk ◦ . . . ◦ Fn, Fn:k

def= Fn ◦ . . . ◦ Fk for 1 ¬ k ¬ n,
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and
F0:1(x) = F1:0(x) def= x.

Then Mn equals the n-th forward iteration, as Mn = Fn(Mn−1) = Fn:1(M0), and
is closely related to the corresponding n-th backward iteration

M̂n
def= F1:n(M0),

owing to the obvious fact that

Px(Mn ∈ ·) = Px(M̂n ∈ ·)

for each x ∈ X. Putting Mx
n

def= Fn:1(x) and M̂x
n

def= F1:n(x) for x ∈ X, we further
have

P
(
(Mx

n , M̂x
n )n­0 ∈ ·

)
= Px

(
(Mn, M̂n)n­0 ∈ ·

)
.

The reason for introducing these additional sequences is that we will frequently do
comparisons of M̂x

n and M̂y
n , or Mx

n and My
n , for different x, y.

For the more general situation of a stationary sequence (Fn)n­1, Elton [9]
showed that the law of Mn converges weakly to a unique stationary distribution π
whenever

(1.1) E log+ L1 <∞ and E log+ d
(
F1(x0), x0

)
<∞

for some (and then all) x0 ∈ X and the Lyapunov exponent log l∗ is a.s. negative,
where

(1.2) log l∗ def= lim
n→∞n−1 log l(Fn:1) a.s.

exists by Kingman’s subadditive ergodic theorem. By Kolmogorov’s zero-one law,
l∗ is further a.s. constant in the present situation of i.i.d. F1,F2, . . . We call (Mn)n­0

ultimately contractive if log l∗ < 0 a.s., and mean contractive if the stronger con-
dition E log l(F1) < 0 holds true. Then the basic question posed at the outset of
this work as opposed to [2] can be stated as follows: To what extent do the results
obtained in [2] for mean contractive IFS of i.i.d. Lipschitz functions generalize to
the more natural class of ultimately contractive IFS? We will show that the results
of [2] not only persist to hold under ultimate contraction but may even be improved
in that certain bounds on the rate of contraction appear to be sharper. The latter is
accomplished by a refined renewal theoretic analysis an outline of which is next.

The basic idea for studying the asymptotic properties of an ultimately contrac-
tive, and thus weakly convergent IFS (Mn)n­0 is to go via the backward iterations
M̂x

n = F1:n(x) for which convergence holds even true almost surely with a limit
M̂∞ not depending on x and (as it must) having distribution π. The obvious in-
equality

(1.3) d(M̂x
n+m, M̂x

n ) ¬ l(F1:n) d
(
Fn+1:n+m(x), x

)
a.s.,



324 G. Alsmeyer and G. Hölker

valid for all n,m ­ 0 and x ∈ X, forms a key tool in the necessary analysis which
embarks on this very inequality together with the following observation: Assuming
ultimate contraction (log l∗ < 0), fixing any γ ∈ (l∗, 1) and using (1.2), we see that

the ladder epochs σ0
def= 0,

(1.4) σn
def= inf

{
j > σn−1 :

1
j − σn−1

log l(Fσn−1+1:j) ¬ log γ

}
, n ­ 1,

are all a.s. finite and constituting an ordinary discrete renewal process. As a conse-
quence, the subsequence (Mσn)n­0 again forms an IFS of i.i.d. Lipschitz maps. Its
associated backward iterations M̂x

σn
= F1:σn(x) are strictly contractive because,

by construction,
l(F1:σ1) ¬ γσ1 ¬ γ < 1.

Inequality (1.3) hence takes the very strong form

(1.5) d(M̂x
σn+m

, M̂x
σn

) ¬ γnd
(
Fσn+1+1:σn+m(x), x

)

for all n,m ­ 0 and x ∈ X and suggests the following procedure to prove conver-
gence results for (Mn)n­0 and its associated backward iterations:

STEP 1. Given a set of conditions, find out what kind of results hold true for
the strictly contractive sequences (Mσn)n­0 or (M̂σn)n­0 for any γ ∈ (0, 1).

STEP 2. Analyze the excursions of (Mn)n­0 or (M̂n)n­0 between two suc-
cessive ladder epochs and adjust the results with respect to (Mn)n­0 or (M̂n)n­0,
respectively, if necessary.

In [2] the log-Lipschitz constant l(F1:n) is first estimated from above by

Γn
def=

n∑

k=1

log Lk,

which forms the n-th partial sum of an ordinary random walk having negative drift
under the stronger mean contraction condition E log l(F1) < 0. Hence the level

log γ ladder epochs σ0(γ) def= 0,

(1.6) σn(γ) def= inf
{

k > σn−1(γ) :
Γk − Γσn−1(γ)

k − σn−1(γ)
¬ log γ

}
, n ­ 1,

are all a.s. finite and constituting an ordinary discrete renewal process. These σn(γ)
then take the role of the σn defined in (1.4). However, besides requiring the stronger
mean contraction condition, this latter approach also gives away too much informa-
tion on the log-Lipschitz constants l(F1:n) by estimating them at the outset through
the sum of the log-Lipschitz constants l(Fk) of the single factors. As a conse-
quence, the results in [2], though looking quite similar to the ones given here, are
actually weaker in almost all parts. In particular, a certain lower bound γ∗ defined
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there through a certain optimal choice of γ in (1.6) and popping up in various
places will here be replaced with the quite natural and really optimal constant l∗;
see Theorem 2.1, parts (a)–(c) of Theorem 2.2 and part (a) of Theorem 2.3.

As in [2], we will work with two sets of conditions, namely that, for some
p > 0 and some x0 ∈ X, either

(1.7) E logp+1(1 + L1) <∞ and E logp+1
(
1 + d

(
F1(x0), x0

))
<∞

or

(1.8) ELp
1 <∞ and Ed

(
F1(x0), x0

)p
<∞

holds true. Two major conclusions will concern the distance of Pn(x, ·) for x ∈ X
and π in the Prokhorov metric associated with d. Following [8], the latter is also
denoted by d and defined, for two probability measures λ1, λ2 onX, as the infimum
over all δ ­ 0 such that

λ1(B) < λ2(Bδ) + δ and λ2(B) < λ1(Bδ) + δ

for all B ∈ B(X), where Bδ def= {x ∈ X : d(x, y) < δ for some y ∈ B}.
The further organization of the paper is as follows. The main results are pre-

sented in the next section. Section 3 collects some necessary prerequisites for their
proofs, which in turn will be provided in Section 4. Plainly, details of the neces-
sary arguments will often be omitted or stated in abridged form whenever these can
essentially be copied from [2]. On the other hand, the reader will hopefully also
notice some improvements in the presentation of technical details.

2. RESULTS

Our first result provides additional information in Elton’s ergodic theorem for
the case of an ultimately contractive IFS of i.i.d. Lipschitz functions, which is con-
sidered here. It shows that, with high probability, the rate of decay of d(M̂∞, M̂n)
towards 0 is of geometric order l, where l can be chosen arbitrarily close (from
above) to l∗.

THEOREM 2.1. Let (Mn)n­0 be an ultimately contractive IFS of i.i.d. Lip-
schitz maps satisfying (1.1) and with Lyapunov exponent log l∗. Then

lim
n→∞Px

(
d(M̂∞, M̂n) > ln

)
= 0

holds true for all x ∈ X and l ∈ (l∗, 1).

The next two theorems contain the announced refinements of similar results
in [2], see Theorems 2.2 and 2.3 there.
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THEOREM 2.2. Assuming the situation of Theorem 2.1 and additionally con-
dition (1.7) for some p > 0, the following assertions hold true:

(a) For each l ∈ (l∗, 1), x ∈ X and some cl ∈ (0,∞),

∑

n­1

np−1Px

(
d(M̂∞, M̂n) > ln

) ¬ cl

(
1 + logp

(
1 + d(x, x0)

))

and
lim

n→∞np Px

(
d(M̂∞, M̂n) > ln

)
= 0.

(b) For each l ∈ (l∗, 1) and x ∈ X,

lim sup
n→∞

n(p−1)/p

(
1
n

log d(M̂∞, M̂n)− log l

)
¬ 0 Px-a.s.

If 0 < p ¬ 1, then this remains true for l = l∗.
(c) If p = 1, then limn→∞ l−nd(M̂∞, M̂n) = 0 Px-a.s. for all x ∈ X and all

l ∈ (l∗, 1).
(d) d

(
Pn(x, ·), π) ¬ Ax(n + 1)−p for all n ­ 0, x ∈ X and a constant Ax =

max{A, 2d(x, x0)}, where A > 0 does not depend on x or n.
(e)

∫
X logp

(
1 + d(x, x0)

)
π(dx) <∞.

THEOREM 2.3. Assuming the situation of Theorem 2.1 and additionally con-
dition (1.8) for some p > 0, the following assertions hold true:

(a) For each l ∈ (l∗, 1), x ∈ X and some αl ∈ (0, 1),

lim
n→∞α−n

l Px

(
d(M̂∞, M̂n) > ln

)
= 0.

(b) There exists η > 0 such that for each q ∈ (0, η) and some αq ∈ (0, 1),

lim
n→∞ sup

x∈X
α−n

q

(
1 + d(x, x0)

)−qExd(M̂∞, M̂n)q = 0.

If q = η, then the same holds true with αq = 1.
(c) d

(
Pn(x, ·), π) ¬ Axrn for all n ­ 0, some r ∈ (0, 1) and a constant

Ax = max{A, d(x, x0)}, where r and A do not depend on x or n.
(d)

∫
X d(x, x0)η π(dx) <∞ for some η > 0.

REMARK 2.1. (a) The constants cl, αl and αq in the previous theorems gen-
erally depend further on p > 0 appearing in the respective moment assumption.

(b) Parts (d), (e) of Theorem 2.2 and parts (c), (d) of Theorem 2.3 have been
taken from [2] without modification. The geometric convergence stated in Theo-
rem 2.3 (c) was first given by Diaconis and Freedman [8].
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(c) Since (Mx
n ,My

n) and (M̂x
n , M̂y

n) are identically distributed and

d(M̂x
n , M̂y

n) ¬ d(M̂x0∞ , M̂x
n ) + d(M̂x0∞ , M̂y

n)

for all x, y ∈ X and n ­ 0, the assertions on d(M̂∞, M̂n) in the previous two
theorems are easily translated into similar results on d(Mx

n ,My
n) for the forward

iterations started at different values x and y. This has been done in Corollaries 2.4
(a)–(c) and 2.5 (a) in [2], and we just note that these results could now be restated
for each l ∈ (l∗, 1).

(d) As further explained in [2] (cf. the end of Section 2), our results do also
provide information on the distance of Mx

n = Fn:1(x) for any x ∈ X to a stationary

counterpart Mπ
n

def= Fn:1(Mπ
0 ), where Mπ

0 has distribution π. For instance, one can
easily infer that

∑

n­1

np−1 P
(
d(Mx

n ,Mπ
n ) > ln

) ¬ cl

(
1 + logp

(
1 + d(x, x0)

))

and
lim

n→∞np P
(
d(Mx

n ,Mπ
n ) > ln

)
= 0

for each l ∈ (l∗, 1), x ∈ X and some cl ∈ (0,∞).

3. PREREQUISITES

This section will provide a number of auxiliary lemmata necessary to prove
our stated results. We keep the notation from Section 2 and make the standing as-
sumption that (Mn)n­0 is an ultimately contractive IFS of i.i.d. Lipschitz functions
satisfying condition (1.1).

3.1. Strong contraction via subsampling. We fix any γ ∈ (l∗, 1) and consider
first the sequence (σn)n­0 of ladder epochs defined in (1.4).

LEMMA 3.1. Under the stated assumptions, σ1 has finite mean. Furthermore,
for any p > 0, E logp+1(1 + L1) <∞ implies Eσp+1

1 <∞, while ELp
1 <∞ im-

plies Esσ1 <∞ for some s > 1.

P r o o f. As E log+ L1 < ∞, n−1E log l(F1:n) → log l∗ by Proposition 2 in
[9]. Hence there exists m ∈ N such that

(3.1) m−1E log l(F1:m) < log γ.

By subadditivity,

1
nm

log l(F1:nm) ¬ 1
n

n∑

j=1

1
m

log l(F(j−1)m+1:jm)
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and σ1 ¬ mσ∗1 , where

σ∗1
def= inf

{
n ­ 1 :

1
n

n∑

j=1

1
m

log l(F(j−1)m+1:jm) < log γ

}
.

Observe that σ∗1 is the first descending ladder epoch of the random walk
( n∑

j=1

1
m

log l(F(j−1)m+1:jm)− n log γ

)

n­0

which, by (3.1), has negative drift. Hence Eσ1 ¬ mEσ∗1 < ∞. To prove the re-
maining moment assertions, recall that

log l(F1:m) ¬
m∑

j=1

log Lj

which further gives
(
m−1 log l(F1:m)− log γ

)+

¬ m−1
m∑

j=1

log+ Lj + | log γ| ¬ m−1
m∑

j=1

log(1 + Lj) + | log γ|.

This shows that E logp+1(1 + L1) <∞ implies

E
((

m−1 log l(F1:m)− log γ
)+

)p+1
<∞,

and then Eσp+1
1 ¬ mp+1E(σ∗1)

p+1 <∞ by Theorem III.3.1 in [10]. Furthermore,

E exp
(

mp

(
1
m

log l(F1:m)− log γ

))
¬ γ−mp El(F1:m)p

¬ γ−mpE
( m∏

j=1

Lj

)p = γ−mp (ELp
1)

m
,

where the last equality holds because the Lj are i.i.d. Now, if ELp
1 is finite, then

the same holds true for E exp
(
mp

(
m−1 log l(F1:m)− log γ

))
, and we infer that

Esσ1 <∞ for some s > 1 by an appeal to Theorem III.3.2 in [10]. ¥

The following notation is taken from [2], however, with the σn as in the pre-
vious lemma. Keeping γ ∈ (l∗, 1) fixed, put

τ(n) def= inf{j ­ 0 : σj ­ n},
Cn+1

def= max
{
d
(
Fσn+1:σn+1(x0), x0

)
;

d
(
Fσn+1:σn+1(x0), Fσn+1:k(x0)

)
, σn < k < σn+1

}
,

Dn
def=

∑

j­0

γjd
(
Fσn+j+1:σn+j+1(x0), x0

)
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for n ­ 0, where x0 is given by (1.1). We continue by listing a number of facts
that have been pointed out or proved in [2] and carry over to the present situation
without further ado:

(P1) As a consequence of (1.1),E log(1 + C1) <∞ and the Dn are a.s. finite.
(P2) (Cn)n­1 and (Fσn+1:σn+1)n­0 are both sequences of i.i.d. random vari-

ables.
(P3) Cτ(n) converges in distribution to a limiting variable C∞ with distribu-

tion function

P(C∞ ¬ t) = (Eσ1)−1Eσ11{C1¬t}, t ­ 0.

Furthermore, P(Cτ(n) ∈ ·) ¬ Eσ1 P(C∞ ∈ ·) = Eσ11{C1∈ ·} for all n ­ 0.
(P4) As a consequence of (P2), (Dn)n­0 is stationary, and it is autoregressive

of order one, viz. Dn = d
(
Fσn+1:σn+1(x0), x0

)
+ γDn+1.

(P5) For each n ­ 0, Dτ(n) is independent of τ(n) and (Fj , Lj)1¬j¬στ(n)

with the same distribution as D0, for (Fστ(n)+k)k­1
d= (Fk)k­1 for each n.

(P6) The Cn and Dn are linked by the inequality

Dn ¬
∑

j­1

γj−1Cn+j a.s.

The next lemma provides the crucial estimates for strongly contractive IFS of
i.i.d. Lipschitz maps and will be subsequently utilized for the system obtained by
subsampling our given IFS along (σn)n­0.

LEMMA 3.2. Let (Mn)n­0 be an IFS of i.i.d. Lipschitz maps satisfying (1.1)
and the strong contraction condition

L1 ¬ γ a.s.

for some γ ∈ (0, 1). Then the Dn are a.s. finite and

(3.2) sup
m­1

d
(
Fn+1:n+m(x0), x0

) ¬ Dn a.s.

for all n ­ 0. Furthermore,

d(M̂x0∞ , M̂x0
n ) ¬ L1:nDn a.s.,(3.3)

d(M̂x0∞ , M̂x
n ) ¬ L1:n

(
Dn + d(x, x0)

)
a.s.(3.4)

for all n ­ 0 and x ∈ X.

P r o o f. The proof is essentially the same as the one for Lemma 3.1 in [2],
and therefore omitted. ¥
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LEMMA 3.3. Given the previously introduced notation,

d(M̂x0∞ , M̂x
n ) ¬ γστ(n)−1Cτ(n) + γστ(n)Dτ(n) + l(F1:n)d(x, x0) a.s.

holds true for each n ­ 0.

P r o o f. Putting F ′n
def= Fσn−1+1:σn and L′n

def= l(F ′n), we have by (1.4)

L′n ¬ γσn−σn−1 a.s.

The (F ′n, L′n), n ­ 1, are further i.i.d., so that M ′
n

def= F ′n:1(M0), n ­ 0, is a strongly
contractive IFS with backward iterations M̂ ′

n satisfying

M̂ ′
n = F ′1:n(M0) = M̂σn , n ­ 0.

Notice, however, that M ′
n generally differs from Mσn . An application of (3.3) to

(M̂ ′
n)n­0 leads to

d(M̂x0∞ , M̂x0
στ(n)

) ¬ L′1:τ(n)Dτ(n) ¬ γστ(n)Dτ(n) a.s.

Moreover,

d(M̂x0
στ(n)

, M̂x0
n ) = d

(
F ′1:τ(n)−1

(
F ′τ(n)(x0)

)
, F ′1:τ(n)−1

(
Fστ(n)−1+1:n(x0)

))

¬ L′1:τ(n)−1d
(
F ′τ(n)(x0), Fστ(n)−1+1:n(x0)

)

¬ γστ(n)−1Cτ(n) a.s.

and d(M̂x0
n , M̂x

n ) ¬ l(F1:n)d(x, x0) a.s. By combining these estimates with

d(M̂x0∞ , M̂x
n ) ¬ d(M̂x0∞ , M̂x0

στ(n)
) + d(M̂x0

στ(n)
, M̂x0

n ) + d(M̂x0
n , M̂x

n )

we arrive at the assertion of the lemma. ¥

3.2. Moment and tail probability results. In order to prove our theorems,
the following moment and tail probability results are needed, which have also
been stated in [2] (see Section 3 therein). Proofs are therefore omitted except for
Lemma 3.8 which requires an extra argument. Regarding Lemmata 3.4 and 3.6,
let us further note that the stated inequalities for supn­0 E logp(1 + Cτ(n)) and
supn­0 ECη

τ(n) in terms of the respective moments of C∞ are always true under
our standing assumptions on the given IFS and in fact direct consequences of the
final inequality in (P3). Hence, it is the finiteness of E logp(1 + C∞) under (1.7)
and of ECη∞ for some η > 0 under (1.8), which needs really to be verified in these
lemmata.
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LEMMA 3.4. Given p > 0, suppose that (1.7) holds true. Then

E logp+1(1 + C1) < ∞, E logp(1 + D0) < ∞,

and the family {logp(1 + Cτ(n)) : n ­ 0} is uniformly integrable with

sup
n­0

E logp(1 + Cτ(n)) ¬ Eσ1 E logp(1 + C∞) = Eσ1 logp(1 + C1) < ∞.

LEMMA 3.5. Given p > 0, suppose that E logp+1(1 + L1) <∞. Then
∑

n­1

np−1 P
(
l(F1:n) > ln

)
< ∞

and
lim

n→∞np P
(
l(F1:n) > ln

)
= 0

hold true for any l ∈ (l∗, 1). Furthermore,
∑

n­1

np−1 P
(
στ(n)−1 ¬ (1− ρ)n

)
< ∞

and
lim

n→∞np P
(
στ(n)−1 ¬ (1− ρ)n

)
= 0

hold true for all ρ > 0.

LEMMA 3.6. Given p > 0, suppose that (1.8) holds true. Then there exists
η > 0 such that

EC2η
1 < ∞, ED2η

0 < ∞,

and the family {Cη
τ(n) : n ­ 0} is uniformly integrable with

sup
n­0

ECη
τ(n) ¬ Eσ1 ECη

∞ = Eσ1C
η
1 < ∞.

LEMMA 3.7. Given p > 0, suppose that ELp
1 <∞. Then

lim
n→∞α−n P

(
στ(n)−1 ¬ (1− ρ)n

)
= 0

for all ρ > 0 and some α = αρ ∈ (0, 1).

LEMMA 3.8. Given p > 0, suppose thatELp
1 <∞. Then there exist q ∈ (0, p]

and k ­ 1 such that El(F1:k)q < 1 and {l(F1:n)q : n ­ 1} is uniformly integrable.
Furthermore,

P
(
l(F1:n) > εln

) ¬ Kεl
n

for all n ­ 1, ε > 0 and suitable l ∈ (0, 1), Kε > 0.
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P r o o f. Since n−1 E log l(F1:n)→ log l∗ < 0 as n→∞, we can fix k ­ 1
such that E log l(F1:k) < 0. Moreover, El(F1:k)p ¬ ELp

1:k = (ELp
1)

k, by subaddi-
tivity of log l(F1:n). Consequently, the function [0, p] 3 q 7→ El(F1:k)q is every-
where finite and convex with value 1 and negative right-hand derivative at 0. This
allows us to pick a q with mq

def= El(F1:k)q < 1. Put K = 1∨max1¬j<k El(F1:j)q

and note that El(F1:n)q ¬ Kmj
q if n = jk + r with r ∈ {0, . . . , k − 1}. Hence

l(F1:n)q → 0 a.s. and in L1, which particularly ensures uniform integrability. Also,
by an appeal to Markov’s inequality, we infer for all l ∈ (0, 1) sufficiently large and
all ε > 0 that

P
(
l(F1:n) > εln

) ¬ K

mqεq

(
m

1/k
q

lq

)n

¬ Kεl
n

for all n ­ 0, where Kε
def= K/(mqε

q). ¥

4. PROOFS OF THE MAIN RESULTS

P r o o f o f T h e o r e m 2.1. Pick any l ∈ (l∗, 1), and then γ ∈ (l∗, l) for
which we define the σn, Cn and Dn as in Section 3. It follows that l = γ1−ε for
some ε > 0, and we infer with the help of Lemma 3.3 that

Px

(
d(M̂∞, M̂n) > ln

)
= P

(
d(M̂x0∞ , M̂x

n ) > γn(1−ε)
)

¬ P
(

γστ(n)−1−n(1−ε)(Cτ(n) + Dτ(n)) >
1
2

)

+ P
((

l(F1:n)1/n

l

)n

d(x, x0) >
1
2

)
.

But the latter two probabilities converge to 0 as n→∞, for l(F1:n)1/n → l∗ < l
a.s., (Cτ(n) + Dτ(n))n­0 forms a tight sequence by (P3)–(P5), and

στ(n)−1 − n(1− ε) = τ(n)
(

στ(n)−1

τ(n)
− (1− ε)

n

τ(n)

)
→ ∞ a.s.

For the last convergence we have used that τ(n)→∞ a.s., n−1τ(n)→ (Eσ1)−1

a.s. by the elementary renewal theorem, and n−1σn → Eσ1 a.s. by the strong law
of large numbers. ¥

P r o o f o f T h e o r e m 2.2. (a) Pick l, γ, ε as before and embark on the in-
equality

(4.1) P
(
d(M̂x0∞ , M̂x

n ) > ln
) ¬ P

(
στ(n)−1 ¬ (1− ρ)n

)

+ P(γ(1−ρ)nCτ(n) > ln/3) + P(γ(1−ρ)nDτ(n) > ln/3)

+ P
(
l(F1:n) > γn

)
+ 1

(
γnd(x, x0) > ln/3

)
,
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which is again easily obtained with Lemma 3.3. As γ < l, the last indicator be-
comes 0 for n > n0

def= log 3d(x, x0)/ log(l/γ), and this gives
∑

n­1

np−11
(
γnd(x, x0) > ln/3

) ¬ np
0 ¬ c logp

(
1 + d(x, x0)

)

for some c > 0. Moreover, fixing any ρ ∈ (1, ε), we see that
∑

n­1

np−1P
(
στ(n)−1 ¬ (1− ρ)n

)
and

∑

n­1

np−1P
(
l(F1:n) > γn

)

are finite and the appearing probabilities of the order o(n−p) for n→∞ by Lem-
ma 3.5. Next, by using (P3) and recalling l = γ1−ε, we obtain

∑

n­1

np−1P(γ(1−ρ)nCτ(n) > ln/3)

¬ ∑

n­1

np−1P(3Cτ(n) > γn(ρ−ε))

¬ ∑

n­1

np−1P
(
log(1 + 3Cτ(n)) > n(ε− ρ)|log γ|)

¬ Eσ1

∑

n­1

np−1P
(
log(1 + 3C∞) > n(ε− ρ)|log γ|)

¬ K E logp(1 + C∞)

for some K > 0, and the last moment is finite by Lemma 3.4. But the last fact
further implies

P(γ(1−ρ)nCτ(n) > ln/3) ¬ Eσ1 P
(
log(1 + 3C∞) > n(ε− ρ)|log γ|) = o(n−p)

as n→∞. Finally, as Dτ(n)
d= D0 for all n ­ 0 by (P5), we have

∑

n­1

np−1P(γ(1−ρ)nDτ(n) > ln/3)

¬ ∑

n­1

np−1P
(
log(1 + 3D0) > n(ε− ρ)|log γ|)

¬ K E logp(1 + D0)

for some K > 0, the last moment being finite by another appeal to Lemma 3.4. As
a consequence, we get

P(γ(1−ρ)nDτ(n) > ln/3) ¬ P( log(1 + 3D0) > n(ε− ρ)|log γ|) = o(n−p)

as n→∞. A combination of these facts with (4.1) proves (a).
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(b) By another appeal to our key inequality, stated as Lemma 3.3, we infer that

(4.2) n(p−1)/p

(
1
n

log d(M̂x0∞ , M̂x
n )− log l

)

¬ n(p−1)/p log γ

(
στ(n)−1

n
− log l

log γ

)

+ n−1/p log
(
Cτ(n) + Dτ(n) + γ−στ(n)−1 l(F1:n)d(x, x0)

)
a.s.

for each n ­ 0 (with l, γ as before). Therefore, we must prove that the limsup of
the right-hand side of this inequality is less than or equal to 0 as n→∞. By the
arguments given at the end of the proof of Theorem 2.1, we obtain

lim
n→∞

στ(n)−1

n
− log l

log γ
= 1− log l

log γ
> 0 a.s.,

and thus (as log γ < 0)

lim sup
n→∞

n(p−1)/p log γ

(
στ(n)−1

n
− log l

log γ

)
¬ 0 a.s.

If p ∈ (0, 1), this remains even true with l∗ instead of l (in this case pick any
γ ∈ (l∗, 1)) because n−(p−1)/p → 0. As for the second term on the right-hand
side in (4.2), it suffices to note that it converges a.s. to 0, for this holds true for
γ−στ(n)−1 l(F1:n)d(x, x0) and {logp(Cτ(n) + Dτ(n)) : n ­ 0} is uniformly inte-
grable by Lemma 3.4 and (P5).

(c) As (b) for p = 1 and any fixed x ∈ X may be restated as

d(M̂x0∞ , M̂x
n ) = (l∗Rn)n, n ­ 0,

for suitable random variables Rn ­ 0 satisfying lim supn→∞Rn ¬ 1 a.s., we have
for any l ∈ (l∗, 1)

lim
n→∞ l−nd(M̂x0∞ , M̂x

n ) ¬ lim
n→∞

(
l∗Rn

l

)n

= 0 a.s.,

as claimed.

(d) Fixing any l, γ as before and ρ ∈ (0, 1), we can choose a sufficiently large
constant A > 1 such that, by Lemma 3.5,

sup
n­0

(n + 1)p P
(
l(F1:n) > (n + 1)−p/2

) ¬ A/3,

sup
n­0

(n + 1)p P
(
στ(n)−1 ¬ (1− ρ)n

) ¬ A/3,
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and, by uniform integrability of {logp(Cτ(n) + Dτ(n)) : n ­ 0},

sup
n­0

(n + 1)p P
(
γ(1−ρ)n(Cτ(n) + Dτ(n)) > A(n + 1)−p/2

) ¬ A/3

holds true. Put Ax = max{A, 2d(x, x0)}. Then, by a similar estimation as in (4.1),

P
(
d(M̂x0∞ , M̂x

n ) > Ax(n + 1)−p
)

¬ P
(
στ(n)−1 ¬ (1− ρ)n

)
+ P

(
l(F1:n)d(x, x0) > Ax(n + 1)−p/2

)

+ P
(
γ(1−ρ)n(Cτ(n) + Dτ(n)) > Ax(n + 1)−p/2

)

¬ P(στ(n)−1 ¬ (1− ρ)n
)

+ P
(
l(F1:n) > (n + 1)−p/2

)

+ P
(
γ(1−ρ)n(Cτ(n) + Dτ(n)) > A(n + 1)−p/2

)

¬ A(n + 1)−p ¬ Ax(n + 1)−p

for all n ­ 0, and this leads to the desired conclusion by invoking Lemma 5.8 in
[8] (also stated as Lemma 3.6 in [2]).

(e) This can be copied verbatim from [2] and is therefore omitted. ¥

P r o o f o f T h e o r e m 2.3. In view of the previously provided arguments
it is now rather straightforward to adapt the proof of Theorem 2.3 in [2] to the
present situation, and we therefore restrict ourselves to a proof of part (b).

(b) Choose η ∈ (0, p ∧ 1) such that Lemma 3.6 is valid and fix an arbitrary
q ∈ (0, η]. By Lemma 3.8, mq = El(F1:k)q < 1 for some k ­ 1. By another appeal
to Lemma 3.3 and a simple estimation, we get

(
1 + d(x, x0)

)−q
d(M̂x0∞ , M̂x

n )q ¬ γqστ(n)−1(Cτ(n) + Dτ(n))
q + l(F1:n)q a.s.

Observe that the right-hand side does not depend on x ∈ X, converges to 0 in
probability and is uniformly integrable by Lemmata 3.6 and 3.8. This proves the
assertion for q = η. If q < η, use Hölder’s inequality to obtain

Eγqστ(n)−1(Cτ(n) + Dτ(n))
q

¬ (Eγηqστ(n)−1/(η−q))(η−q)/η
(
E(Cτ(n) + Dτ(n))

η
)q/η

for each n ­ 1. As El(F1:n)q ¬ Km
n/k
q (see the proof of Lemma 3.8), it remains

to show that
lim

n→∞α−n
q (Eγηqστ(n)−1/(η−q))(η−q)/η = 0
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for some αq ∈ [mq, 1). To this end we further estimate

(Eγηqστ(n)−1/(η−q))(η−q)/η

¬ (Eγηqστ(n)−1/(η−q)1{στ(n)−1¬(1−ρ)n})(η−q)/η + γ(1−ρ)n

¬ P(στ(n)−1 ¬ (1− ρ)n
)(η−q)/η + γ(1−ρ)n,

which holds for any ρ ∈ (0, 1) and n ­ 0. By invoking Lemma 3.7, we thus arrive
at the desired conclusion. ¥
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